| /* |
| * Copyright(c) 2015-2017 Intel Corporation. |
| * |
| * This file is provided under a dual BSD/GPLv2 license. When using or |
| * redistributing this file, you may do so under either license. |
| * |
| * GPL LICENSE SUMMARY |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of version 2 of the GNU General Public License as |
| * published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, but |
| * WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * General Public License for more details. |
| * |
| * BSD LICENSE |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * - Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * - Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in |
| * the documentation and/or other materials provided with the |
| * distribution. |
| * - Neither the name of Intel Corporation nor the names of its |
| * contributors may be used to endorse or promote products derived |
| * from this software without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| * |
| */ |
| #include <linux/poll.h> |
| #include <linux/cdev.h> |
| #include <linux/vmalloc.h> |
| #include <linux/io.h> |
| #include <linux/sched/mm.h> |
| |
| #include <rdma/ib.h> |
| |
| #include "hfi.h" |
| #include "pio.h" |
| #include "device.h" |
| #include "common.h" |
| #include "trace.h" |
| #include "user_sdma.h" |
| #include "user_exp_rcv.h" |
| #include "aspm.h" |
| #include "mmu_rb.h" |
| |
| #undef pr_fmt |
| #define pr_fmt(fmt) DRIVER_NAME ": " fmt |
| |
| #define SEND_CTXT_HALT_TIMEOUT 1000 /* msecs */ |
| |
| /* |
| * File operation functions |
| */ |
| static int hfi1_file_open(struct inode *, struct file *); |
| static int hfi1_file_close(struct inode *, struct file *); |
| static ssize_t hfi1_write_iter(struct kiocb *, struct iov_iter *); |
| static unsigned int hfi1_poll(struct file *, struct poll_table_struct *); |
| static int hfi1_file_mmap(struct file *, struct vm_area_struct *); |
| |
| static u64 kvirt_to_phys(void *); |
| static int assign_ctxt(struct file *, struct hfi1_user_info *); |
| static int init_subctxts(struct hfi1_ctxtdata *, const struct hfi1_user_info *); |
| static int user_init(struct file *); |
| static int get_ctxt_info(struct file *, void __user *, __u32); |
| static int get_base_info(struct file *, void __user *, __u32); |
| static int setup_ctxt(struct file *); |
| static int setup_subctxt(struct hfi1_ctxtdata *); |
| static int get_user_context(struct file *, struct hfi1_user_info *, int); |
| static int find_shared_ctxt(struct file *, const struct hfi1_user_info *); |
| static int allocate_ctxt(struct file *, struct hfi1_devdata *, |
| struct hfi1_user_info *); |
| static unsigned int poll_urgent(struct file *, struct poll_table_struct *); |
| static unsigned int poll_next(struct file *, struct poll_table_struct *); |
| static int user_event_ack(struct hfi1_ctxtdata *, int, unsigned long); |
| static int set_ctxt_pkey(struct hfi1_ctxtdata *, unsigned, u16); |
| static int manage_rcvq(struct hfi1_ctxtdata *, unsigned, int); |
| static int vma_fault(struct vm_fault *); |
| static long hfi1_file_ioctl(struct file *fp, unsigned int cmd, |
| unsigned long arg); |
| |
| static const struct file_operations hfi1_file_ops = { |
| .owner = THIS_MODULE, |
| .write_iter = hfi1_write_iter, |
| .open = hfi1_file_open, |
| .release = hfi1_file_close, |
| .unlocked_ioctl = hfi1_file_ioctl, |
| .poll = hfi1_poll, |
| .mmap = hfi1_file_mmap, |
| .llseek = noop_llseek, |
| }; |
| |
| static struct vm_operations_struct vm_ops = { |
| .fault = vma_fault, |
| }; |
| |
| /* |
| * Types of memories mapped into user processes' space |
| */ |
| enum mmap_types { |
| PIO_BUFS = 1, |
| PIO_BUFS_SOP, |
| PIO_CRED, |
| RCV_HDRQ, |
| RCV_EGRBUF, |
| UREGS, |
| EVENTS, |
| STATUS, |
| RTAIL, |
| SUBCTXT_UREGS, |
| SUBCTXT_RCV_HDRQ, |
| SUBCTXT_EGRBUF, |
| SDMA_COMP |
| }; |
| |
| /* |
| * Masks and offsets defining the mmap tokens |
| */ |
| #define HFI1_MMAP_OFFSET_MASK 0xfffULL |
| #define HFI1_MMAP_OFFSET_SHIFT 0 |
| #define HFI1_MMAP_SUBCTXT_MASK 0xfULL |
| #define HFI1_MMAP_SUBCTXT_SHIFT 12 |
| #define HFI1_MMAP_CTXT_MASK 0xffULL |
| #define HFI1_MMAP_CTXT_SHIFT 16 |
| #define HFI1_MMAP_TYPE_MASK 0xfULL |
| #define HFI1_MMAP_TYPE_SHIFT 24 |
| #define HFI1_MMAP_MAGIC_MASK 0xffffffffULL |
| #define HFI1_MMAP_MAGIC_SHIFT 32 |
| |
| #define HFI1_MMAP_MAGIC 0xdabbad00 |
| |
| #define HFI1_MMAP_TOKEN_SET(field, val) \ |
| (((val) & HFI1_MMAP_##field##_MASK) << HFI1_MMAP_##field##_SHIFT) |
| #define HFI1_MMAP_TOKEN_GET(field, token) \ |
| (((token) >> HFI1_MMAP_##field##_SHIFT) & HFI1_MMAP_##field##_MASK) |
| #define HFI1_MMAP_TOKEN(type, ctxt, subctxt, addr) \ |
| (HFI1_MMAP_TOKEN_SET(MAGIC, HFI1_MMAP_MAGIC) | \ |
| HFI1_MMAP_TOKEN_SET(TYPE, type) | \ |
| HFI1_MMAP_TOKEN_SET(CTXT, ctxt) | \ |
| HFI1_MMAP_TOKEN_SET(SUBCTXT, subctxt) | \ |
| HFI1_MMAP_TOKEN_SET(OFFSET, (offset_in_page(addr)))) |
| |
| #define dbg(fmt, ...) \ |
| pr_info(fmt, ##__VA_ARGS__) |
| |
| static inline int is_valid_mmap(u64 token) |
| { |
| return (HFI1_MMAP_TOKEN_GET(MAGIC, token) == HFI1_MMAP_MAGIC); |
| } |
| |
| static int hfi1_file_open(struct inode *inode, struct file *fp) |
| { |
| struct hfi1_filedata *fd; |
| struct hfi1_devdata *dd = container_of(inode->i_cdev, |
| struct hfi1_devdata, |
| user_cdev); |
| |
| if (!atomic_inc_not_zero(&dd->user_refcount)) |
| return -ENXIO; |
| |
| /* Just take a ref now. Not all opens result in a context assign */ |
