| /* |
| * Copyright (C) 2016 Oracle. All Rights Reserved. |
| * |
| * Author: Darrick J. Wong <darrick.wong@oracle.com> |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version 2 |
| * of the License, or (at your option) any later version. |
| * |
| * This program is distributed in the hope that it would be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write the Free Software Foundation, |
| * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. |
| */ |
| #include "xfs.h" |
| #include "xfs_fs.h" |
| #include "xfs_shared.h" |
| #include "xfs_format.h" |
| #include "xfs_log_format.h" |
| #include "xfs_trans_resv.h" |
| #include "xfs_mount.h" |
| #include "xfs_defer.h" |
| #include "xfs_da_format.h" |
| #include "xfs_da_btree.h" |
| #include "xfs_inode.h" |
| #include "xfs_trans.h" |
| #include "xfs_inode_item.h" |
| #include "xfs_bmap.h" |
| #include "xfs_bmap_util.h" |
| #include "xfs_error.h" |
| #include "xfs_dir2.h" |
| #include "xfs_dir2_priv.h" |
| #include "xfs_ioctl.h" |
| #include "xfs_trace.h" |
| #include "xfs_log.h" |
| #include "xfs_icache.h" |
| #include "xfs_pnfs.h" |
| #include "xfs_btree.h" |
| #include "xfs_refcount_btree.h" |
| #include "xfs_refcount.h" |
| #include "xfs_bmap_btree.h" |
| #include "xfs_trans_space.h" |
| #include "xfs_bit.h" |
| #include "xfs_alloc.h" |
| #include "xfs_quota_defs.h" |
| #include "xfs_quota.h" |
| #include "xfs_btree.h" |
| #include "xfs_bmap_btree.h" |
| #include "xfs_reflink.h" |
| #include "xfs_iomap.h" |
| #include "xfs_rmap_btree.h" |
| |
| /* |
| * Copy on Write of Shared Blocks |
| * |
| * XFS must preserve "the usual" file semantics even when two files share |
| * the same physical blocks. This means that a write to one file must not |
| * alter the blocks in a different file; the way that we'll do that is |
| * through the use of a copy-on-write mechanism. At a high level, that |
| * means that when we want to write to a shared block, we allocate a new |
| * block, write the data to the new block, and if that succeeds we map the |
| * new block into the file. |
| * |
| * XFS provides a "delayed allocation" mechanism that defers the allocation |
| * of disk blocks to dirty-but-not-yet-mapped file blocks as long as |
| * possible. This reduces fragmentation by enabling the filesystem to ask |
| * for bigger chunks less often, which is exactly what we want for CoW. |
| * |
| * The delalloc mechanism begins when the kernel wants to make a block |
| * writable (write_begin or page_mkwrite). If the offset is not mapped, we |
| * create a delalloc mapping, which is a regular in-core extent, but without |
| * a real startblock. (For delalloc mappings, the startblock encodes both |
| * a flag that this is a delalloc mapping, and a worst-case estimate of how |
| * many blocks might be required to put the mapping into the BMBT.) delalloc |
| * mappings are a reservation against the free space in the filesystem; |
| * adjacent mappings can also be combined into fewer larger mappings. |
| * |
| * When dirty pages are being written out (typically in writepage), the |
| * delalloc reservations are converted into real mappings by allocating |
| * blocks and replacing the delalloc mapping with real ones. A delalloc |
| * mapping can be replaced by several real ones if the free space is |
| * fragmented. |
