blob: cce59cc6e74802ce68f6c4718c2cec097d3f2ac8 [file] [log] [blame]
/*
* Copyright (c) 2000-2006 Silicon Graphics, Inc.
* All Rights Reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it would be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "xfs.h"
#include "xfs_bit.h"
#include "xfs_log.h"
#include "xfs_clnt.h"
#include "xfs_inum.h"
#include "xfs_trans.h"
#include "xfs_sb.h"
#include "xfs_ag.h"
#include "xfs_dir2.h"
#include "xfs_alloc.h"
#include "xfs_dmapi.h"
#include "xfs_quota.h"
#include "xfs_mount.h"
#include "xfs_bmap_btree.h"
#include "xfs_alloc_btree.h"
#include "xfs_ialloc_btree.h"
#include "xfs_dir2_sf.h"
#include "xfs_attr_sf.h"
#include "xfs_dinode.h"
#include "xfs_inode.h"
#include "xfs_btree.h"
#include "xfs_ialloc.h"
#include "xfs_bmap.h"
#include "xfs_rtalloc.h"
#include "xfs_error.h"
#include "xfs_itable.h"
#include "xfs_fsops.h"
#include "xfs_rw.h"
#include "xfs_acl.h"
#include "xfs_attr.h"
#include "xfs_buf_item.h"
#include "xfs_utils.h"
#include "xfs_vnodeops.h"
#include "xfs_vfsops.h"
#include "xfs_version.h"
#include "xfs_log_priv.h"
#include "xfs_trans_priv.h"
#include "xfs_filestream.h"
#include <linux/namei.h>
#include <linux/init.h>
#include <linux/mount.h>
#include <linux/mempool.h>
#include <linux/writeback.h>
#include <linux/kthread.h>
#include <linux/freezer.h>
static struct quotactl_ops xfs_quotactl_operations;
static struct super_operations xfs_super_operations;
static kmem_zone_t *xfs_vnode_zone;
static kmem_zone_t *xfs_ioend_zone;
mempool_t *xfs_ioend_pool;
STATIC struct xfs_mount_args *
xfs_args_allocate(
struct super_block *sb,
int silent)
{
struct xfs_mount_args *args;
args = kzalloc(sizeof(struct xfs_mount_args), GFP_KERNEL);
if (!args)
return NULL;
args->logbufs = args->logbufsize = -1;
strncpy(args->fsname, sb->s_id, MAXNAMELEN);
/* Copy the already-parsed mount(2) flags we're interested in */
if (sb->s_flags & MS_DIRSYNC)
args->flags |= XFSMNT_DIRSYNC;
if (sb->s_flags & MS_SYNCHRONOUS)
args->flags |= XFSMNT_WSYNC;
if (silent)
args->flags |= XFSMNT_QUIET;
args->flags |= XFSMNT_32BITINODES;
return args;
}
#define MNTOPT_LOGBUFS "logbufs" /* number of XFS log buffers */
#define MNTOPT_LOGBSIZE "logbsize" /* size of XFS log buffers */
#define MNTOPT_LOGDEV "logdev" /* log device */
#define MNTOPT_RTDEV "rtdev" /* realtime I/O device */
#define MNTOPT_BIOSIZE "biosize" /* log2 of preferred buffered io size */
#define MNTOPT_WSYNC "wsync" /* safe-mode nfs compatible mount */
#define MNTOPT_INO64 "ino64" /* force inodes into 64-bit range */
#define MNTOPT_NOALIGN "noalign" /* turn off stripe alignment */
#define MNTOPT_SWALLOC "swalloc" /* turn on stripe width allocation */
#define MNTOPT_SUNIT "sunit" /* data volume stripe unit */
#define MNTOPT_SWIDTH "swidth" /* data volume stripe width */
#define MNTOPT_NOUUID "nouuid" /* ignore filesystem UUID */
#define MNTOPT_MTPT "mtpt" /* filesystem mount point */
#define MNTOPT_GRPID "grpid" /* group-ID from parent directory */
#define MNTOPT_NOGRPID "nogrpid" /* group-ID from current process */
#define MNTOPT_BSDGROUPS "bsdgroups" /* group-ID from parent directory */
#define MNTOPT_SYSVGROUPS "sysvgroups" /* group-ID from current process */
#define MNTOPT_ALLOCSIZE "allocsize" /* preferred allocation size */
#define MNTOPT_NORECOVERY "norecovery" /* don't run XFS recovery */
#define MNTOPT_BARRIER "barrier" /* use writer barriers for log write and
* unwritten extent conversion */
#define MNTOPT_NOBARRIER "nobarrier" /* .. disable */
#define MNTOPT_OSYNCISOSYNC "osyncisosync" /* o_sync is REALLY o_sync */
#define MNTOPT_64BITINODE "inode64" /* inodes can be allocated anywhere */
#define MNTOPT_IKEEP "ikeep" /* do not free empty inode clusters */
#define MNTOPT_NOIKEEP "noikeep" /* free empty inode clusters */
#define MNTOPT_LARGEIO "largeio" /* report large I/O sizes in stat() */
#define MNTOPT_NOLARGEIO "nolargeio" /* do not report large I/O sizes
* in stat(). */
#define MNTOPT_ATTR2 "attr2" /* do use attr2 attribute format */
#define MNTOPT_NOATTR2 "noattr2" /* do not use attr2 attribute format */
#define MNTOPT_FILESTREAM "filestreams" /* use filestreams allocator */
#define MNTOPT_QUOTA "quota" /* disk quotas (user) */
#define MNTOPT_NOQUOTA "noquota" /* no quotas */
#define MNTOPT_USRQUOTA "usrquota" /* user quota enabled */
#define MNTOPT_GRPQUOTA "grpquota" /* group quota enabled */
#define MNTOPT_PRJQUOTA "prjquota" /* project quota enabled */
#define MNTOPT_UQUOTA "uquota" /* user quota (IRIX variant) */
#define MNTOPT_GQUOTA "gquota" /* group quota (IRIX variant) */
#define MNTOPT_PQUOTA "pquota" /* project quota (IRIX variant) */
#define MNTOPT_UQUOTANOENF "uqnoenforce"/* user quota limit enforcement */
#define MNTOPT_GQUOTANOENF "gqnoenforce"/* group quota limit enforcement */
#define MNTOPT_PQUOTANOENF "pqnoenforce"/* project quota limit enforcement */
#define MNTOPT_QUOTANOENF "qnoenforce" /* same as uqnoenforce */
#define MNTOPT_DMAPI "dmapi" /* DMI enabled (DMAPI / XDSM) */
#define MNTOPT_XDSM "xdsm" /* DMI enabled (DMAPI / XDSM) */
#define MNTOPT_DMI "dmi" /* DMI enabled (DMAPI / XDSM) */
STATIC unsigned long
suffix_strtoul(char *s, char **endp, unsigned int base)
{
int last, shift_left_factor = 0;
char *value = s;
last = strlen(value) - 1;
if (value[last] == 'K' || value[last] == 'k') {
shift_left_factor = 10;
value[last] = '\0';
}
if (value[last] == 'M' || value[last] == 'm') {
shift_left_factor = 20;
value[last] = '\0';
}