| kobject_get(&dd->kobj); |
| |
| /* The real work is performed later in assign_ctxt() */ |
| |
| fd = kzalloc(sizeof(*fd), GFP_KERNEL); |
| |
| if (fd) { |
| fd->rec_cpu_num = -1; /* no cpu affinity by default */ |
| fd->mm = current->mm; |
| mmgrab(fd->mm); |
| fp->private_data = fd; |
| } else { |
| fp->private_data = NULL; |
| |
| if (atomic_dec_and_test(&dd->user_refcount)) |
| complete(&dd->user_comp); |
| |
| return -ENOMEM; |
| } |
| |
| return 0; |
| } |
| |
| static long hfi1_file_ioctl(struct file *fp, unsigned int cmd, |
| unsigned long arg) |
| { |
| struct hfi1_filedata *fd = fp->private_data; |
| struct hfi1_ctxtdata *uctxt = fd->uctxt; |
| struct hfi1_user_info uinfo; |
| struct hfi1_tid_info tinfo; |
| int ret = 0; |
| unsigned long addr; |
| int uval = 0; |
| unsigned long ul_uval = 0; |
| u16 uval16 = 0; |
| |
| hfi1_cdbg(IOCTL, "IOCTL recv: 0x%x", cmd); |
| if (cmd != HFI1_IOCTL_ASSIGN_CTXT && |
| cmd != HFI1_IOCTL_GET_VERS && |
| !uctxt) |
| return -EINVAL; |
| |
| switch (cmd) { |
| case HFI1_IOCTL_ASSIGN_CTXT: |
| if (uctxt) |
| return -EINVAL; |
| |
| if (copy_from_user(&uinfo, |
| (struct hfi1_user_info __user *)arg, |
| sizeof(uinfo))) |
| return -EFAULT; |
| |
| ret = assign_ctxt(fp, &uinfo); |
| if (ret < 0) |
| return ret; |
| ret = setup_ctxt(fp); |
| if (ret) |
| return ret; |
| ret = user_init(fp); |
| break; |
| case HFI1_IOCTL_CTXT_INFO: |
| ret = get_ctxt_info(fp, (void __user *)(unsigned long)arg, |
| sizeof(struct hfi1_ctxt_info)); |
| break; |
| case HFI1_IOCTL_USER_INFO: |
| ret = get_base_info(fp, (void __user *)(unsigned long)arg, |
| sizeof(struct hfi1_base_info)); |
| break; |
| case HFI1_IOCTL_CREDIT_UPD: |
| if (uctxt) |
| sc_return_credits(uctxt->sc); |
| break; |
| |
| case HFI1_IOCTL_TID_UPDATE: |
| if (copy_from_user(&tinfo, |
| (struct hfi11_tid_info __user *)arg, |
| sizeof(tinfo))) |
| return -EFAULT; |
| |
| ret = hfi1_user_exp_rcv_setup(fp, &tinfo); |
| if (!ret) { |
| /* |
| * Copy the number of tidlist entries we used |
| * and the length of the buffer we registered. |
| * These fields are adjacent in the structure so |
| * we can copy them at the same time. |
| */ |
| addr = arg + offsetof(struct hfi1_tid_info, tidcnt); |
| if (copy_to_user((void __user *)addr, &tinfo.tidcnt, |
| sizeof(tinfo.tidcnt) + |
| sizeof(tinfo.length))) |
| ret = -EFAULT; |
| } |
| break; |
| |
| case HFI1_IOCTL_TID_FREE: |
| if (copy_from_user(&tinfo, |
| (struct hfi11_tid_info __user *)arg, |
| sizeof(tinfo))) |
| return -EFAULT; |
| |
| ret = hfi1_user_exp_rcv_clear(fp, &tinfo); |
| if (ret) |
| break; |
| addr = arg + offsetof(struct hfi1_tid_info, tidcnt); |
| if (copy_to_user((void __user *)addr, &tinfo.tidcnt, |
| sizeof(tinfo.tidcnt))) |
| ret = -EFAULT; |
| break; |
| |
| case HFI1_IOCTL_TID_INVAL_READ: |
| if (copy_from_user(&tinfo, |
| (struct hfi11_tid_info __user *)arg, |
| sizeof(tinfo))) |
| return -EFAULT; |
| |
| ret = hfi1_user_exp_rcv_invalid(fp, &tinfo); |
| if (ret) |
| break; |
| addr = arg + offsetof(struct hfi1_tid_info, tidcnt); |
| if (copy_to_user((void __user *)addr, &tinfo.tidcnt, |
| sizeof(tinfo.tidcnt))) |
| ret = -EFAULT; |
| break; |
| |
| case HFI1_IOCTL_RECV_CTRL: |
| ret = get_user(uval, (int __user *)arg); |
| if (ret != 0) |
| return -EFAULT; |
| ret = manage_rcvq(uctxt, fd->subctxt, uval); |
| break; |
| |
| case HFI1_IOCTL_POLL_TYPE: |
| ret = get_user(uval, (int __user *)arg); |
| if (ret != 0) |
| return -EFAULT; |
| uctxt->poll_type = (typeof(uctxt->poll_type))uval; |
| break; |
| |
| case HFI1_IOCTL_ACK_EVENT: |
| ret = get_user(ul_uval, (unsigned long __user *)arg); |
| if (ret != 0) |
| return -EFAULT; |
| ret = user_event_ack(uctxt, fd->subctxt, ul_uval); |
| break; |
| |
| case HFI1_IOCTL_SET_PKEY: |
| ret = get_user(uval16, (u16 __user *)arg); |
| if (ret != 0) |
| return -EFAULT; |
| if (HFI1_CAP_IS_USET(PKEY_CHECK)) |
| ret = set_ctxt_pkey(uctxt, fd->subctxt, uval16); |
| else |
| return -EPERM; |
| break; |
| |
| case HFI1_IOCTL_CTXT_RESET: { |
| struct send_context *sc; |
| struct hfi1_devdata *dd; |
| |
| if (!uctxt || !uctxt->dd || !uctxt->sc) |
| return -EINVAL; |
| |
| /* |
| * There is no protection here. User level has to |
| * guarantee that no one will be writing to the send |
| * context while it is being re-initialized. |
| * If user level breaks that guarantee, it will break |
| * it's own context and no one else's. |
| */ |
| dd = uctxt->dd; |
| sc = uctxt->sc; |
| /* |
| * Wait until the interrupt handler has marked the |
| * context as halted or frozen. Report error if we time |
| * out. |
| */ |
| wait_event_interruptible_timeout( |
| sc->halt_wait, (sc->flags & SCF_HALTED), |
| msecs_to_jiffies(SEND_CTXT_HALT_TIMEOUT)); |
| if (!(sc->flags & SCF_HALTED)) |
| return -ENOLCK; |
| |
| /* |
| * If the send context was halted due to a Freeze, |
| * wait until the device has been "unfrozen" before |
| * resetting the context. |
| */ |
| if (sc->flags & SCF_FROZEN) { |
| wait_event_interruptible_timeout( |
| dd->event_queue, |
| !(ACCESS_ONCE(dd->flags) & HFI1_FROZEN), |
| msecs_to_jiffies(SEND_CTXT_HALT_TIMEOUT)); |
| if (dd->flags & HFI1_FROZEN) |
| return -ENOLCK; |
| |
| if (dd->flags & HFI1_FORCED_FREEZE) |
| /* |
| * Don't allow context reset if we are into |
| * forced freeze |
| */ |
| return -ENODEV; |
| |
| sc_disable(sc); |
| ret = sc_enable(sc); |
| hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_ENB, |
| uctxt->ctxt); |
| } else { |
| ret = sc_restart(sc); |
| } |