| * |
| * We want to adapt the delalloc mechanism for copy-on-write, since the |
| * write paths are similar. The first two steps (creating the reservation |
| * and allocating the blocks) are exactly the same as delalloc except that |
| * the mappings must be stored in a separate CoW fork because we do not want |
| * to disturb the mapping in the data fork until we're sure that the write |
| * succeeded. IO completion in this case is the process of removing the old |
| * mapping from the data fork and moving the new mapping from the CoW fork to |
| * the data fork. This will be discussed shortly. |
| * |
| * For now, unaligned directio writes will be bounced back to the page cache. |
| * Block-aligned directio writes will use the same mechanism as buffered |
| * writes. |
| * |
| * CoW remapping must be done after the data block write completes, |
| * because we don't want to destroy the old data fork map until we're sure |
| * the new block has been written. Since the new mappings are kept in a |
| * separate fork, we can simply iterate these mappings to find the ones |
| * that cover the file blocks that we just CoW'd. For each extent, simply |
| * unmap the corresponding range in the data fork, map the new range into |
| * the data fork, and remove the extent from the CoW fork. |
| * |
| * Since the remapping operation can be applied to an arbitrary file |
| * range, we record the need for the remap step as a flag in the ioend |
| * instead of declaring a new IO type. This is required for direct io |
| * because we only have ioend for the whole dio, and we have to be able to |
| * remember the presence of unwritten blocks and CoW blocks with a single |
| * ioend structure. Better yet, the more ground we can cover with one |
| * ioend, the better. |
| */ |
| |
| /* |
| * Given an AG extent, find the lowest-numbered run of shared blocks |
| * within that range and return the range in fbno/flen. If |
| * find_end_of_shared is true, return the longest contiguous extent of |
| * shared blocks. If there are no shared extents, fbno and flen will |
| * be set to NULLAGBLOCK and 0, respectively. |
| */ |
| int |
| xfs_reflink_find_shared( |
| struct xfs_mount *mp, |
| xfs_agnumber_t agno, |
| xfs_agblock_t agbno, |
| xfs_extlen_t aglen, |
| xfs_agblock_t *fbno, |
| xfs_extlen_t *flen, |
| bool find_end_of_shared) |
| { |
| struct xfs_buf *agbp; |
| struct xfs_btree_cur *cur; |
| int error; |
| |
| error = xfs_alloc_read_agf(mp, NULL, agno, 0, &agbp); |
| if (error) |
| return error; |
| |
| cur = xfs_refcountbt_init_cursor(mp, NULL, agbp, agno, NULL); |
| |
| error = xfs_refcount_find_shared(cur, agbno, aglen, fbno, flen, |
| find_end_of_shared); |
| |
| xfs_btree_del_cursor(cur, error ? XFS_BTREE_ERROR : XFS_BTREE_NOERROR); |
| |
| xfs_buf_relse(agbp); |
| return error; |
| } |
| |
| /* |
| * Trim the mapping to the next block where there's a change in the |
| * shared/unshared status. More specifically, this means that we |
| * find the lowest-numbered extent of shared blocks that coincides with |
| * the given block mapping. If the shared extent overlaps the start of |
| * the mapping, trim the mapping to the end of the shared extent. If |
| * the shared region intersects the mapping, trim the mapping to the |
| * start of the shared extent. If there are no shared regions that |
