| /******************************************************************************* |
| * |
| * Intel Ethernet Controller XL710 Family Linux Virtual Function Driver |
| * Copyright(c) 2013 - 2014 Intel Corporation. |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms and conditions of the GNU General Public License, |
| * version 2, as published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope it will be useful, but WITHOUT |
| * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| * more details. |
| * |
| * You should have received a copy of the GNU General Public License along |
| * with this program. If not, see <http://www.gnu.org/licenses/>. |
| * |
| * The full GNU General Public License is included in this distribution in |
| * the file called "COPYING". |
| * |
| * Contact Information: |
| * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> |
| * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 |
| * |
| ******************************************************************************/ |
| |
| #include <linux/prefetch.h> |
| #include <net/busy_poll.h> |
| |
| #include "i40evf.h" |
| #include "i40e_prototype.h" |
| |
| static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size, |
| u32 td_tag) |
| { |
| return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA | |
| ((u64)td_cmd << I40E_TXD_QW1_CMD_SHIFT) | |
| ((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) | |
| ((u64)size << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) | |
| ((u64)td_tag << I40E_TXD_QW1_L2TAG1_SHIFT)); |
| } |
| |
| #define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS) |
| |
| /** |
| * i40e_unmap_and_free_tx_resource - Release a Tx buffer |
| * @ring: the ring that owns the buffer |
| * @tx_buffer: the buffer to free |
| **/ |
| static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring, |
| struct i40e_tx_buffer *tx_buffer) |
| { |
| if (tx_buffer->skb) { |
| if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB) |
| kfree(tx_buffer->raw_buf); |
| else |
| dev_kfree_skb_any(tx_buffer->skb); |
| |
| if (dma_unmap_len(tx_buffer, len)) |
| dma_unmap_single(ring->dev, |
| dma_unmap_addr(tx_buffer, dma), |
| dma_unmap_len(tx_buffer, len), |
| DMA_TO_DEVICE); |
| } else if (dma_unmap_len(tx_buffer, len)) { |
| dma_unmap_page(ring->dev, |
| dma_unmap_addr(tx_buffer, dma), |
| dma_unmap_len(tx_buffer, len), |
| DMA_TO_DEVICE); |
| } |
| tx_buffer->next_to_watch = NULL; |
| tx_buffer->skb = NULL; |
| dma_unmap_len_set(tx_buffer, len, 0); |
| /* tx_buffer must be completely set up in the transmit path */ |
| } |
| |
| /** |
| * i40evf_clean_tx_ring - Free any empty Tx buffers |
| * @tx_ring: ring to be cleaned |
| **/ |
| void i40evf_clean_tx_ring(struct i40e_ring *tx_ring) |
| { |
| unsigned long bi_size; |
| u16 i; |
| |
| /* ring already cleared, nothing to do */ |
| if (!tx_ring->tx_bi) |
| return; |
| |
| /* Free all the Tx ring sk_buffs */ |
| for (i = 0; i < tx_ring->count; i++) |
| i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]); |
| |
| bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count; |
| memset(tx_ring->tx_bi, 0, bi_size); |
| |
| /* Zero out the descriptor ring */ |
| memset(tx_ring->desc, 0, tx_ring->size); |
| |
| tx_ring->next_to_use = 0; |
| tx_ring->next_to_clean = 0; |
| |
| if (!tx_ring->netdev) |
| return; |
| |
| /* cleanup Tx queue statistics */ |
| netdev_tx_reset_queue(netdev_get_tx_queue(tx_ring->netdev, |
| tx_ring->queue_index)); |
| } |
| |
| /** |
| * i40evf_free_tx_resources - Free Tx resources per queue |
| * @tx_ring: Tx descriptor ring for a specific queue |
| * |
| * Free all transmit software resources |
| **/ |
| void i40evf_free_tx_resources(struct i40e_ring *tx_ring) |
| { |
| i40evf_clean_tx_ring(tx_ring); |
| kfree(tx_ring->tx_bi); |
| tx_ring->tx_bi = NULL; |
| |
| if (tx_ring->desc) { |
| dma_free_coherent(tx_ring->dev, tx_ring->size, |
| tx_ring->desc, tx_ring->dma); |
| tx_ring->desc = NULL; |
| } |
| } |
| |
| /** |
| * i40e_get_head - Retrieve head from head writeback |
| * @tx_ring: tx ring to fetch head of |
| * |
| * Returns value of Tx ring head based on value stored |
| * in head write-back location |
| **/ |
| static inline u32 i40e_get_head(struct i40e_ring *tx_ring) |
| { |
| void *head = (struct i40e_tx_desc *)tx_ring->desc + tx_ring->count; |
| |
| return le32_to_cpu(*(volatile __le32 *)head); |
| } |
| |
| #define WB_STRIDE 0x3 |
| |
| /** |
| * i40e_clean_tx_irq - Reclaim resources after transmit completes |
| * @tx_ring: tx ring to clean |
| * @budget: how many cleans we're allowed |
| * |
| * Returns true if there's any budget left (e.g. the clean is finished) |
| **/ |
| static bool i40e_clean_tx_irq(struct i40e_ring *tx_ring, int budget) |
| { |
| u16 i = tx_ring->next_to_clean; |
| struct i40e_tx_buffer *tx_buf; |
| struct i40e_tx_desc *tx_head; |
| struct i40e_tx_desc *tx_desc; |
| unsigned int total_packets = 0; |
| unsigned int total_bytes = 0; |
| |
| tx_buf = &tx_ring->tx_bi[i]; |
| tx_desc = I40E_TX_DESC(tx_ring, i); |
| i -= tx_ring->count; |
| |
| tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring)); |
| |
| do { |
| struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch; |
| |
| /* if next_to_watch is not set then there is no work pending */ |
| if (!eop_desc) |
| break; |
| |
| /* prevent any other reads prior to eop_desc */ |
| read_barrier_depends(); |
| |
| /* we have caught up to head, no work left to do */ |
| if (tx_head == tx_desc) |
| break; |
| |
| /* clear next_to_watch to prevent false hangs */ |
| tx_buf->next_to_watch = NULL; |
| |
| /* update the statistics for this packet */ |
| total_bytes += tx_buf->bytecount; |
| total_packets += tx_buf->gso_segs; |
| |
| /* free the skb */ |
| dev_kfree_skb_any(tx_buf->skb); |
| |
| /* unmap skb header data */ |
| dma_unmap_single(tx_ring->dev, |
| dma_unmap_addr(tx_buf, dma), |
| dma_unmap_len(tx_buf, len), |
| DMA_TO_DEVICE); |
| |
| /* clear tx_buffer data */ |
| tx_buf->skb = NULL; |
| dma_unmap_len_set(tx_buf, len, 0); |
| |
| /* unmap remaining buffers */ |
| while (tx_desc != eop_desc) { |
| |
| tx_buf++; |
| tx_desc++; |
| i++; |
| if (unlikely(!i)) { |
| i -= tx_ring->count; |
| tx_buf = tx_ring->tx_bi; |
| tx_desc = I40E_TX_DESC(tx_ring, 0); |
| } |
| |
| /* unmap any remaining paged data */ |
| if (dma_unmap_len(tx_buf, len)) { |
| dma_unmap_page(tx_ring->dev, |
| dma_unmap_addr(tx_buf, dma), |
| dma_unmap_len(tx_buf, len), |
| DMA_TO_DEVICE); |
| dma_unmap_len_set(tx_buf, len, 0); |
| } |
| } |
| |
| /* move us one more past the eop_desc for start of next pkt */ |
| tx_buf++; |
| tx_desc++; |
| i++; |
| if (unlikely(!i)) { |
| i -= tx_ring->count; |
| tx_buf = tx_ring->tx_bi; |
| tx_desc = I40E_TX_DESC(tx_ring, 0); |
| } |
| |
| prefetch(tx_desc); |
| |
| /* update budget accounting */ |
| budget--; |
| } while (likely(budget)); |
| |
| i += tx_ring->count; |
| tx_ring->next_to_clean = i; |
| u64_stats_update_begin(&tx_ring->syncp); |
| tx_ring->stats.bytes += total_bytes; |
| tx_ring->stats.packets += total_packets; |
| u64_stats_update_end(&tx_ring->syncp); |
| tx_ring->q_vector->tx.total_bytes += total_bytes; |
| tx_ring->q_vector->tx.total_packets += total_packets; |
| |
| /* check to see if there are any non-cache aligned descriptors |
| * waiting to be written back, and kick the hardware to force |
| * them to be written back in case of napi polling |
| */ |
| if (budget && |
| !((i & WB_STRIDE) == WB_STRIDE) && |
| !test_bit(__I40E_DOWN, &tx_ring->vsi->state) && |
| (I40E_DESC_UNUSED(tx_ring) != tx_ring->count)) |
| tx_ring->arm_wb = true; |
| |
| netdev_tx_completed_queue(netdev_get_tx_queue(tx_ring->netdev, |
