| /* LRW: as defined by Cyril Guyot in |
| * http://grouper.ieee.org/groups/1619/email/pdf00017.pdf |
| * |
| * Copyright (c) 2006 Rik Snel <rsnel@cube.dyndns.org> |
| * |
| * Based om ecb.c |
| * Copyright (c) 2006 Herbert Xu <herbert@gondor.apana.org.au> |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms of the GNU General Public License as published by the Free |
| * Software Foundation; either version 2 of the License, or (at your option) |
| * any later version. |
| */ |
| /* This implementation is checked against the test vectors in the above |
| * document and by a test vector provided by Ken Buchanan at |
| * http://www.mail-archive.com/stds-p1619@listserv.ieee.org/msg00173.html |
| * |
| * The test vectors are included in the testing module tcrypt.[ch] */ |
| #include <crypto/algapi.h> |
| #include <linux/err.h> |
| #include <linux/init.h> |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/scatterlist.h> |
| #include <linux/slab.h> |
| |
| #include <crypto/b128ops.h> |
| #include <crypto/gf128mul.h> |
| |
| #define LRW_BLOCK_SIZE 16 |
| |
| struct lrw_table_ctx { |
| /* optimizes multiplying a random (non incrementing, as at the |
| * start of a new sector) value with key2, we could also have |
| * used 4k optimization tables or no optimization at all. In the |
| * latter case we would have to store key2 here */ |
| struct gf128mul_64k *table; |
| /* stores: |
| * key2*{ 0,0,...0,0,0,0,1 }, key2*{ 0,0,...0,0,0,1,1 }, |
| * key2*{ 0,0,...0,0,1,1,1 }, key2*{ 0,0,...0,1,1,1,1 } |
| * key2*{ 0,0,...1,1,1,1,1 }, etc |
| * needed for optimized multiplication of incrementing values |
| * with key2 */ |
| be128 mulinc[128]; |
| }; |
| |
| struct priv { |
| struct crypto_cipher *child; |
| struct lrw_table_ctx table; |
| }; |
| |
| static inline void setbit128_bbe(void *b, int bit) |
| { |
| __set_bit(bit ^ (0x80 - |
| #ifdef __BIG_ENDIAN |
| BITS_PER_LONG |
| #else |
| BITS_PER_BYTE |
| #endif |
| ), b); |
| } |
| |
| static int lrw_init_table(struct lrw_table_ctx *ctx, const u8 *tweak) |
| { |
| be128 tmp = { 0 }; |
| int i; |
| |
| if (ctx->table) |
| gf128mul_free_64k(ctx->table); |
| |
| /* initialize multiplication table for Key2 */ |
| ctx->table = gf128mul_init_64k_bbe((be128 *)tweak); |
| if (!ctx->table) |
| return -ENOMEM; |
| |
| /* initialize optimization table */ |
| for (i = 0; i < 128; i++) { |
| setbit128_bbe(&tmp, i); |
| ctx->mulinc[i] = tmp; |
| gf128mul_64k_bbe(&ctx->mulinc[i], ctx->table); |
| } |
| |
| return 0; |
| } |
| |
| static void lrw_free_table(struct lrw_table_ctx *ctx) |
| { |
| if (ctx->table) |
| gf128mul_free_64k(ctx->table); |
| } |
| |
| static int setkey(struct crypto_tfm *parent, const u8 *key, |
| unsigned int keylen) |
| { |
| struct priv *ctx = crypto_tfm_ctx(parent); |
| struct crypto_cipher *child = ctx->child; |
| int err, bsize = LRW_BLOCK_SIZE; |
| const u8 *tweak = key + keylen - bsize; |
| |
| crypto_cipher_clear_flags(child, CRYPTO_TFM_REQ_MASK); |
| crypto_cipher_set_flags(child, crypto_tfm_get_flags(parent) & |
