blob: 359e2034b5584d3429caa09764a9b12962bbc1ba [file] [log] [blame]
/*
* Intel CPU Microcode Update Driver for Linux
*
* Copyright (C) 2000-2006 Tigran Aivazian <tigran@aivazian.fsnet.co.uk>
* 2006 Shaohua Li <shaohua.li@intel.com>
*
* Intel CPU microcode early update for Linux
*
* Copyright (C) 2012 Fenghua Yu <fenghua.yu@intel.com>
* H Peter Anvin" <hpa@zytor.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
/*
* This needs to be before all headers so that pr_debug in printk.h doesn't turn
* printk calls into no_printk().
*
*#define DEBUG
*/
#define pr_fmt(fmt) "microcode: " fmt
#include <linux/earlycpio.h>
#include <linux/firmware.h>
#include <linux/uaccess.h>
#include <linux/vmalloc.h>
#include <linux/initrd.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/cpu.h>
#include <linux/mm.h>
#include <asm/microcode_intel.h>
#include <asm/processor.h>
#include <asm/tlbflush.h>
#include <asm/setup.h>
#include <asm/msr.h>
/*
* Temporary microcode blobs pointers storage. We note here the pointers to
* microcode blobs we've got from whatever storage (detached initrd, builtin).
* Later on, we put those into final storage mc_saved_data.mc_saved.
*/
static unsigned long mc_tmp_ptrs[MAX_UCODE_COUNT];
static struct mc_saved_data {
unsigned int num_saved;
struct microcode_intel **mc_saved;
} mc_saved_data;
/* Microcode blobs within the initrd. 0 if builtin. */
static struct ucode_blobs {
unsigned long start;
bool valid;
} blobs;
static enum ucode_state
find_microcode_patch(struct microcode_intel **saved,
unsigned int num_saved, struct ucode_cpu_info *uci)
{
struct microcode_intel *ucode_ptr, *new_mc = NULL;
struct microcode_header_intel *mc_hdr;
int new_rev, ret, i;
new_rev = uci->cpu_sig.rev;
for (i = 0; i < num_saved; i++) {
ucode_ptr = saved[i];
mc_hdr = (struct microcode_header_intel *)ucode_ptr;
ret = has_newer_microcode(ucode_ptr,
uci->cpu_sig.sig,
uci->cpu_sig.pf,
new_rev);
if (!ret)
continue;
new_rev = mc_hdr->rev;
new_mc = ucode_ptr;
}
if (!new_mc)
return UCODE_NFOUND;
uci->mc = (struct microcode_intel *)new_mc;
return UCODE_OK;
}
static inline void
copy_ptrs(struct microcode_intel **mc_saved, unsigned long *mc_ptrs,
unsigned long off, int num_saved)
{
int i;
for (i = 0; i < num_saved; i++)
mc_saved[i] = (struct microcode_intel *)(mc_ptrs[i] + off);
}
#ifdef CONFIG_X86_32
static void
microcode_phys(struct microcode_intel **mc_saved_tmp, struct mc_saved_data *mcs)
{
int i;
struct microcode_intel ***mc_saved;
mc_saved = (struct microcode_intel ***)__pa_nodebug(&mcs->mc_saved);
for (i = 0; i < mcs->num_saved; i++) {
struct microcode_intel *p;
p = *(struct microcode_intel **)__pa_nodebug(mcs->mc_saved + i);
mc_saved_tmp[i] = (struct microcode_intel *)__pa_nodebug(p);
}
}
#endif
static enum ucode_state
load_microcode(struct mc_saved_data *mcs, unsigned long *mc_ptrs,
unsigned long offset, struct ucode_cpu_info *uci)
{
struct microcode_intel *mc_saved_tmp[MAX_UCODE_COUNT];
unsigned int count = mcs->num_saved;
if (!mcs->mc_saved) {
copy_ptrs(mc_saved_tmp, mc_ptrs, offset, count);
return find_microcode_patch(mc_saved_tmp, count, uci);
} else {
#ifdef CONFIG_X86_32
microcode_phys(mc_saved_tmp, mcs);
return find_microcode_patch(mc_saved_tmp, count, uci);
#else
return find_microcode_patch(mcs->mc_saved, count, uci);
#endif
}
}
/*
* Given CPU signature and a microcode patch, this function finds if the
* microcode patch has matching family and model with the CPU.
