| /* |
| * Copytight (C) 1999, 2000, 05, 06 Ralf Baechle (ralf@linux-mips.org) |
| * Copytight (C) 1999, 2000 Silicon Graphics, Inc. |
| */ |
| #include <linux/bcd.h> |
| #include <linux/init.h> |
| #include <linux/kernel.h> |
| #include <linux/sched.h> |
| #include <linux/interrupt.h> |
| #include <linux/kernel_stat.h> |
| #include <linux/param.h> |
| #include <linux/time.h> |
| #include <linux/timex.h> |
| #include <linux/mm.h> |
| |
| #include <asm/time.h> |
| #include <asm/pgtable.h> |
| #include <asm/sgialib.h> |
| #include <asm/sn/ioc3.h> |
| #include <asm/m48t35.h> |
| #include <asm/sn/klconfig.h> |
| #include <asm/sn/arch.h> |
| #include <asm/sn/addrs.h> |
| #include <asm/sn/sn_private.h> |
| #include <asm/sn/sn0/ip27.h> |
| #include <asm/sn/sn0/hub.h> |
| |
| /* |
| * This is a hack; we really need to figure these values out dynamically |
| * |
| * Since 800 ns works very well with various HUB frequencies, such as |
| * 360, 380, 390 and 400 MHZ, we use 800 ns rtc cycle time. |
| * |
| * Ralf: which clock rate is used to feed the counter? |
| */ |
| #define NSEC_PER_CYCLE 800 |
| #define CYCLES_PER_SEC (NSEC_PER_SEC/NSEC_PER_CYCLE) |
| #define CYCLES_PER_JIFFY (CYCLES_PER_SEC/HZ) |
| |
| #define TICK_SIZE (tick_nsec / 1000) |
| |
| static unsigned long ct_cur[NR_CPUS]; /* What counter should be at next timer irq */ |
| static long last_rtc_update; /* Last time the rtc clock got updated */ |
| |
| #if 0 |
| static int set_rtc_mmss(unsigned long nowtime) |
| { |
| int retval = 0; |
| int real_seconds, real_minutes, cmos_minutes; |
| struct m48t35_rtc *rtc; |
| nasid_t nid; |
| |
| nid = get_nasid(); |
| rtc = (struct m48t35_rtc *)(KL_CONFIG_CH_CONS_INFO(nid)->memory_base + |
| IOC3_BYTEBUS_DEV0); |
| |
| rtc->control |= M48T35_RTC_READ; |
| cmos_minutes = BCD2BIN(rtc->min); |
| rtc->control &= ~M48T35_RTC_READ; |
| |
| /* |
| * Since we're only adjusting minutes and seconds, don't interfere with |
| * hour overflow. This avoids messing with unknown time zones but |
| * requires your RTC not to be off by more than 15 minutes |
| */ |
| real_seconds = nowtime % 60; |
| real_minutes = nowtime / 60; |
| if (((abs(real_minutes - cmos_minutes) + 15)/30) & 1) |
| real_minutes += 30; /* correct for half hour time zone */ |
| real_minutes %= 60; |
| |
| if (abs(real_minutes - cmos_minutes) < 30) { |
| real_seconds = BIN2BCD(real_seconds); |
| real_minutes = BIN2BCD(real_minutes); |
| rtc->control |= M48T35_RTC_SET; |
| rtc->sec = real_seconds; |
| rtc->min = real_minutes; |
| rtc->control &= ~M48T35_RTC_SET; |
| } else { |
| printk(KERN_WARNING |
| "set_rtc_mmss: can't update from %d to %d\n", |
| cmos_minutes, real_minutes); |
| retval = -1; |
| } |
| |
| return retval; |
| } |
| #endif |
| |
| static unsigned int rt_timer_irq; |
| |
| void ip27_rt_timer_interrupt(void) |
| { |
| int cpu = smp_processor_id(); |
| int cpuA = cputoslice(cpu) == 0; |
| unsigned int irq = rt_timer_irq; |
| |
| irq_enter(); |
| write_seqlock(&xtime_lock); |
| |
| again: |
| LOCAL_HUB_S(cpuA ? PI_RT_PEND_A : PI_RT_PEND_B, 0); /* Ack */ |
| ct_cur[cpu] += CYCLES_PER_JIFFY; |
| LOCAL_HUB_S(cpuA ? PI_RT_COMPARE_A : PI_RT_COMPARE_B, ct_cur[cpu]); |
| |
| if (LOCAL_HUB_L(PI_RT_COUNT) >= ct_cur[cpu]) |
| goto again; |
| |
| kstat_this_cpu.irqs[irq]++; /* kstat only for bootcpu? */ |
| |
| if (cpu == 0) |
| do_timer(1); |
| |
| update_process_times(user_mode(get_irq_regs())); |
| |
| /* |
| * If we have an externally synchronized Linux clock, then update |
| * RTC clock accordingly every ~11 minutes. Set_rtc_mmss() has to be |
| * called as close as possible to when a second starts. |
| */ |
| if (ntp_synced() && |
| xtime.tv_sec > last_rtc_update + 660 && |
| (xtime.tv_nsec / 1000) >= 500000 - ((unsigned) TICK_SIZE) / 2 && |
| (xtime.tv_nsec / 1000) <= 500000 + ((unsigned) TICK_SIZE) / 2) { |
| if (rtc_mips_set_time(xtime.tv_sec) == 0) { |