if (value[last] == 'G' || value[last] == 'g') {
shift_left_factor = 30;
value[last] = '\0';
}
return simple_strtoul((const char *)s, endp, base) << shift_left_factor;
}
STATIC int
xfs_parseargs(
struct xfs_mount *mp,
char *options,
struct xfs_mount_args *args,
int update)
{
char *this_char, *value, *eov;
int dsunit, dswidth, vol_dsunit, vol_dswidth;
int iosize;
int dmapi_implies_ikeep = 1;
args->flags |= XFSMNT_BARRIER;
args->flags2 |= XFSMNT2_COMPAT_IOSIZE;
if (!options)
goto done;
iosize = dsunit = dswidth = vol_dsunit = vol_dswidth = 0;
while ((this_char = strsep(&options, ",")) != NULL) {
if (!*this_char)
continue;
if ((value = strchr(this_char, '=')) != NULL)
*value++ = 0;
if (!strcmp(this_char, MNTOPT_LOGBUFS)) {
if (!value || !*value) {
cmn_err(CE_WARN,
"XFS: %s option requires an argument",
this_char);
return EINVAL;
}
args->logbufs = simple_strtoul(value, &eov, 10);
} else if (!strcmp(this_char, MNTOPT_LOGBSIZE)) {
if (!value || !*value) {
cmn_err(CE_WARN,
"XFS: %s option requires an argument",
this_char);
return EINVAL;
}
args->logbufsize = suffix_strtoul(value, &eov, 10);
} else if (!strcmp(this_char, MNTOPT_LOGDEV)) {
if (!value || !*value) {
cmn_err(CE_WARN,
"XFS: %s option requires an argument",
this_char);
return EINVAL;
}
strncpy(args->logname, value, MAXNAMELEN);
} else if (!strcmp(this_char, MNTOPT_MTPT)) {
if (!value || !*value) {
cmn_err(CE_WARN,
"XFS: %s option requires an argument",
this_char);
return EINVAL;
}
strncpy(args->mtpt, value, MAXNAMELEN);
} else if (!strcmp(this_char, MNTOPT_RTDEV)) {
if (!value || !*value) {
cmn_err(CE_WARN,
"XFS: %s option requires an argument",
this_char);
return EINVAL;
}
strncpy(args->rtname, value, MAXNAMELEN);
} else if (!strcmp(this_char, MNTOPT_BIOSIZE)) {
if (!value || !*value) {
cmn_err(CE_WARN,
"XFS: %s option requires an argument",
this_char);
return EINVAL;
}
iosize = simple_strtoul(value, &eov, 10);
args->flags |= XFSMNT_IOSIZE;
args->iosizelog = (uint8_t) iosize;
} else if (!strcmp(this_char, MNTOPT_ALLOCSIZE)) {
if (!value || !*value) {
cmn_err(CE_WARN,
"XFS: %s option requires an argument",
this_char);
return EINVAL;
}
iosize = suffix_strtoul(value, &eov, 10);
args->flags |= XFSMNT_IOSIZE;
args->iosizelog = ffs(iosize) - 1;
} else if (!strcmp(this_char, MNTOPT_GRPID) ||
!strcmp(this_char, MNTOPT_BSDGROUPS)) {
mp->m_flags |= XFS_MOUNT_GRPID;
} else if (!strcmp(this_char, MNTOPT_NOGRPID) ||
!strcmp(this_char, MNTOPT_SYSVGROUPS)) {
mp->m_flags &= ~XFS_MOUNT_GRPID;
} else if (!strcmp(this_char, MNTOPT_WSYNC)) {
args->flags |= XFSMNT_WSYNC;
} else if (!strcmp(this_char, MNTOPT_OSYNCISOSYNC)) {
args->flags |= XFSMNT_OSYNCISOSYNC;
} else if (!strcmp(this_char, MNTOPT_NORECOVERY)) {
args->flags |= XFSMNT_NORECOVERY;
} else if (!strcmp(this_char, MNTOPT_INO64)) {
args->flags |= XFSMNT_INO64;
#if !XFS_BIG_INUMS
cmn_err(CE_WARN,
"XFS: %s option not allowed on this system",
this_char);
return EINVAL;
#endif
} else if (!strcmp(this_char, MNTOPT_NOALIGN)) {
args->flags |= XFSMNT_NOALIGN;
} else if (!strcmp(this_char, MNTOPT_SWALLOC)) {
args->flags |= XFSMNT_SWALLOC;
} else if (!strcmp(this_char, MNTOPT_SUNIT)) {
if (!value || !*value) {
cmn_err(CE_WARN,
"XFS: %s option requires an argument",
this_char);
return EINVAL;
}
dsunit = simple_strtoul(value, &eov, 10);
} else if (!strcmp(this_char, MNTOPT_SWIDTH)) {
if (!value || !*value) {
cmn_err(CE_WARN,
"XFS: %s option requires an argument",
this_char);
return EINVAL;
}
dswidth = simple_strtoul(value, &eov, 10);
} else if (!strcmp(this_char, MNTOPT_64BITINODE)) {
args->flags &= ~XFSMNT_32BITINODES;
#if !XFS_BIG_INUMS
cmn_err(CE_WARN,
"XFS: %s option not allowed on this system",
this_char);
return EINVAL;
#endif
} else if (!strcmp(this_char, MNTOPT_NOUUID)) {
args->flags |= XFSMNT_NOUUID;
} else if (!strcmp(this_char, MNTOPT_BARRIER)) {
args->flags |= XFSMNT_BARRIER;
} else if (!strcmp(this_char, MNTOPT_NOBARRIER)) {
args->flags &= ~XFSMNT_BARRIER;
} else if (!strcmp(this_char, MNTOPT_IKEEP)) {
args->flags |= XFSMNT_IKEEP;
} else if (!strcmp(this_char, MNTOPT_NOIKEEP)) {
dmapi_implies_ikeep = 0;
args->flags &= ~XFSMNT_IKEEP;
} else if (!strcmp(this_char, MNTOPT_LARGEIO)) {
args->flags2 &= ~XFSMNT2_COMPAT_IOSIZE;
} else if (!strcmp(this_char, MNTOPT_NOLARGEIO)) {
args->flags2 |= XFSMNT2_COMPAT_IOSIZE;
} else if (!strcmp(this_char, MNTOPT_ATTR2)) {
args->flags |= XFSMNT_ATTR2;
} else if (!strcmp(this_char, MNTOPT_NOATTR2)) {
args->flags &= ~XFSMNT_ATTR2;
args->flags |= XFSMNT_NOATTR2;
} else if (!strcmp(this_char, MNTOPT_FILESTREAM)) {
args->flags2 |= XFSMNT2_FILESTREAMS;
} else if (!strcmp(this_char, MNTOPT_NOQUOTA)) {
args->flags &= ~(XFSMNT_UQUOTAENF|XFSMNT_UQUOTA);
args->flags &= ~(XFSMNT_GQUOTAENF|XFSMNT_GQUOTA);
} else if (!strcmp(this_char, MNTOPT_QUOTA) ||
!strcmp(this_char, MNTOPT_UQUOTA) ||
!strcmp(this_char, MNTOPT_USRQUOTA)) {
args->flags |= XFSMNT_UQUOTA | XFSMNT_UQUOTAENF;
} else if (!strcmp(this_char, MNTOPT_QUOTANOENF) ||
!strcmp(this_char, MNTOPT_UQUOTANOENF)) {
args->flags |= XFSMNT_UQUOTA;
args->flags &= ~XFSMNT_UQUOTAENF;
} else if (!strcmp(this_char, MNTOPT_PQUOTA) ||
!strcmp(this_char, MNTOPT_PRJQUOTA)) {
args->flags |= XFSMNT_PQUOTA | XFSMNT_PQUOTAENF;
} else if (!strcmp(this_char, MNTOPT_PQUOTANOENF)) {
args->flags |= XFSMNT_PQUOTA;
args->flags &= ~XFSMNT_PQUOTAENF;
} else if (!strcmp(this_char, MNTOPT_GQUOTA) ||
!strcmp(this_char, MNTOPT_GRPQUOTA)) {
args->flags |= XFSMNT_GQUOTA | XFSMNT_GQUOTAENF;
