| /* |
| * PowerPC version |
| * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) |
| * |
| * Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au) |
| * and Cort Dougan (PReP) (cort@cs.nmt.edu) |
| * Copyright (C) 1996 Paul Mackerras |
| * Amiga/APUS changes by Jesper Skov (jskov@cygnus.co.uk). |
| * |
| * Derived from "arch/i386/mm/init.c" |
| * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds |
| * |
| * Dave Engebretsen <engebret@us.ibm.com> |
| * Rework for PPC64 port. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| * |
| */ |
| |
| #include <linux/config.h> |
| #include <linux/signal.h> |
| #include <linux/sched.h> |
| #include <linux/kernel.h> |
| #include <linux/errno.h> |
| #include <linux/string.h> |
| #include <linux/types.h> |
| #include <linux/mman.h> |
| #include <linux/mm.h> |
| #include <linux/swap.h> |
| #include <linux/stddef.h> |
| #include <linux/vmalloc.h> |
| #include <linux/init.h> |
| #include <linux/delay.h> |
| #include <linux/bootmem.h> |
| #include <linux/highmem.h> |
| #include <linux/idr.h> |
| #include <linux/nodemask.h> |
| #include <linux/module.h> |
| |
| #include <asm/pgalloc.h> |
| #include <asm/page.h> |
| #include <asm/prom.h> |
| #include <asm/lmb.h> |
| #include <asm/rtas.h> |
| #include <asm/io.h> |
| #include <asm/mmu_context.h> |
| #include <asm/pgtable.h> |
| #include <asm/mmu.h> |
| #include <asm/uaccess.h> |
| #include <asm/smp.h> |
| #include <asm/machdep.h> |
| #include <asm/tlb.h> |
| #include <asm/eeh.h> |
| #include <asm/processor.h> |
| #include <asm/mmzone.h> |
| #include <asm/cputable.h> |
| #include <asm/ppcdebug.h> |
| #include <asm/sections.h> |
| #include <asm/system.h> |
| #include <asm/iommu.h> |
| #include <asm/abs_addr.h> |
| #include <asm/vdso.h> |
| #include <asm/imalloc.h> |
| |
| #if PGTABLE_RANGE > USER_VSID_RANGE |
| #warning Limited user VSID range means pagetable space is wasted |
| #endif |
| |
| #if (TASK_SIZE_USER64 < PGTABLE_RANGE) && (TASK_SIZE_USER64 < USER_VSID_RANGE) |
| #warning TASK_SIZE is smaller than it needs to be. |
| #endif |
| |
| int mem_init_done; |
| unsigned long ioremap_bot = IMALLOC_BASE; |
| static unsigned long phbs_io_bot = PHBS_IO_BASE; |
| |
| extern pgd_t swapper_pg_dir[]; |
| extern struct task_struct *current_set[NR_CPUS]; |
| |
| unsigned long klimit = (unsigned long)_end; |
| |
| unsigned long _SDR1=0; |
| unsigned long _ASR=0; |
| |
| /* max amount of RAM to use */ |
| unsigned long __max_memory; |
| |
| /* info on what we think the IO hole is */ |
| unsigned long io_hole_start; |
| unsigned long io_hole_size; |
| |
| /* |
| * Do very early mm setup. |
| */ |
| void __init mm_init_ppc64(void) |
| { |
| #ifndef CONFIG_PPC_ISERIES |
| unsigned long i; |
| #endif |
| |
| ppc64_boot_msg(0x100, "MM Init"); |
| |
| /* This is the story of the IO hole... please, keep seated, |
| * unfortunately, we are out of oxygen masks at the moment. |
| * So we need some rough way to tell where your big IO hole |
| * is. On pmac, it's between 2G and 4G, on POWER3, it's around |
| * that area as well, on POWER4 we don't have one, etc... |
| * We need that as a "hint" when sizing the TCE table on POWER3 |
| * So far, the simplest way that seem work well enough for us it |
| * to just assume that the first discontinuity in our physical |
| * RAM layout is the IO hole. That may not be correct in the future |
| * (and isn't on iSeries but then we don't care ;) |
| */ |
| |
| #ifndef CONFIG_PPC_ISERIES |
| for (i = 1; i < lmb.memory.cnt; i++) { |
| unsigned long base, prevbase, prevsize; |
| |
| prevbase = lmb.memory.region[i-1].base; |
| prevsize = lmb.memory.region[i-1].size; |
| base = lmb.memory.region[i].base; |
| if (base > (prevbase + prevsize)) { |
| io_hole_start = prevbase + prevsize; |
| io_hole_size = base - (prevbase + prevsize); |