| * overlap, just return the original extent. |
| */ |
| int |
| xfs_reflink_trim_around_shared( |
| struct xfs_inode *ip, |
| struct xfs_bmbt_irec *irec, |
| bool *shared, |
| bool *trimmed) |
| { |
| xfs_agnumber_t agno; |
| xfs_agblock_t agbno; |
| xfs_extlen_t aglen; |
| xfs_agblock_t fbno; |
| xfs_extlen_t flen; |
| int error = 0; |
| |
| /* Holes, unwritten, and delalloc extents cannot be shared */ |
| if (!xfs_is_reflink_inode(ip) || |
| ISUNWRITTEN(irec) || |
| irec->br_startblock == HOLESTARTBLOCK || |
| irec->br_startblock == DELAYSTARTBLOCK) { |
| *shared = false; |
| return 0; |
| } |
| |
| trace_xfs_reflink_trim_around_shared(ip, irec); |
| |
| agno = XFS_FSB_TO_AGNO(ip->i_mount, irec->br_startblock); |
| agbno = XFS_FSB_TO_AGBNO(ip->i_mount, irec->br_startblock); |
| aglen = irec->br_blockcount; |
| |
| error = xfs_reflink_find_shared(ip->i_mount, agno, agbno, |
| aglen, &fbno, &flen, true); |
| if (error) |
| return error; |
| |
| *shared = *trimmed = false; |
| if (fbno == NULLAGBLOCK) { |
| /* No shared blocks at all. */ |
| return 0; |
| } else if (fbno == agbno) { |
| /* |
| * The start of this extent is shared. Truncate the |
| * mapping at the end of the shared region so that a |
| * subsequent iteration starts at the start of the |
| * unshared region. |
| */ |
| irec->br_blockcount = flen; |
| *shared = true; |
| if (flen != aglen) |
| *trimmed = true; |
| return 0; |
| } else { |
| /* |
| * There's a shared extent midway through this extent. |
| * Truncate the mapping at the start of the shared |
| * extent so that a subsequent iteration starts at the |
| * start of the shared region. |
| */ |
| irec->br_blockcount = fbno - agbno; |
| *trimmed = true; |
| return 0; |
| } |
| } |
| |
| /* Create a CoW reservation for a range of blocks within a file. */ |
| static int |
| __xfs_reflink_reserve_cow( |
| struct xfs_inode *ip, |
| xfs_fileoff_t *offset_fsb, |
| xfs_fileoff_t end_fsb, |
| bool *skipped) |
| { |
| struct xfs_bmbt_irec got, prev, imap; |
| xfs_fileoff_t orig_end_fsb; |
| int nimaps, eof = 0, error = 0; |
| bool shared = false, trimmed = false; |
| xfs_extnum_t idx; |
| |
| /* Already reserved? Skip the refcount btree access. */ |
| xfs_bmap_search_extents(ip, *offset_fsb, XFS_COW_FORK, &eof, &idx, |
| &got, &prev); |
| if (!eof && got.br_startoff <= *offset_fsb) { |
| end_fsb = orig_end_fsb = got.br_startoff + got.br_blockcount; |
| trace_xfs_reflink_cow_found(ip, &got); |
| goto done; |
| } |
| |
| /* Read extent from the source file. */ |
| nimaps = 1; |
| error = xfs_bmapi_read(ip, *offset_fsb, end_fsb - *offset_fsb, |
| &imap, &nimaps, 0); |
| if (error) |
| goto out_unlock; |
| ASSERT(nimaps == 1); |
| |
| /* Trim the mapping to the nearest shared extent boundary. */ |
| error = xfs_reflink_trim_around_shared(ip, &imap, &shared, &trimmed); |
| if (error) |
| goto out_unlock; |
| |
| end_fsb = orig_end_fsb = imap.br_startoff + imap.br_blockcount; |
| |
| /* Not shared? Just report the (potentially capped) extent. */ |
| if (!shared) { |
| *skipped = true; |
| goto done; |
| } |
| |
| /* |
| * Fork all the shared blocks from our write offset until the end of |
| * the extent. |
| */ |
| error = xfs_qm_dqattach_locked(ip, 0); |
| if (error) |
| goto out_unlock; |
| |
| retry: |