| tx_ring->queue_index), |
| total_packets, total_bytes); |
| |
| #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2) |
| if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) && |
| (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) { |
| /* Make sure that anybody stopping the queue after this |
| * sees the new next_to_clean. |
| */ |
| smp_mb(); |
| if (__netif_subqueue_stopped(tx_ring->netdev, |
| tx_ring->queue_index) && |
| !test_bit(__I40E_DOWN, &tx_ring->vsi->state)) { |
| netif_wake_subqueue(tx_ring->netdev, |
| tx_ring->queue_index); |
| ++tx_ring->tx_stats.restart_queue; |
| } |
| } |
| |
| return !!budget; |
| } |
| |
| /** |
| * i40evf_force_wb -Arm hardware to do a wb on noncache aligned descriptors |
| * @vsi: the VSI we care about |
| * @q_vector: the vector on which to force writeback |
| * |
| **/ |
| static void i40evf_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector) |
| { |
| u16 flags = q_vector->tx.ring[0].flags; |
| |
| if (flags & I40E_TXR_FLAGS_WB_ON_ITR) { |
| u32 val; |
| |
| if (q_vector->arm_wb_state) |
| return; |
| |
| val = I40E_VFINT_DYN_CTLN1_WB_ON_ITR_MASK; |
| |
| wr32(&vsi->back->hw, |
| I40E_VFINT_DYN_CTLN1(q_vector->v_idx + |
| vsi->base_vector - 1), |
| val); |
| q_vector->arm_wb_state = true; |
| } else { |
| u32 val = I40E_VFINT_DYN_CTLN1_INTENA_MASK | |
| I40E_VFINT_DYN_CTLN1_ITR_INDX_MASK | /* set noitr */ |
| I40E_VFINT_DYN_CTLN1_SWINT_TRIG_MASK | |
| I40E_VFINT_DYN_CTLN1_SW_ITR_INDX_ENA_MASK; |
| /* allow 00 to be written to the index */ |
| |
| wr32(&vsi->back->hw, |
| I40E_VFINT_DYN_CTLN1(q_vector->v_idx + |
| vsi->base_vector - 1), val); |
| } |
| } |
| |
| /** |
| * i40e_set_new_dynamic_itr - Find new ITR level |
| * @rc: structure containing ring performance data |
| * |
| * Returns true if ITR changed, false if not |
| * |
| * Stores a new ITR value based on packets and byte counts during |
| * the last interrupt. The advantage of per interrupt computation |
| * is faster updates and more accurate ITR for the current traffic |
| * pattern. Constants in this function were computed based on |
| * theoretical maximum wire speed and thresholds were set based on |
| * testing data as well as attempting to minimize response time |
| * while increasing bulk throughput. |
| **/ |
| static bool i40e_set_new_dynamic_itr(struct i40e_ring_container *rc) |
| { |
| enum i40e_latency_range new_latency_range = rc->latency_range; |
| struct i40e_q_vector *qv = rc->ring->q_vector; |
| u32 new_itr = rc->itr; |
| int bytes_per_int; |
| int usecs; |
| |
| if (rc->total_packets == 0 || !rc->itr) |
| return false; |
| |
| /* simple throttlerate management |
| * 0-10MB/s lowest (50000 ints/s) |
| * 10-20MB/s low (20000 ints/s) |
| * 20-1249MB/s bulk (18000 ints/s) |
| * > 40000 Rx packets per second (8000 ints/s) |
| * |
| * The math works out because the divisor is in 10^(-6) which |
| * turns the bytes/us input value into MB/s values, but |
| * make sure to use usecs, as the register values written |
| * are in 2 usec increments in the ITR registers, and make sure |
| * to use the smoothed values that the countdown timer gives us. |
| */ |
| usecs = (rc->itr << 1) * ITR_COUNTDOWN_START; |
| bytes_per_int = rc->total_bytes / usecs; |
| |
| switch (new_latency_range) { |
| case I40E_LOWEST_LATENCY: |
| if (bytes_per_int > 10) |
| new_latency_range = I40E_LOW_LATENCY; |
| break; |
| case I40E_LOW_LATENCY: |
| if (bytes_per_int > 20) |
| new_latency_range = I40E_BULK_LATENCY; |
| else if (bytes_per_int <= 10) |
| new_latency_range = I40E_LOWEST_LATENCY; |
| break; |
| case I40E_BULK_LATENCY: |
| case I40E_ULTRA_LATENCY: |
| default: |
| if (bytes_per_int <= 20) |
| new_latency_range = I40E_LOW_LATENCY; |
| break; |
| } |
| |
| /* this is to adjust RX more aggressively when streaming small |
| * packets. The value of 40000 was picked as it is just beyond |
| * what the hardware can receive per second if in low latency |
| * mode. |
| */ |
| #define RX_ULTRA_PACKET_RATE 40000 |
| |
| if ((((rc->total_packets * 1000000) / usecs) > RX_ULTRA_PACKET_RATE) && |
| (&qv->rx == rc)) |
| new_latency_range = I40E_ULTRA_LATENCY; |
| |
| rc->latency_range = new_latency_range; |
| |
| switch (new_latency_range) { |
| case I40E_LOWEST_LATENCY: |
| new_itr = I40E_ITR_50K; |
| break; |
| case I40E_LOW_LATENCY: |
| new_itr = I40E_ITR_20K; |
| break; |
| case I40E_BULK_LATENCY: |
| new_itr = I40E_ITR_18K; |
| break; |
| case I40E_ULTRA_LATENCY: |
| new_itr = I40E_ITR_8K; |
| break; |
| default: |
| break; |
| } |
| |
| rc->total_bytes = 0; |
| rc->total_packets = 0; |
| |
| if (new_itr != rc->itr) { |
| rc->itr = new_itr; |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /* |
| * i40evf_setup_tx_descriptors - Allocate the Tx descriptors |
| * @tx_ring: the tx ring to set up |
| * |
| * Return 0 on success, negative on error |
| **/ |
| int i40evf_setup_tx_descriptors(struct i40e_ring *tx_ring) |
| { |
| struct device *dev = tx_ring->dev; |
| int bi_size; |
| |
| if (!dev) |
| return -ENOMEM; |
| |
| /* warn if we are about to overwrite the pointer */ |
| WARN_ON(tx_ring->tx_bi); |
| bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count; |
| tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL); |
| if (!tx_ring->tx_bi) |
| goto err; |
| |
| /* round up to nearest 4K */ |
| tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc); |
| /* add u32 for head writeback, align after this takes care of |
| * guaranteeing this is at least one cache line in size |
| */ |
| tx_ring->size += sizeof(u32); |
| tx_ring->size = ALIGN(tx_ring->size, 4096); |
| tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size, |
| &tx_ring->dma, GFP_KERNEL); |
| if (!tx_ring->desc) { |
| dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n", |
| tx_ring->size); |
| goto err; |
| } |
| |
| tx_ring->next_to_use = 0; |
| tx_ring->next_to_clean = 0; |
| return 0; |
| |
| err: |
| kfree(tx_ring->tx_bi); |
| tx_ring->tx_bi = NULL; |
| return -ENOMEM; |
| } |
| |
| /** |
| * i40evf_clean_rx_ring - Free Rx buffers |
| * @rx_ring: ring to be cleaned |
| **/ |
| void i40evf_clean_rx_ring(struct i40e_ring *rx_ring) |
| { |
| struct device *dev = rx_ring->dev; |
| struct i40e_rx_buffer *rx_bi; |
| unsigned long bi_size; |
| u16 i; |
| |
| /* ring already cleared, nothing to do */ |
| if (!rx_ring->rx_bi) |
| return; |
| |
| if (ring_is_ps_enabled(rx_ring)) { |
| int bufsz = ALIGN(rx_ring->rx_hdr_len, 256) * rx_ring->count; |
| |
| rx_bi = &rx_ring->rx_bi[0]; |
| if (rx_bi->hdr_buf) { |
| dma_free_coherent(dev, |
| bufsz, |
| rx_bi->hdr_buf, |
| rx_bi->dma); |
| for (i = 0; i < rx_ring->count; i++) { |
| rx_bi = &rx_ring->rx_bi[i]; |
| rx_bi->dma = 0; |
| rx_bi->hdr_buf = NULL; |
| } |
| } |
| } |
| /* Free all the Rx ring sk_buffs */ |
| for (i = 0; i < rx_ring->count; i++) { |
| rx_bi = &rx_ring->rx_bi[i]; |
| if (rx_bi->dma) { |
| dma_unmap_single(dev, |
| rx_bi->dma, |
| rx_ring->rx_buf_len, |
| DMA_FROM_DEVICE); |
| rx_bi->dma = 0; |
| } |
| if (rx_bi->skb) { |
| dev_kfree_skb(rx_bi->skb); |
| rx_bi->skb = NULL; |
| } |
| if (rx_bi->page) { |
| if (rx_bi->page_dma) { |
| dma_unmap_page(dev, |
| rx_bi->page_dma, |
| PAGE_SIZE / 2, |
| DMA_FROM_DEVICE); |
| rx_bi->page_dma = 0; |
| } |
| __free_page(rx_bi->page); |
| rx_bi->page = NULL; |
| rx_bi->page_offset = 0; |
| } |
| } |
| |
| bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count; |
| memset(rx_ring->rx_bi, 0, bi_size); |
| |
| /* Zero out the descriptor ring */ |
| memset(rx_ring->desc, 0, rx_ring->size); |
| |
| rx_ring->next_to_clean = 0; |
| rx_ring->next_to_use = 0; |
| } |
| |
| /** |
| * i40evf_free_rx_resources - Free Rx resources |