| break; |
| } |
| } |
| #endif /* CONFIG_PPC_ISERIES */ |
| if (io_hole_start) |
| printk("IO Hole assumed to be %lx -> %lx\n", |
| io_hole_start, io_hole_start + io_hole_size - 1); |
| |
| ppc64_boot_msg(0x100, "MM Init Done"); |
| } |
| |
| void free_initmem(void) |
| { |
| unsigned long addr; |
| |
| addr = (unsigned long)__init_begin; |
| for (; addr < (unsigned long)__init_end; addr += PAGE_SIZE) { |
| memset((void *)addr, 0xcc, PAGE_SIZE); |
| ClearPageReserved(virt_to_page(addr)); |
| set_page_count(virt_to_page(addr), 1); |
| free_page(addr); |
| totalram_pages++; |
| } |
| printk ("Freeing unused kernel memory: %luk freed\n", |
| ((unsigned long)__init_end - (unsigned long)__init_begin) >> 10); |
| } |
| |
| #ifdef CONFIG_BLK_DEV_INITRD |
| void free_initrd_mem(unsigned long start, unsigned long end) |
| { |
| if (start < end) |
| printk ("Freeing initrd memory: %ldk freed\n", (end - start) >> 10); |
| for (; start < end; start += PAGE_SIZE) { |
| ClearPageReserved(virt_to_page(start)); |
| set_page_count(virt_to_page(start), 1); |
| free_page(start); |
| totalram_pages++; |
| } |
| } |
| #endif |
| |
| /* |
| * Initialize the bootmem system and give it all the memory we |
| * have available. |
| */ |
| #ifndef CONFIG_NEED_MULTIPLE_NODES |
| void __init do_init_bootmem(void) |
| { |
| unsigned long i; |
| unsigned long start, bootmap_pages; |
| unsigned long total_pages = lmb_end_of_DRAM() >> PAGE_SHIFT; |
| int boot_mapsize; |
| |
| /* |
| * Find an area to use for the bootmem bitmap. Calculate the size of |
| * bitmap required as (Total Memory) / PAGE_SIZE / BITS_PER_BYTE. |
| * Add 1 additional page in case the address isn't page-aligned. |
| */ |
| bootmap_pages = bootmem_bootmap_pages(total_pages); |
| |
| start = lmb_alloc(bootmap_pages<<PAGE_SHIFT, PAGE_SIZE); |
| BUG_ON(!start); |
| |
| boot_mapsize = init_bootmem(start >> PAGE_SHIFT, total_pages); |
| |
| max_pfn = max_low_pfn; |
| |
| /* Add all physical memory to the bootmem map, mark each area |
| * present. |
| */ |
| for (i=0; i < lmb.memory.cnt; i++) |
| free_bootmem(lmb.memory.region[i].base, |
| lmb_size_bytes(&lmb.memory, i)); |
| |
| /* reserve the sections we're already using */ |
| for (i=0; i < lmb.reserved.cnt; i++) |
| reserve_bootmem(lmb.reserved.region[i].base, |
| lmb_size_bytes(&lmb.reserved, i)); |
| |
| for (i=0; i < lmb.memory.cnt; i++) |
| memory_present(0, lmb_start_pfn(&lmb.memory, i), |
| lmb_end_pfn(&lmb.memory, i)); |
| } |
| |
| /* |
| * paging_init() sets up the page tables - in fact we've already done this. |
| */ |
| void __init paging_init(void) |
| { |
| unsigned long zones_size[MAX_NR_ZONES]; |
| unsigned long zholes_size[MAX_NR_ZONES]; |
| unsigned long total_ram = lmb_phys_mem_size(); |
| unsigned long top_of_ram = lmb_end_of_DRAM(); |
| |
| printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n", |
| top_of_ram, total_ram); |
| printk(KERN_INFO "Memory hole size: %ldMB\n", |
| (top_of_ram - total_ram) >> 20); |
| /* |
| * All pages are DMA-able so we put them all in the DMA zone. |
| */ |
| memset(zones_size, 0, sizeof(zones_size)); |
| memset(zholes_size, 0, sizeof(zholes_size)); |
| |
| zones_size[ZONE_DMA] = top_of_ram >> PAGE_SHIFT; |
| zholes_size[ZONE_DMA] = (top_of_ram - total_ram) >> PAGE_SHIFT; |
| |
| free_area_init_node(0, NODE_DATA(0), zones_size, |
| __pa(PAGE_OFFSET) >> PAGE_SHIFT, zholes_size); |
| } |
| #endif /* ! CONFIG_NEED_MULTIPLE_NODES */ |
| |
| static struct kcore_list kcore_vmem; |
| |
| static int __init setup_kcore(void) |
| { |
| int i; |
| |
| for (i=0; i < lmb.memory.cnt; i++) { |
| unsigned long base, size; |
| struct kcore_list *kcore_mem; |
| |
| base = lmb.memory.region[i].base; |
| size = lmb.memory.region[i].size; |
| |
| /* GFP_ATOMIC to avoid might_sleep warnings during boot */ |