} else if (!strcmp(this_char, MNTOPT_GQUOTANOENF)) {
args->flags |= XFSMNT_GQUOTA;
args->flags &= ~XFSMNT_GQUOTAENF;
} else if (!strcmp(this_char, MNTOPT_DMAPI)) {
args->flags |= XFSMNT_DMAPI;
} else if (!strcmp(this_char, MNTOPT_XDSM)) {
args->flags |= XFSMNT_DMAPI;
} else if (!strcmp(this_char, MNTOPT_DMI)) {
args->flags |= XFSMNT_DMAPI;
} else if (!strcmp(this_char, "ihashsize")) {
cmn_err(CE_WARN,
"XFS: ihashsize no longer used, option is deprecated.");
} else if (!strcmp(this_char, "osyncisdsync")) {
/* no-op, this is now the default */
cmn_err(CE_WARN,
"XFS: osyncisdsync is now the default, option is deprecated.");
} else if (!strcmp(this_char, "irixsgid")) {
cmn_err(CE_WARN,
"XFS: irixsgid is now a sysctl(2) variable, option is deprecated.");
} else {
cmn_err(CE_WARN,
"XFS: unknown mount option [%s].", this_char);
return EINVAL;
}
}
if (args->flags & XFSMNT_NORECOVERY) {
if ((mp->m_flags & XFS_MOUNT_RDONLY) == 0) {
cmn_err(CE_WARN,
"XFS: no-recovery mounts must be read-only.");
return EINVAL;
}
}
if ((args->flags & XFSMNT_NOALIGN) && (dsunit || dswidth)) {
cmn_err(CE_WARN,
"XFS: sunit and swidth options incompatible with the noalign option");
return EINVAL;
}
if ((args->flags & XFSMNT_GQUOTA) && (args->flags & XFSMNT_PQUOTA)) {
cmn_err(CE_WARN,
"XFS: cannot mount with both project and group quota");
return EINVAL;
}
if ((args->flags & XFSMNT_DMAPI) && *args->mtpt == '\0') {
printk("XFS: %s option needs the mount point option as well\n",
MNTOPT_DMAPI);
return EINVAL;
}
if ((dsunit && !dswidth) || (!dsunit && dswidth)) {
cmn_err(CE_WARN,
"XFS: sunit and swidth must be specified together");
return EINVAL;
}
if (dsunit && (dswidth % dsunit != 0)) {
cmn_err(CE_WARN,
"XFS: stripe width (%d) must be a multiple of the stripe unit (%d)",
dswidth, dsunit);
return EINVAL;
}
/*
* Applications using DMI filesystems often expect the
* inode generation number to be monotonically increasing.
* If we delete inode chunks we break this assumption, so
* keep unused inode chunks on disk for DMI filesystems
* until we come up with a better solution.
* Note that if "ikeep" or "noikeep" mount options are
* supplied, then they are honored.
*/
if ((args->flags & XFSMNT_DMAPI) && dmapi_implies_ikeep)
args->flags |= XFSMNT_IKEEP;
if ((args->flags & XFSMNT_NOALIGN) != XFSMNT_NOALIGN) {
if (dsunit) {
args->sunit = dsunit;
args->flags |= XFSMNT_RETERR;
} else {
args->sunit = vol_dsunit;
}
dswidth ? (args->swidth = dswidth) :
(args->swidth = vol_dswidth);
} else {
args->sunit = args->swidth = 0;
}
done:
if (args->flags & XFSMNT_32BITINODES)
mp->m_flags |= XFS_MOUNT_SMALL_INUMS;
if (args->flags2)
args->flags |= XFSMNT_FLAGS2;
return 0;
}
struct proc_xfs_info {
int flag;
char *str;
};
STATIC int
xfs_showargs(
struct xfs_mount *mp,
struct seq_file *m)
{
static struct proc_xfs_info xfs_info_set[] = {
/* the few simple ones we can get from the mount struct */
{ XFS_MOUNT_IKEEP, "," MNTOPT_IKEEP },
{ XFS_MOUNT_WSYNC, "," MNTOPT_WSYNC },
{ XFS_MOUNT_INO64, "," MNTOPT_INO64 },
{ XFS_MOUNT_NOALIGN, "," MNTOPT_NOALIGN },
{ XFS_MOUNT_SWALLOC, "," MNTOPT_SWALLOC },
{ XFS_MOUNT_NOUUID, "," MNTOPT_NOUUID },
{ XFS_MOUNT_NORECOVERY, "," MNTOPT_NORECOVERY },
{ XFS_MOUNT_OSYNCISOSYNC, "," MNTOPT_OSYNCISOSYNC },
{ XFS_MOUNT_ATTR2, "," MNTOPT_ATTR2 },
{ XFS_MOUNT_FILESTREAMS, "," MNTOPT_FILESTREAM },
{ XFS_MOUNT_DMAPI, "," MNTOPT_DMAPI },
{ XFS_MOUNT_GRPID, "," MNTOPT_GRPID },
{ 0, NULL }
};
static struct proc_xfs_info xfs_info_unset[] = {
/* the few simple ones we can get from the mount struct */
{ XFS_MOUNT_COMPAT_IOSIZE, "," MNTOPT_LARGEIO },
{ XFS_MOUNT_BARRIER, "," MNTOPT_NOBARRIER },
{ XFS_MOUNT_SMALL_INUMS, "," MNTOPT_64BITINODE },
{ 0, NULL }
};
struct proc_xfs_info *xfs_infop;
for (xfs_infop = xfs_info_set; xfs_infop->flag; xfs_infop++) {
if (mp->m_flags & xfs_infop->flag)
seq_puts(m, xfs_infop->str);
}
for (xfs_infop = xfs_info_unset; xfs_infop->flag; xfs_infop++) {
if (!(mp->m_flags & xfs_infop->flag))
seq_puts(m, xfs_infop->str);
}
if (mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)
seq_printf(m, "," MNTOPT_ALLOCSIZE "=%dk",
(int)(1 << mp->m_writeio_log) >> 10);
if (mp->m_logbufs > 0)
seq_printf(m, "," MNTOPT_LOGBUFS "=%d", mp->m_logbufs);
if (mp->m_logbsize > 0)
seq_printf(m, "," MNTOPT_LOGBSIZE "=%dk", mp->m_logbsize >> 10);
if (mp->m_logname)
seq_printf(m, "," MNTOPT_LOGDEV "=%s", mp->m_logname);
if (mp->m_rtname)
seq_printf(m, "," MNTOPT_RTDEV "=%s", mp->m_rtname);
if (mp->m_dalign > 0)
seq_printf(m, "," MNTOPT_SUNIT "=%d",
(int)XFS_FSB_TO_BB(mp, mp->m_dalign));
if (mp->m_swidth > 0)
seq_printf(m, "," MNTOPT_SWIDTH "=%d",
(int)XFS_FSB_TO_BB(mp, mp->m_swidth));
if (mp->m_qflags & (XFS_UQUOTA_ACCT|XFS_UQUOTA_ENFD))
seq_puts(m, "," MNTOPT_USRQUOTA);
else if (mp->m_qflags & XFS_UQUOTA_ACCT)
seq_puts(m, "," MNTOPT_UQUOTANOENF);
if (mp->m_qflags & (XFS_PQUOTA_ACCT|XFS_OQUOTA_ENFD))
seq_puts(m, "," MNTOPT_PRJQUOTA);
else if (mp->m_qflags & XFS_PQUOTA_ACCT)
seq_puts(m, "," MNTOPT_PQUOTANOENF);
if (mp->m_qflags & (XFS_GQUOTA_ACCT|XFS_OQUOTA_ENFD))
seq_puts(m, "," MNTOPT_GRPQUOTA);
else if (mp->m_qflags & XFS_GQUOTA_ACCT)
seq_puts(m, "," MNTOPT_GQUOTANOENF);
if (!(mp->m_qflags & XFS_ALL_QUOTA_ACCT))
seq_puts(m, "," MNTOPT_NOQUOTA);
return 0;
}
__uint64_t
xfs_max_file_offset(
unsigned int blockshift)
{
unsigned int pagefactor = 1;
unsigned int bitshift = BITS_PER_LONG - 1;
/* Figure out maximum filesize, on Linux this can depend on
* the filesystem blocksize (on 32 bit platforms).