| if (!ret) |
| sc_return_credits(sc); |
| break; |
| } |
| |
| case HFI1_IOCTL_GET_VERS: |
| uval = HFI1_USER_SWVERSION; |
| if (put_user(uval, (int __user *)arg)) |
| return -EFAULT; |
| break; |
| |
| default: |
| return -EINVAL; |
| } |
| |
| return ret; |
| } |
| |
| static ssize_t hfi1_write_iter(struct kiocb *kiocb, struct iov_iter *from) |
| { |
| struct hfi1_filedata *fd = kiocb->ki_filp->private_data; |
| struct hfi1_user_sdma_pkt_q *pq = fd->pq; |
| struct hfi1_user_sdma_comp_q *cq = fd->cq; |
| int done = 0, reqs = 0; |
| unsigned long dim = from->nr_segs; |
| |
| if (!cq || !pq) |
| return -EIO; |
| |
| if (!iter_is_iovec(from) || !dim) |
| return -EINVAL; |
| |
| hfi1_cdbg(SDMA, "SDMA request from %u:%u (%lu)", |
| fd->uctxt->ctxt, fd->subctxt, dim); |
| |
| if (atomic_read(&pq->n_reqs) == pq->n_max_reqs) |
| return -ENOSPC; |
| |
| while (dim) { |
| int ret; |
| unsigned long count = 0; |
| |
| ret = hfi1_user_sdma_process_request( |
| kiocb->ki_filp, (struct iovec *)(from->iov + done), |
| dim, &count); |
| if (ret) { |
| reqs = ret; |
| break; |
| } |
| dim -= count; |
| done += count; |
| reqs++; |
| } |
| |
| return reqs; |
| } |
| |
| static int hfi1_file_mmap(struct file *fp, struct vm_area_struct *vma) |
| { |
| struct hfi1_filedata *fd = fp->private_data; |
| struct hfi1_ctxtdata *uctxt = fd->uctxt; |
| struct hfi1_devdata *dd; |
| unsigned long flags; |
| u64 token = vma->vm_pgoff << PAGE_SHIFT, |
| memaddr = 0; |
| void *memvirt = NULL; |
| u8 subctxt, mapio = 0, vmf = 0, type; |
| ssize_t memlen = 0; |
| int ret = 0; |
| u16 ctxt; |
| |
| if (!is_valid_mmap(token) || !uctxt || |
| !(vma->vm_flags & VM_SHARED)) { |
| ret = -EINVAL; |
| goto done; |
| } |
| dd = uctxt->dd; |
| ctxt = HFI1_MMAP_TOKEN_GET(CTXT, token); |
| subctxt = HFI1_MMAP_TOKEN_GET(SUBCTXT, token); |
| type = HFI1_MMAP_TOKEN_GET(TYPE, token); |
| if (ctxt != uctxt->ctxt || subctxt != fd->subctxt) { |
| ret = -EINVAL; |
| goto done; |
| } |
| |
| flags = vma->vm_flags; |
| |
| switch (type) { |
| case PIO_BUFS: |
| case PIO_BUFS_SOP: |
| memaddr = ((dd->physaddr + TXE_PIO_SEND) + |
| /* chip pio base */ |
| (uctxt->sc->hw_context * BIT(16))) + |
| /* 64K PIO space / ctxt */ |
| (type == PIO_BUFS_SOP ? |
| (TXE_PIO_SIZE / 2) : 0); /* sop? */ |
| /* |
| * Map only the amount allocated to the context, not the |
| * entire available context's PIO space. |
| */ |
| memlen = PAGE_ALIGN(uctxt->sc->credits * PIO_BLOCK_SIZE); |
| flags &= ~VM_MAYREAD; |
| flags |= VM_DONTCOPY | VM_DONTEXPAND; |
| vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot); |
| mapio = 1; |
| break; |
| case PIO_CRED: |
| if (flags & VM_WRITE) { |
| ret = -EPERM; |
| goto done; |
| } |
| /* |
| * The credit return location for this context could be on the |
| * second or third page allocated for credit returns (if number |
| * of enabled contexts > 64 and 128 respectively). |
| */ |
| memvirt = dd->cr_base[uctxt->numa_id].va; |
| memaddr = virt_to_phys(memvirt) + |
| (((u64)uctxt->sc->hw_free - |
| (u64)dd->cr_base[uctxt->numa_id].va) & PAGE_MASK); |
| memlen = PAGE_SIZE; |
| flags &= ~VM_MAYWRITE; |
| flags |= VM_DONTCOPY | VM_DONTEXPAND; |
| /* |
| * The driver has already allocated memory for credit |
| * returns and programmed it into the chip. Has that |
| * memory been flagged as non-cached? |
| */ |
| /* vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); */ |
| mapio = 1; |
| break; |
| case RCV_HDRQ: |
| memlen = uctxt->rcvhdrq_size; |
| memvirt = uctxt->rcvhdrq; |
| break; |
| case RCV_EGRBUF: { |
| unsigned long addr; |
| int i; |
| /* |
| * The RcvEgr buffer need to be handled differently |
| * as multiple non-contiguous pages need to be mapped |
| * into the user process. |
| */ |
| memlen = uctxt->egrbufs.size; |
| if ((vma->vm_end - vma->vm_start) != memlen) { |
| dd_dev_err(dd, "Eager buffer map size invalid (%lu != %lu)\n", |
| (vma->vm_end - vma->vm_start), memlen); |
| ret = -EINVAL; |
| goto done; |
| } |
| if (vma->vm_flags & VM_WRITE) { |
| ret = -EPERM; |
| goto done; |
| } |
| vma->vm_flags &= ~VM_MAYWRITE; |
| addr = vma->vm_start; |
| for (i = 0 ; i < uctxt->egrbufs.numbufs; i++) { |
| memlen = uctxt->egrbufs.buffers[i].len; |
| memvirt = uctxt->egrbufs.buffers[i].addr; |
| ret = remap_pfn_range( |
| vma, addr, |
| /* |
| * virt_to_pfn() does the same, but |
| * it's not available on x86_64 |
| * when CONFIG_MMU is enabled. |
| */ |
| PFN_DOWN(__pa(memvirt)), |
| memlen, |
| vma->vm_page_prot); |
| if (ret < 0) |
| goto done; |
| addr += memlen; |
| } |
| ret = 0; |
| goto done; |
| } |
| case UREGS: |
| /* |
| * Map only the page that contains this context's user |
| * registers. |
| */ |
| memaddr = (unsigned long) |
| (dd->physaddr + RXE_PER_CONTEXT_USER) |
| + (uctxt->ctxt * RXE_PER_CONTEXT_SIZE); |
| /* |
| * TidFlow table is on the same page as the rest of the |
| * user registers. |
| */ |
| memlen = PAGE_SIZE; |
| flags |= VM_DONTCOPY | VM_DONTEXPAND; |
| vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); |
| mapio = 1; |
| break; |
| case EVENTS: |
| /* |
| * Use the page where this context's flags are. User level |
| * knows where it's own bitmap is within the page. |
| */ |
| memaddr = (unsigned long)(dd->events + |
| ((uctxt->ctxt - dd->first_dyn_alloc_ctxt) * |
| HFI1_MAX_SHARED_CTXTS)) & PAGE_MASK; |
| memlen = PAGE_SIZE; |
| /* |
| * v3.7 removes VM_RESERVED but the effect is kept by |
| * using VM_IO. |
| */ |
| flags |= VM_IO | VM_DONTEXPAND; |