*/
static enum ucode_state
matching_model_microcode(struct microcode_header_intel *mc_header,
unsigned long sig)
{
unsigned int fam, model;
unsigned int fam_ucode, model_ucode;
struct extended_sigtable *ext_header;
unsigned long total_size = get_totalsize(mc_header);
unsigned long data_size = get_datasize(mc_header);
int ext_sigcount, i;
struct extended_signature *ext_sig;
fam = x86_family(sig);
model = x86_model(sig);
fam_ucode = x86_family(mc_header->sig);
model_ucode = x86_model(mc_header->sig);
if (fam == fam_ucode && model == model_ucode)
return UCODE_OK;
/* Look for ext. headers: */
if (total_size <= data_size + MC_HEADER_SIZE)
return UCODE_NFOUND;
ext_header = (void *) mc_header + data_size + MC_HEADER_SIZE;
ext_sig = (void *)ext_header + EXT_HEADER_SIZE;
ext_sigcount = ext_header->count;
for (i = 0; i < ext_sigcount; i++) {
fam_ucode = x86_family(ext_sig->sig);
model_ucode = x86_model(ext_sig->sig);
if (fam == fam_ucode && model == model_ucode)
return UCODE_OK;
ext_sig++;
}
return UCODE_NFOUND;
}
static int
save_microcode(struct mc_saved_data *mcs,
struct microcode_intel **mc_saved_src,
unsigned int num_saved)
{
int i, j;
struct microcode_intel **saved_ptr;
int ret;
if (!num_saved)
return -EINVAL;
/*
* Copy new microcode data.
*/
saved_ptr = kcalloc(num_saved, sizeof(struct microcode_intel *), GFP_KERNEL);
if (!saved_ptr)
return -ENOMEM;
for (i = 0; i < num_saved; i++) {
struct microcode_header_intel *mc_hdr;
struct microcode_intel *mc;
unsigned long size;
if (!mc_saved_src[i]) {
ret = -EINVAL;
goto err;
}
mc = mc_saved_src[i];
mc_hdr = &mc->hdr;
size = get_totalsize(mc_hdr);
saved_ptr[i] = kmemdup(mc, size, GFP_KERNEL);
if (!saved_ptr[i]) {
ret = -ENOMEM;
goto err;
}
}
/*
* Point to newly saved microcode.
*/
mcs->mc_saved = saved_ptr;
mcs->num_saved = num_saved;
return 0;
err:
for (j = 0; j <= i; j++)
kfree(saved_ptr[j]);
kfree(saved_ptr);
return ret;
}
/*
* A microcode patch in ucode_ptr is saved into mc_saved
* - if it has matching signature and newer revision compared to an existing
* patch mc_saved.
* - or if it is a newly discovered microcode patch.
*
* The microcode patch should have matching model with CPU.
*
* Returns: The updated number @num_saved of saved microcode patches.
*/
static unsigned int _save_mc(struct microcode_intel **mc_saved,
u8 *ucode_ptr, unsigned int num_saved)
{
struct microcode_header_intel *mc_hdr, *mc_saved_hdr;
unsigned int sig, pf;
int found = 0, i;
mc_hdr = (struct microcode_header_intel *)ucode_ptr;
for (i = 0; i < num_saved; i++) {
mc_saved_hdr = (struct microcode_header_intel *)mc_saved[i];
sig = mc_saved_hdr->sig;
pf = mc_saved_hdr->pf;
if (!find_matching_signature(ucode_ptr, sig, pf))
continue;
found = 1;
if (mc_hdr->rev <= mc_saved_hdr->rev)
continue;
/*
* Found an older ucode saved earlier. Replace it with
* this newer one.