* __block_prepare_write does this in an [unsigned] long...
* page->index << (PAGE_CACHE_SHIFT - bbits)
* So, for page sized blocks (4K on 32 bit platforms),
* this wraps at around 8Tb (hence MAX_LFS_FILESIZE which is
* (((u64)PAGE_CACHE_SIZE << (BITS_PER_LONG-1))-1)
* but for smaller blocksizes it is less (bbits = log2 bsize).
* Note1: get_block_t takes a long (implicit cast from above)
* Note2: The Large Block Device (LBD and HAVE_SECTOR_T) patch
* can optionally convert the [unsigned] long from above into
* an [unsigned] long long.
*/
#if BITS_PER_LONG == 32
# if defined(CONFIG_LBD)
ASSERT(sizeof(sector_t) == 8);
pagefactor = PAGE_CACHE_SIZE;
bitshift = BITS_PER_LONG;
# else
pagefactor = PAGE_CACHE_SIZE >> (PAGE_CACHE_SHIFT - blockshift);
# endif
#endif
return (((__uint64_t)pagefactor) << bitshift) - 1;
}
STATIC_INLINE void
xfs_set_inodeops(
struct inode *inode)
{
switch (inode->i_mode & S_IFMT) {
case S_IFREG:
inode->i_op = &xfs_inode_operations;
inode->i_fop = &xfs_file_operations;
inode->i_mapping->a_ops = &xfs_address_space_operations;
break;
case S_IFDIR:
if (xfs_sb_version_hasasciici(&XFS_M(inode->i_sb)->m_sb))
inode->i_op = &xfs_dir_ci_inode_operations;
else
inode->i_op = &xfs_dir_inode_operations;
inode->i_fop = &xfs_dir_file_operations;
break;
case S_IFLNK:
inode->i_op = &xfs_symlink_inode_operations;
if (!(XFS_I(inode)->i_df.if_flags & XFS_IFINLINE))
inode->i_mapping->a_ops = &xfs_address_space_operations;
break;
default:
inode->i_op = &xfs_inode_operations;
init_special_inode(inode, inode->i_mode, inode->i_rdev);
break;
}
}
STATIC_INLINE void
xfs_revalidate_inode(
xfs_mount_t *mp,
bhv_vnode_t *vp,
xfs_inode_t *ip)
{
struct inode *inode = vn_to_inode(vp);
inode->i_mode = ip->i_d.di_mode;
inode->i_nlink = ip->i_d.di_nlink;
inode->i_uid = ip->i_d.di_uid;
inode->i_gid = ip->i_d.di_gid;
switch (inode->i_mode & S_IFMT) {
case S_IFBLK:
case S_IFCHR:
inode->i_rdev =
MKDEV(sysv_major(ip->i_df.if_u2.if_rdev) & 0x1ff,
sysv_minor(ip->i_df.if_u2.if_rdev));
break;
default:
inode->i_rdev = 0;
break;
}
inode->i_generation = ip->i_d.di_gen;
i_size_write(inode, ip->i_d.di_size);
inode->i_atime.tv_sec = ip->i_d.di_atime.t_sec;
inode->i_atime.tv_nsec = ip->i_d.di_atime.t_nsec;
inode->i_mtime.tv_sec = ip->i_d.di_mtime.t_sec;
inode->i_mtime.tv_nsec = ip->i_d.di_mtime.t_nsec;
inode->i_ctime.tv_sec = ip->i_d.di_ctime.t_sec;
inode->i_ctime.tv_nsec = ip->i_d.di_ctime.t_nsec;
if (ip->i_d.di_flags & XFS_DIFLAG_IMMUTABLE)
inode->i_flags |= S_IMMUTABLE;
else
inode->i_flags &= ~S_IMMUTABLE;
if (ip->i_d.di_flags & XFS_DIFLAG_APPEND)
inode->i_flags |= S_APPEND;
else
inode->i_flags &= ~S_APPEND;
if (ip->i_d.di_flags & XFS_DIFLAG_SYNC)
inode->i_flags |= S_SYNC;
else
inode->i_flags &= ~S_SYNC;
if (ip->i_d.di_flags & XFS_DIFLAG_NOATIME)
inode->i_flags |= S_NOATIME;
else
inode->i_flags &= ~S_NOATIME;
xfs_iflags_clear(ip, XFS_IMODIFIED);
}
void
xfs_initialize_vnode(
struct xfs_mount *mp,
bhv_vnode_t *vp,
struct xfs_inode *ip)
{
struct inode *inode = vn_to_inode(vp);
if (!ip->i_vnode) {
ip->i_vnode = vp;
inode->i_private = ip;
}
/*
* We need to set the ops vectors, and unlock the inode, but if
* we have been called during the new inode create process, it is
* too early to fill in the Linux inode. We will get called a
* second time once the inode is properly set up, and then we can
* finish our work.
*/
if (ip->i_d.di_mode != 0 && (inode->i_state & I_NEW)) {
xfs_revalidate_inode(mp, vp, ip);
xfs_set_inodeops(inode);
xfs_iflags_clear(ip, XFS_INEW);
barrier();
unlock_new_inode(inode);
}
}
int
xfs_blkdev_get(
xfs_mount_t *mp,
const char *name,
struct block_device **bdevp)
{
int error = 0;
*bdevp = open_bdev_excl(name, 0, mp);
if (IS_ERR(*bdevp)) {
error = PTR_ERR(*bdevp);
printk("XFS: Invalid device [%s], error=%d\n", name, error);
}
return -error;
}
void
xfs_blkdev_put(
struct block_device *bdev)
{
if (bdev)
close_bdev_excl(bdev);
}
/*
* Try to write out the superblock using barriers.
