| #ifndef _PARISC_BITOPS_H |
| #define _PARISC_BITOPS_H |
| |
| #include <linux/compiler.h> |
| #include <asm/spinlock.h> |
| #include <asm/byteorder.h> |
| #include <asm/atomic.h> |
| |
| /* |
| * HP-PARISC specific bit operations |
| * for a detailed description of the functions please refer |
| * to include/asm-i386/bitops.h or kerneldoc |
| */ |
| |
| #ifdef __LP64__ |
| # define SHIFT_PER_LONG 6 |
| #ifndef BITS_PER_LONG |
| # define BITS_PER_LONG 64 |
| #endif |
| #else |
| # define SHIFT_PER_LONG 5 |
| #ifndef BITS_PER_LONG |
| # define BITS_PER_LONG 32 |
| #endif |
| #endif |
| |
| #define CHOP_SHIFTCOUNT(x) ((x) & (BITS_PER_LONG - 1)) |
| |
| |
| #define smp_mb__before_clear_bit() smp_mb() |
| #define smp_mb__after_clear_bit() smp_mb() |
| |
| static __inline__ void set_bit(int nr, volatile unsigned long * address) |
| { |
| unsigned long mask; |
| unsigned long *addr = (unsigned long *) address; |
| unsigned long flags; |
| |
| addr += (nr >> SHIFT_PER_LONG); |
| mask = 1L << CHOP_SHIFTCOUNT(nr); |
| _atomic_spin_lock_irqsave(addr, flags); |
| *addr |= mask; |
| _atomic_spin_unlock_irqrestore(addr, flags); |
| } |
| |
| static __inline__ void __set_bit(int nr, volatile unsigned long * address) |
| { |
| unsigned long mask; |
| unsigned long *addr = (unsigned long *) address; |
| |
| addr += (nr >> SHIFT_PER_LONG); |
| mask = 1L << CHOP_SHIFTCOUNT(nr); |
| *addr |= mask; |
| } |
| |
| static __inline__ void clear_bit(int nr, volatile unsigned long * address) |
| { |
| unsigned long mask; |
| unsigned long *addr = (unsigned long *) address; |
| unsigned long flags; |
| |
| addr += (nr >> SHIFT_PER_LONG); |
| mask = 1L << CHOP_SHIFTCOUNT(nr); |
| _atomic_spin_lock_irqsave(addr, flags); |
| *addr &= ~mask; |
| _atomic_spin_unlock_irqrestore(addr, flags); |
| } |
| |
| static __inline__ void __clear_bit(unsigned long nr, volatile unsigned long * address) |
| { |
| unsigned long mask; |
| unsigned long *addr = (unsigned long *) address; |
| |
| addr += (nr >> SHIFT_PER_LONG); |
| mask = 1L << CHOP_SHIFTCOUNT(nr); |
| *addr &= ~mask; |
| } |
| |
| static __inline__ void change_bit(int nr, volatile unsigned long * address) |
| { |
| unsigned long mask; |
| unsigned long *addr = (unsigned long *) address; |
| unsigned long flags; |
| |
| addr += (nr >> SHIFT_PER_LONG); |
| mask = 1L << CHOP_SHIFTCOUNT(nr); |
| _atomic_spin_lock_irqsave(addr, flags); |
| *addr ^= mask; |
| _atomic_spin_unlock_irqrestore(addr, flags); |
| } |
| |
| static __inline__ void __change_bit(int nr, volatile unsigned long * address) |
| { |
| unsigned long mask; |
| unsigned long *addr = (unsigned long *) address; |
| |
| addr += (nr >> SHIFT_PER_LONG); |
| mask = 1L << CHOP_SHIFTCOUNT(nr); |
| *addr ^= mask; |
| } |
| |
| static __inline__ int test_and_set_bit(int nr, volatile unsigned long * address) |
| { |
| unsigned long mask; |
| unsigned long *addr = (unsigned long *) address; |
| int oldbit; |
| unsigned long flags; |
| |
| addr += (nr >> SHIFT_PER_LONG); |