| vmf = 1; |
| break; |
| case STATUS: |
| if (flags & (unsigned long)(VM_WRITE | VM_EXEC)) { |
| ret = -EPERM; |
| goto done; |
| } |
| memaddr = kvirt_to_phys((void *)dd->status); |
| memlen = PAGE_SIZE; |
| flags |= VM_IO | VM_DONTEXPAND; |
| break; |
| case RTAIL: |
| if (!HFI1_CAP_IS_USET(DMA_RTAIL)) { |
| /* |
| * If the memory allocation failed, the context alloc |
| * also would have failed, so we would never get here |
| */ |
| ret = -EINVAL; |
| goto done; |
| } |
| if (flags & VM_WRITE) { |
| ret = -EPERM; |
| goto done; |
| } |
| memlen = PAGE_SIZE; |
| memvirt = (void *)uctxt->rcvhdrtail_kvaddr; |
| flags &= ~VM_MAYWRITE; |
| break; |
| case SUBCTXT_UREGS: |
| memaddr = (u64)uctxt->subctxt_uregbase; |
| memlen = PAGE_SIZE; |
| flags |= VM_IO | VM_DONTEXPAND; |
| vmf = 1; |
| break; |
| case SUBCTXT_RCV_HDRQ: |
| memaddr = (u64)uctxt->subctxt_rcvhdr_base; |
| memlen = uctxt->rcvhdrq_size * uctxt->subctxt_cnt; |
| flags |= VM_IO | VM_DONTEXPAND; |
| vmf = 1; |
| break; |
| case SUBCTXT_EGRBUF: |
| memaddr = (u64)uctxt->subctxt_rcvegrbuf; |
| memlen = uctxt->egrbufs.size * uctxt->subctxt_cnt; |
| flags |= VM_IO | VM_DONTEXPAND; |
| flags &= ~VM_MAYWRITE; |
| vmf = 1; |
| break; |
| case SDMA_COMP: { |
| struct hfi1_user_sdma_comp_q *cq = fd->cq; |
| |
| if (!cq) { |
| ret = -EFAULT; |
| goto done; |
| } |
| memaddr = (u64)cq->comps; |
| memlen = PAGE_ALIGN(sizeof(*cq->comps) * cq->nentries); |
| flags |= VM_IO | VM_DONTEXPAND; |
| vmf = 1; |
| break; |
| } |
| default: |
| ret = -EINVAL; |
| break; |
| } |
| |
| if ((vma->vm_end - vma->vm_start) != memlen) { |
| hfi1_cdbg(PROC, "%u:%u Memory size mismatch %lu:%lu", |
| uctxt->ctxt, fd->subctxt, |
| (vma->vm_end - vma->vm_start), memlen); |
| ret = -EINVAL; |
| goto done; |
| } |
| |
| vma->vm_flags = flags; |
| hfi1_cdbg(PROC, |
| "%u:%u type:%u io/vf:%d/%d, addr:0x%llx, len:%lu(%lu), flags:0x%lx\n", |
| ctxt, subctxt, type, mapio, vmf, memaddr, memlen, |
| vma->vm_end - vma->vm_start, vma->vm_flags); |
| if (vmf) { |
| vma->vm_pgoff = PFN_DOWN(memaddr); |
| vma->vm_ops = &vm_ops; |
| ret = 0; |
| } else if (mapio) { |
| ret = io_remap_pfn_range(vma, vma->vm_start, |
| PFN_DOWN(memaddr), |
| memlen, |
| vma->vm_page_prot); |
| } else if (memvirt) { |
| ret = remap_pfn_range(vma, vma->vm_start, |
| PFN_DOWN(__pa(memvirt)), |
| memlen, |
| vma->vm_page_prot); |
| } else { |
| ret = remap_pfn_range(vma, vma->vm_start, |
| PFN_DOWN(memaddr), |
| memlen, |
| vma->vm_page_prot); |
| } |
| done: |
| return ret; |
| } |
| |
| /* |
| * Local (non-chip) user memory is not mapped right away but as it is |
| * accessed by the user-level code. |
| */ |
| static int vma_fault(struct vm_fault *vmf) |
| { |
| struct page *page; |
| |
| page = vmalloc_to_page((void *)(vmf->pgoff << PAGE_SHIFT)); |
| if (!page) |
| return VM_FAULT_SIGBUS; |
| |
| get_page(page); |
| vmf->page = page; |
| |
| return 0; |
| } |
| |
| static unsigned int hfi1_poll(struct file *fp, struct poll_table_struct *pt) |
| { |
| struct hfi1_ctxtdata *uctxt; |
| unsigned pollflag; |
| |
| uctxt = ((struct hfi1_filedata *)fp->private_data)->uctxt; |
| if (!uctxt) |
| pollflag = POLLERR; |
| else if (uctxt->poll_type == HFI1_POLL_TYPE_URGENT) |
| pollflag = poll_urgent(fp, pt); |
| else if (uctxt->poll_type == HFI1_POLL_TYPE_ANYRCV) |
| pollflag = poll_next(fp, pt); |
| else /* invalid */ |
| pollflag = POLLERR; |
| |
| return pollflag; |
| } |
| |
| static int hfi1_file_close(struct inode *inode, struct file *fp) |
| { |
| struct hfi1_filedata *fdata = fp->private_data; |
| struct hfi1_ctxtdata *uctxt = fdata->uctxt; |
| struct hfi1_devdata *dd = container_of(inode->i_cdev, |
| struct hfi1_devdata, |
| user_cdev); |
| unsigned long flags, *ev; |
| |
| fp->private_data = NULL; |
| |
| if (!uctxt) |
| goto done; |
| |
| hfi1_cdbg(PROC, "freeing ctxt %u:%u", uctxt->ctxt, fdata->subctxt); |
| mutex_lock(&hfi1_mutex); |
| |
| flush_wc(); |
| /* drain user sdma queue */ |
| hfi1_user_sdma_free_queues(fdata); |
| |
| /* release the cpu */ |
| hfi1_put_proc_affinity(fdata->rec_cpu_num); |
| |
| /* |
| * Clear any left over, unhandled events so the next process that |
| * gets this context doesn't get confused. |
| */ |
| ev = dd->events + ((uctxt->ctxt - dd->first_dyn_alloc_ctxt) * |
| HFI1_MAX_SHARED_CTXTS) + fdata->subctxt; |
| *ev = 0; |
| |
| if (--uctxt->cnt) { |
| uctxt->active_slaves &= ~(1 << fdata->subctxt); |
| mutex_unlock(&hfi1_mutex); |
| goto done; |
| } |
| |
| spin_lock_irqsave(&dd->uctxt_lock, flags); |
| /* |
| * Disable receive context and interrupt available, reset all |
| * RcvCtxtCtrl bits to default values. |
| */ |
| hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS | |
| HFI1_RCVCTRL_TIDFLOW_DIS | |
| HFI1_RCVCTRL_INTRAVAIL_DIS | |
| HFI1_RCVCTRL_TAILUPD_DIS | |
| HFI1_RCVCTRL_ONE_PKT_EGR_DIS | |
| HFI1_RCVCTRL_NO_RHQ_DROP_DIS | |
| HFI1_RCVCTRL_NO_EGR_DROP_DIS, uctxt->ctxt); |
| /* Clear the context's J_KEY */ |
| hfi1_clear_ctxt_jkey(dd, uctxt->ctxt); |
| /* |
| * Reset context integrity checks to default. |
| * (writes to CSRs probably belong in chip.c) |
| */ |
| write_kctxt_csr(dd, uctxt->sc->hw_context, SEND_CTXT_CHECK_ENABLE, |
| hfi1_pkt_default_send_ctxt_mask(dd, uctxt->sc->type)); |
| sc_disable(uctxt->sc); |
| spin_unlock_irqrestore(&dd->uctxt_lock, flags); |
| |
| dd->rcd[uctxt->ctxt] = NULL; |
| |
| hfi1_user_exp_rcv_free(fdata); |
| hfi1_clear_ctxt_pkey(dd, uctxt->ctxt); |
| |
| uctxt->rcvwait_to = 0; |