*/
STATIC int
xfs_barrier_test(
xfs_mount_t *mp)
{
xfs_buf_t *sbp = xfs_getsb(mp, 0);
int error;
XFS_BUF_UNDONE(sbp);
XFS_BUF_UNREAD(sbp);
XFS_BUF_UNDELAYWRITE(sbp);
XFS_BUF_WRITE(sbp);
XFS_BUF_UNASYNC(sbp);
XFS_BUF_ORDERED(sbp);
xfsbdstrat(mp, sbp);
error = xfs_iowait(sbp);
/*
* Clear all the flags we set and possible error state in the
* buffer. We only did the write to try out whether barriers
* worked and shouldn't leave any traces in the superblock
* buffer.
*/
XFS_BUF_DONE(sbp);
XFS_BUF_ERROR(sbp, 0);
XFS_BUF_UNORDERED(sbp);
xfs_buf_relse(sbp);
return error;
}
void
xfs_mountfs_check_barriers(xfs_mount_t *mp)
{
int error;
if (mp->m_logdev_targp != mp->m_ddev_targp) {
xfs_fs_cmn_err(CE_NOTE, mp,
"Disabling barriers, not supported with external log device");
mp->m_flags &= ~XFS_MOUNT_BARRIER;
return;
}
if (mp->m_ddev_targp->bt_bdev->bd_disk->queue->ordered ==
QUEUE_ORDERED_NONE) {
xfs_fs_cmn_err(CE_NOTE, mp,
"Disabling barriers, not supported by the underlying device");
mp->m_flags &= ~XFS_MOUNT_BARRIER;
return;
}
if (xfs_readonly_buftarg(mp->m_ddev_targp)) {
xfs_fs_cmn_err(CE_NOTE, mp,
"Disabling barriers, underlying device is readonly");
mp->m_flags &= ~XFS_MOUNT_BARRIER;
return;
}
error = xfs_barrier_test(mp);
if (error) {
xfs_fs_cmn_err(CE_NOTE, mp,
"Disabling barriers, trial barrier write failed");
mp->m_flags &= ~XFS_MOUNT_BARRIER;
return;
}
}
void
xfs_blkdev_issue_flush(
xfs_buftarg_t *buftarg)
{
blkdev_issue_flush(buftarg->bt_bdev, NULL);
}
STATIC void
xfs_close_devices(
struct xfs_mount *mp)
{
if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) {
xfs_free_buftarg(mp->m_logdev_targp);
xfs_blkdev_put(mp->m_logdev_targp->bt_bdev);
}
if (mp->m_rtdev_targp) {
xfs_free_buftarg(mp->m_rtdev_targp);
xfs_blkdev_put(mp->m_rtdev_targp->bt_bdev);
}
xfs_free_buftarg(mp->m_ddev_targp);
}
/*
* The file system configurations are:
* (1) device (partition) with data and internal log
* (2) logical volume with data and log subvolumes.
* (3) logical volume with data, log, and realtime subvolumes.
*
* We only have to handle opening the log and realtime volumes here if
* they are present. The data subvolume has already been opened by
* get_sb_bdev() and is stored in sb->s_bdev.
*/
STATIC int
xfs_open_devices(
struct xfs_mount *mp,
struct xfs_mount_args *args)
{
struct block_device *ddev = mp->m_super->s_bdev;
struct block_device *logdev = NULL, *rtdev = NULL;
int error;
/*
* Open real time and log devices - order is important.
*/
if (args->logname[0]) {
error = xfs_blkdev_get(mp, args->logname, &logdev);
if (error)
goto out;
}
if (args->rtname[0]) {
error = xfs_blkdev_get(mp, args->rtname, &rtdev);
if (error)
goto out_close_logdev;
if (rtdev == ddev || rtdev == logdev) {
cmn_err(CE_WARN,
"XFS: Cannot mount filesystem with identical rtdev and ddev/logdev.");
error = EINVAL;
goto out_close_rtdev;
}
}
/*
* Setup xfs_mount buffer target pointers
*/
error = ENOMEM;
mp->m_ddev_targp = xfs_alloc_buftarg(ddev, 0);
if (!mp->m_ddev_targp)
goto out_close_rtdev;
if (rtdev) {
mp->m_rtdev_targp = xfs_alloc_buftarg(rtdev, 1);
if (!mp->m_rtdev_targp)
goto out_free_ddev_targ;
}
if (logdev && logdev != ddev) {
mp->m_logdev_targp = xfs_alloc_buftarg(logdev, 1);
if (!mp->m_logdev_targp)
goto out_free_rtdev_targ;
} else {
mp->m_logdev_targp = mp->m_ddev_targp;
}
return 0;
out_free_rtdev_targ:
if (mp->m_rtdev_targp)
xfs_free_buftarg(mp->m_rtdev_targp);
out_free_ddev_targ:
xfs_free_buftarg(mp->m_ddev_targp);
out_close_rtdev:
if (rtdev)
xfs_blkdev_put(rtdev);
out_close_logdev:
if (logdev && logdev != ddev)
xfs_blkdev_put(logdev);
out:
return error;
}
/*
* Setup xfs_mount buffer target pointers based on superblock
*/
STATIC int
xfs_setup_devices(
struct xfs_mount *mp)
{
int error;
error = xfs_setsize_buftarg(mp->m_ddev_targp, mp->m_sb.sb_blocksize,
mp->m_sb.sb_sectsize);
if (error)
return error;
if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) {
unsigned int log_sector_size = BBSIZE;
if (xfs_sb_version_hassector(&mp->m_sb))
log_sector_size = mp->m_sb.sb_logsectsize;
error = xfs_setsize_buftarg(mp->m_logdev_targp,
mp->m_sb.sb_blocksize,
log_sector_size);
if (error)
return error;
}
if (mp->m_rtdev_targp) {
error = xfs_setsize_buftarg(mp->m_rtdev_targp,
mp->m_sb.sb_blocksize,
mp->m_sb.sb_sectsize);
if (error)
return error;
}
return 0;
}
/*
* XFS AIL push thread support
*/
void
xfsaild_wakeup(
xfs_mount_t *mp,
xfs_lsn_t threshold_lsn)
{
mp->m_ail.xa_target = threshold_lsn;
wake_up_process(mp->m_ail.xa_task);
}
int
xfsaild(
void *data)
{
xfs_mount_t *mp = (xfs_mount_t *)data;
xfs_lsn_t last_pushed_lsn = 0;
long tout = 0;
while (!kthread_should_stop()) {
if (tout)
schedule_timeout_interruptible(msecs_to_jiffies(tout));
tout = 1000;
/* swsusp */
try_to_freeze();
ASSERT(mp->m_log);
if (XFS_FORCED_SHUTDOWN(mp))
continue;
tout = xfsaild_push(mp, &last_pushed_lsn);
}
return 0;
} /* xfsaild */
int
xfsaild_start(
xfs_mount_t *mp)
{
mp->m_ail.xa_target = 0;
mp->m_ail.xa_task = kthread_run(xfsaild, mp, "xfsaild");
if (IS_ERR(mp->m_ail.xa_task))
return -PTR_ERR(mp->m_ail.xa_task);
return 0;
}
void
xfsaild_stop(
xfs_mount_t *mp)
{
kthread_stop(mp->m_ail.xa_task);
}
STATIC struct inode *
xfs_fs_alloc_inode(
struct super_block *sb)
{
bhv_vnode_t *vp;
vp = kmem_zone_alloc(xfs_vnode_zone, KM_SLEEP);
if (unlikely(!vp))
return NULL;
return vn_to_inode(vp);
}
STATIC void
xfs_fs_destroy_inode(
struct inode *inode)
{
kmem_zone_free(xfs_vnode_zone, vn_from_inode(inode));
}
STATIC void
xfs_fs_inode_init_once(
void *vnode)
{
inode_init_once(vn_to_inode((bhv_vnode_t *)vnode));
}
STATIC int __init
xfs_init_zones(void)
{
xfs_vnode_zone = kmem_zone_init_flags(sizeof(bhv_vnode_t), "xfs_vnode",
KM_ZONE_HWALIGN | KM_ZONE_RECLAIM |
KM_ZONE_SPREAD,
xfs_fs_inode_init_once);
if (!xfs_vnode_zone)
goto out;
xfs_ioend_zone = kmem_zone_init(sizeof(xfs_ioend_t), "xfs_ioend");
if (!xfs_ioend_zone)
goto out_destroy_vnode_zone;
xfs_ioend_pool = mempool_create_slab_pool(4 * MAX_BUF_PER_PAGE,
xfs_ioend_zone);
if (!xfs_ioend_pool)
goto out_free_ioend_zone;
return 0;
out_free_ioend_zone:
kmem_zone_destroy(xfs_ioend_zone);
out_destroy_vnode_zone:
kmem_zone_destroy(xfs_vnode_zone);
out:
return -ENOMEM;
}
STATIC void
xfs_destroy_zones(void)
{
mempool_destroy(xfs_ioend_pool);
kmem_zone_destroy(xfs_vnode_zone);
kmem_zone_destroy(xfs_ioend_zone);
}
/*
* Attempt to flush the inode, this will actually fail
* if the inode is pinned, but we dirty the inode again
* at the point when it is unpinned after a log write,
* since this is when the inode itself becomes flushable.