| error = xfs_bmapi_reserve_delalloc(ip, XFS_COW_FORK, *offset_fsb, |
| end_fsb - *offset_fsb, &got, |
| &prev, &idx, eof); |
| switch (error) { |
| case 0: |
| break; |
| case -ENOSPC: |
| case -EDQUOT: |
| /* retry without any preallocation */ |
| trace_xfs_reflink_cow_enospc(ip, &imap); |
| if (end_fsb != orig_end_fsb) { |
| end_fsb = orig_end_fsb; |
| goto retry; |
| } |
| /*FALLTHRU*/ |
| default: |
| goto out_unlock; |
| } |
| |
| trace_xfs_reflink_cow_alloc(ip, &got); |
| done: |
| *offset_fsb = end_fsb; |
| out_unlock: |
| return error; |
| } |
| |
| /* Create a CoW reservation for part of a file. */ |
| int |
| xfs_reflink_reserve_cow_range( |
| struct xfs_inode *ip, |
| xfs_off_t offset, |
| xfs_off_t count) |
| { |
| struct xfs_mount *mp = ip->i_mount; |
| xfs_fileoff_t offset_fsb, end_fsb; |
| bool skipped = false; |
| int error; |
| |
| trace_xfs_reflink_reserve_cow_range(ip, offset, count); |
| |
| offset_fsb = XFS_B_TO_FSBT(mp, offset); |
| end_fsb = XFS_B_TO_FSB(mp, offset + count); |
| |
| xfs_ilock(ip, XFS_ILOCK_EXCL); |
| while (offset_fsb < end_fsb) { |
| error = __xfs_reflink_reserve_cow(ip, &offset_fsb, end_fsb, |
| &skipped); |
| if (error) { |
| trace_xfs_reflink_reserve_cow_range_error(ip, error, |
| _RET_IP_); |
| break; |
| } |
| } |
| xfs_iunlock(ip, XFS_ILOCK_EXCL); |
| |
| return error; |
| } |
| |
| /* Allocate all CoW reservations covering a range of blocks in a file. */ |
| static int |
| __xfs_reflink_allocate_cow( |
| struct xfs_inode *ip, |
| xfs_fileoff_t *offset_fsb, |
| xfs_fileoff_t end_fsb) |
| { |
| struct xfs_mount *mp = ip->i_mount; |
| struct xfs_bmbt_irec imap; |
| struct xfs_defer_ops dfops; |
| struct xfs_trans *tp; |
| xfs_fsblock_t first_block; |
| xfs_fileoff_t next_fsb; |
| int nimaps = 1, error; |
| bool skipped = false; |
| |
| xfs_defer_init(&dfops, &first_block); |
| |
| error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, 0, 0, |
| XFS_TRANS_RESERVE, &tp); |
| if (error) |
| return error; |
| |
| xfs_ilock(ip, XFS_ILOCK_EXCL); |
| |
| next_fsb = *offset_fsb; |
| error = __xfs_reflink_reserve_cow(ip, &next_fsb, end_fsb, &skipped); |
| if (error) |
| goto out_trans_cancel; |
| |
| if (skipped) { |
| *offset_fsb = next_fsb; |
| goto out_trans_cancel; |
| } |
| |
| xfs_trans_ijoin(tp, ip, 0); |
| error = xfs_bmapi_write(tp, ip, *offset_fsb, next_fsb - *offset_fsb, |
| XFS_BMAPI_COWFORK, &first_block, |
| XFS_EXTENTADD_SPACE_RES(mp, XFS_DATA_FORK), |
| &imap, &nimaps, &dfops); |
| if (error) |
| goto out_trans_cancel; |
| |
| /* We might not have been able to map the whole delalloc extent */ |
| *offset_fsb = min(*offset_fsb + imap.br_blockcount, next_fsb); |
| |
| error = xfs_defer_finish(&tp, &dfops, NULL); |
| if (error) |
| goto out_trans_cancel; |
| |
| error = xfs_trans_commit(tp); |
| |
| out_unlock: |
| xfs_iunlock(ip, XFS_ILOCK_EXCL); |
| return error; |
| out_trans_cancel: |
| xfs_defer_cancel(&dfops); |
| xfs_trans_cancel(tp); |
| goto out_unlock; |
| } |
| |
| /* Allocate all CoW reservations covering a part of a file. */ |
| int |
| xfs_reflink_allocate_cow_range( |
| struct xfs_inode *ip, |
| xfs_off_t offset, |
| xfs_off_t count) |
| { |
| struct xfs_mount *mp = ip->i_mount; |
| xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset); |
| xfs_fileoff_t end_fsb = XFS_B_TO_FSB(mp, offset + count); |