| * @rx_ring: ring to clean the resources from |
| * |
| * Free all receive software resources |
| **/ |
| void i40evf_free_rx_resources(struct i40e_ring *rx_ring) |
| { |
| i40evf_clean_rx_ring(rx_ring); |
| kfree(rx_ring->rx_bi); |
| rx_ring->rx_bi = NULL; |
| |
| if (rx_ring->desc) { |
| dma_free_coherent(rx_ring->dev, rx_ring->size, |
| rx_ring->desc, rx_ring->dma); |
| rx_ring->desc = NULL; |
| } |
| } |
| |
| /** |
| * i40evf_alloc_rx_headers - allocate rx header buffers |
| * @rx_ring: ring to alloc buffers |
| * |
| * Allocate rx header buffers for the entire ring. As these are static, |
| * this is only called when setting up a new ring. |
| **/ |
| void i40evf_alloc_rx_headers(struct i40e_ring *rx_ring) |
| { |
| struct device *dev = rx_ring->dev; |
| struct i40e_rx_buffer *rx_bi; |
| dma_addr_t dma; |
| void *buffer; |
| int buf_size; |
| int i; |
| |
| if (rx_ring->rx_bi[0].hdr_buf) |
| return; |
| /* Make sure the buffers don't cross cache line boundaries. */ |
| buf_size = ALIGN(rx_ring->rx_hdr_len, 256); |
| buffer = dma_alloc_coherent(dev, buf_size * rx_ring->count, |
| &dma, GFP_KERNEL); |
| if (!buffer) |
| return; |
| for (i = 0; i < rx_ring->count; i++) { |
| rx_bi = &rx_ring->rx_bi[i]; |
| rx_bi->dma = dma + (i * buf_size); |
| rx_bi->hdr_buf = buffer + (i * buf_size); |
| } |
| } |
| |
| /** |
| * i40evf_setup_rx_descriptors - Allocate Rx descriptors |
| * @rx_ring: Rx descriptor ring (for a specific queue) to setup |
| * |
| * Returns 0 on success, negative on failure |
| **/ |
| int i40evf_setup_rx_descriptors(struct i40e_ring *rx_ring) |
| { |
| struct device *dev = rx_ring->dev; |
| int bi_size; |
| |
| /* warn if we are about to overwrite the pointer */ |
| WARN_ON(rx_ring->rx_bi); |
| bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count; |
| rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL); |
| if (!rx_ring->rx_bi) |
| goto err; |
| |
| u64_stats_init(&rx_ring->syncp); |
| |
| /* Round up to nearest 4K */ |
| rx_ring->size = ring_is_16byte_desc_enabled(rx_ring) |
| ? rx_ring->count * sizeof(union i40e_16byte_rx_desc) |
| : rx_ring->count * sizeof(union i40e_32byte_rx_desc); |
| rx_ring->size = ALIGN(rx_ring->size, 4096); |
| rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size, |
| &rx_ring->dma, GFP_KERNEL); |
| |
| if (!rx_ring->desc) { |
| dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n", |
| rx_ring->size); |
| goto err; |
| } |
| |
| rx_ring->next_to_clean = 0; |
| rx_ring->next_to_use = 0; |
| |
| return 0; |
| err: |
| kfree(rx_ring->rx_bi); |
| rx_ring->rx_bi = NULL; |
| return -ENOMEM; |
| } |
| |
| /** |
| * i40e_release_rx_desc - Store the new tail and head values |
| * @rx_ring: ring to bump |
| * @val: new head index |
| **/ |
| static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val) |
| { |
| rx_ring->next_to_use = val; |
| /* Force memory writes to complete before letting h/w |
| * know there are new descriptors to fetch. (Only |
| * applicable for weak-ordered memory model archs, |
| * such as IA-64). |
| */ |
| wmb(); |
| writel(val, rx_ring->tail); |
| } |
| |
| /** |
| * i40evf_alloc_rx_buffers_ps - Replace used receive buffers; packet split |
| * @rx_ring: ring to place buffers on |
| * @cleaned_count: number of buffers to replace |
| **/ |
| void i40evf_alloc_rx_buffers_ps(struct i40e_ring *rx_ring, u16 cleaned_count) |
| { |
| u16 i = rx_ring->next_to_use; |
| union i40e_rx_desc *rx_desc; |
| struct i40e_rx_buffer *bi; |
| |
| /* do nothing if no valid netdev defined */ |
| if (!rx_ring->netdev || !cleaned_count) |
| return; |
| |
| while (cleaned_count--) { |
| rx_desc = I40E_RX_DESC(rx_ring, i); |
| bi = &rx_ring->rx_bi[i]; |
| |
| if (bi->skb) /* desc is in use */ |
| goto no_buffers; |
| if (!bi->page) { |
| bi->page = alloc_page(GFP_ATOMIC); |
| if (!bi->page) { |
| rx_ring->rx_stats.alloc_page_failed++; |
| goto no_buffers; |
| } |
| } |
| |
| if (!bi->page_dma) { |
| /* use a half page if we're re-using */ |
| bi->page_offset ^= PAGE_SIZE / 2; |
| bi->page_dma = dma_map_page(rx_ring->dev, |
| bi->page, |
| bi->page_offset, |
| PAGE_SIZE / 2, |
| DMA_FROM_DEVICE); |
| if (dma_mapping_error(rx_ring->dev, |
| bi->page_dma)) { |
| rx_ring->rx_stats.alloc_page_failed++; |
| bi->page_dma = 0; |
| goto no_buffers; |
| } |
| } |
| |
| dma_sync_single_range_for_device(rx_ring->dev, |
| bi->dma, |
| 0, |
| rx_ring->rx_hdr_len, |
| DMA_FROM_DEVICE); |
| /* Refresh the desc even if buffer_addrs didn't change |
| * because each write-back erases this info. |
| */ |
| rx_desc->read.pkt_addr = cpu_to_le64(bi->page_dma); |
| rx_desc->read.hdr_addr = cpu_to_le64(bi->dma); |
| i++; |
| if (i == rx_ring->count) |
| i = 0; |
| } |
| |
| no_buffers: |
| if (rx_ring->next_to_use != i) |
| i40e_release_rx_desc(rx_ring, i); |
| } |
| |
| /** |
| * i40evf_alloc_rx_buffers_1buf - Replace used receive buffers; single buffer |
| * @rx_ring: ring to place buffers on |
| * @cleaned_count: number of buffers to replace |
| **/ |
| void i40evf_alloc_rx_buffers_1buf(struct i40e_ring *rx_ring, u16 cleaned_count) |
| { |
| u16 i = rx_ring->next_to_use; |
| union i40e_rx_desc *rx_desc; |
| struct i40e_rx_buffer *bi; |
| struct sk_buff *skb; |
| |
| /* do nothing if no valid netdev defined */ |
| if (!rx_ring->netdev || !cleaned_count) |
| return; |
| |
| while (cleaned_count--) { |
| rx_desc = I40E_RX_DESC(rx_ring, i); |
| bi = &rx_ring->rx_bi[i]; |
| skb = bi->skb; |
| |
| if (!skb) { |
| skb = netdev_alloc_skb_ip_align(rx_ring->netdev, |
| rx_ring->rx_buf_len); |
| if (!skb) { |
| rx_ring->rx_stats.alloc_buff_failed++; |
| goto no_buffers; |
| } |
| /* initialize queue mapping */ |
| skb_record_rx_queue(skb, rx_ring->queue_index); |
| bi->skb = skb; |
| } |
| |
| if (!bi->dma) { |
| bi->dma = dma_map_single(rx_ring->dev, |
| skb->data, |
| rx_ring->rx_buf_len, |
| DMA_FROM_DEVICE); |
| if (dma_mapping_error(rx_ring->dev, bi->dma)) { |
| rx_ring->rx_stats.alloc_buff_failed++; |
| bi->dma = 0; |
| goto no_buffers; |
| } |
| } |
| |
| rx_desc->read.pkt_addr = cpu_to_le64(bi->dma); |
| rx_desc->read.hdr_addr = 0; |
| i++; |
| if (i == rx_ring->count) |
| i = 0; |
| } |
| |
| no_buffers: |
| if (rx_ring->next_to_use != i) |
| i40e_release_rx_desc(rx_ring, i); |
| } |
| |
| /** |
| * i40e_receive_skb - Send a completed packet up the stack |
| * @rx_ring: rx ring in play |
| * @skb: packet to send up |
| * @vlan_tag: vlan tag for packet |
| **/ |
| static void i40e_receive_skb(struct i40e_ring *rx_ring, |
| struct sk_buff *skb, u16 vlan_tag) |
| { |
| struct i40e_q_vector *q_vector = rx_ring->q_vector; |
| |
| if (vlan_tag & VLAN_VID_MASK) |
| __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag); |
| |
| napi_gro_receive(&q_vector->napi, skb); |
| } |
| |
| /** |
| * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum |
| * @vsi: the VSI we care about |
| * @skb: skb currently being received and modified |
| * @rx_status: status value of last descriptor in packet |
| * @rx_error: error value of last descriptor in packet |
| * @rx_ptype: ptype value of last descriptor in packet |
| **/ |
| static inline void i40e_rx_checksum(struct i40e_vsi *vsi, |
| struct sk_buff *skb, |
| u32 rx_status, |
| u32 rx_error, |
| u16 rx_ptype) |
| { |
| struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(rx_ptype); |
| bool ipv4 = false, ipv6 = false; |
| bool ipv4_tunnel, ipv6_tunnel; |
| __wsum rx_udp_csum; |
| struct iphdr *iph; |
| __sum16 csum; |
| |
| ipv4_tunnel = (rx_ptype >= I40E_RX_PTYPE_GRENAT4_MAC_PAY3) && |
| (rx_ptype <= I40E_RX_PTYPE_GRENAT4_MACVLAN_IPV6_ICMP_PAY4); |
| ipv6_tunnel = (rx_ptype >= I40E_RX_PTYPE_GRENAT6_MAC_PAY3) && |
| (rx_ptype <= I40E_RX_PTYPE_GRENAT6_MACVLAN_IPV6_ICMP_PAY4); |