*/
STATIC int
xfs_fs_write_inode(
struct inode *inode,
int sync)
{
int error = 0;
int flags = 0;
xfs_itrace_entry(XFS_I(inode));
if (sync) {
filemap_fdatawait(inode->i_mapping);
flags |= FLUSH_SYNC;
}
error = xfs_inode_flush(XFS_I(inode), flags);
/*
* if we failed to write out the inode then mark
* it dirty again so we'll try again later.
*/
if (error)
mark_inode_dirty_sync(inode);
return -error;
}
STATIC void
xfs_fs_clear_inode(
struct inode *inode)
{
xfs_inode_t *ip = XFS_I(inode);
/*
* ip can be null when xfs_iget_core calls xfs_idestroy if we
* find an inode with di_mode == 0 but without IGET_CREATE set.
*/
if (ip) {
xfs_itrace_entry(ip);
XFS_STATS_INC(vn_rele);
XFS_STATS_INC(vn_remove);
XFS_STATS_INC(vn_reclaim);
XFS_STATS_DEC(vn_active);
xfs_inactive(ip);
xfs_iflags_clear(ip, XFS_IMODIFIED);
if (xfs_reclaim(ip))
panic("%s: cannot reclaim 0x%p\n", __func__, inode);
}
ASSERT(XFS_I(inode) == NULL);
}
/*
* Enqueue a work item to be picked up by the vfs xfssyncd thread.
* Doing this has two advantages:
* - It saves on stack space, which is tight in certain situations
* - It can be used (with care) as a mechanism to avoid deadlocks.
* Flushing while allocating in a full filesystem requires both.
*/
STATIC void
xfs_syncd_queue_work(
struct xfs_mount *mp,
void *data,
void (*syncer)(struct xfs_mount *, void *))
{
struct bhv_vfs_sync_work *work;
work = kmem_alloc(sizeof(struct bhv_vfs_sync_work), KM_SLEEP);
INIT_LIST_HEAD(&work->w_list);
work->w_syncer = syncer;
work->w_data = data;
work->w_mount = mp;
spin_lock(&mp->m_sync_lock);
list_add_tail(&work->w_list, &mp->m_sync_list);
spin_unlock(&mp->m_sync_lock);
wake_up_process(mp->m_sync_task);
}
/*
* Flush delayed allocate data, attempting to free up reserved space
* from existing allocations. At this point a new allocation attempt
* has failed with ENOSPC and we are in the process of scratching our
* heads, looking about for more room...
*/
STATIC void
xfs_flush_inode_work(
struct xfs_mount *mp,
void *arg)
{
struct inode *inode = arg;
filemap_flush(inode->i_mapping);
iput(inode);
}
void
xfs_flush_inode(
xfs_inode_t *ip)
{
struct inode *inode = ip->i_vnode;
igrab(inode);
xfs_syncd_queue_work(ip->i_mount, inode, xfs_flush_inode_work);
delay(msecs_to_jiffies(500));
}
/*
* This is the "bigger hammer" version of xfs_flush_inode_work...
* (IOW, "If at first you don't succeed, use a Bigger Hammer").
*/
STATIC void
xfs_flush_device_work(
struct xfs_mount *mp,
void *arg)
{
struct inode *inode = arg;
sync_blockdev(mp->m_super->s_bdev);
iput(inode);
}
void
xfs_flush_device(
xfs_inode_t *ip)
{
struct inode *inode = vn_to_inode(XFS_ITOV(ip));
igrab(inode);
xfs_syncd_queue_work(ip->i_mount, inode, xfs_flush_device_work);
delay(msecs_to_jiffies(500));
xfs_log_force(ip->i_mount, (xfs_lsn_t)0, XFS_LOG_FORCE|XFS_LOG_SYNC);
}
STATIC void
xfs_sync_worker(
struct xfs_mount *mp,
void *unused)
{
int error;
if (!(mp->m_flags & XFS_MOUNT_RDONLY))
error = xfs_sync(mp, SYNC_FSDATA | SYNC_BDFLUSH | SYNC_ATTR);
mp->m_sync_seq++;
wake_up(&mp->m_wait_single_sync_task);
}
STATIC int
xfssyncd(
void *arg)
{
struct xfs_mount *mp = arg;
long timeleft;
bhv_vfs_sync_work_t *work, *n;
LIST_HEAD (tmp);
set_freezable();
timeleft = xfs_syncd_centisecs * msecs_to_jiffies(10);
for (;;) {
timeleft = schedule_timeout_interruptible(timeleft);
/* swsusp */
try_to_freeze();
if (kthread_should_stop() && list_empty(&mp->m_sync_list))
break;
spin_lock(&mp->m_sync_lock);
/*
* We can get woken by laptop mode, to do a sync -
* that's the (only!) case where the list would be
* empty with time remaining.
*/
if (!timeleft || list_empty(&mp->m_sync_list)) {
if (!timeleft)
timeleft = xfs_syncd_centisecs *
msecs_to_jiffies(10);
INIT_LIST_HEAD(&mp->m_sync_work.w_list);
list_add_tail(&mp->m_sync_work.w_list,
&mp->m_sync_list);
}
list_for_each_entry_safe(work, n, &mp->m_sync_list, w_list)
list_move(&work->w_list, &tmp);
spin_unlock(&mp->m_sync_lock);
list_for_each_entry_safe(work, n, &tmp, w_list) {
(*work->w_syncer)(mp, work->w_data);
list_del(&work->w_list);
if (work == &mp->m_sync_work)
continue;
kmem_free(work);
}
}
return 0;
}
STATIC void
xfs_fs_put_super(
struct super_block *sb)
{
struct xfs_mount *mp = XFS_M(sb);
struct xfs_inode *rip = mp->m_rootip;
int unmount_event_flags = 0;
int error;
kthread_stop(mp->m_sync_task);
xfs_sync(mp, SYNC_ATTR | SYNC_DELWRI);
#ifdef HAVE_DMAPI
if (mp->m_flags & XFS_MOUNT_DMAPI) {
unmount_event_flags =
(mp->m_dmevmask & (1 << DM_EVENT_UNMOUNT)) ?