*/
mc_saved[i] = (struct microcode_intel *)ucode_ptr;
break;
}
/* Newly detected microcode, save it to memory. */
if (i >= num_saved && !found)
mc_saved[num_saved++] = (struct microcode_intel *)ucode_ptr;
return num_saved;
}
/*
* Get microcode matching with BSP's model. Only CPUs with the same model as
* BSP can stay in the platform.
*/
static enum ucode_state __init
get_matching_model_microcode(unsigned long start, void *data, size_t size,
struct mc_saved_data *mcs, unsigned long *mc_ptrs,
struct ucode_cpu_info *uci)
{
struct microcode_intel *mc_saved_tmp[MAX_UCODE_COUNT];
struct microcode_header_intel *mc_header;
unsigned int num_saved = mcs->num_saved;
enum ucode_state state = UCODE_OK;
unsigned int leftover = size;
u8 *ucode_ptr = data;
unsigned int mc_size;
int i;
while (leftover && num_saved < ARRAY_SIZE(mc_saved_tmp)) {
if (leftover < sizeof(mc_header))
break;
mc_header = (struct microcode_header_intel *)ucode_ptr;
mc_size = get_totalsize(mc_header);
if (!mc_size || mc_size > leftover ||
microcode_sanity_check(ucode_ptr, 0) < 0)
break;
leftover -= mc_size;
/*
* Since APs with same family and model as the BSP may boot in
* the platform, we need to find and save microcode patches
* with the same family and model as the BSP.
*/
if (matching_model_microcode(mc_header, uci->cpu_sig.sig) != UCODE_OK) {
ucode_ptr += mc_size;
continue;
}
num_saved = _save_mc(mc_saved_tmp, ucode_ptr, num_saved);
ucode_ptr += mc_size;
}
if (leftover) {
state = UCODE_ERROR;
return state;
}
if (!num_saved) {
state = UCODE_NFOUND;
return state;
}
for (i = 0; i < num_saved; i++)
mc_ptrs[i] = (unsigned long)mc_saved_tmp[i] - start;
mcs->num_saved = num_saved;
return state;
}
static int collect_cpu_info_early(struct ucode_cpu_info *uci)
{
unsigned int val[2];
unsigned int family, model;
struct cpu_signature csig;
unsigned int eax, ebx, ecx, edx;
csig.sig = 0;
csig.pf = 0;
csig.rev = 0;
memset(uci, 0, sizeof(*uci));
eax = 0x00000001;
ecx = 0;
native_cpuid(&eax, &ebx, &ecx, &edx);
csig.sig = eax;
family = x86_family(csig.sig);
model = x86_model(csig.sig);
if ((model >= 5) || (family > 6)) {
/* get processor flags from MSR 0x17 */
native_rdmsr(MSR_IA32_PLATFORM_ID, val[0], val[1]);
csig.pf = 1 << ((val[1] >> 18) & 7);
}
native_wrmsrl(MSR_IA32_UCODE_REV, 0);
/* As documented in the SDM: Do a CPUID 1 here */
sync_core();
/* get the current revision from MSR 0x8B */
native_rdmsr(MSR_IA32_UCODE_REV, val[0], val[1]);
csig.rev = val[1];
uci->cpu_sig = csig;
uci->valid = 1;
return 0;
}
static void show_saved_mc(void)
{
#ifdef DEBUG
int i, j;
unsigned int sig, pf, rev, total_size, data_size, date;
struct ucode_cpu_info uci;
if (!mc_saved_data.num_saved) {
pr_debug("no microcode data saved.\n");
return;
}
pr_debug("Total microcode saved: %d\n", mc_saved_data.num_saved);
collect_cpu_info_early(&uci);
sig = uci.cpu_sig.sig;
pf = uci.cpu_sig.pf;