| last_rtc_update = xtime.tv_sec; |
| } else { |
| last_rtc_update = xtime.tv_sec - 600; |
| /* do it again in 60 s */ |
| } |
| } |
| |
| write_sequnlock(&xtime_lock); |
| irq_exit(); |
| } |
| |
| /* Includes for ioc3_init(). */ |
| #include <asm/sn/types.h> |
| #include <asm/sn/sn0/addrs.h> |
| #include <asm/sn/sn0/hubni.h> |
| #include <asm/sn/sn0/hubio.h> |
| #include <asm/pci/bridge.h> |
| |
| static __init unsigned long get_m48t35_time(void) |
| { |
| unsigned int year, month, date, hour, min, sec; |
| struct m48t35_rtc *rtc; |
| nasid_t nid; |
| |
| nid = get_nasid(); |
| rtc = (struct m48t35_rtc *)(KL_CONFIG_CH_CONS_INFO(nid)->memory_base + |
| IOC3_BYTEBUS_DEV0); |
| |
| rtc->control |= M48T35_RTC_READ; |
| sec = rtc->sec; |
| min = rtc->min; |
| hour = rtc->hour; |
| date = rtc->date; |
| month = rtc->month; |
| year = rtc->year; |
| rtc->control &= ~M48T35_RTC_READ; |
| |
| sec = BCD2BIN(sec); |
| min = BCD2BIN(min); |
| hour = BCD2BIN(hour); |
| date = BCD2BIN(date); |
| month = BCD2BIN(month); |
| year = BCD2BIN(year); |
| |
| year += 1970; |
| |
| return mktime(year, month, date, hour, min, sec); |
| } |
| |
| static void enable_rt_irq(unsigned int irq) |
| { |
| } |
| |
| static void disable_rt_irq(unsigned int irq) |
| { |
| } |
| |
| static struct irq_chip rt_irq_type = { |
| .name = "SN HUB RT timer", |
| .ack = disable_rt_irq, |
| .mask = disable_rt_irq, |
| .mask_ack = disable_rt_irq, |
| .unmask = enable_rt_irq, |
| .eoi = enable_rt_irq, |
| }; |
| |
| static struct irqaction rt_irqaction = { |
| .handler = ip27_rt_timer_interrupt, |
| .flags = IRQF_DISABLED, |
| .mask = CPU_MASK_NONE, |
| .name = "timer" |
| }; |
| |
| void __init plat_timer_setup(struct irqaction *irq) |
| { |
| int irqno = allocate_irqno(); |
| |
| if (irqno < 0) |
| panic("Can't allocate interrupt number for timer interrupt"); |
| |
| set_irq_chip_and_handler(irqno, &rt_irq_type, handle_percpu_irq); |
| |
| /* over-write the handler, we use our own way */ |
| irq->handler = no_action; |
| |
| /* setup irqaction */ |
| irq_desc[irqno].status |= IRQ_PER_CPU; |
| |
| rt_timer_irq = irqno; |
| /* |
| * Only needed to get /proc/interrupt to display timer irq stats |
| */ |
| setup_irq(irqno, &rt_irqaction); |
| } |
| |
| static cycle_t ip27_hpt_read(void) |
| { |
| return REMOTE_HUB_L(cputonasid(0), PI_RT_COUNT); |
| } |
| |
| void __init ip27_time_init(void) |
| { |
| clocksource_mips.read = ip27_hpt_read; |
| mips_hpt_frequency = CYCLES_PER_SEC; |
| xtime.tv_sec = get_m48t35_time(); |
| xtime.tv_nsec = 0; |
| } |
| |
| void __init cpu_time_init(void) |
| { |
| lboard_t *board; |
| klcpu_t *cpu; |
| int cpuid; |
| |
| /* Don't use ARCS. ARCS is fragile. Klconfig is simple and sane. */ |
| board = find_lboard(KL_CONFIG_INFO(get_nasid()), KLTYPE_IP27); |
| if (!board) |
| panic("Can't find board info for myself."); |
| |
| cpuid = LOCAL_HUB_L(PI_CPU_NUM) ? IP27_CPU0_INDEX : IP27_CPU1_INDEX; |
| cpu = (klcpu_t *) KLCF_COMP(board, cpuid); |
| if (!cpu) |
| panic("No information about myself?"); |
| |
| printk("CPU %d clock is %dMHz.\n", smp_processor_id(), cpu->cpu_speed); |
| |
| set_c0_status(SRB_TIMOCLK); |
| } |
| |
| void __init hub_rtc_init(cnodeid_t cnode) |
| { |
| /* |
| * We only need to initialize the current node. |
| * If this is not the current node then it is a cpuless |
| * node and timeouts will not happen there. |
| */ |
| if (get_compact_nodeid() == cnode) { |
| int cpu = smp_processor_id(); |
| LOCAL_HUB_S(PI_RT_EN_A, 1); |
| LOCAL_HUB_S(PI_RT_EN_B, 1); |
| LOCAL_HUB_S(PI_PROF_EN_A, 0); |
| LOCAL_HUB_S(PI_PROF_EN_B, 0); |
| ct_cur[cpu] = CYCLES_PER_JIFFY; |
| LOCAL_HUB_S(PI_RT_COMPARE_A, ct_cur[cpu]); |
| LOCAL_HUB_S(PI_RT_COUNT, 0); |
| LOCAL_HUB_S(PI_RT_PEND_A, 0); |
| LOCAL_HUB_S(PI_RT_COMPARE_B, ct_cur[cpu]); |
| LOCAL_HUB_S(PI_RT_COUNT, 0); |
| LOCAL_HUB_S(PI_RT_PEND_B, 0); |
| } |
| } |