0 : DM_FLAGS_UNWANTED;
/*
* Ignore error from dmapi here, first unmount is not allowed
* to fail anyway, and second we wouldn't want to fail a
* unmount because of dmapi.
*/
XFS_SEND_PREUNMOUNT(mp, rip, DM_RIGHT_NULL, rip, DM_RIGHT_NULL,
NULL, NULL, 0, 0, unmount_event_flags);
}
#endif
/*
* Blow away any referenced inode in the filestreams cache.
* This can and will cause log traffic as inodes go inactive
* here.
*/
xfs_filestream_unmount(mp);
XFS_bflush(mp->m_ddev_targp);
error = xfs_unmount_flush(mp, 0);
WARN_ON(error);
IRELE(rip);
/*
* If we're forcing a shutdown, typically because of a media error,
* we want to make sure we invalidate dirty pages that belong to
* referenced vnodes as well.
*/
if (XFS_FORCED_SHUTDOWN(mp)) {
error = xfs_sync(mp, SYNC_WAIT | SYNC_CLOSE);
ASSERT(error != EFSCORRUPTED);
}
if (mp->m_flags & XFS_MOUNT_DMAPI) {
XFS_SEND_UNMOUNT(mp, rip, DM_RIGHT_NULL, 0, 0,
unmount_event_flags);
}
xfs_unmountfs(mp);
xfs_icsb_destroy_counters(mp);
xfs_close_devices(mp);
xfs_qmops_put(mp);
xfs_dmops_put(mp);
kfree(mp);
}
STATIC void
xfs_fs_write_super(
struct super_block *sb)
{
if (!(sb->s_flags & MS_RDONLY))
xfs_sync(XFS_M(sb), SYNC_FSDATA);
sb->s_dirt = 0;
}
STATIC int
xfs_fs_sync_super(
struct super_block *sb,
int wait)
{
struct xfs_mount *mp = XFS_M(sb);
int error;
int flags;
/*
* Treat a sync operation like a freeze. This is to work
* around a race in sync_inodes() which works in two phases
* - an asynchronous flush, which can write out an inode
* without waiting for file size updates to complete, and a
* synchronous flush, which wont do anything because the
* async flush removed the inode's dirty flag. Also
* sync_inodes() will not see any files that just have
* outstanding transactions to be flushed because we don't
* dirty the Linux inode until after the transaction I/O
* completes.
*/
if (wait || unlikely(sb->s_frozen == SB_FREEZE_WRITE)) {
/*
* First stage of freeze - no more writers will make progress
* now we are here, so we flush delwri and delalloc buffers
* here, then wait for all I/O to complete. Data is frozen at
* that point. Metadata is not frozen, transactions can still
* occur here so don't bother flushing the buftarg (i.e
* SYNC_QUIESCE) because it'll just get dirty again.
*/
flags = SYNC_DATA_QUIESCE;
} else
flags = SYNC_FSDATA;
error = xfs_sync(mp, flags);
sb->s_dirt = 0;
if (unlikely(laptop_mode)) {
int prev_sync_seq = mp->m_sync_seq;
/*
* The disk must be active because we're syncing.
* We schedule xfssyncd now (now that the disk is
* active) instead of later (when it might not be).
*/
wake_up_process(mp->m_sync_task);
/*
* We have to wait for the sync iteration to complete.
* If we don't, the disk activity caused by the sync
* will come after the sync is completed, and that
* triggers another sync from laptop mode.
*/
wait_event(mp->m_wait_single_sync_task,
mp->m_sync_seq != prev_sync_seq);
}
return -error;
}
STATIC int
xfs_fs_statfs(
struct dentry *dentry,
struct kstatfs *statp)
{
struct xfs_mount *mp = XFS_M(dentry->d_sb);
xfs_sb_t *sbp = &mp->m_sb;
__uint64_t fakeinos, id;
xfs_extlen_t lsize;
statp->f_type = XFS_SB_MAGIC;
statp->f_namelen = MAXNAMELEN - 1;
id = huge_encode_dev(mp->m_ddev_targp->bt_dev);
statp->f_fsid.val[0] = (u32)id;
statp->f_fsid.val[1] = (u32)(id >> 32);
xfs_icsb_sync_counters(mp, XFS_ICSB_LAZY_COUNT);
spin_lock(&mp->m_sb_lock);
statp->f_bsize = sbp->sb_blocksize;
lsize = sbp->sb_logstart ? sbp->sb_logblocks : 0;
statp->f_blocks = sbp->sb_dblocks - lsize;
statp->f_bfree = statp->f_bavail =
sbp->sb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
fakeinos = statp->f_bfree << sbp->sb_inopblog;
#if XFS_BIG_INUMS
fakeinos += mp->m_inoadd;
#endif
statp->f_files =
MIN(sbp->sb_icount + fakeinos, (__uint64_t)XFS_MAXINUMBER);
if (mp->m_maxicount)
#if XFS_BIG_INUMS
if (!mp->m_inoadd)
#endif
statp->f_files = min_t(typeof(statp->f_files),
statp->f_files,
mp->m_maxicount);
statp->f_ffree = statp->f_files - (sbp->sb_icount - sbp->sb_ifree);
spin_unlock(&mp->m_sb_lock);
XFS_QM_DQSTATVFS(XFS_I(dentry->d_inode), statp);
return 0;
}
STATIC int
xfs_fs_remount(
struct super_block *sb,
int *flags,
char *options)
{
struct xfs_mount *mp = XFS_M(sb);
struct xfs_mount_args *args;
int error;
args = xfs_args_allocate(sb, 0);
if (!args)
return -ENOMEM;
error = xfs_parseargs(mp, options, args, 1);
if (error)
goto out_free_args;
if (!(*flags & MS_RDONLY)) { /* rw/ro -> rw */
if (mp->m_flags & XFS_MOUNT_RDONLY)
mp->m_flags &= ~XFS_MOUNT_RDONLY;
if (args->flags & XFSMNT_BARRIER) {
mp->m_flags |= XFS_MOUNT_BARRIER;
xfs_mountfs_check_barriers(mp);
} else {
mp->m_flags &= ~XFS_MOUNT_BARRIER;
}
} else if (!(mp->m_flags & XFS_MOUNT_RDONLY)) { /* rw -> ro */
xfs_filestream_flush(mp);
xfs_sync(mp, SYNC_DATA_QUIESCE);
xfs_attr_quiesce(mp);
mp->m_flags |= XFS_MOUNT_RDONLY;
}
out_free_args:
kfree(args);
return -error;
}
/*
* Second stage of a freeze. The data is already frozen so we only
* need to take care of themetadata. Once that's done write a dummy
* record to dirty the log in case of a crash while frozen.