| |
| skb->ip_summed = CHECKSUM_NONE; |
| |
| /* Rx csum enabled and ip headers found? */ |
| if (!(vsi->netdev->features & NETIF_F_RXCSUM)) |
| return; |
| |
| /* did the hardware decode the packet and checksum? */ |
| if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT))) |
| return; |
| |
| /* both known and outer_ip must be set for the below code to work */ |
| if (!(decoded.known && decoded.outer_ip)) |
| return; |
| |
| if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP && |
| decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4) |
| ipv4 = true; |
| else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP && |
| decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6) |
| ipv6 = true; |
| |
| if (ipv4 && |
| (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) | |
| BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT)))) |
| goto checksum_fail; |
| |
| /* likely incorrect csum if alternate IP extension headers found */ |
| if (ipv6 && |
| rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT)) |
| /* don't increment checksum err here, non-fatal err */ |
| return; |
| |
| /* there was some L4 error, count error and punt packet to the stack */ |
| if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT)) |
| goto checksum_fail; |
| |
| /* handle packets that were not able to be checksummed due |
| * to arrival speed, in this case the stack can compute |
| * the csum. |
| */ |
| if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT)) |
| return; |
| |
| /* If VXLAN traffic has an outer UDPv4 checksum we need to check |
| * it in the driver, hardware does not do it for us. |
| * Since L3L4P bit was set we assume a valid IHL value (>=5) |
| * so the total length of IPv4 header is IHL*4 bytes |
| * The UDP_0 bit *may* bet set if the *inner* header is UDP |
| */ |
| if (ipv4_tunnel) { |
| skb->transport_header = skb->mac_header + |
| sizeof(struct ethhdr) + |
| (ip_hdr(skb)->ihl * 4); |
| |
| /* Add 4 bytes for VLAN tagged packets */ |
| skb->transport_header += (skb->protocol == htons(ETH_P_8021Q) || |
| skb->protocol == htons(ETH_P_8021AD)) |
| ? VLAN_HLEN : 0; |
| |
| if ((ip_hdr(skb)->protocol == IPPROTO_UDP) && |
| (udp_hdr(skb)->check != 0)) { |
| rx_udp_csum = udp_csum(skb); |
| iph = ip_hdr(skb); |
| csum = csum_tcpudp_magic(iph->saddr, iph->daddr, |
| (skb->len - |
| skb_transport_offset(skb)), |
| IPPROTO_UDP, rx_udp_csum); |
| |
| if (udp_hdr(skb)->check != csum) |
| goto checksum_fail; |
| |
| } /* else its GRE and so no outer UDP header */ |
| } |
| |
| skb->ip_summed = CHECKSUM_UNNECESSARY; |
| skb->csum_level = ipv4_tunnel || ipv6_tunnel; |
| |
| return; |
| |
| checksum_fail: |
| vsi->back->hw_csum_rx_error++; |
| } |
| |
| /** |
| * i40e_rx_hash - returns the hash value from the Rx descriptor |
| * @ring: descriptor ring |
| * @rx_desc: specific descriptor |
| **/ |
| static inline u32 i40e_rx_hash(struct i40e_ring *ring, |
| union i40e_rx_desc *rx_desc) |
| { |
| const __le64 rss_mask = |
| cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH << |
| I40E_RX_DESC_STATUS_FLTSTAT_SHIFT); |
| |
| if ((ring->netdev->features & NETIF_F_RXHASH) && |
| (rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) |
| return le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss); |
| else |
| return 0; |
| } |
| |
| /** |
| * i40e_ptype_to_hash - get a hash type |
| * @ptype: the ptype value from the descriptor |
| * |
| * Returns a hash type to be used by skb_set_hash |
| **/ |
| static inline enum pkt_hash_types i40e_ptype_to_hash(u8 ptype) |
| { |
| struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype); |
| |
| if (!decoded.known) |
| return PKT_HASH_TYPE_NONE; |
| |
| if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP && |
| decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4) |
| return PKT_HASH_TYPE_L4; |
| else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP && |
| decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3) |
| return PKT_HASH_TYPE_L3; |
| else |
| return PKT_HASH_TYPE_L2; |
| } |
| |
| /** |
| * i40e_clean_rx_irq_ps - Reclaim resources after receive; packet split |
| * @rx_ring: rx ring to clean |
| * @budget: how many cleans we're allowed |
| * |
| * Returns true if there's any budget left (e.g. the clean is finished) |
| **/ |
| static int i40e_clean_rx_irq_ps(struct i40e_ring *rx_ring, int budget) |
| { |
| unsigned int total_rx_bytes = 0, total_rx_packets = 0; |
| u16 rx_packet_len, rx_header_len, rx_sph, rx_hbo; |
| u16 cleaned_count = I40E_DESC_UNUSED(rx_ring); |
| const int current_node = numa_mem_id(); |
| struct i40e_vsi *vsi = rx_ring->vsi; |
| u16 i = rx_ring->next_to_clean; |
| union i40e_rx_desc *rx_desc; |
| u32 rx_error, rx_status; |
| u8 rx_ptype; |
| u64 qword; |
| |
| do { |
| struct i40e_rx_buffer *rx_bi; |
| struct sk_buff *skb; |
| u16 vlan_tag; |
| /* return some buffers to hardware, one at a time is too slow */ |
| if (cleaned_count >= I40E_RX_BUFFER_WRITE) { |
| i40evf_alloc_rx_buffers_ps(rx_ring, cleaned_count); |
| cleaned_count = 0; |
| } |
| |
| i = rx_ring->next_to_clean; |
| rx_desc = I40E_RX_DESC(rx_ring, i); |
| qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len); |
| rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >> |
| I40E_RXD_QW1_STATUS_SHIFT; |
| |
| if (!(rx_status & BIT(I40E_RX_DESC_STATUS_DD_SHIFT))) |
| break; |
| |
| /* This memory barrier is needed to keep us from reading |
| * any other fields out of the rx_desc until we know the |
| * DD bit is set. |
| */ |
| dma_rmb(); |
| rx_bi = &rx_ring->rx_bi[i]; |
| skb = rx_bi->skb; |
| if (likely(!skb)) { |
| skb = netdev_alloc_skb_ip_align(rx_ring->netdev, |
| rx_ring->rx_hdr_len); |
| if (!skb) { |
| rx_ring->rx_stats.alloc_buff_failed++; |
| break; |
| } |
| |
| /* initialize queue mapping */ |
| skb_record_rx_queue(skb, rx_ring->queue_index); |
| /* we are reusing so sync this buffer for CPU use */ |
| dma_sync_single_range_for_cpu(rx_ring->dev, |
| rx_bi->dma, |
| 0, |
| rx_ring->rx_hdr_len, |
| DMA_FROM_DEVICE); |
| } |
| rx_packet_len = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >> |
| I40E_RXD_QW1_LENGTH_PBUF_SHIFT; |
| rx_header_len = (qword & I40E_RXD_QW1_LENGTH_HBUF_MASK) >> |
| I40E_RXD_QW1_LENGTH_HBUF_SHIFT; |
| rx_sph = (qword & I40E_RXD_QW1_LENGTH_SPH_MASK) >> |
| I40E_RXD_QW1_LENGTH_SPH_SHIFT; |
| |
| rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >> |
| I40E_RXD_QW1_ERROR_SHIFT; |
| rx_hbo = rx_error & BIT(I40E_RX_DESC_ERROR_HBO_SHIFT); |
| rx_error &= ~BIT(I40E_RX_DESC_ERROR_HBO_SHIFT); |
| |
| rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >> |
| I40E_RXD_QW1_PTYPE_SHIFT; |
| prefetch(rx_bi->page); |
| rx_bi->skb = NULL; |
| cleaned_count++; |
| if (rx_hbo || rx_sph) { |
| int len; |
| |
| if (rx_hbo) |
| len = I40E_RX_HDR_SIZE; |
| else |
| len = rx_header_len; |
| memcpy(__skb_put(skb, len), rx_bi->hdr_buf, len); |
| } else if (skb->len == 0) { |
| int len; |
| |
| len = (rx_packet_len > skb_headlen(skb) ? |
| skb_headlen(skb) : rx_packet_len); |
| memcpy(__skb_put(skb, len), |
| rx_bi->page + rx_bi->page_offset, |
| len); |
| rx_bi->page_offset += len; |
| rx_packet_len -= len; |
| } |
| |
| /* Get the rest of the data if this was a header split */ |
| if (rx_packet_len) { |
| skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags, |
| rx_bi->page, |
| rx_bi->page_offset, |
| rx_packet_len); |
| |
| skb->len += rx_packet_len; |
| skb->data_len += rx_packet_len; |
| skb->truesize += rx_packet_len; |
| |
| if ((page_count(rx_bi->page) == 1) && |
| (page_to_nid(rx_bi->page) == current_node)) |
| get_page(rx_bi->page); |
| else |
| rx_bi->page = NULL; |