rev = uci.cpu_sig.rev;
pr_debug("CPU: sig=0x%x, pf=0x%x, rev=0x%x\n", sig, pf, rev);
for (i = 0; i < mc_saved_data.num_saved; i++) {
struct microcode_header_intel *mc_saved_header;
struct extended_sigtable *ext_header;
int ext_sigcount;
struct extended_signature *ext_sig;
mc_saved_header = (struct microcode_header_intel *)
mc_saved_data.mc_saved[i];
sig = mc_saved_header->sig;
pf = mc_saved_header->pf;
rev = mc_saved_header->rev;
total_size = get_totalsize(mc_saved_header);
data_size = get_datasize(mc_saved_header);
date = mc_saved_header->date;
pr_debug("mc_saved[%d]: sig=0x%x, pf=0x%x, rev=0x%x, total size=0x%x, date = %04x-%02x-%02x\n",
i, sig, pf, rev, total_size,
date & 0xffff,
date >> 24,
(date >> 16) & 0xff);
/* Look for ext. headers: */
if (total_size <= data_size + MC_HEADER_SIZE)
continue;
ext_header = (void *) mc_saved_header + data_size + MC_HEADER_SIZE;
ext_sigcount = ext_header->count;
ext_sig = (void *)ext_header + EXT_HEADER_SIZE;
for (j = 0; j < ext_sigcount; j++) {
sig = ext_sig->sig;
pf = ext_sig->pf;
pr_debug("\tExtended[%d]: sig=0x%x, pf=0x%x\n",
j, sig, pf);
ext_sig++;
}
}
#endif
}
/*
* Save this mc into mc_saved_data. So it will be loaded early when a CPU is
* hot added or resumes.
*
* Please make sure this mc should be a valid microcode patch before calling
* this function.
*/
static void save_mc_for_early(u8 *mc)
{
#ifdef CONFIG_HOTPLUG_CPU
static DEFINE_MUTEX(x86_cpu_microcode_mutex);
struct microcode_intel *mc_saved_tmp[MAX_UCODE_COUNT];
unsigned int mc_saved_count_init;
unsigned int num_saved;
struct microcode_intel **mc_saved;
int ret, i;
/*
* Hold hotplug lock so mc_saved_data is not accessed by a CPU in
* hotplug.
*/
mutex_lock(&x86_cpu_microcode_mutex);
mc_saved_count_init = mc_saved_data.num_saved;
num_saved = mc_saved_data.num_saved;
mc_saved = mc_saved_data.mc_saved;
if (mc_saved && num_saved)
memcpy(mc_saved_tmp, mc_saved,
num_saved * sizeof(struct microcode_intel *));
/*
* Save the microcode patch mc in mc_save_tmp structure if it's a newer
* version.
*/
num_saved = _save_mc(mc_saved_tmp, mc, num_saved);
/*
* Save the mc_save_tmp in global mc_saved_data.
*/
ret = save_microcode(&mc_saved_data, mc_saved_tmp, num_saved);
if (ret) {
pr_err("Cannot save microcode patch.\n");
goto out;
}
show_saved_mc();
/*
* Free old saved microcode data.
*/
if (mc_saved) {
for (i = 0; i < mc_saved_count_init; i++)
kfree(mc_saved[i]);
kfree(mc_saved);
}
out:
mutex_unlock(&x86_cpu_microcode_mutex);
#endif
}
static bool __init load_builtin_intel_microcode(struct cpio_data *cp)
{
#ifdef CONFIG_X86_64
unsigned int eax = 0x00000001, ebx, ecx = 0, edx;
char name[30];
native_cpuid(&eax, &ebx, &ecx, &edx);
sprintf(name, "intel-ucode/%02x-%02x-%02x",
x86_family(eax), x86_model(eax), x86_stepping(eax));
return get_builtin_firmware(cp, name);
#else
return false;
#endif
}
/*
* Print ucode update info.