| CRYPTO_TFM_REQ_MASK); |
| err = crypto_cipher_setkey(child, key, keylen - bsize); |
| if (err) |
| return err; |
| crypto_tfm_set_flags(parent, crypto_cipher_get_flags(child) & |
| CRYPTO_TFM_RES_MASK); |
| |
| return lrw_init_table(&ctx->table, tweak); |
| } |
| |
| struct sinfo { |
| be128 t; |
| struct crypto_tfm *tfm; |
| void (*fn)(struct crypto_tfm *, u8 *, const u8 *); |
| }; |
| |
| static inline void inc(be128 *iv) |
| { |
| be64_add_cpu(&iv->b, 1); |
| if (!iv->b) |
| be64_add_cpu(&iv->a, 1); |
| } |
| |
| static inline void lrw_round(struct sinfo *s, void *dst, const void *src) |
| { |
| be128_xor(dst, &s->t, src); /* PP <- T xor P */ |
| s->fn(s->tfm, dst, dst); /* CC <- E(Key2,PP) */ |
| be128_xor(dst, dst, &s->t); /* C <- T xor CC */ |
| } |
| |
| /* this returns the number of consequative 1 bits starting |
| * from the right, get_index128(00 00 00 00 00 00 ... 00 00 10 FB) = 2 */ |
| static inline int get_index128(be128 *block) |
| { |
| int x; |
| __be32 *p = (__be32 *) block; |
| |
| for (p += 3, x = 0; x < 128; p--, x += 32) { |
| u32 val = be32_to_cpup(p); |
| |
| if (!~val) |
| continue; |
| |
| return x + ffz(val); |
| } |
| |
| return x; |
| } |
| |
| static int crypt(struct blkcipher_desc *d, |
| struct blkcipher_walk *w, struct priv *ctx, |
| void (*fn)(struct crypto_tfm *, u8 *, const u8 *)) |
| { |
| int err; |
| unsigned int avail; |
| const int bs = LRW_BLOCK_SIZE; |
| struct sinfo s = { |
| .tfm = crypto_cipher_tfm(ctx->child), |
| .fn = fn |
| }; |
| be128 *iv; |
| u8 *wsrc; |
| u8 *wdst; |
| |
| err = blkcipher_walk_virt(d, w); |
| if (!(avail = w->nbytes)) |
| return err; |
| |
| wsrc = w->src.virt.addr; |
| wdst = w->dst.virt.addr; |
| |
| /* calculate first value of T */ |
| iv = (be128 *)w->iv; |
| s.t = *iv; |
| |
| /* T <- I*Key2 */ |
| gf128mul_64k_bbe(&s.t, ctx->table.table); |
| |
| goto first; |
| |
| for (;;) { |
| do { |
| /* T <- I*Key2, using the optimization |
| * discussed in the specification */ |
| be128_xor(&s.t, &s.t, |
| &ctx->table.mulinc[get_index128(iv)]); |
| inc(iv); |
| |
| first: |
| lrw_round(&s, wdst, wsrc); |
| |
| wsrc += bs; |
| wdst += bs; |
| } while ((avail -= bs) >= bs); |
| |
| err = blkcipher_walk_done(d, w, avail); |
| if (!(avail = w->nbytes)) |
| break; |
| |
| wsrc = w->src.virt.addr; |
| wdst = w->dst.virt.addr; |
| } |
| |
| return err; |
| } |
| |
| static int encrypt(struct blkcipher_desc *desc, struct scatterlist *dst, |
| struct scatterlist *src, unsigned int nbytes) |
| { |
| struct priv *ctx = crypto_blkcipher_ctx(desc->tfm); |
| struct blkcipher_walk w; |
| |
| blkcipher_walk_init(&w, dst, src, nbytes); |
| return crypt(desc, &w, ctx, |
| crypto_cipher_alg(ctx->child)->cia_encrypt); |
| } |
| |
| static int decrypt(struct blkcipher_desc *desc, struct scatterlist *dst, |
| struct scatterlist *src, unsigned int nbytes) |
| { |
| struct priv *ctx = crypto_blkcipher_ctx(desc->tfm); |
| struct blkcipher_walk w; |
| |
| blkcipher_walk_init(&w, dst, src, nbytes); |