| int error; |
| |
| ASSERT(xfs_is_reflink_inode(ip)); |
| |
| trace_xfs_reflink_allocate_cow_range(ip, offset, count); |
| |
| /* |
| * Make sure that the dquots are there. |
| */ |
| error = xfs_qm_dqattach(ip, 0); |
| if (error) |
| return error; |
| |
| while (offset_fsb < end_fsb) { |
| error = __xfs_reflink_allocate_cow(ip, &offset_fsb, end_fsb); |
| if (error) { |
| trace_xfs_reflink_allocate_cow_range_error(ip, error, |
| _RET_IP_); |
| break; |
| } |
| } |
| |
| return error; |
| } |
| |
| /* |
| * Find the CoW reservation (and whether or not it needs block allocation) |
| * for a given byte offset of a file. |
| */ |
| bool |
| xfs_reflink_find_cow_mapping( |
| struct xfs_inode *ip, |
| xfs_off_t offset, |
| struct xfs_bmbt_irec *imap, |
| bool *need_alloc) |
| { |
| struct xfs_bmbt_irec irec; |
| struct xfs_ifork *ifp; |
| struct xfs_bmbt_rec_host *gotp; |
| xfs_fileoff_t bno; |
| xfs_extnum_t idx; |
| |
| ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL | XFS_ILOCK_SHARED)); |
| ASSERT(xfs_is_reflink_inode(ip)); |
| |
| /* Find the extent in the CoW fork. */ |
| ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK); |
| bno = XFS_B_TO_FSBT(ip->i_mount, offset); |
| gotp = xfs_iext_bno_to_ext(ifp, bno, &idx); |
| if (!gotp) |
| return false; |
| |
| xfs_bmbt_get_all(gotp, &irec); |
| if (bno >= irec.br_startoff + irec.br_blockcount || |
| bno < irec.br_startoff) |
| return false; |
| |
| trace_xfs_reflink_find_cow_mapping(ip, offset, 1, XFS_IO_OVERWRITE, |
| &irec); |
| |
| /* If it's still delalloc, we must allocate later. */ |
| *imap = irec; |
| *need_alloc = !!(isnullstartblock(irec.br_startblock)); |
| |
| return true; |
| } |
| |
| /* |
| * Trim an extent to end at the next CoW reservation past offset_fsb. |
| */ |
| int |
| xfs_reflink_trim_irec_to_next_cow( |
| struct xfs_inode *ip, |
| xfs_fileoff_t offset_fsb, |
| struct xfs_bmbt_irec *imap) |
| { |
| struct xfs_bmbt_irec irec; |
| struct xfs_ifork *ifp; |
| struct xfs_bmbt_rec_host *gotp; |
| xfs_extnum_t idx; |
| |
| if (!xfs_is_reflink_inode(ip)) |
| return 0; |
| |
| /* Find the extent in the CoW fork. */ |
| ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK); |
| gotp = xfs_iext_bno_to_ext(ifp, offset_fsb, &idx); |
| if (!gotp) |
| return 0; |
| xfs_bmbt_get_all(gotp, &irec); |
| |
| /* This is the extent before; try sliding up one. */ |
| if (irec.br_startoff < offset_fsb) { |
| idx++; |
| if (idx >= ifp->if_bytes / sizeof(xfs_bmbt_rec_t)) |
| return 0; |
| gotp = xfs_iext_get_ext(ifp, idx); |
| xfs_bmbt_get_all(gotp, &irec); |
| } |
| |
| if (irec.br_startoff >= imap->br_startoff + imap->br_blockcount) |
| return 0; |
| |
| imap->br_blockcount = irec.br_startoff - imap->br_startoff; |
| trace_xfs_reflink_trim_irec(ip, imap); |
| |
| return 0; |
| } |
| |
| /* |
| * Cancel all pending CoW reservations for some block range of an inode. |
| */ |
| int |
| xfs_reflink_cancel_cow_blocks( |
| struct xfs_inode *ip, |
| struct xfs_trans **tpp, |
| xfs_fileoff_t offset_fsb, |
| xfs_fileoff_t end_fsb) |
| { |
| struct xfs_bmbt_irec irec; |
| xfs_filblks_t count_fsb; |
| xfs_fsblock_t firstfsb; |
| struct xfs_defer_ops dfops; |
| int error = 0; |
| int nimaps; |
| |
| if (!xfs_is_reflink_inode(ip)) |
| return 0; |
| |
| /* Go find the old extent in the CoW fork. */ |