| |
| dma_unmap_page(rx_ring->dev, |
| rx_bi->page_dma, |
| PAGE_SIZE / 2, |
| DMA_FROM_DEVICE); |
| rx_bi->page_dma = 0; |
| } |
| I40E_RX_INCREMENT(rx_ring, i); |
| |
| if (unlikely( |
| !(rx_status & BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)))) { |
| struct i40e_rx_buffer *next_buffer; |
| |
| next_buffer = &rx_ring->rx_bi[i]; |
| next_buffer->skb = skb; |
| rx_ring->rx_stats.non_eop_descs++; |
| continue; |
| } |
| |
| /* ERR_MASK will only have valid bits if EOP set */ |
| if (unlikely(rx_error & BIT(I40E_RX_DESC_ERROR_RXE_SHIFT))) { |
| dev_kfree_skb_any(skb); |
| continue; |
| } |
| |
| skb_set_hash(skb, i40e_rx_hash(rx_ring, rx_desc), |
| i40e_ptype_to_hash(rx_ptype)); |
| /* probably a little skewed due to removing CRC */ |
| total_rx_bytes += skb->len; |
| total_rx_packets++; |
| |
| skb->protocol = eth_type_trans(skb, rx_ring->netdev); |
| |
| i40e_rx_checksum(vsi, skb, rx_status, rx_error, rx_ptype); |
| |
| vlan_tag = rx_status & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT) |
| ? le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1) |
| : 0; |
| #ifdef I40E_FCOE |
| if (!i40e_fcoe_handle_offload(rx_ring, rx_desc, skb)) { |
| dev_kfree_skb_any(skb); |
| continue; |
| } |
| #endif |
| i40e_receive_skb(rx_ring, skb, vlan_tag); |
| |
| rx_desc->wb.qword1.status_error_len = 0; |
| |
| } while (likely(total_rx_packets < budget)); |
| |
| u64_stats_update_begin(&rx_ring->syncp); |
| rx_ring->stats.packets += total_rx_packets; |
| rx_ring->stats.bytes += total_rx_bytes; |
| u64_stats_update_end(&rx_ring->syncp); |
| rx_ring->q_vector->rx.total_packets += total_rx_packets; |
| rx_ring->q_vector->rx.total_bytes += total_rx_bytes; |
| |
| return total_rx_packets; |
| } |
| |
| /** |
| * i40e_clean_rx_irq_1buf - Reclaim resources after receive; single buffer |
| * @rx_ring: rx ring to clean |
| * @budget: how many cleans we're allowed |
| * |
| * Returns number of packets cleaned |
| **/ |
| static int i40e_clean_rx_irq_1buf(struct i40e_ring *rx_ring, int budget) |
| { |
| unsigned int total_rx_bytes = 0, total_rx_packets = 0; |
| u16 cleaned_count = I40E_DESC_UNUSED(rx_ring); |
| struct i40e_vsi *vsi = rx_ring->vsi; |
| union i40e_rx_desc *rx_desc; |
| u32 rx_error, rx_status; |
| u16 rx_packet_len; |
| u8 rx_ptype; |
| u64 qword; |
| u16 i; |
| |
| do { |
| struct i40e_rx_buffer *rx_bi; |
| struct sk_buff *skb; |
| u16 vlan_tag; |
| /* return some buffers to hardware, one at a time is too slow */ |
| if (cleaned_count >= I40E_RX_BUFFER_WRITE) { |
| i40evf_alloc_rx_buffers_1buf(rx_ring, cleaned_count); |
| cleaned_count = 0; |
| } |
| |
| i = rx_ring->next_to_clean; |
| rx_desc = I40E_RX_DESC(rx_ring, i); |
| qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len); |
| rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >> |
| I40E_RXD_QW1_STATUS_SHIFT; |
| |
| if (!(rx_status & BIT(I40E_RX_DESC_STATUS_DD_SHIFT))) |
| break; |
| |
| /* This memory barrier is needed to keep us from reading |
| * any other fields out of the rx_desc until we know the |
| * DD bit is set. |
| */ |
| dma_rmb(); |
| |
| rx_bi = &rx_ring->rx_bi[i]; |
| skb = rx_bi->skb; |
| prefetch(skb->data); |
| |
| rx_packet_len = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >> |
| I40E_RXD_QW1_LENGTH_PBUF_SHIFT; |
| |
| rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >> |
| I40E_RXD_QW1_ERROR_SHIFT; |
| rx_error &= ~BIT(I40E_RX_DESC_ERROR_HBO_SHIFT); |
| |
| rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >> |
| I40E_RXD_QW1_PTYPE_SHIFT; |
| rx_bi->skb = NULL; |
| cleaned_count++; |
| |
| /* Get the header and possibly the whole packet |
| * If this is an skb from previous receive dma will be 0 |
| */ |
| skb_put(skb, rx_packet_len); |
| dma_unmap_single(rx_ring->dev, rx_bi->dma, rx_ring->rx_buf_len, |
| DMA_FROM_DEVICE); |
| rx_bi->dma = 0; |
| |
| I40E_RX_INCREMENT(rx_ring, i); |
| |
| if (unlikely( |
| !(rx_status & BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)))) { |
| rx_ring->rx_stats.non_eop_descs++; |
| continue; |
| } |
| |
| /* ERR_MASK will only have valid bits if EOP set */ |
| if (unlikely(rx_error & BIT(I40E_RX_DESC_ERROR_RXE_SHIFT))) { |
| dev_kfree_skb_any(skb); |
| continue; |
| } |
| |
| skb_set_hash(skb, i40e_rx_hash(rx_ring, rx_desc), |
| i40e_ptype_to_hash(rx_ptype)); |
| /* probably a little skewed due to removing CRC */ |
| total_rx_bytes += skb->len; |
| total_rx_packets++; |
| |
| skb->protocol = eth_type_trans(skb, rx_ring->netdev); |
| |
| i40e_rx_checksum(vsi, skb, rx_status, rx_error, rx_ptype); |
| |
| vlan_tag = rx_status & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT) |
| ? le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1) |
| : 0; |
| i40e_receive_skb(rx_ring, skb, vlan_tag); |
| |
| rx_desc->wb.qword1.status_error_len = 0; |
| } while (likely(total_rx_packets < budget)); |
| |
| u64_stats_update_begin(&rx_ring->syncp); |
| rx_ring->stats.packets += total_rx_packets; |
| rx_ring->stats.bytes += total_rx_bytes; |
| u64_stats_update_end(&rx_ring->syncp); |
| rx_ring->q_vector->rx.total_packets += total_rx_packets; |
| rx_ring->q_vector->rx.total_bytes += total_rx_bytes; |
| |
| return total_rx_packets; |
| } |
| |
| static u32 i40e_buildreg_itr(const int type, const u16 itr) |
| { |
| u32 val; |
| |
| val = I40E_VFINT_DYN_CTLN1_INTENA_MASK | |
| I40E_VFINT_DYN_CTLN1_CLEARPBA_MASK | |
| (type << I40E_VFINT_DYN_CTLN1_ITR_INDX_SHIFT) | |
| (itr << I40E_VFINT_DYN_CTLN1_INTERVAL_SHIFT); |
| |
| return val; |
| } |
| |
| /* a small macro to shorten up some long lines */ |
| #define INTREG I40E_VFINT_DYN_CTLN1 |
| |
| /** |
| * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt |
| * @vsi: the VSI we care about |
| * @q_vector: q_vector for which itr is being updated and interrupt enabled |
| * |
| **/ |
| static inline void i40e_update_enable_itr(struct i40e_vsi *vsi, |
| struct i40e_q_vector *q_vector) |
| { |
| struct i40e_hw *hw = &vsi->back->hw; |
| bool rx = false, tx = false; |
| u32 rxval, txval; |
| int vector; |
| |
| vector = (q_vector->v_idx + vsi->base_vector); |
| |
| /* avoid dynamic calculation if in countdown mode OR if |
| * all dynamic is disabled |
| */ |
| rxval = txval = i40e_buildreg_itr(I40E_ITR_NONE, 0); |
| |
| if (q_vector->itr_countdown > 0 || |
| (!ITR_IS_DYNAMIC(vsi->rx_itr_setting) && |
| !ITR_IS_DYNAMIC(vsi->tx_itr_setting))) { |
| goto enable_int; |
| } |
| |
| if (ITR_IS_DYNAMIC(vsi->rx_itr_setting)) { |
| rx = i40e_set_new_dynamic_itr(&q_vector->rx); |
| rxval = i40e_buildreg_itr(I40E_RX_ITR, q_vector->rx.itr); |
| } |
| if (ITR_IS_DYNAMIC(vsi->tx_itr_setting)) { |
| tx = i40e_set_new_dynamic_itr(&q_vector->tx); |
| txval = i40e_buildreg_itr(I40E_TX_ITR, q_vector->tx.itr); |
| } |
| if (rx || tx) { |
| /* get the higher of the two ITR adjustments and |
| * use the same value for both ITR registers |
| * when in adaptive mode (Rx and/or Tx) |
| */ |
| u16 itr = max(q_vector->tx.itr, q_vector->rx.itr); |
| |
| q_vector->tx.itr = q_vector->rx.itr = itr; |
| txval = i40e_buildreg_itr(I40E_TX_ITR, itr); |
| tx = true; |
| rxval = i40e_buildreg_itr(I40E_RX_ITR, itr); |
| rx = true; |
| } |
| |
| /* only need to enable the interrupt once, but need |
| * to possibly update both ITR values |
| */ |
| if (rx) { |
| /* set the INTENA_MSK_MASK so that this first write |
| * won't actually enable the interrupt, instead just |
| * updating the ITR (it's bit 31 PF and VF) |
| */ |
| rxval |= BIT(31); |
| /* don't check _DOWN because interrupt isn't being enabled */ |
| wr32(hw, INTREG(vector - 1), rxval); |
| } |
| |
| enable_int: |
| if (!test_bit(__I40E_DOWN, &vsi->state)) |
| wr32(hw, INTREG(vector - 1), txval); |
| |