| uctxt->piowait_to = 0; |
| uctxt->rcvnowait = 0; |
| uctxt->pionowait = 0; |
| uctxt->event_flags = 0; |
| |
| hfi1_stats.sps_ctxts--; |
| if (++dd->freectxts == dd->num_user_contexts) |
| aspm_enable_all(dd); |
| mutex_unlock(&hfi1_mutex); |
| hfi1_free_ctxtdata(dd, uctxt); |
| done: |
| mmdrop(fdata->mm); |
| kobject_put(&dd->kobj); |
| |
| if (atomic_dec_and_test(&dd->user_refcount)) |
| complete(&dd->user_comp); |
| |
| kfree(fdata); |
| return 0; |
| } |
| |
| /* |
| * Convert kernel *virtual* addresses to physical addresses. |
| * This is used to vmalloc'ed addresses. |
| */ |
| static u64 kvirt_to_phys(void *addr) |
| { |
| struct page *page; |
| u64 paddr = 0; |
| |
| page = vmalloc_to_page(addr); |
| if (page) |
| paddr = page_to_pfn(page) << PAGE_SHIFT; |
| |
| return paddr; |
| } |
| |
| static int assign_ctxt(struct file *fp, struct hfi1_user_info *uinfo) |
| { |
| int i_minor, ret = 0; |
| unsigned int swmajor, swminor; |
| |
| swmajor = uinfo->userversion >> 16; |
| if (swmajor != HFI1_USER_SWMAJOR) { |
| ret = -ENODEV; |
| goto done; |
| } |
| |
| swminor = uinfo->userversion & 0xffff; |
| |
| mutex_lock(&hfi1_mutex); |
| /* First, lets check if we need to setup a shared context? */ |
| if (uinfo->subctxt_cnt) { |
| struct hfi1_filedata *fd = fp->private_data; |
| |
| ret = find_shared_ctxt(fp, uinfo); |
| if (ret < 0) |
| goto done_unlock; |
| if (ret) { |
| fd->rec_cpu_num = |
| hfi1_get_proc_affinity(fd->uctxt->numa_id); |
| } |
| } |
| |
| /* |
| * We execute the following block if we couldn't find a |
| * shared context or if context sharing is not required. |
| */ |
| if (!ret) { |
| i_minor = iminor(file_inode(fp)) - HFI1_USER_MINOR_BASE; |
| ret = get_user_context(fp, uinfo, i_minor); |
| } |
| done_unlock: |
| mutex_unlock(&hfi1_mutex); |
| done: |
| return ret; |
| } |
| |
| static int get_user_context(struct file *fp, struct hfi1_user_info *uinfo, |
| int devno) |
| { |
| struct hfi1_devdata *dd = NULL; |
| int devmax, npresent, nup; |
| |
| devmax = hfi1_count_units(&npresent, &nup); |
| if (!npresent) |
| return -ENXIO; |
| |
| if (!nup) |
| return -ENETDOWN; |
| |
| dd = hfi1_lookup(devno); |
| if (!dd) |
| return -ENODEV; |
| else if (!dd->freectxts) |
| return -EBUSY; |
| |
| return allocate_ctxt(fp, dd, uinfo); |
| } |
| |
| static int find_shared_ctxt(struct file *fp, |
| const struct hfi1_user_info *uinfo) |
| { |
| int devmax, ndev, i; |
| int ret = 0; |
| struct hfi1_filedata *fd = fp->private_data; |
| |
| devmax = hfi1_count_units(NULL, NULL); |
| |
| for (ndev = 0; ndev < devmax; ndev++) { |
| struct hfi1_devdata *dd = hfi1_lookup(ndev); |
| |
| if (!(dd && (dd->flags & HFI1_PRESENT) && dd->kregbase)) |
| continue; |
| for (i = dd->first_dyn_alloc_ctxt; |
| i < dd->num_rcv_contexts; i++) { |
| struct hfi1_ctxtdata *uctxt = dd->rcd[i]; |
| |
| /* Skip ctxts which are not yet open */ |
| if (!uctxt || !uctxt->cnt) |
| continue; |
| |
| /* Skip dynamically allocted kernel contexts */ |
| if (uctxt->sc && (uctxt->sc->type == SC_KERNEL)) |
| continue; |
| |
| /* Skip ctxt if it doesn't match the requested one */ |
| if (memcmp(uctxt->uuid, uinfo->uuid, |
| sizeof(uctxt->uuid)) || |
| uctxt->jkey != generate_jkey(current_uid()) || |
| uctxt->subctxt_id != uinfo->subctxt_id || |
| uctxt->subctxt_cnt != uinfo->subctxt_cnt) |
| continue; |
| |
| /* Verify the sharing process matches the master */ |
| if (uctxt->userversion != uinfo->userversion || |
| uctxt->cnt >= uctxt->subctxt_cnt) { |
| ret = -EINVAL; |
| goto done; |
| } |
| fd->uctxt = uctxt; |
| fd->subctxt = uctxt->cnt++; |
| uctxt->active_slaves |= 1 << fd->subctxt; |
| ret = 1; |
| goto done; |
| } |
| } |
| |
| done: |
| return ret; |
| } |
| |
| static int allocate_ctxt(struct file *fp, struct hfi1_devdata *dd, |
| struct hfi1_user_info *uinfo) |
| { |
| struct hfi1_filedata *fd = fp->private_data; |
| struct hfi1_ctxtdata *uctxt; |
| unsigned ctxt; |
| int ret, numa; |
| |
| if (dd->flags & HFI1_FROZEN) { |
| /* |
| * Pick an error that is unique from all other errors |
| * that are returned so the user process knows that |
| * it tried to allocate while the SPC was frozen. It |
| * it should be able to retry with success in a short |
| * while. |
| */ |
| return -EIO; |
| } |
| |
| for (ctxt = dd->first_dyn_alloc_ctxt; |
| ctxt < dd->num_rcv_contexts; ctxt++) |
| if (!dd->rcd[ctxt]) |
| break; |
| |
| if (ctxt == dd->num_rcv_contexts) |
| return -EBUSY; |
| |
| /* |
| * If we don't have a NUMA node requested, preference is towards |
| * device NUMA node. |
| */ |
| fd->rec_cpu_num = hfi1_get_proc_affinity(dd->node); |
| if (fd->rec_cpu_num != -1) |
| numa = cpu_to_node(fd->rec_cpu_num); |
| else |
| numa = numa_node_id(); |
| uctxt = hfi1_create_ctxtdata(dd->pport, ctxt, numa); |
| if (!uctxt) { |
| dd_dev_err(dd, |
| "Unable to allocate ctxtdata memory, failing open\n"); |
| return -ENOMEM; |
| } |
| hfi1_cdbg(PROC, "[%u:%u] pid %u assigned to CPU %d (NUMA %u)", |
| uctxt->ctxt, fd->subctxt, current->pid, fd->rec_cpu_num, |
| uctxt->numa_id); |
| |
| /* |
| * Allocate and enable a PIO send context. |
| */ |
| uctxt->sc = sc_alloc(dd, SC_USER, uctxt->rcvhdrqentsize, |
| uctxt->dd->node); |
| if (!uctxt->sc) { |
| ret = -ENOMEM; |
| goto ctxdata_free; |
| } |
| hfi1_cdbg(PROC, "allocated send context %u(%u)\n", uctxt->sc->sw_index, |
| uctxt->sc->hw_context); |
| ret = sc_enable(uctxt->sc); |
| if (ret) |
| goto ctxdata_free; |
| |
| /* |
| * Setup shared context resources if the user-level has requested |