| mask = 1L << CHOP_SHIFTCOUNT(nr); |
| _atomic_spin_lock_irqsave(addr, flags); |
| oldbit = (*addr & mask) ? 1 : 0; |
| *addr |= mask; |
| _atomic_spin_unlock_irqrestore(addr, flags); |
| |
| return oldbit; |
| } |
| |
| static __inline__ int __test_and_set_bit(int nr, volatile unsigned long * address) |
| { |
| unsigned long mask; |
| unsigned long *addr = (unsigned long *) address; |
| int oldbit; |
| |
| addr += (nr >> SHIFT_PER_LONG); |
| mask = 1L << CHOP_SHIFTCOUNT(nr); |
| oldbit = (*addr & mask) ? 1 : 0; |
| *addr |= mask; |
| |
| return oldbit; |
| } |
| |
| static __inline__ int test_and_clear_bit(int nr, volatile unsigned long * address) |
| { |
| unsigned long mask; |
| unsigned long *addr = (unsigned long *) address; |
| int oldbit; |
| unsigned long flags; |
| |
| addr += (nr >> SHIFT_PER_LONG); |
| mask = 1L << CHOP_SHIFTCOUNT(nr); |
| _atomic_spin_lock_irqsave(addr, flags); |
| oldbit = (*addr & mask) ? 1 : 0; |
| *addr &= ~mask; |
| _atomic_spin_unlock_irqrestore(addr, flags); |
| |
| return oldbit; |
| } |
| |
| static __inline__ int __test_and_clear_bit(int nr, volatile unsigned long * address) |
| { |
| unsigned long mask; |
| unsigned long *addr = (unsigned long *) address; |
| int oldbit; |
| |
| addr += (nr >> SHIFT_PER_LONG); |
| mask = 1L << CHOP_SHIFTCOUNT(nr); |
| oldbit = (*addr & mask) ? 1 : 0; |
| *addr &= ~mask; |
| |
| return oldbit; |
| } |
| |
| static __inline__ int test_and_change_bit(int nr, volatile unsigned long * address) |
| { |
| unsigned long mask; |
| unsigned long *addr = (unsigned long *) address; |
| int oldbit; |
| unsigned long flags; |
| |
| addr += (nr >> SHIFT_PER_LONG); |
| mask = 1L << CHOP_SHIFTCOUNT(nr); |
| _atomic_spin_lock_irqsave(addr, flags); |
| oldbit = (*addr & mask) ? 1 : 0; |
| *addr ^= mask; |
| _atomic_spin_unlock_irqrestore(addr, flags); |
| |
| return oldbit; |
| } |
| |
| static __inline__ int __test_and_change_bit(int nr, volatile unsigned long * address) |
| { |
| unsigned long mask; |
| unsigned long *addr = (unsigned long *) address; |
| int oldbit; |
| |
| addr += (nr >> SHIFT_PER_LONG); |
| mask = 1L << CHOP_SHIFTCOUNT(nr); |
| oldbit = (*addr & mask) ? 1 : 0; |
| *addr ^= mask; |
| |
| return oldbit; |
| } |
| |
| static __inline__ int test_bit(int nr, const volatile unsigned long *address) |
| { |
| unsigned long mask; |
| const unsigned long *addr = (const unsigned long *)address; |
| |
| addr += (nr >> SHIFT_PER_LONG); |
| mask = 1L << CHOP_SHIFTCOUNT(nr); |
| |
| return !!(*addr & mask); |
| } |
| |
| #ifdef __KERNEL__ |
| |
| /** |
| * __ffs - find first bit in word. returns 0 to "BITS_PER_LONG-1". |
| * @word: The word to search |
| * |
| * __ffs() return is undefined if no bit is set. |
| * |
| * 32-bit fast __ffs by LaMont Jones "lamont At hp com". |
| * 64-bit enhancement by Grant Grundler "grundler At parisc-linux org". |
| * (with help from willy/jejb to get the semantics right) |
| * |
| * This algorithm avoids branches by making use of nullification. |