| if (q_vector->itr_countdown) |
| q_vector->itr_countdown--; |
| else |
| q_vector->itr_countdown = ITR_COUNTDOWN_START; |
| |
| } |
| |
| /** |
| * i40evf_napi_poll - NAPI polling Rx/Tx cleanup routine |
| * @napi: napi struct with our devices info in it |
| * @budget: amount of work driver is allowed to do this pass, in packets |
| * |
| * This function will clean all queues associated with a q_vector. |
| * |
| * Returns the amount of work done |
| **/ |
| int i40evf_napi_poll(struct napi_struct *napi, int budget) |
| { |
| struct i40e_q_vector *q_vector = |
| container_of(napi, struct i40e_q_vector, napi); |
| struct i40e_vsi *vsi = q_vector->vsi; |
| struct i40e_ring *ring; |
| bool clean_complete = true; |
| bool arm_wb = false; |
| int budget_per_ring; |
| int work_done = 0; |
| |
| if (test_bit(__I40E_DOWN, &vsi->state)) { |
| napi_complete(napi); |
| return 0; |
| } |
| |
| /* Since the actual Tx work is minimal, we can give the Tx a larger |
| * budget and be more aggressive about cleaning up the Tx descriptors. |
| */ |
| i40e_for_each_ring(ring, q_vector->tx) { |
| clean_complete &= i40e_clean_tx_irq(ring, vsi->work_limit); |
| arm_wb |= ring->arm_wb; |
| ring->arm_wb = false; |
| } |
| |
| /* Handle case where we are called by netpoll with a budget of 0 */ |
| if (budget <= 0) |
| goto tx_only; |
| |
| /* We attempt to distribute budget to each Rx queue fairly, but don't |
| * allow the budget to go below 1 because that would exit polling early. |
| */ |
| budget_per_ring = max(budget/q_vector->num_ringpairs, 1); |
| |
| i40e_for_each_ring(ring, q_vector->rx) { |
| int cleaned; |
| |
| if (ring_is_ps_enabled(ring)) |
| cleaned = i40e_clean_rx_irq_ps(ring, budget_per_ring); |
| else |
| cleaned = i40e_clean_rx_irq_1buf(ring, budget_per_ring); |
| |
| work_done += cleaned; |
| /* if we didn't clean as many as budgeted, we must be done */ |
| clean_complete &= (budget_per_ring != cleaned); |
| } |
| |
| /* If work not completed, return budget and polling will return */ |
| if (!clean_complete) { |
| tx_only: |
| if (arm_wb) { |
| q_vector->tx.ring[0].tx_stats.tx_force_wb++; |
| i40evf_force_wb(vsi, q_vector); |
| } |
| return budget; |
| } |
| |
| if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR) |
| q_vector->arm_wb_state = false; |
| |
| /* Work is done so exit the polling mode and re-enable the interrupt */ |
| napi_complete_done(napi, work_done); |
| i40e_update_enable_itr(vsi, q_vector); |
| return 0; |
| } |
| |
| /** |
| * i40evf_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW |
| * @skb: send buffer |
| * @tx_ring: ring to send buffer on |
| * @flags: the tx flags to be set |
| * |
| * Checks the skb and set up correspondingly several generic transmit flags |
| * related to VLAN tagging for the HW, such as VLAN, DCB, etc. |
| * |
| * Returns error code indicate the frame should be dropped upon error and the |
| * otherwise returns 0 to indicate the flags has been set properly. |
| **/ |
| static inline int i40evf_tx_prepare_vlan_flags(struct sk_buff *skb, |
| struct i40e_ring *tx_ring, |
| u32 *flags) |
| { |
| __be16 protocol = skb->protocol; |
| u32 tx_flags = 0; |
| |
| if (protocol == htons(ETH_P_8021Q) && |
| !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) { |
| /* When HW VLAN acceleration is turned off by the user the |
| * stack sets the protocol to 8021q so that the driver |
| * can take any steps required to support the SW only |
| * VLAN handling. In our case the driver doesn't need |
| * to take any further steps so just set the protocol |
| * to the encapsulated ethertype. |
| */ |
| skb->protocol = vlan_get_protocol(skb); |
| goto out; |
| } |
| |
| /* if we have a HW VLAN tag being added, default to the HW one */ |
| if (skb_vlan_tag_present(skb)) { |
| tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT; |
| tx_flags |= I40E_TX_FLAGS_HW_VLAN; |
| /* else if it is a SW VLAN, check the next protocol and store the tag */ |
| } else if (protocol == htons(ETH_P_8021Q)) { |
| struct vlan_hdr *vhdr, _vhdr; |
| |
| vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr); |
| if (!vhdr) |
| return -EINVAL; |
| |
| protocol = vhdr->h_vlan_encapsulated_proto; |
| tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT; |
| tx_flags |= I40E_TX_FLAGS_SW_VLAN; |
| } |
| |
| out: |
| *flags = tx_flags; |
| return 0; |
| } |
| |
| /** |
| * i40e_tso - set up the tso context descriptor |
| * @tx_ring: ptr to the ring to send |
| * @skb: ptr to the skb we're sending |
| * @hdr_len: ptr to the size of the packet header |
| * @cd_type_cmd_tso_mss: Quad Word 1 |
| * |
| * Returns 0 if no TSO can happen, 1 if tso is going, or error |
| **/ |
| static int i40e_tso(struct i40e_ring *tx_ring, struct sk_buff *skb, |
| u8 *hdr_len, u64 *cd_type_cmd_tso_mss) |
| { |
| u32 cd_cmd, cd_tso_len, cd_mss; |
| struct ipv6hdr *ipv6h; |
| struct tcphdr *tcph; |
| struct iphdr *iph; |
| u32 l4len; |
| int err; |
| |
| if (!skb_is_gso(skb)) |
| return 0; |
| |
| err = skb_cow_head(skb, 0); |
| if (err < 0) |
| return err; |
| |
| iph = skb->encapsulation ? inner_ip_hdr(skb) : ip_hdr(skb); |
| ipv6h = skb->encapsulation ? inner_ipv6_hdr(skb) : ipv6_hdr(skb); |
| |
| if (iph->version == 4) { |
| tcph = skb->encapsulation ? inner_tcp_hdr(skb) : tcp_hdr(skb); |
| iph->tot_len = 0; |
| iph->check = 0; |
| tcph->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr, |
| 0, IPPROTO_TCP, 0); |
| } else if (ipv6h->version == 6) { |
| tcph = skb->encapsulation ? inner_tcp_hdr(skb) : tcp_hdr(skb); |
| ipv6h->payload_len = 0; |
| tcph->check = ~csum_ipv6_magic(&ipv6h->saddr, &ipv6h->daddr, |
| 0, IPPROTO_TCP, 0); |
| } |
| |
| l4len = skb->encapsulation ? inner_tcp_hdrlen(skb) : tcp_hdrlen(skb); |
| *hdr_len = (skb->encapsulation |
| ? (skb_inner_transport_header(skb) - skb->data) |
| : skb_transport_offset(skb)) + l4len; |
| |
| /* find the field values */ |
| cd_cmd = I40E_TX_CTX_DESC_TSO; |
| cd_tso_len = skb->len - *hdr_len; |
| cd_mss = skb_shinfo(skb)->gso_size; |
| *cd_type_cmd_tso_mss |= ((u64)cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) | |
| ((u64)cd_tso_len << |
| I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) | |
| ((u64)cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT); |
| return 1; |
| } |
| |
| /** |
| * i40e_tx_enable_csum - Enable Tx checksum offloads |
| * @skb: send buffer |
| * @tx_flags: pointer to Tx flags currently set |
| * @td_cmd: Tx descriptor command bits to set |
| * @td_offset: Tx descriptor header offsets to set |
| * @cd_tunneling: ptr to context desc bits |
| **/ |
| static void i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags, |
| u32 *td_cmd, u32 *td_offset, |
| struct i40e_ring *tx_ring, |
| u32 *cd_tunneling) |
| { |
| struct ipv6hdr *this_ipv6_hdr; |
| unsigned int this_tcp_hdrlen; |
| struct iphdr *this_ip_hdr; |
| u32 network_hdr_len; |
| u8 l4_hdr = 0; |
| struct udphdr *oudph; |
| struct iphdr *oiph; |
| u32 l4_tunnel = 0; |
| |
| if (skb->encapsulation) { |
| switch (ip_hdr(skb)->protocol) { |
| case IPPROTO_UDP: |
| oudph = udp_hdr(skb); |
| oiph = ip_hdr(skb); |
| l4_tunnel = I40E_TXD_CTX_UDP_TUNNELING; |
| *tx_flags |= I40E_TX_FLAGS_VXLAN_TUNNEL; |
| break; |
| default: |
| return; |
| } |
| network_hdr_len = skb_inner_network_header_len(skb); |
| this_ip_hdr = inner_ip_hdr(skb); |
| this_ipv6_hdr = inner_ipv6_hdr(skb); |
| this_tcp_hdrlen = inner_tcp_hdrlen(skb); |
| |
| if (*tx_flags & I40E_TX_FLAGS_IPV4) { |
| if (*tx_flags & I40E_TX_FLAGS_TSO) { |
| *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV4; |
| ip_hdr(skb)->check = 0; |
| } else { |
| *cd_tunneling |= |
| I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM; |