| * shared contexts and this is the 'master' process. |
| * This has to be done here so the rest of the sub-contexts find the |
| * proper master. |
| */ |
| if (uinfo->subctxt_cnt && !fd->subctxt) { |
| ret = init_subctxts(uctxt, uinfo); |
| /* |
| * On error, we don't need to disable and de-allocate the |
| * send context because it will be done during file close |
| */ |
| if (ret) |
| goto ctxdata_free; |
| } |
| uctxt->userversion = uinfo->userversion; |
| uctxt->flags = hfi1_cap_mask; /* save current flag state */ |
| init_waitqueue_head(&uctxt->wait); |
| strlcpy(uctxt->comm, current->comm, sizeof(uctxt->comm)); |
| memcpy(uctxt->uuid, uinfo->uuid, sizeof(uctxt->uuid)); |
| uctxt->jkey = generate_jkey(current_uid()); |
| INIT_LIST_HEAD(&uctxt->sdma_queues); |
| spin_lock_init(&uctxt->sdma_qlock); |
| hfi1_stats.sps_ctxts++; |
| /* |
| * Disable ASPM when there are open user/PSM contexts to avoid |
| * issues with ASPM L1 exit latency |
| */ |
| if (dd->freectxts-- == dd->num_user_contexts) |
| aspm_disable_all(dd); |
| fd->uctxt = uctxt; |
| |
| return 0; |
| |
| ctxdata_free: |
| dd->rcd[ctxt] = NULL; |
| hfi1_free_ctxtdata(dd, uctxt); |
| return ret; |
| } |
| |
| static int init_subctxts(struct hfi1_ctxtdata *uctxt, |
| const struct hfi1_user_info *uinfo) |
| { |
| unsigned num_subctxts; |
| |
| num_subctxts = uinfo->subctxt_cnt; |
| if (num_subctxts > HFI1_MAX_SHARED_CTXTS) |
| return -EINVAL; |
| |
| uctxt->subctxt_cnt = uinfo->subctxt_cnt; |
| uctxt->subctxt_id = uinfo->subctxt_id; |
| uctxt->active_slaves = 1; |
| uctxt->redirect_seq_cnt = 1; |
| set_bit(HFI1_CTXT_MASTER_UNINIT, &uctxt->event_flags); |
| |
| return 0; |
| } |
| |
| static int setup_subctxt(struct hfi1_ctxtdata *uctxt) |
| { |
| int ret = 0; |
| unsigned num_subctxts = uctxt->subctxt_cnt; |
| |
| uctxt->subctxt_uregbase = vmalloc_user(PAGE_SIZE); |
| if (!uctxt->subctxt_uregbase) { |
| ret = -ENOMEM; |
| goto bail; |
| } |
| /* We can take the size of the RcvHdr Queue from the master */ |
| uctxt->subctxt_rcvhdr_base = vmalloc_user(uctxt->rcvhdrq_size * |
| num_subctxts); |
| if (!uctxt->subctxt_rcvhdr_base) { |
| ret = -ENOMEM; |
| goto bail_ureg; |
| } |
| |
| uctxt->subctxt_rcvegrbuf = vmalloc_user(uctxt->egrbufs.size * |
| num_subctxts); |
| if (!uctxt->subctxt_rcvegrbuf) { |
| ret = -ENOMEM; |
| goto bail_rhdr; |
| } |
| goto bail; |
| bail_rhdr: |
| vfree(uctxt->subctxt_rcvhdr_base); |
| bail_ureg: |
| vfree(uctxt->subctxt_uregbase); |
| uctxt->subctxt_uregbase = NULL; |
| bail: |
| return ret; |
| } |
| |
| static int user_init(struct file *fp) |
| { |
| unsigned int rcvctrl_ops = 0; |
| struct hfi1_filedata *fd = fp->private_data; |
| struct hfi1_ctxtdata *uctxt = fd->uctxt; |
| |
| /* make sure that the context has already been setup */ |
| if (!test_bit(HFI1_CTXT_SETUP_DONE, &uctxt->event_flags)) |
| return -EFAULT; |
| |
| /* initialize poll variables... */ |
| uctxt->urgent = 0; |
| uctxt->urgent_poll = 0; |
| |
| /* |
| * Now enable the ctxt for receive. |
| * For chips that are set to DMA the tail register to memory |
| * when they change (and when the update bit transitions from |
| * 0 to 1. So for those chips, we turn it off and then back on. |
| * This will (very briefly) affect any other open ctxts, but the |
| * duration is very short, and therefore isn't an issue. We |
| * explicitly set the in-memory tail copy to 0 beforehand, so we |
| * don't have to wait to be sure the DMA update has happened |
| * (chip resets head/tail to 0 on transition to enable). |
| */ |
| if (uctxt->rcvhdrtail_kvaddr) |
| clear_rcvhdrtail(uctxt); |
| |
| /* Setup J_KEY before enabling the context */ |
| hfi1_set_ctxt_jkey(uctxt->dd, uctxt->ctxt, uctxt->jkey); |
| |
| rcvctrl_ops = HFI1_RCVCTRL_CTXT_ENB; |
| if (HFI1_CAP_UGET_MASK(uctxt->flags, HDRSUPP)) |
| rcvctrl_ops |= HFI1_RCVCTRL_TIDFLOW_ENB; |
| /* |
| * Ignore the bit in the flags for now until proper |
| * support for multiple packet per rcv array entry is |
| * added. |
| */ |
| if (!HFI1_CAP_UGET_MASK(uctxt->flags, MULTI_PKT_EGR)) |
| rcvctrl_ops |= HFI1_RCVCTRL_ONE_PKT_EGR_ENB; |
| if (HFI1_CAP_UGET_MASK(uctxt->flags, NODROP_EGR_FULL)) |
| rcvctrl_ops |= HFI1_RCVCTRL_NO_EGR_DROP_ENB; |
| if (HFI1_CAP_UGET_MASK(uctxt->flags, NODROP_RHQ_FULL)) |
| rcvctrl_ops |= HFI1_RCVCTRL_NO_RHQ_DROP_ENB; |
| /* |
| * The RcvCtxtCtrl.TailUpd bit has to be explicitly written. |
| * We can't rely on the correct value to be set from prior |
| * uses of the chip or ctxt. Therefore, add the rcvctrl op |
| * for both cases. |
| */ |
| if (HFI1_CAP_UGET_MASK(uctxt->flags, DMA_RTAIL)) |
| rcvctrl_ops |= HFI1_RCVCTRL_TAILUPD_ENB; |
| else |
| rcvctrl_ops |= HFI1_RCVCTRL_TAILUPD_DIS; |
| hfi1_rcvctrl(uctxt->dd, rcvctrl_ops, uctxt->ctxt); |
| |
| /* Notify any waiting slaves */ |
| if (uctxt->subctxt_cnt) { |
| clear_bit(HFI1_CTXT_MASTER_UNINIT, &uctxt->event_flags); |
| wake_up(&uctxt->wait); |
| } |
| |
| return 0; |
| } |
| |
| static int get_ctxt_info(struct file *fp, void __user *ubase, __u32 len) |
| { |
| struct hfi1_ctxt_info cinfo; |
| struct hfi1_filedata *fd = fp->private_data; |
| struct hfi1_ctxtdata *uctxt = fd->uctxt; |
| int ret = 0; |
| |
| memset(&cinfo, 0, sizeof(cinfo)); |
| cinfo.runtime_flags = (((uctxt->flags >> HFI1_CAP_MISC_SHIFT) & |
| HFI1_CAP_MISC_MASK) << HFI1_CAP_USER_SHIFT) | |
| HFI1_CAP_UGET_MASK(uctxt->flags, MASK) | |
| HFI1_CAP_KGET_MASK(uctxt->flags, K2U); |