*/
static void
print_ucode_info(struct ucode_cpu_info *uci, unsigned int date)
{
pr_info_once("microcode updated early to revision 0x%x, date = %04x-%02x-%02x\n",
uci->cpu_sig.rev,
date & 0xffff,
date >> 24,
(date >> 16) & 0xff);
}
#ifdef CONFIG_X86_32
static int delay_ucode_info;
static int current_mc_date;
/*
* Print early updated ucode info after printk works. This is delayed info dump.
*/
void show_ucode_info_early(void)
{
struct ucode_cpu_info uci;
if (delay_ucode_info) {
collect_cpu_info_early(&uci);
print_ucode_info(&uci, current_mc_date);
delay_ucode_info = 0;
}
}
/*
* At this point, we can not call printk() yet. Keep microcode patch number in
* mc_saved_data.mc_saved and delay printing microcode info in
* show_ucode_info_early() until printk() works.
*/
static void print_ucode(struct ucode_cpu_info *uci)
{
struct microcode_intel *mc;
int *delay_ucode_info_p;
int *current_mc_date_p;
mc = uci->mc;
if (!mc)
return;
delay_ucode_info_p = (int *)__pa_nodebug(&delay_ucode_info);
current_mc_date_p = (int *)__pa_nodebug(&current_mc_date);
*delay_ucode_info_p = 1;
*current_mc_date_p = mc->hdr.date;
}
#else
/*
* Flush global tlb. We only do this in x86_64 where paging has been enabled
* already and PGE should be enabled as well.
*/
static inline void flush_tlb_early(void)
{
__native_flush_tlb_global_irq_disabled();
}
static inline void print_ucode(struct ucode_cpu_info *uci)
{
struct microcode_intel *mc;
mc = uci->mc;
if (!mc)
return;
print_ucode_info(uci, mc->hdr.date);
}
#endif
static int apply_microcode_early(struct ucode_cpu_info *uci, bool early)
{
struct microcode_intel *mc;
unsigned int val[2];
mc = uci->mc;
if (!mc)
return 0;
/* write microcode via MSR 0x79 */
native_wrmsrl(MSR_IA32_UCODE_WRITE, (unsigned long)mc->bits);
native_wrmsrl(MSR_IA32_UCODE_REV, 0);
/* As documented in the SDM: Do a CPUID 1 here */
sync_core();
/* get the current revision from MSR 0x8B */
native_rdmsr(MSR_IA32_UCODE_REV, val[0], val[1]);
if (val[1] != mc->hdr.rev)
return -1;
#ifdef CONFIG_X86_64
/* Flush global tlb. This is precaution. */
flush_tlb_early();
#endif
uci->cpu_sig.rev = val[1];
if (early)
print_ucode(uci);
else
print_ucode_info(uci, mc->hdr.date);
return 0;
}
/*
* This function converts microcode patch offsets previously stored in
* mc_tmp_ptrs to pointers and stores the pointers in mc_saved_data.
*/
int __init save_microcode_in_initrd_intel(void)
{
struct microcode_intel *mc_saved[MAX_UCODE_COUNT];
unsigned int count = mc_saved_data.num_saved;
unsigned long offset = 0;
int ret;
if (!count)
return 0;
/*
* We have found a valid initrd but it might've been relocated in the
* meantime so get its updated address.