| } |
| } else if (*tx_flags & I40E_TX_FLAGS_IPV6) { |
| *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV6; |
| if (*tx_flags & I40E_TX_FLAGS_TSO) |
| ip_hdr(skb)->check = 0; |
| } |
| |
| /* Now set the ctx descriptor fields */ |
| *cd_tunneling |= (skb_network_header_len(skb) >> 2) << |
| I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT | |
| l4_tunnel | |
| ((skb_inner_network_offset(skb) - |
| skb_transport_offset(skb)) >> 1) << |
| I40E_TXD_CTX_QW0_NATLEN_SHIFT; |
| if (this_ip_hdr->version == 6) { |
| *tx_flags &= ~I40E_TX_FLAGS_IPV4; |
| *tx_flags |= I40E_TX_FLAGS_IPV6; |
| } |
| |
| |
| if ((tx_ring->flags & I40E_TXR_FLAGS_OUTER_UDP_CSUM) && |
| (l4_tunnel == I40E_TXD_CTX_UDP_TUNNELING) && |
| (*cd_tunneling & I40E_TXD_CTX_QW0_EXT_IP_MASK)) { |
| oudph->check = ~csum_tcpudp_magic(oiph->saddr, |
| oiph->daddr, |
| (skb->len - skb_transport_offset(skb)), |
| IPPROTO_UDP, 0); |
| *cd_tunneling |= I40E_TXD_CTX_QW0_L4T_CS_MASK; |
| } |
| } else { |
| network_hdr_len = skb_network_header_len(skb); |
| this_ip_hdr = ip_hdr(skb); |
| this_ipv6_hdr = ipv6_hdr(skb); |
| this_tcp_hdrlen = tcp_hdrlen(skb); |
| } |
| |
| /* Enable IP checksum offloads */ |
| if (*tx_flags & I40E_TX_FLAGS_IPV4) { |
| l4_hdr = this_ip_hdr->protocol; |
| /* the stack computes the IP header already, the only time we |
| * need the hardware to recompute it is in the case of TSO. |
| */ |
| if (*tx_flags & I40E_TX_FLAGS_TSO) { |
| *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4_CSUM; |
| this_ip_hdr->check = 0; |
| } else { |
| *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4; |
| } |
| /* Now set the td_offset for IP header length */ |
| *td_offset = (network_hdr_len >> 2) << |
| I40E_TX_DESC_LENGTH_IPLEN_SHIFT; |
| } else if (*tx_flags & I40E_TX_FLAGS_IPV6) { |
| l4_hdr = this_ipv6_hdr->nexthdr; |
| *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV6; |
| /* Now set the td_offset for IP header length */ |
| *td_offset = (network_hdr_len >> 2) << |
| I40E_TX_DESC_LENGTH_IPLEN_SHIFT; |
| } |
| /* words in MACLEN + dwords in IPLEN + dwords in L4Len */ |
| *td_offset |= (skb_network_offset(skb) >> 1) << |
| I40E_TX_DESC_LENGTH_MACLEN_SHIFT; |
| |
| /* Enable L4 checksum offloads */ |
| switch (l4_hdr) { |
| case IPPROTO_TCP: |
| /* enable checksum offloads */ |
| *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP; |
| *td_offset |= (this_tcp_hdrlen >> 2) << |
| I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT; |
| break; |
| case IPPROTO_SCTP: |
| /* enable SCTP checksum offload */ |
| *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP; |
| *td_offset |= (sizeof(struct sctphdr) >> 2) << |
| I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT; |
| break; |
| case IPPROTO_UDP: |
| /* enable UDP checksum offload */ |
| *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP; |
| *td_offset |= (sizeof(struct udphdr) >> 2) << |
| I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT; |
| break; |
| default: |
| break; |
| } |
| } |
| |
| /** |
| * i40e_create_tx_ctx Build the Tx context descriptor |
| * @tx_ring: ring to create the descriptor on |
| * @cd_type_cmd_tso_mss: Quad Word 1 |
| * @cd_tunneling: Quad Word 0 - bits 0-31 |
| * @cd_l2tag2: Quad Word 0 - bits 32-63 |
| **/ |
| static void i40e_create_tx_ctx(struct i40e_ring *tx_ring, |
| const u64 cd_type_cmd_tso_mss, |
| const u32 cd_tunneling, const u32 cd_l2tag2) |
| { |
| struct i40e_tx_context_desc *context_desc; |
| int i = tx_ring->next_to_use; |
| |
| if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) && |
| !cd_tunneling && !cd_l2tag2) |
| return; |
| |
| /* grab the next descriptor */ |
| context_desc = I40E_TX_CTXTDESC(tx_ring, i); |
| |
| i++; |
| tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; |
| |
| /* cpu_to_le32 and assign to struct fields */ |
| context_desc->tunneling_params = cpu_to_le32(cd_tunneling); |
| context_desc->l2tag2 = cpu_to_le16(cd_l2tag2); |
| context_desc->rsvd = cpu_to_le16(0); |
| context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss); |
| } |
| |
| /** |
| * i40e_chk_linearize - Check if there are more than 8 fragments per packet |
| * @skb: send buffer |
| * @tx_flags: collected send information |
| * |
| * Note: Our HW can't scatter-gather more than 8 fragments to build |
| * a packet on the wire and so we need to figure out the cases where we |
| * need to linearize the skb. |
| **/ |
| static bool i40e_chk_linearize(struct sk_buff *skb, u32 tx_flags) |
| { |
| struct skb_frag_struct *frag; |
| bool linearize = false; |
| unsigned int size = 0; |
| u16 num_frags; |
| u16 gso_segs; |
| |
| num_frags = skb_shinfo(skb)->nr_frags; |
| gso_segs = skb_shinfo(skb)->gso_segs; |
| |
| if (tx_flags & (I40E_TX_FLAGS_TSO | I40E_TX_FLAGS_FSO)) { |
| u16 j = 0; |
| |
| if (num_frags < (I40E_MAX_BUFFER_TXD)) |
| goto linearize_chk_done; |
| /* try the simple math, if we have too many frags per segment */ |
| if (DIV_ROUND_UP((num_frags + gso_segs), gso_segs) > |
| I40E_MAX_BUFFER_TXD) { |
| linearize = true; |
| goto linearize_chk_done; |
| } |
| frag = &skb_shinfo(skb)->frags[0]; |
| /* we might still have more fragments per segment */ |
| do { |
| size += skb_frag_size(frag); |
| frag++; j++; |
| if ((size >= skb_shinfo(skb)->gso_size) && |
| (j < I40E_MAX_BUFFER_TXD)) { |
| size = (size % skb_shinfo(skb)->gso_size); |
| j = (size) ? 1 : 0; |
| } |
| if (j == I40E_MAX_BUFFER_TXD) { |
| linearize = true; |
| break; |
| } |
| num_frags--; |
| } while (num_frags); |
| } else { |
| if (num_frags >= I40E_MAX_BUFFER_TXD) |
| linearize = true; |
| } |
| |
| linearize_chk_done: |
| return linearize; |
| } |
| |
| /** |
| * __i40evf_maybe_stop_tx - 2nd level check for tx stop conditions |
| * @tx_ring: the ring to be checked |
| * @size: the size buffer we want to assure is available |
| * |
| * Returns -EBUSY if a stop is needed, else 0 |
| **/ |
| static inline int __i40evf_maybe_stop_tx(struct i40e_ring *tx_ring, int size) |
| { |
| netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index); |
| /* Memory barrier before checking head and tail */ |
| smp_mb(); |
| |
| /* Check again in a case another CPU has just made room available. */ |
| if (likely(I40E_DESC_UNUSED(tx_ring) < size)) |
| return -EBUSY; |
| |
| /* A reprieve! - use start_queue because it doesn't call schedule */ |
| netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index); |
| ++tx_ring->tx_stats.restart_queue; |
| return 0; |
| } |
| |
| /** |
| * i40evf_maybe_stop_tx - 1st level check for tx stop conditions |
| * @tx_ring: the ring to be checked |
| * @size: the size buffer we want to assure is available |
| * |
| * Returns 0 if stop is not needed |
| **/ |
| static inline int i40evf_maybe_stop_tx(struct i40e_ring *tx_ring, int size) |
| { |
| if (likely(I40E_DESC_UNUSED(tx_ring) >= size)) |
| return 0; |
| return __i40evf_maybe_stop_tx(tx_ring, size); |
| } |
| |
| /** |
| * i40evf_tx_map - Build the Tx descriptor |
| * @tx_ring: ring to send buffer on |
| * @skb: send buffer |
| * @first: first buffer info buffer to use |
| * @tx_flags: collected send information |
| * @hdr_len: size of the packet header |
| * @td_cmd: the command field in the descriptor |
| * @td_offset: offset for checksum or crc |
| **/ |
| static inline void i40evf_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb, |
| struct i40e_tx_buffer *first, u32 tx_flags, |
| const u8 hdr_len, u32 td_cmd, u32 td_offset) |
| { |
| unsigned int data_len = skb->data_len; |
| unsigned int size = skb_headlen(skb); |
| struct skb_frag_struct *frag; |
| struct i40e_tx_buffer *tx_bi; |
| struct i40e_tx_desc *tx_desc; |
| u16 i = tx_ring->next_to_use; |