| * One side effect of "extr" instructions is it sets PSW[N] bit. |
| * How PSW[N] (nullify next insn) gets set is determined by the |
| * "condition" field (eg "<>" or "TR" below) in the extr* insn. |
| * Only the 1st and one of either the 2cd or 3rd insn will get executed. |
| * Each set of 3 insn will get executed in 2 cycles on PA8x00 vs 16 or so |
| * cycles for each mispredicted branch. |
| */ |
| |
| static __inline__ unsigned long __ffs(unsigned long x) |
| { |
| unsigned long ret; |
| |
| __asm__( |
| #if BITS_PER_LONG > 32 |
| " ldi 63,%1\n" |
| " extrd,u,*<> %0,63,32,%%r0\n" |
| " extrd,u,*TR %0,31,32,%0\n" /* move top 32-bits down */ |
| " addi -32,%1,%1\n" |
| #else |
| " ldi 31,%1\n" |
| #endif |
| " extru,<> %0,31,16,%%r0\n" |
| " extru,TR %0,15,16,%0\n" /* xxxx0000 -> 0000xxxx */ |
| " addi -16,%1,%1\n" |
| " extru,<> %0,31,8,%%r0\n" |
| " extru,TR %0,23,8,%0\n" /* 0000xx00 -> 000000xx */ |
| " addi -8,%1,%1\n" |
| " extru,<> %0,31,4,%%r0\n" |
| " extru,TR %0,27,4,%0\n" /* 000000x0 -> 0000000x */ |
| " addi -4,%1,%1\n" |
| " extru,<> %0,31,2,%%r0\n" |
| " extru,TR %0,29,2,%0\n" /* 0000000y, 1100b -> 0011b */ |
| " addi -2,%1,%1\n" |
| " extru,= %0,31,1,%%r0\n" /* check last bit */ |
| " addi -1,%1,%1\n" |
| : "+r" (x), "=r" (ret) ); |
| return ret; |
| } |
| |
| /* Undefined if no bit is zero. */ |
| #define ffz(x) __ffs(~x) |
| |
| /* |
| * ffs: find first bit set. returns 1 to BITS_PER_LONG or 0 (if none set) |
| * This is defined the same way as the libc and compiler builtin |
| * ffs routines, therefore differs in spirit from the above ffz (man ffs). |
| */ |
| static __inline__ int ffs(int x) |
| { |
| return x ? (__ffs((unsigned long)x) + 1) : 0; |
| } |
| |
| /* |
| * fls: find last (most significant) bit set. |
| * fls(0) = 0, fls(1) = 1, fls(0x80000000) = 32. |
| */ |
| |
| static __inline__ int fls(int x) |
| { |
| int ret; |
| if (!x) |
| return 0; |
| |
| __asm__( |
| " ldi 1,%1\n" |
| " extru,<> %0,15,16,%%r0\n" |
| " zdep,TR %0,15,16,%0\n" /* xxxx0000 */ |
| " addi 16,%1,%1\n" |
| " extru,<> %0,7,8,%%r0\n" |
| " zdep,TR %0,23,24,%0\n" /* xx000000 */ |
| " addi 8,%1,%1\n" |
| " extru,<> %0,3,4,%%r0\n" |
| " zdep,TR %0,27,28,%0\n" /* x0000000 */ |
| " addi 4,%1,%1\n" |
| " extru,<> %0,1,2,%%r0\n" |
| " zdep,TR %0,29,30,%0\n" /* y0000000 (y&3 = 0) */ |
| " addi 2,%1,%1\n" |
| " extru,= %0,0,1,%%r0\n" |
| " addi 1,%1,%1\n" /* if y & 8, add 1 */ |
| : "+r" (x), "=r" (ret) ); |
| |
| return ret; |
| } |
| |
| /* |
| * hweightN: returns the hamming weight (i.e. the number |
| * of bits set) of a N-bit word |
| */ |
| #define hweight64(x) \ |
| ({ \ |
| unsigned long __x = (x); \ |
| unsigned int __w; \ |
| __w = generic_hweight32((unsigned int) __x); \ |
| __w += generic_hweight32((unsigned int) (__x>>32)); \ |
| __w; \ |
| }) |
| #define hweight32(x) generic_hweight32(x) |
| #define hweight16(x) generic_hweight16(x) |
| #define hweight8(x) generic_hweight8(x) |
| |
| /* |