*/
if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && blobs.valid)
offset = initrd_start;
copy_ptrs(mc_saved, mc_tmp_ptrs, offset, count);
ret = save_microcode(&mc_saved_data, mc_saved, count);
if (ret)
pr_err("Cannot save microcode patches from initrd.\n");
else
show_saved_mc();
return ret;
}
static __init enum ucode_state
__scan_microcode_initrd(struct cpio_data *cd, struct ucode_blobs *blbp)
{
#ifdef CONFIG_BLK_DEV_INITRD
static __initdata char ucode_name[] = "kernel/x86/microcode/GenuineIntel.bin";
char *p = IS_ENABLED(CONFIG_X86_32) ? (char *)__pa_nodebug(ucode_name)
: ucode_name;
# ifdef CONFIG_X86_32
unsigned long start = 0, size;
struct boot_params *params;
params = (struct boot_params *)__pa_nodebug(&boot_params);
size = params->hdr.ramdisk_size;
/*
* Set start only if we have an initrd image. We cannot use initrd_start
* because it is not set that early yet.
*/
start = (size ? params->hdr.ramdisk_image : 0);
# else /* CONFIG_X86_64 */
unsigned long start = 0, size;
size = (u64)boot_params.ext_ramdisk_size << 32;
size |= boot_params.hdr.ramdisk_size;
if (size) {
start = (u64)boot_params.ext_ramdisk_image << 32;
start |= boot_params.hdr.ramdisk_image;
start += PAGE_OFFSET;
}
# endif
*cd = find_cpio_data(p, (void *)start, size, NULL);
if (cd->data) {
blbp->start = start;
blbp->valid = true;
return UCODE_OK;
} else
#endif /* CONFIG_BLK_DEV_INITRD */
return UCODE_ERROR;
}
static __init enum ucode_state
scan_microcode(struct mc_saved_data *mcs, unsigned long *mc_ptrs,
struct ucode_cpu_info *uci, struct ucode_blobs *blbp)
{
struct cpio_data cd = { NULL, 0, "" };
enum ucode_state ret;
/* try built-in microcode first */
if (load_builtin_intel_microcode(&cd))
/*
* Invalidate blobs as we might've gotten an initrd too,
* supplied by the boot loader, by mistake or simply forgotten
* there. That's fine, we ignore it since we've found builtin
* microcode already.
*/
blbp->valid = false;
else {
ret = __scan_microcode_initrd(&cd, blbp);
if (ret != UCODE_OK)
return ret;
}
return get_matching_model_microcode(blbp->start, cd.data, cd.size,
mcs, mc_ptrs, uci);
}
static void __init
_load_ucode_intel_bsp(struct mc_saved_data *mcs, unsigned long *mc_ptrs,
struct ucode_blobs *blbp)
{
struct ucode_cpu_info uci;
enum ucode_state ret;
collect_cpu_info_early(&uci);
ret = scan_microcode(mcs, mc_ptrs, &uci, blbp);
if (ret != UCODE_OK)
return;
ret = load_microcode(mcs, mc_ptrs, blbp->start, &uci);
if (ret != UCODE_OK)
return;
apply_microcode_early(&uci, true);
}
void __init load_ucode_intel_bsp(void)
{
struct ucode_blobs *blobs_p;
struct mc_saved_data *mcs;
unsigned long *ptrs;
#ifdef CONFIG_X86_32
mcs = (struct mc_saved_data *)__pa_nodebug(&mc_saved_data);
ptrs = (unsigned long *)__pa_nodebug(&mc_tmp_ptrs);
blobs_p = (struct ucode_blobs *)__pa_nodebug(&blobs);
#else
mcs = &mc_saved_data;
ptrs = mc_tmp_ptrs;
blobs_p = &blobs;
#endif
_load_ucode_intel_bsp(mcs, ptrs, blobs_p);
}
void load_ucode_intel_ap(void)
{
struct ucode_blobs *blobs_p;
struct mc_saved_data *mcs;
struct ucode_cpu_info uci;
enum ucode_state ret;
unsigned long *ptrs;
#ifdef CONFIG_X86_32
mcs = (struct mc_saved_data *)__pa_nodebug(&mc_saved_data);
ptrs = (unsigned long *)__pa_nodebug(mc_tmp_ptrs);
blobs_p = (struct ucode_blobs *)__pa_nodebug(&blobs);
#else
mcs = &mc_saved_data;
ptrs = mc_tmp_ptrs;
blobs_p = &blobs;
#endif
/*
* If there is no valid ucode previously saved in memory, no need to
* update ucode on this AP.