| while (offset_fsb < end_fsb) { |
| nimaps = 1; |
| count_fsb = (xfs_filblks_t)(end_fsb - offset_fsb); |
| error = xfs_bmapi_read(ip, offset_fsb, count_fsb, &irec, |
| &nimaps, XFS_BMAPI_COWFORK); |
| if (error) |
| break; |
| ASSERT(nimaps == 1); |
| |
| trace_xfs_reflink_cancel_cow(ip, &irec); |
| |
| if (irec.br_startblock == DELAYSTARTBLOCK) { |
| /* Free a delayed allocation. */ |
| xfs_mod_fdblocks(ip->i_mount, irec.br_blockcount, |
| false); |
| ip->i_delayed_blks -= irec.br_blockcount; |
| |
| /* Remove the mapping from the CoW fork. */ |
| error = xfs_bunmapi_cow(ip, &irec); |
| if (error) |
| break; |
| } else if (irec.br_startblock == HOLESTARTBLOCK) { |
| /* empty */ |
| } else { |
| xfs_trans_ijoin(*tpp, ip, 0); |
| xfs_defer_init(&dfops, &firstfsb); |
| |
| /* Free the CoW orphan record. */ |
| error = xfs_refcount_free_cow_extent(ip->i_mount, |
| &dfops, irec.br_startblock, |
| irec.br_blockcount); |
| if (error) |
| break; |
| |
| xfs_bmap_add_free(ip->i_mount, &dfops, |
| irec.br_startblock, irec.br_blockcount, |
| NULL); |
| |
| /* Update quota accounting */ |
| xfs_trans_mod_dquot_byino(*tpp, ip, XFS_TRANS_DQ_BCOUNT, |
| -(long)irec.br_blockcount); |
| |
| /* Roll the transaction */ |
| error = xfs_defer_finish(tpp, &dfops, ip); |
| if (error) { |
| xfs_defer_cancel(&dfops); |
| break; |
| } |
| |
| /* Remove the mapping from the CoW fork. */ |
| error = xfs_bunmapi_cow(ip, &irec); |
| if (error) |
| break; |
| } |
| |
| /* Roll on... */ |
| offset_fsb = irec.br_startoff + irec.br_blockcount; |
| } |
| |
| return error; |
| } |
| |
| /* |
| * Cancel all pending CoW reservations for some byte range of an inode. |
| */ |
| int |
| xfs_reflink_cancel_cow_range( |
| struct xfs_inode *ip, |
| xfs_off_t offset, |
| xfs_off_t count) |
| { |
| struct xfs_trans *tp; |
| xfs_fileoff_t offset_fsb; |
| xfs_fileoff_t end_fsb; |
| int error; |
| |
| trace_xfs_reflink_cancel_cow_range(ip, offset, count); |
| |
| offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset); |
| if (count == NULLFILEOFF) |
| end_fsb = NULLFILEOFF; |
| else |
| end_fsb = XFS_B_TO_FSB(ip->i_mount, offset + count); |
| |
| /* Start a rolling transaction to remove the mappings */ |
| error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_write, |
| 0, 0, 0, &tp); |
| if (error) |
| goto out; |
| |
| xfs_ilock(ip, XFS_ILOCK_EXCL); |
| xfs_trans_ijoin(tp, ip, 0); |
| |
| /* Scrape out the old CoW reservations */ |
| error = xfs_reflink_cancel_cow_blocks(ip, &tp, offset_fsb, end_fsb); |
| if (error) |
| goto out_cancel; |
| |
| error = xfs_trans_commit(tp); |
| |
| xfs_iunlock(ip, XFS_ILOCK_EXCL); |
| return error; |
| |
| out_cancel: |
| xfs_trans_cancel(tp); |
| xfs_iunlock(ip, XFS_ILOCK_EXCL); |
| out: |
| trace_xfs_reflink_cancel_cow_range_error(ip, error, _RET_IP_); |
| return error; |
| } |
| |
| /* |
| * Remap parts of a file's data fork after a successful CoW. |
| */ |
| int |
| xfs_reflink_end_cow( |
| struct xfs_inode *ip, |
| xfs_off_t offset, |
| xfs_off_t count) |
| { |
| struct xfs_bmbt_irec irec; |
| struct xfs_bmbt_irec uirec; |
| struct xfs_trans *tp; |
| xfs_fileoff_t offset_fsb; |
| xfs_fileoff_t end_fsb; |
| xfs_filblks_t count_fsb; |
| xfs_fsblock_t firstfsb; |
| struct xfs_defer_ops dfops; |
| int error; |
| unsigned int resblks; |
| xfs_filblks_t ilen; |