| u32 td_tag = 0; |
| dma_addr_t dma; |
| u16 gso_segs; |
| |
| if (tx_flags & I40E_TX_FLAGS_HW_VLAN) { |
| td_cmd |= I40E_TX_DESC_CMD_IL2TAG1; |
| td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >> |
| I40E_TX_FLAGS_VLAN_SHIFT; |
| } |
| |
| if (tx_flags & (I40E_TX_FLAGS_TSO | I40E_TX_FLAGS_FSO)) |
| gso_segs = skb_shinfo(skb)->gso_segs; |
| else |
| gso_segs = 1; |
| |
| /* multiply data chunks by size of headers */ |
| first->bytecount = skb->len - hdr_len + (gso_segs * hdr_len); |
| first->gso_segs = gso_segs; |
| first->skb = skb; |
| first->tx_flags = tx_flags; |
| |
| dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE); |
| |
| tx_desc = I40E_TX_DESC(tx_ring, i); |
| tx_bi = first; |
| |
| for (frag = &skb_shinfo(skb)->frags[0];; frag++) { |
| if (dma_mapping_error(tx_ring->dev, dma)) |
| goto dma_error; |
| |
| /* record length, and DMA address */ |
| dma_unmap_len_set(tx_bi, len, size); |
| dma_unmap_addr_set(tx_bi, dma, dma); |
| |
| tx_desc->buffer_addr = cpu_to_le64(dma); |
| |
| while (unlikely(size > I40E_MAX_DATA_PER_TXD)) { |
| tx_desc->cmd_type_offset_bsz = |
| build_ctob(td_cmd, td_offset, |
| I40E_MAX_DATA_PER_TXD, td_tag); |
| |
| tx_desc++; |
| i++; |
| if (i == tx_ring->count) { |
| tx_desc = I40E_TX_DESC(tx_ring, 0); |
| i = 0; |
| } |
| |
| dma += I40E_MAX_DATA_PER_TXD; |
| size -= I40E_MAX_DATA_PER_TXD; |
| |
| tx_desc->buffer_addr = cpu_to_le64(dma); |
| } |
| |
| if (likely(!data_len)) |
| break; |
| |
| tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset, |
| size, td_tag); |
| |
| tx_desc++; |
| i++; |
| if (i == tx_ring->count) { |
| tx_desc = I40E_TX_DESC(tx_ring, 0); |
| i = 0; |
| } |
| |
| size = skb_frag_size(frag); |
| data_len -= size; |
| |
| dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size, |
| DMA_TO_DEVICE); |
| |
| tx_bi = &tx_ring->tx_bi[i]; |
| } |
| |
| /* Place RS bit on last descriptor of any packet that spans across the |
| * 4th descriptor (WB_STRIDE aka 0x3) in a 64B cacheline. |
| */ |
| #define WB_STRIDE 0x3 |
| if (((i & WB_STRIDE) != WB_STRIDE) && |
| (first <= &tx_ring->tx_bi[i]) && |
| (first >= &tx_ring->tx_bi[i & ~WB_STRIDE])) { |
| tx_desc->cmd_type_offset_bsz = |
| build_ctob(td_cmd, td_offset, size, td_tag) | |
| cpu_to_le64((u64)I40E_TX_DESC_CMD_EOP << |
| I40E_TXD_QW1_CMD_SHIFT); |
| } else { |
| tx_desc->cmd_type_offset_bsz = |
| build_ctob(td_cmd, td_offset, size, td_tag) | |
| cpu_to_le64((u64)I40E_TXD_CMD << |
| I40E_TXD_QW1_CMD_SHIFT); |
| } |
| |
| netdev_tx_sent_queue(netdev_get_tx_queue(tx_ring->netdev, |
| tx_ring->queue_index), |
| first->bytecount); |
| |
| /* Force memory writes to complete before letting h/w |
| * know there are new descriptors to fetch. (Only |
| * applicable for weak-ordered memory model archs, |
| * such as IA-64). |
| */ |
| wmb(); |
| |
| /* set next_to_watch value indicating a packet is present */ |
| first->next_to_watch = tx_desc; |
| |
| i++; |
| if (i == tx_ring->count) |
| i = 0; |
| |
| tx_ring->next_to_use = i; |
| |
| i40evf_maybe_stop_tx(tx_ring, DESC_NEEDED); |
| /* notify HW of packet */ |
| if (!skb->xmit_more || |
| netif_xmit_stopped(netdev_get_tx_queue(tx_ring->netdev, |
| tx_ring->queue_index))) |
| writel(i, tx_ring->tail); |
| else |
| prefetchw(tx_desc + 1); |
| |
| return; |
| |
| dma_error: |
| dev_info(tx_ring->dev, "TX DMA map failed\n"); |
| |
| /* clear dma mappings for failed tx_bi map */ |
| for (;;) { |
| tx_bi = &tx_ring->tx_bi[i]; |
| i40e_unmap_and_free_tx_resource(tx_ring, tx_bi); |
| if (tx_bi == first) |
| break; |
| if (i == 0) |
| i = tx_ring->count; |
| i--; |
| } |
| |
| tx_ring->next_to_use = i; |
| } |
| |
| /** |
| * i40evf_xmit_descriptor_count - calculate number of tx descriptors needed |
| * @skb: send buffer |
| * @tx_ring: ring to send buffer on |
| * |
| * Returns number of data descriptors needed for this skb. Returns 0 to indicate |
| * there is not enough descriptors available in this ring since we need at least |
| * one descriptor. |
| **/ |
| static inline int i40evf_xmit_descriptor_count(struct sk_buff *skb, |
| struct i40e_ring *tx_ring) |
| { |
| unsigned int f; |
| int count = 0; |
| |
| /* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD, |
| * + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD, |
| * + 4 desc gap to avoid the cache line where head is, |
| * + 1 desc for context descriptor, |
| * otherwise try next time |
| */ |
| for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) |
| count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size); |
| |
| count += TXD_USE_COUNT(skb_headlen(skb)); |
| if (i40evf_maybe_stop_tx(tx_ring, count + 4 + 1)) { |
| tx_ring->tx_stats.tx_busy++; |
| return 0; |
| } |
| return count; |
| } |
| |
| /** |
| * i40e_xmit_frame_ring - Sends buffer on Tx ring |
| * @skb: send buffer |
| * @tx_ring: ring to send buffer on |
| * |
| * Returns NETDEV_TX_OK if sent, else an error code |
| **/ |
| static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb, |
| struct i40e_ring *tx_ring) |
| { |
| u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT; |
| u32 cd_tunneling = 0, cd_l2tag2 = 0; |
| struct i40e_tx_buffer *first; |
| u32 td_offset = 0; |
| u32 tx_flags = 0; |
| __be16 protocol; |
| u32 td_cmd = 0; |
| u8 hdr_len = 0; |
| int tso; |
| |
| if (0 == i40evf_xmit_descriptor_count(skb, tx_ring)) |
| return NETDEV_TX_BUSY; |
| |
| /* prepare the xmit flags */ |
| if (i40evf_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags)) |
| goto out_drop; |
| |
| /* obtain protocol of skb */ |
| protocol = vlan_get_protocol(skb); |
| |
| /* record the location of the first descriptor for this packet */ |
| first = &tx_ring->tx_bi[tx_ring->next_to_use]; |
| |
| /* setup IPv4/IPv6 offloads */ |
| if (protocol == htons(ETH_P_IP)) |
| tx_flags |= I40E_TX_FLAGS_IPV4; |
| else if (protocol == htons(ETH_P_IPV6)) |
| tx_flags |= I40E_TX_FLAGS_IPV6; |
| |
| tso = i40e_tso(tx_ring, skb, &hdr_len, &cd_type_cmd_tso_mss); |
| |
| if (tso < 0) |
| goto out_drop; |
| else if (tso) |
| tx_flags |= I40E_TX_FLAGS_TSO; |
| |
| if (i40e_chk_linearize(skb, tx_flags)) { |
| if (skb_linearize(skb)) |
| goto out_drop; |
| tx_ring->tx_stats.tx_linearize++; |
| } |
| skb_tx_timestamp(skb); |
| |
| /* always enable CRC insertion offload */ |
| td_cmd |= I40E_TX_DESC_CMD_ICRC; |
| |
| /* Always offload the checksum, since it's in the data descriptor */ |
| if (skb->ip_summed == CHECKSUM_PARTIAL) { |
| tx_flags |= I40E_TX_FLAGS_CSUM; |
| |
| i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset, |
| tx_ring, &cd_tunneling); |
| } |
| |
| i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss, |
| cd_tunneling, cd_l2tag2); |
| |
| i40evf_tx_map(tx_ring, skb, first, tx_flags, hdr_len, |
| td_cmd, td_offset); |
| |
| return NETDEV_TX_OK; |
| |
| out_drop: |
| dev_kfree_skb_any(skb); |
| return NETDEV_TX_OK; |
| } |
| |
| /** |
| * i40evf_xmit_frame - Selects the correct VSI and Tx queue to send buffer |
| * @skb: send buffer |
| * @netdev: network interface device structure |
| * |
| * Returns NETDEV_TX_OK if sent, else an error code |
| **/ |
| netdev_tx_t i40evf_xmit_frame(struct sk_buff *skb, struct net_device *netdev) |
| { |
| struct i40evf_adapter *adapter = netdev_priv(netdev); |
| struct i40e_ring *tx_ring = adapter->tx_rings[skb->queue_mapping]; |
| |
| /* hardware can't handle really short frames, hardware padding works |
| * beyond this point |
| */ |
| if (unlikely(skb->len < I40E_MIN_TX_LEN)) { |
| if (skb_pad(skb, I40E_MIN_TX_LEN - skb->len)) |
| return NETDEV_TX_OK; |
| skb->len = I40E_MIN_TX_LEN; |
| skb_set_tail_pointer(skb, I40E_MIN_TX_LEN); |
| } |
| |
| return i40e_xmit_frame_ring(skb, tx_ring); |
| } |