*/
if (!mcs->num_saved)
return;
collect_cpu_info_early(&uci);
ret = load_microcode(mcs, ptrs, blobs_p->start, &uci);
if (ret != UCODE_OK)
return;
apply_microcode_early(&uci, true);
}
void reload_ucode_intel(void)
{
struct ucode_cpu_info uci;
enum ucode_state ret;
if (!mc_saved_data.num_saved)
return;
collect_cpu_info_early(&uci);
ret = find_microcode_patch(mc_saved_data.mc_saved,
mc_saved_data.num_saved, &uci);
if (ret != UCODE_OK)
return;
apply_microcode_early(&uci, false);
}
static int collect_cpu_info(int cpu_num, struct cpu_signature *csig)
{
struct cpuinfo_x86 *c = &cpu_data(cpu_num);
unsigned int val[2];
memset(csig, 0, sizeof(*csig));
csig->sig = cpuid_eax(0x00000001);
if ((c->x86_model >= 5) || (c->x86 > 6)) {
/* get processor flags from MSR 0x17 */
rdmsr(MSR_IA32_PLATFORM_ID, val[0], val[1]);
csig->pf = 1 << ((val[1] >> 18) & 7);
}
csig->rev = c->microcode;
pr_info("CPU%d sig=0x%x, pf=0x%x, revision=0x%x\n",
cpu_num, csig->sig, csig->pf, csig->rev);
return 0;
}
/*
* return 0 - no update found
* return 1 - found update
*/
static int get_matching_mc(struct microcode_intel *mc, int cpu)
{
struct cpu_signature cpu_sig;
unsigned int csig, cpf, crev;
collect_cpu_info(cpu, &cpu_sig);
csig = cpu_sig.sig;
cpf = cpu_sig.pf;
crev = cpu_sig.rev;
return has_newer_microcode(mc, csig, cpf, crev);
}
static int apply_microcode_intel(int cpu)
{
struct microcode_intel *mc;
struct ucode_cpu_info *uci;
struct cpuinfo_x86 *c;
unsigned int val[2];
/* We should bind the task to the CPU */
if (WARN_ON(raw_smp_processor_id() != cpu))
return -1;
uci = ucode_cpu_info + cpu;
mc = uci->mc;
if (!mc)
return 0;
/*
* Microcode on this CPU could be updated earlier. Only apply the
* microcode patch in mc when it is newer than the one on this
* CPU.
*/
if (!get_matching_mc(mc, cpu))
return 0;
/* write microcode via MSR 0x79 */
wrmsrl(MSR_IA32_UCODE_WRITE, (unsigned long)mc->bits);
wrmsrl(MSR_IA32_UCODE_REV, 0);
/* As documented in the SDM: Do a CPUID 1 here */
sync_core();
/* get the current revision from MSR 0x8B */
rdmsr(MSR_IA32_UCODE_REV, val[0], val[1]);
if (val[1] != mc->hdr.rev) {
pr_err("CPU%d update to revision 0x%x failed\n",
cpu, mc->hdr.rev);
return -1;
}
pr_info("CPU%d updated to revision 0x%x, date = %04x-%02x-%02x\n",
cpu, val[1],
mc->hdr.date & 0xffff,
mc->hdr.date >> 24,
(mc->hdr.date >> 16) & 0xff);
c = &cpu_data(cpu);
uci->cpu_sig.rev = val[1];
c->microcode = val[1];
return 0;
}
static enum ucode_state generic_load_microcode(int cpu, void *data, size_t size,
int (*get_ucode_data)(void *, const void *, size_t))
{
struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
u8 *ucode_ptr = data, *new_mc = NULL, *mc = NULL;
int new_rev = uci->cpu_sig.rev;
unsigned int leftover = size;
enum ucode_state state = UCODE_OK;
unsigned int curr_mc_size = 0;
unsigned int csig, cpf;
while (leftover) {
struct microcode_header_intel mc_header;
unsigned int mc_size;