| xfs_filblks_t rlen; |
| int nimaps; |
| |
| trace_xfs_reflink_end_cow(ip, offset, count); |
| |
| offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset); |
| end_fsb = XFS_B_TO_FSB(ip->i_mount, offset + count); |
| count_fsb = (xfs_filblks_t)(end_fsb - offset_fsb); |
| |
| /* Start a rolling transaction to switch the mappings */ |
| resblks = XFS_EXTENTADD_SPACE_RES(ip->i_mount, XFS_DATA_FORK); |
| error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_write, |
| resblks, 0, 0, &tp); |
| if (error) |
| goto out; |
| |
| xfs_ilock(ip, XFS_ILOCK_EXCL); |
| xfs_trans_ijoin(tp, ip, 0); |
| |
| /* Go find the old extent in the CoW fork. */ |
| while (offset_fsb < end_fsb) { |
| /* Read extent from the source file */ |
| nimaps = 1; |
| count_fsb = (xfs_filblks_t)(end_fsb - offset_fsb); |
| error = xfs_bmapi_read(ip, offset_fsb, count_fsb, &irec, |
| &nimaps, XFS_BMAPI_COWFORK); |
| if (error) |
| goto out_cancel; |
| ASSERT(nimaps == 1); |
| |
| ASSERT(irec.br_startblock != DELAYSTARTBLOCK); |
| trace_xfs_reflink_cow_remap(ip, &irec); |
| |
| /* |
| * We can have a hole in the CoW fork if part of a directio |
| * write is CoW but part of it isn't. |
| */ |
| rlen = ilen = irec.br_blockcount; |
| if (irec.br_startblock == HOLESTARTBLOCK) |
| goto next_extent; |
| |
| /* Unmap the old blocks in the data fork. */ |
| while (rlen) { |
| xfs_defer_init(&dfops, &firstfsb); |
| error = __xfs_bunmapi(tp, ip, irec.br_startoff, |
| &rlen, 0, 1, &firstfsb, &dfops); |
| if (error) |
| goto out_defer; |
| |
| /* |
| * Trim the extent to whatever got unmapped. |
| * Remember, bunmapi works backwards. |
| */ |
| uirec.br_startblock = irec.br_startblock + rlen; |
| uirec.br_startoff = irec.br_startoff + rlen; |
| uirec.br_blockcount = irec.br_blockcount - rlen; |
| irec.br_blockcount = rlen; |
| trace_xfs_reflink_cow_remap_piece(ip, &uirec); |
| |
| /* Free the CoW orphan record. */ |
| error = xfs_refcount_free_cow_extent(tp->t_mountp, |
| &dfops, uirec.br_startblock, |
| uirec.br_blockcount); |
| if (error) |
| goto out_defer; |
| |
| /* Map the new blocks into the data fork. */ |
| error = xfs_bmap_map_extent(tp->t_mountp, &dfops, |
| ip, &uirec); |
| if (error) |
| goto out_defer; |
| |
| /* Remove the mapping from the CoW fork. */ |
| error = xfs_bunmapi_cow(ip, &uirec); |
| if (error) |
| goto out_defer; |
| |
| error = xfs_defer_finish(&tp, &dfops, ip); |
| if (error) |
| goto out_defer; |
| } |
| |
| next_extent: |
| /* Roll on... */ |
| offset_fsb = irec.br_startoff + ilen; |
| } |
| |
| error = xfs_trans_commit(tp); |
| xfs_iunlock(ip, XFS_ILOCK_EXCL); |
| if (error) |
| goto out; |
| return 0; |
| |
| out_defer: |
| xfs_defer_cancel(&dfops); |
| out_cancel: |
| xfs_trans_cancel(tp); |
| xfs_iunlock(ip, XFS_ILOCK_EXCL); |
| out: |
| trace_xfs_reflink_end_cow_error(ip, error, _RET_IP_); |
| return error; |
| } |
| |
| /* |
| * Free leftover CoW reservations that didn't get cleaned out. |
| */ |
| int |
| xfs_reflink_recover_cow( |
| struct xfs_mount *mp) |
| { |
| xfs_agnumber_t agno; |
| int error = 0; |
| |
| if (!xfs_sb_version_hasreflink(&mp->m_sb)) |
| return 0; |
| |
| for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { |
| error = xfs_refcount_recover_cow_leftovers(mp, agno); |
| if (error) |
| break; |
| } |
| |
| return error; |
| } |