| * Every architecture must define this function. It's the fastest |
| * way of searching a 140-bit bitmap where the first 100 bits are |
| * unlikely to be set. It's guaranteed that at least one of the 140 |
| * bits is cleared. |
| */ |
| static inline int sched_find_first_bit(const unsigned long *b) |
| { |
| #ifndef __LP64__ |
| if (unlikely(b[0])) |
| return __ffs(b[0]); |
| if (unlikely(b[1])) |
| return __ffs(b[1]) + 32; |
| if (unlikely(b[2])) |
| return __ffs(b[2]) + 64; |
| if (b[3]) |
| return __ffs(b[3]) + 96; |
| return __ffs(b[4]) + 128; |
| #else |
| if (unlikely(b[0])) |
| return __ffs(b[0]); |
| if (unlikely(((unsigned int)b[1]))) |
| return __ffs(b[1]) + 64; |
| if (b[1] >> 32) |
| return __ffs(b[1] >> 32) + 96; |
| return __ffs(b[2]) + 128; |
| #endif |
| } |
| |
| #endif /* __KERNEL__ */ |
| |
| /* |
| * This implementation of find_{first,next}_zero_bit was stolen from |
| * Linus' asm-alpha/bitops.h. |
| */ |
| #define find_first_zero_bit(addr, size) \ |
| find_next_zero_bit((addr), (size), 0) |
| |
| static __inline__ unsigned long find_next_zero_bit(const void * addr, unsigned long size, unsigned long offset) |
| { |
| const unsigned long * p = ((unsigned long *) addr) + (offset >> SHIFT_PER_LONG); |
| unsigned long result = offset & ~(BITS_PER_LONG-1); |
| unsigned long tmp; |
| |
| if (offset >= size) |
| return size; |
| size -= result; |
| offset &= (BITS_PER_LONG-1); |
| if (offset) { |
| tmp = *(p++); |
| tmp |= ~0UL >> (BITS_PER_LONG-offset); |
| if (size < BITS_PER_LONG) |
| goto found_first; |
| if (~tmp) |
| goto found_middle; |
| size -= BITS_PER_LONG; |
| result += BITS_PER_LONG; |
| } |
| while (size & ~(BITS_PER_LONG -1)) { |
| if (~(tmp = *(p++))) |
| goto found_middle; |
| result += BITS_PER_LONG; |
| size -= BITS_PER_LONG; |
| } |
| if (!size) |
| return result; |
| tmp = *p; |
| found_first: |
| tmp |= ~0UL << size; |
| found_middle: |
| return result + ffz(tmp); |
| } |
| |
| static __inline__ unsigned long find_next_bit(const unsigned long *addr, unsigned long size, unsigned long offset) |
| { |
| const unsigned long *p = addr + (offset >> 6); |
| unsigned long result = offset & ~(BITS_PER_LONG-1); |
| unsigned long tmp; |
| |
| if (offset >= size) |
| return size; |
| size -= result; |
| offset &= (BITS_PER_LONG-1); |
| if (offset) { |
| tmp = *(p++); |
| tmp &= (~0UL << offset); |
| if (size < BITS_PER_LONG) |
| goto found_first; |
| if (tmp) |
| goto found_middle; |
| size -= BITS_PER_LONG; |
| result += BITS_PER_LONG; |
| } |
| while (size & ~(BITS_PER_LONG-1)) { |
| if ((tmp = *(p++))) |
| goto found_middle; |
| result += BITS_PER_LONG; |
| size -= BITS_PER_LONG; |
| } |
| if (!size) |
| return result; |
| tmp = *p; |
| |
| found_first: |
| tmp &= (~0UL >> (BITS_PER_LONG - size)); |
| if (tmp == 0UL) /* Are any bits set? */ |
| return result + size; /* Nope. */ |
| found_middle: |
| return result + __ffs(tmp); |
| } |
| |
| /** |
| * find_first_bit - find the first set bit in a memory region |
| * @addr: The address to start the search at |