| return crypt(desc, &w, ctx, |
| crypto_cipher_alg(ctx->child)->cia_decrypt); |
| } |
| |
| static int init_tfm(struct crypto_tfm *tfm) |
| { |
| struct crypto_cipher *cipher; |
| struct crypto_instance *inst = (void *)tfm->__crt_alg; |
| struct crypto_spawn *spawn = crypto_instance_ctx(inst); |
| struct priv *ctx = crypto_tfm_ctx(tfm); |
| u32 *flags = &tfm->crt_flags; |
| |
| cipher = crypto_spawn_cipher(spawn); |
| if (IS_ERR(cipher)) |
| return PTR_ERR(cipher); |
| |
| if (crypto_cipher_blocksize(cipher) != LRW_BLOCK_SIZE) { |
| *flags |= CRYPTO_TFM_RES_BAD_BLOCK_LEN; |
| crypto_free_cipher(cipher); |
| return -EINVAL; |
| } |
| |
| ctx->child = cipher; |
| return 0; |
| } |
| |
| static void exit_tfm(struct crypto_tfm *tfm) |
| { |
| struct priv *ctx = crypto_tfm_ctx(tfm); |
| |
| lrw_free_table(&ctx->table); |
| crypto_free_cipher(ctx->child); |
| } |
| |
| static struct crypto_instance *alloc(struct rtattr **tb) |
| { |
| struct crypto_instance *inst; |
| struct crypto_alg *alg; |
| int err; |
| |
| err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_BLKCIPHER); |
| if (err) |
| return ERR_PTR(err); |
| |
| alg = crypto_get_attr_alg(tb, CRYPTO_ALG_TYPE_CIPHER, |
| CRYPTO_ALG_TYPE_MASK); |
| if (IS_ERR(alg)) |
| return ERR_CAST(alg); |
| |
| inst = crypto_alloc_instance("lrw", alg); |
| if (IS_ERR(inst)) |
| goto out_put_alg; |
| |
| inst->alg.cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER; |
| inst->alg.cra_priority = alg->cra_priority; |
| inst->alg.cra_blocksize = alg->cra_blocksize; |
| |
| if (alg->cra_alignmask < 7) inst->alg.cra_alignmask = 7; |
| else inst->alg.cra_alignmask = alg->cra_alignmask; |
| inst->alg.cra_type = &crypto_blkcipher_type; |
| |
| if (!(alg->cra_blocksize % 4)) |
| inst->alg.cra_alignmask |= 3; |
| inst->alg.cra_blkcipher.ivsize = alg->cra_blocksize; |
| inst->alg.cra_blkcipher.min_keysize = |
| alg->cra_cipher.cia_min_keysize + alg->cra_blocksize; |
| inst->alg.cra_blkcipher.max_keysize = |
| alg->cra_cipher.cia_max_keysize + alg->cra_blocksize; |
| |
| inst->alg.cra_ctxsize = sizeof(struct priv); |
| |
| inst->alg.cra_init = init_tfm; |
| inst->alg.cra_exit = exit_tfm; |
| |
| inst->alg.cra_blkcipher.setkey = setkey; |
| inst->alg.cra_blkcipher.encrypt = encrypt; |
| inst->alg.cra_blkcipher.decrypt = decrypt; |
| |
| out_put_alg: |
| crypto_mod_put(alg); |
| return inst; |
| } |
| |
| static void free(struct crypto_instance *inst) |
| { |
| crypto_drop_spawn(crypto_instance_ctx(inst)); |
| kfree(inst); |
| } |
| |
| static struct crypto_template crypto_tmpl = { |
| .name = "lrw", |
| .alloc = alloc, |
| .free = free, |
| .module = THIS_MODULE, |
| }; |
| |
| static int __init crypto_module_init(void) |
| { |
| return crypto_register_template(&crypto_tmpl); |
| } |
| |
| static void __exit crypto_module_exit(void) |
| { |
| crypto_unregister_template(&crypto_tmpl); |
| } |
| |
| module_init(crypto_module_init); |
| module_exit(crypto_module_exit); |
| |
| MODULE_LICENSE("GPL"); |
| MODULE_DESCRIPTION("LRW block cipher mode"); |