if (leftover < sizeof(mc_header)) {
pr_err("error! Truncated header in microcode data file\n");
break;
}
if (get_ucode_data(&mc_header, ucode_ptr, sizeof(mc_header)))
break;
mc_size = get_totalsize(&mc_header);
if (!mc_size || mc_size > leftover) {
pr_err("error! Bad data in microcode data file\n");
break;
}
/* For performance reasons, reuse mc area when possible */
if (!mc || mc_size > curr_mc_size) {
vfree(mc);
mc = vmalloc(mc_size);
if (!mc)
break;
curr_mc_size = mc_size;
}
if (get_ucode_data(mc, ucode_ptr, mc_size) ||
microcode_sanity_check(mc, 1) < 0) {
break;
}
csig = uci->cpu_sig.sig;
cpf = uci->cpu_sig.pf;
if (has_newer_microcode(mc, csig, cpf, new_rev)) {
vfree(new_mc);
new_rev = mc_header.rev;
new_mc = mc;
mc = NULL; /* trigger new vmalloc */
}
ucode_ptr += mc_size;
leftover -= mc_size;
}
vfree(mc);
if (leftover) {
vfree(new_mc);
state = UCODE_ERROR;
goto out;
}
if (!new_mc) {
state = UCODE_NFOUND;
goto out;
}
vfree(uci->mc);
uci->mc = (struct microcode_intel *)new_mc;
/*
* If early loading microcode is supported, save this mc into
* permanent memory. So it will be loaded early when a CPU is hot added
* or resumes.
*/
save_mc_for_early(new_mc);
pr_debug("CPU%d found a matching microcode update with version 0x%x (current=0x%x)\n",
cpu, new_rev, uci->cpu_sig.rev);
out:
return state;
}
static int get_ucode_fw(void *to, const void *from, size_t n)
{
memcpy(to, from, n);
return 0;
}
static enum ucode_state request_microcode_fw(int cpu, struct device *device,
bool refresh_fw)
{
char name[30];
struct cpuinfo_x86 *c = &cpu_data(cpu);
const struct firmware *firmware;
enum ucode_state ret;
sprintf(name, "intel-ucode/%02x-%02x-%02x",
c->x86, c->x86_model, c->x86_mask);
if (request_firmware_direct(&firmware, name, device)) {
pr_debug("data file %s load failed\n", name);
return UCODE_NFOUND;
}
ret = generic_load_microcode(cpu, (void *)firmware->data,
firmware->size, &get_ucode_fw);
release_firmware(firmware);
return ret;
}
static int get_ucode_user(void *to, const void *from, size_t n)
{
return copy_from_user(to, from, n);
}
static enum ucode_state
request_microcode_user(int cpu, const void __user *buf, size_t size)
{
return generic_load_microcode(cpu, (void *)buf, size, &get_ucode_user);
}
static void microcode_fini_cpu(int cpu)
{
struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
vfree(uci->mc);
uci->mc = NULL;
}
static struct microcode_ops microcode_intel_ops = {
.request_microcode_user = request_microcode_user,
.request_microcode_fw = request_microcode_fw,
.collect_cpu_info = collect_cpu_info,
.apply_microcode = apply_microcode_intel,
.microcode_fini_cpu = microcode_fini_cpu,
};
struct microcode_ops * __init init_intel_microcode(void)
{
struct cpuinfo_x86 *c = &boot_cpu_data;
if (c->x86_vendor != X86_VENDOR_INTEL || c->x86 < 6 ||
cpu_has(c, X86_FEATURE_IA64)) {
pr_err("Intel CPU family 0x%x not supported\n", c->x86);
return NULL;
}
return &microcode_intel_ops;
}