| * @size: The maximum size to search |
| * |
| * Returns the bit-number of the first set bit, not the number of the byte |
| * containing a bit. |
| */ |
| #define find_first_bit(addr, size) \ |
| find_next_bit((addr), (size), 0) |
| |
| #define _EXT2_HAVE_ASM_BITOPS_ |
| |
| #ifdef __KERNEL__ |
| /* |
| * test_and_{set,clear}_bit guarantee atomicity without |
| * disabling interrupts. |
| */ |
| #ifdef __LP64__ |
| #define ext2_set_bit(nr, addr) __test_and_set_bit((nr) ^ 0x38, (unsigned long *)addr) |
| #define ext2_set_bit_atomic(l,nr,addr) test_and_set_bit((nr) ^ 0x38, (unsigned long *)addr) |
| #define ext2_clear_bit(nr, addr) __test_and_clear_bit((nr) ^ 0x38, (unsigned long *)addr) |
| #define ext2_clear_bit_atomic(l,nr,addr) test_and_clear_bit((nr) ^ 0x38, (unsigned long *)addr) |
| #else |
| #define ext2_set_bit(nr, addr) __test_and_set_bit((nr) ^ 0x18, (unsigned long *)addr) |
| #define ext2_set_bit_atomic(l,nr,addr) test_and_set_bit((nr) ^ 0x18, (unsigned long *)addr) |
| #define ext2_clear_bit(nr, addr) __test_and_clear_bit((nr) ^ 0x18, (unsigned long *)addr) |
| #define ext2_clear_bit_atomic(l,nr,addr) test_and_clear_bit((nr) ^ 0x18, (unsigned long *)addr) |
| #endif |
| |
| #endif /* __KERNEL__ */ |
| |
| static __inline__ int ext2_test_bit(int nr, __const__ void * addr) |
| { |
| __const__ unsigned char *ADDR = (__const__ unsigned char *) addr; |
| |
| return (ADDR[nr >> 3] >> (nr & 7)) & 1; |
| } |
| |
| /* |
| * This implementation of ext2_find_{first,next}_zero_bit was stolen from |
| * Linus' asm-alpha/bitops.h and modified for a big-endian machine. |
| */ |
| |
| #define ext2_find_first_zero_bit(addr, size) \ |
| ext2_find_next_zero_bit((addr), (size), 0) |
| |
| extern __inline__ unsigned long ext2_find_next_zero_bit(void *addr, |
| unsigned long size, unsigned long offset) |
| { |
| unsigned int *p = ((unsigned int *) addr) + (offset >> 5); |
| unsigned int result = offset & ~31UL; |
| unsigned int tmp; |
| |
| if (offset >= size) |
| return size; |
| size -= result; |
| offset &= 31UL; |
| if (offset) { |
| tmp = cpu_to_le32p(p++); |
| tmp |= ~0UL >> (32-offset); |
| if (size < 32) |
| goto found_first; |
| if (tmp != ~0U) |
| goto found_middle; |
| size -= 32; |
| result += 32; |
| } |
| while (size >= 32) { |
| if ((tmp = cpu_to_le32p(p++)) != ~0U) |
| goto found_middle; |
| result += 32; |
| size -= 32; |
| } |
| if (!size) |
| return result; |
| tmp = cpu_to_le32p(p); |
| found_first: |
| tmp |= ~0U << size; |
| found_middle: |
| return result + ffz(tmp); |
| } |
| |
| /* Bitmap functions for the minix filesystem. */ |
| #define minix_test_and_set_bit(nr,addr) ext2_set_bit(nr,addr) |
| #define minix_set_bit(nr,addr) ((void)ext2_set_bit(nr,addr)) |
| #define minix_test_and_clear_bit(nr,addr) ext2_clear_bit(nr,addr) |
| #define minix_test_bit(nr,addr) ext2_test_bit(nr,addr) |
| #define minix_find_first_zero_bit(addr,size) ext2_find_first_zero_bit(addr,size) |
| |
| #endif /* _PARISC_BITOPS_H */ |