| /* adjust flag if this fd is not able to cache */ |
| if (!fd->handler) |
| cinfo.runtime_flags |= HFI1_CAP_TID_UNMAP; /* no caching */ |
| |
| cinfo.num_active = hfi1_count_active_units(); |
| cinfo.unit = uctxt->dd->unit; |
| cinfo.ctxt = uctxt->ctxt; |
| cinfo.subctxt = fd->subctxt; |
| cinfo.rcvtids = roundup(uctxt->egrbufs.alloced, |
| uctxt->dd->rcv_entries.group_size) + |
| uctxt->expected_count; |
| cinfo.credits = uctxt->sc->credits; |
| cinfo.numa_node = uctxt->numa_id; |
| cinfo.rec_cpu = fd->rec_cpu_num; |
| cinfo.send_ctxt = uctxt->sc->hw_context; |
| |
| cinfo.egrtids = uctxt->egrbufs.alloced; |
| cinfo.rcvhdrq_cnt = uctxt->rcvhdrq_cnt; |
| cinfo.rcvhdrq_entsize = uctxt->rcvhdrqentsize << 2; |
| cinfo.sdma_ring_size = fd->cq->nentries; |
| cinfo.rcvegr_size = uctxt->egrbufs.rcvtid_size; |
| |
| trace_hfi1_ctxt_info(uctxt->dd, uctxt->ctxt, fd->subctxt, cinfo); |
| if (copy_to_user(ubase, &cinfo, sizeof(cinfo))) |
| ret = -EFAULT; |
| |
| return ret; |
| } |
| |
| static int setup_ctxt(struct file *fp) |
| { |
| struct hfi1_filedata *fd = fp->private_data; |
| struct hfi1_ctxtdata *uctxt = fd->uctxt; |
| struct hfi1_devdata *dd = uctxt->dd; |
| int ret = 0; |
| |
| /* |
| * Context should be set up only once, including allocation and |
| * programming of eager buffers. This is done if context sharing |
| * is not requested or by the master process. |
| */ |
| if (!uctxt->subctxt_cnt || !fd->subctxt) { |
| ret = hfi1_init_ctxt(uctxt->sc); |
| if (ret) |
| goto done; |
| |
| /* Now allocate the RcvHdr queue and eager buffers. */ |
| ret = hfi1_create_rcvhdrq(dd, uctxt); |
| if (ret) |
| goto done; |
| ret = hfi1_setup_eagerbufs(uctxt); |
| if (ret) |
| goto done; |
| if (uctxt->subctxt_cnt && !fd->subctxt) { |
| ret = setup_subctxt(uctxt); |
| if (ret) |
| goto done; |
| } |
| } else { |
| ret = wait_event_interruptible(uctxt->wait, !test_bit( |
| HFI1_CTXT_MASTER_UNINIT, |
| &uctxt->event_flags)); |
| if (ret) |
| goto done; |
| } |
| |
| ret = hfi1_user_sdma_alloc_queues(uctxt, fp); |
| if (ret) |
| goto done; |
| /* |
| * Expected receive has to be setup for all processes (including |
| * shared contexts). However, it has to be done after the master |
| * context has been fully configured as it depends on the |
| * eager/expected split of the RcvArray entries. |
| * Setting it up here ensures that the subcontexts will be waiting |
| * (due to the above wait_event_interruptible() until the master |
| * is setup. |
| */ |
| ret = hfi1_user_exp_rcv_init(fp); |
| if (ret) |
| goto done; |
| |
| set_bit(HFI1_CTXT_SETUP_DONE, &uctxt->event_flags); |
| done: |
| return ret; |
| } |
| |
| static int get_base_info(struct file *fp, void __user *ubase, __u32 len) |
| { |
| struct hfi1_base_info binfo; |
| struct hfi1_filedata *fd = fp->private_data; |
| struct hfi1_ctxtdata *uctxt = fd->uctxt; |
| struct hfi1_devdata *dd = uctxt->dd; |
| ssize_t sz; |
| unsigned offset; |
| int ret = 0; |
| |
| trace_hfi1_uctxtdata(uctxt->dd, uctxt); |
| |
| memset(&binfo, 0, sizeof(binfo)); |
| binfo.hw_version = dd->revision; |
| binfo.sw_version = HFI1_KERN_SWVERSION; |
| binfo.bthqp = kdeth_qp; |
| binfo.jkey = uctxt->jkey; |
| /* |
| * If more than 64 contexts are enabled the allocated credit |
| * return will span two or three contiguous pages. Since we only |
| * map the page containing the context's credit return address, |
| * we need to calculate the offset in the proper page. |
| */ |
| offset = ((u64)uctxt->sc->hw_free - |
| (u64)dd->cr_base[uctxt->numa_id].va) % PAGE_SIZE; |
| binfo.sc_credits_addr = HFI1_MMAP_TOKEN(PIO_CRED, uctxt->ctxt, |
| fd->subctxt, offset); |
| binfo.pio_bufbase = HFI1_MMAP_TOKEN(PIO_BUFS, uctxt->ctxt, |
| fd->subctxt, |
| uctxt->sc->base_addr); |
| binfo.pio_bufbase_sop = HFI1_MMAP_TOKEN(PIO_BUFS_SOP, |
| uctxt->ctxt, |
| fd->subctxt, |
| uctxt->sc->base_addr); |
| binfo.rcvhdr_bufbase = HFI1_MMAP_TOKEN(RCV_HDRQ, uctxt->ctxt, |
| fd->subctxt, |
| uctxt->rcvhdrq); |
| binfo.rcvegr_bufbase = HFI1_MMAP_TOKEN(RCV_EGRBUF, uctxt->ctxt, |
| fd->subctxt, |
| uctxt->egrbufs.rcvtids[0].dma); |
| binfo.sdma_comp_bufbase = HFI1_MMAP_TOKEN(SDMA_COMP, uctxt->ctxt, |
| fd->subctxt, 0); |
| /* |
| * user regs are at |
| * (RXE_PER_CONTEXT_USER + (ctxt * RXE_PER_CONTEXT_SIZE)) |
| */ |
| binfo.user_regbase = HFI1_MMAP_TOKEN(UREGS, uctxt->ctxt, |
| fd->subctxt, 0); |
| offset = offset_in_page((((uctxt->ctxt - dd->first_dyn_alloc_ctxt) * |
| HFI1_MAX_SHARED_CTXTS) + fd->subctxt) * |
| sizeof(*dd->events)); |
| binfo.events_bufbase = HFI1_MMAP_TOKEN(EVENTS, uctxt->ctxt, |
| fd->subctxt, |
| offset); |
| binfo.status_bufbase = HFI1_MMAP_TOKEN(STATUS, uctxt->ctxt, |
| fd->subctxt, |
| dd->status); |
| if (HFI1_CAP_IS_USET(DMA_RTAIL)) |
| binfo.rcvhdrtail_base = HFI1_MMAP_TOKEN(RTAIL, uctxt->ctxt, |
| fd->subctxt, 0); |
| if (uctxt->subctxt_cnt) { |
| binfo.subctxt_uregbase = HFI1_MMAP_TOKEN(SUBCTXT_UREGS, |
| uctxt->ctxt, |
| fd->subctxt, 0); |
| binfo.subctxt_rcvhdrbuf = HFI1_MMAP_TOKEN(SUBCTXT_RCV_HDRQ, |
| uctxt->ctxt, |
| fd->subctxt, 0); |
| binfo.subctxt_rcvegrbuf = HFI1_MMAP_TOKEN(SUBCTXT_EGRBUF, |
| uctxt->ctxt, |
| fd->subctxt, 0); |
| } |
| sz = (len < sizeof(binfo)) ? len : sizeof(binfo); |
| if (copy_to_user(ubase, &binfo, sz)) |
| ret = -EFAULT; |
| return ret; |
| } |
| |
| static unsigned int poll_urgent(struct file *fp, |
| struct poll_table_struct *pt) |
| { |
| struct hfi1_filedata *fd = fp->private_data; |
| struct hfi1_ctxtdata *uctxt = fd->uctxt; |