| kcore_mem = kmalloc(sizeof(struct kcore_list), GFP_ATOMIC); |
| if (!kcore_mem) |
| panic("mem_init: kmalloc failed\n"); |
| |
| kclist_add(kcore_mem, __va(base), size); |
| } |
| |
| kclist_add(&kcore_vmem, (void *)VMALLOC_START, VMALLOC_END-VMALLOC_START); |
| |
| return 0; |
| } |
| module_init(setup_kcore); |
| |
| void __init mem_init(void) |
| { |
| #ifdef CONFIG_NEED_MULTIPLE_NODES |
| int nid; |
| #endif |
| pg_data_t *pgdat; |
| unsigned long i; |
| struct page *page; |
| unsigned long reservedpages = 0, codesize, initsize, datasize, bsssize; |
| |
| num_physpages = max_low_pfn; /* RAM is assumed contiguous */ |
| high_memory = (void *) __va(max_low_pfn * PAGE_SIZE); |
| |
| #ifdef CONFIG_NEED_MULTIPLE_NODES |
| for_each_online_node(nid) { |
| if (NODE_DATA(nid)->node_spanned_pages != 0) { |
| printk("freeing bootmem node %x\n", nid); |
| totalram_pages += |
| free_all_bootmem_node(NODE_DATA(nid)); |
| } |
| } |
| #else |
| max_mapnr = num_physpages; |
| totalram_pages += free_all_bootmem(); |
| #endif |
| |
| for_each_pgdat(pgdat) { |
| for (i = 0; i < pgdat->node_spanned_pages; i++) { |
| page = pgdat_page_nr(pgdat, i); |
| if (PageReserved(page)) |
| reservedpages++; |
| } |
| } |
| |
| codesize = (unsigned long)&_etext - (unsigned long)&_stext; |
| initsize = (unsigned long)&__init_end - (unsigned long)&__init_begin; |
| datasize = (unsigned long)&_edata - (unsigned long)&__init_end; |
| bsssize = (unsigned long)&__bss_stop - (unsigned long)&__bss_start; |
| |
| printk(KERN_INFO "Memory: %luk/%luk available (%luk kernel code, " |
| "%luk reserved, %luk data, %luk bss, %luk init)\n", |
| (unsigned long)nr_free_pages() << (PAGE_SHIFT-10), |
| num_physpages << (PAGE_SHIFT-10), |
| codesize >> 10, |
| reservedpages << (PAGE_SHIFT-10), |
| datasize >> 10, |
| bsssize >> 10, |
| initsize >> 10); |
| |
| mem_init_done = 1; |
| |
| /* Initialize the vDSO */ |
| vdso_init(); |
| } |
| |
| void __iomem * reserve_phb_iospace(unsigned long size) |
| { |
| void __iomem *virt_addr; |
| |
| if (phbs_io_bot >= IMALLOC_BASE) |
| panic("reserve_phb_iospace(): phb io space overflow\n"); |
| |
| virt_addr = (void __iomem *) phbs_io_bot; |
| phbs_io_bot += size; |
| |
| return virt_addr; |
| } |
| |
| static void zero_ctor(void *addr, kmem_cache_t *cache, unsigned long flags) |
| { |
| memset(addr, 0, kmem_cache_size(cache)); |
| } |
| |
| static const int pgtable_cache_size[2] = { |
| PTE_TABLE_SIZE, PMD_TABLE_SIZE |
| }; |
| static const char *pgtable_cache_name[ARRAY_SIZE(pgtable_cache_size)] = { |
| "pgd_pte_cache", "pud_pmd_cache", |
| }; |
| |
| kmem_cache_t *pgtable_cache[ARRAY_SIZE(pgtable_cache_size)]; |
| |
| void pgtable_cache_init(void) |
| { |
| int i; |
| |
| BUILD_BUG_ON(PTE_TABLE_SIZE != pgtable_cache_size[PTE_CACHE_NUM]); |
| BUILD_BUG_ON(PMD_TABLE_SIZE != pgtable_cache_size[PMD_CACHE_NUM]); |
| BUILD_BUG_ON(PUD_TABLE_SIZE != pgtable_cache_size[PUD_CACHE_NUM]); |
| BUILD_BUG_ON(PGD_TABLE_SIZE != pgtable_cache_size[PGD_CACHE_NUM]); |
| |
| for (i = 0; i < ARRAY_SIZE(pgtable_cache_size); i++) { |
| int size = pgtable_cache_size[i]; |
| const char *name = pgtable_cache_name[i]; |
| |
| pgtable_cache[i] = kmem_cache_create(name, |
| size, size, |
| SLAB_HWCACHE_ALIGN |
| | SLAB_MUST_HWCACHE_ALIGN, |
| zero_ctor, |
| NULL); |
| if (! pgtable_cache[i]) |
| panic("pgtable_cache_init(): could not create %s!\n", |
| name); |
| } |
| } |
| |
| pgprot_t phys_mem_access_prot(struct file *file, unsigned long addr, |
| unsigned long size, pgprot_t vma_prot) |
| { |
| if (ppc_md.phys_mem_access_prot) |
| return ppc_md.phys_mem_access_prot(file, addr, size, vma_prot); |
| |
| if (!page_is_ram(addr >> PAGE_SHIFT)) |
| vma_prot = __pgprot(pgprot_val(vma_prot) |
| | _PAGE_GUARDED | _PAGE_NO_CACHE); |
| return vma_prot; |
| } |
| EXPORT_SYMBOL(phys_mem_access_prot); |