| struct hfi1_devdata *dd = uctxt->dd; |
| unsigned pollflag; |
| |
| poll_wait(fp, &uctxt->wait, pt); |
| |
| spin_lock_irq(&dd->uctxt_lock); |
| if (uctxt->urgent != uctxt->urgent_poll) { |
| pollflag = POLLIN | POLLRDNORM; |
| uctxt->urgent_poll = uctxt->urgent; |
| } else { |
| pollflag = 0; |
| set_bit(HFI1_CTXT_WAITING_URG, &uctxt->event_flags); |
| } |
| spin_unlock_irq(&dd->uctxt_lock); |
| |
| return pollflag; |
| } |
| |
| static unsigned int poll_next(struct file *fp, |
| struct poll_table_struct *pt) |
| { |
| struct hfi1_filedata *fd = fp->private_data; |
| struct hfi1_ctxtdata *uctxt = fd->uctxt; |
| struct hfi1_devdata *dd = uctxt->dd; |
| unsigned pollflag; |
| |
| poll_wait(fp, &uctxt->wait, pt); |
| |
| spin_lock_irq(&dd->uctxt_lock); |
| if (hdrqempty(uctxt)) { |
| set_bit(HFI1_CTXT_WAITING_RCV, &uctxt->event_flags); |
| hfi1_rcvctrl(dd, HFI1_RCVCTRL_INTRAVAIL_ENB, uctxt->ctxt); |
| pollflag = 0; |
| } else { |
| pollflag = POLLIN | POLLRDNORM; |
| } |
| spin_unlock_irq(&dd->uctxt_lock); |
| |
| return pollflag; |
| } |
| |
| /* |
| * Find all user contexts in use, and set the specified bit in their |
| * event mask. |
| * See also find_ctxt() for a similar use, that is specific to send buffers. |
| */ |
| int hfi1_set_uevent_bits(struct hfi1_pportdata *ppd, const int evtbit) |
| { |
| struct hfi1_ctxtdata *uctxt; |
| struct hfi1_devdata *dd = ppd->dd; |
| unsigned ctxt; |
| int ret = 0; |
| unsigned long flags; |
| |
| if (!dd->events) { |
| ret = -EINVAL; |
| goto done; |
| } |
| |
| spin_lock_irqsave(&dd->uctxt_lock, flags); |
| for (ctxt = dd->first_dyn_alloc_ctxt; ctxt < dd->num_rcv_contexts; |
| ctxt++) { |
| uctxt = dd->rcd[ctxt]; |
| if (uctxt) { |
| unsigned long *evs = dd->events + |
| (uctxt->ctxt - dd->first_dyn_alloc_ctxt) * |
| HFI1_MAX_SHARED_CTXTS; |
| int i; |
| /* |
| * subctxt_cnt is 0 if not shared, so do base |
| * separately, first, then remaining subctxt, if any |
| */ |
| set_bit(evtbit, evs); |
| for (i = 1; i < uctxt->subctxt_cnt; i++) |
| set_bit(evtbit, evs + i); |
| } |
| } |
| spin_unlock_irqrestore(&dd->uctxt_lock, flags); |
| done: |
| return ret; |
| } |
| |
| /** |
| * manage_rcvq - manage a context's receive queue |
| * @uctxt: the context |
| * @subctxt: the sub-context |
| * @start_stop: action to carry out |
| * |
| * start_stop == 0 disables receive on the context, for use in queue |
| * overflow conditions. start_stop==1 re-enables, to be used to |
| * re-init the software copy of the head register |
| */ |
| static int manage_rcvq(struct hfi1_ctxtdata *uctxt, unsigned subctxt, |
| int start_stop) |
| { |
| struct hfi1_devdata *dd = uctxt->dd; |
| unsigned int rcvctrl_op; |
| |
| if (subctxt) |
| goto bail; |
| /* atomically clear receive enable ctxt. */ |
| if (start_stop) { |
| /* |
| * On enable, force in-memory copy of the tail register to |
| * 0, so that protocol code doesn't have to worry about |
| * whether or not the chip has yet updated the in-memory |
| * copy or not on return from the system call. The chip |
| * always resets it's tail register back to 0 on a |
| * transition from disabled to enabled. |
| */ |
| if (uctxt->rcvhdrtail_kvaddr) |
| clear_rcvhdrtail(uctxt); |
| rcvctrl_op = HFI1_RCVCTRL_CTXT_ENB; |
| } else { |
| rcvctrl_op = HFI1_RCVCTRL_CTXT_DIS; |
| } |
| hfi1_rcvctrl(dd, rcvctrl_op, uctxt->ctxt); |
| /* always; new head should be equal to new tail; see above */ |
| bail: |
| return 0; |
| } |
| |
| /* |
| * clear the event notifier events for this context. |
| * User process then performs actions appropriate to bit having been |
| * set, if desired, and checks again in future. |
| */ |
| static int user_event_ack(struct hfi1_ctxtdata *uctxt, int subctxt, |
| unsigned long events) |
| { |
| int i; |
| struct hfi1_devdata *dd = uctxt->dd; |
| unsigned long *evs; |
| |
| if (!dd->events) |
| return 0; |
| |
| evs = dd->events + ((uctxt->ctxt - dd->first_dyn_alloc_ctxt) * |
| HFI1_MAX_SHARED_CTXTS) + subctxt; |
| |
| for (i = 0; i <= _HFI1_MAX_EVENT_BIT; i++) { |
| if (!test_bit(i, &events)) |
| continue; |
| clear_bit(i, evs); |
| } |
| return 0; |
| } |
| |
| static int set_ctxt_pkey(struct hfi1_ctxtdata *uctxt, unsigned subctxt, |
| u16 pkey) |
| { |
| int ret = -ENOENT, i, intable = 0; |
| struct hfi1_pportdata *ppd = uctxt->ppd; |
| struct hfi1_devdata *dd = uctxt->dd; |
| |
| if (pkey == LIM_MGMT_P_KEY || pkey == FULL_MGMT_P_KEY) { |
| ret = -EINVAL; |
| goto done; |
| } |
| |
| for (i = 0; i < ARRAY_SIZE(ppd->pkeys); i++) |
| if (pkey == ppd->pkeys[i]) { |
| intable = 1; |
| break; |
| } |
| |
| if (intable) |
| ret = hfi1_set_ctxt_pkey(dd, uctxt->ctxt, pkey); |
| done: |
| return ret; |
| } |
| |
| static void user_remove(struct hfi1_devdata *dd) |
| { |
| |
| hfi1_cdev_cleanup(&dd->user_cdev, &dd->user_device); |
| } |
| |
| static int user_add(struct hfi1_devdata *dd) |
| { |
| char name[10]; |
| int ret; |
| |
| snprintf(name, sizeof(name), "%s_%d", class_name(), dd->unit); |
| ret = hfi1_cdev_init(dd->unit, name, &hfi1_file_ops, |
| &dd->user_cdev, &dd->user_device, |
| true, &dd->kobj); |
| if (ret) |
| user_remove(dd); |
| |
| return ret; |
| } |
| |
| /* |
| * Create per-unit files in /dev |
| */ |
| int hfi1_device_create(struct hfi1_devdata *dd) |
| { |
| return user_add(dd); |
| } |
| |
| /* |
| * Remove per-unit files in /dev |
| * void, core kernel returns no errors for this stuff |
| */ |
| void hfi1_device_remove(struct hfi1_devdata *dd) |
| { |
| user_remove(dd); |
| } |