*/
STATIC void
xfs_fs_lockfs(
struct super_block *sb)
{
struct xfs_mount *mp = XFS_M(sb);
xfs_attr_quiesce(mp);
xfs_fs_log_dummy(mp);
}
STATIC int
xfs_fs_show_options(
struct seq_file *m,
struct vfsmount *mnt)
{
return -xfs_showargs(XFS_M(mnt->mnt_sb), m);
}
STATIC int
xfs_fs_quotasync(
struct super_block *sb,
int type)
{
return -XFS_QM_QUOTACTL(XFS_M(sb), Q_XQUOTASYNC, 0, NULL);
}
STATIC int
xfs_fs_getxstate(
struct super_block *sb,
struct fs_quota_stat *fqs)
{
return -XFS_QM_QUOTACTL(XFS_M(sb), Q_XGETQSTAT, 0, (caddr_t)fqs);
}
STATIC int
xfs_fs_setxstate(
struct super_block *sb,
unsigned int flags,
int op)
{
return -XFS_QM_QUOTACTL(XFS_M(sb), op, 0, (caddr_t)&flags);
}
STATIC int
xfs_fs_getxquota(
struct super_block *sb,
int type,
qid_t id,
struct fs_disk_quota *fdq)
{
return -XFS_QM_QUOTACTL(XFS_M(sb),
(type == USRQUOTA) ? Q_XGETQUOTA :
((type == GRPQUOTA) ? Q_XGETGQUOTA :
Q_XGETPQUOTA), id, (caddr_t)fdq);
}
STATIC int
xfs_fs_setxquota(
struct super_block *sb,
int type,
qid_t id,
struct fs_disk_quota *fdq)
{
return -XFS_QM_QUOTACTL(XFS_M(sb),
(type == USRQUOTA) ? Q_XSETQLIM :
((type == GRPQUOTA) ? Q_XSETGQLIM :
Q_XSETPQLIM), id, (caddr_t)fdq);
}
/*
* This function fills in xfs_mount_t fields based on mount args.
* Note: the superblock has _not_ yet been read in.
*/
STATIC int
xfs_start_flags(
struct xfs_mount_args *ap,
struct xfs_mount *mp)
{
/* Values are in BBs */
if ((ap->flags & XFSMNT_NOALIGN) != XFSMNT_NOALIGN) {
/*
* At this point the superblock has not been read
* in, therefore we do not know the block size.
* Before the mount call ends we will convert
* these to FSBs.
*/
mp->m_dalign = ap->sunit;
mp->m_swidth = ap->swidth;
}
if (ap->logbufs != -1 &&
ap->logbufs != 0 &&
(ap->logbufs < XLOG_MIN_ICLOGS ||
ap->logbufs > XLOG_MAX_ICLOGS)) {
cmn_err(CE_WARN,
"XFS: invalid logbufs value: %d [not %d-%d]",
ap->logbufs, XLOG_MIN_ICLOGS, XLOG_MAX_ICLOGS);
return XFS_ERROR(EINVAL);
}
mp->m_logbufs = ap->logbufs;
if (ap->logbufsize != -1 &&
ap->logbufsize != 0 &&
(ap->logbufsize < XLOG_MIN_RECORD_BSIZE ||
ap->logbufsize > XLOG_MAX_RECORD_BSIZE ||
!is_power_of_2(ap->logbufsize))) {
cmn_err(CE_WARN,
"XFS: invalid logbufsize: %d [not 16k,32k,64k,128k or 256k]",
ap->logbufsize);
return XFS_ERROR(EINVAL);
}
mp->m_logbsize = ap->logbufsize;
mp->m_fsname_len = strlen(ap->fsname) + 1;
mp->m_fsname = kmem_alloc(mp->m_fsname_len, KM_SLEEP);
strcpy(mp->m_fsname, ap->fsname);
if (ap->rtname[0]) {
mp->m_rtname = kmem_alloc(strlen(ap->rtname) + 1, KM_SLEEP);
strcpy(mp->m_rtname, ap->rtname);
}
if (ap->logname[0]) {
mp->m_logname = kmem_alloc(strlen(ap->logname) + 1, KM_SLEEP);
strcpy(mp->m_logname, ap->logname);
}
if (ap->flags & XFSMNT_WSYNC)
mp->m_flags |= XFS_MOUNT_WSYNC;
#if XFS_BIG_INUMS
if (ap->flags & XFSMNT_INO64) {
mp->m_flags |= XFS_MOUNT_INO64;
mp->m_inoadd = XFS_INO64_OFFSET;
}
#endif
if (ap->flags & XFSMNT_RETERR)
mp->m_flags |= XFS_MOUNT_RETERR;
if (ap->flags & XFSMNT_NOALIGN)
mp->m_flags |= XFS_MOUNT_NOALIGN;
if (ap->flags & XFSMNT_SWALLOC)
mp->m_flags |= XFS_MOUNT_SWALLOC;
if (ap->flags & XFSMNT_OSYNCISOSYNC)
mp->m_flags |= XFS_MOUNT_OSYNCISOSYNC;
if (ap->flags & XFSMNT_32BITINODES)
mp->m_flags |= XFS_MOUNT_32BITINODES;
if (ap->flags & XFSMNT_IOSIZE) {
if (ap->iosizelog > XFS_MAX_IO_LOG ||
ap->iosizelog < XFS_MIN_IO_LOG) {
cmn_err(CE_WARN,
"XFS: invalid log iosize: %d [not %d-%d]",
ap->iosizelog, XFS_MIN_IO_LOG,
XFS_MAX_IO_LOG);
return XFS_ERROR(EINVAL);
}
mp->m_flags |= XFS_MOUNT_DFLT_IOSIZE;
mp->m_readio_log = mp->m_writeio_log = ap->iosizelog;
}
if (ap->flags & XFSMNT_IKEEP)
mp->m_flags |= XFS_MOUNT_IKEEP;
if (ap->flags & XFSMNT_DIRSYNC)
mp->m_flags |= XFS_MOUNT_DIRSYNC;
if (ap->flags & XFSMNT_ATTR2)
mp->m_flags |= XFS_MOUNT_ATTR2;
if (ap->flags & XFSMNT_NOATTR2)
mp->m_flags |= XFS_MOUNT_NOATTR2;
if (ap->flags2 & XFSMNT2_COMPAT_IOSIZE)
mp->m_flags |= XFS_MOUNT_COMPAT_IOSIZE;
/*
* no recovery flag requires a read-only mount
*/
if (ap->flags & XFSMNT_NORECOVERY) {
if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
cmn_err(CE_WARN,
"XFS: tried to mount a FS read-write without recovery!");
return XFS_ERROR(EINVAL);
}
mp->m_flags |= XFS_MOUNT_NORECOVERY;
}
if (ap->flags & XFSMNT_NOUUID)
mp->m_flags |= XFS_MOUNT_NOUUID;
if (ap->flags & XFSMNT_BARRIER)
mp->m_flags |= XFS_MOUNT_BARRIER;
else
mp->m_flags &= ~XFS_MOUNT_BARRIER;
if (ap->flags2 & XFSMNT2_FILESTREAMS)
mp->m_flags |= XFS_MOUNT_FILESTREAMS;
if (ap->flags & XFSMNT_DMAPI)
mp->m_flags |= XFS_MOUNT_DMAPI;
return 0;
}
/*
* This function fills in xfs_mount_t fields based on mount args.
* Note: the superblock _has_ now been read in.
*/
STATIC int
xfs_finish_flags(
struct xfs_mount_args *ap,
struct xfs_mount *mp)
{
int ronly = (mp->m_flags & XFS_MOUNT_RDONLY);
/* Fail a mount where the logbuf is smaller then the log stripe */
if (xfs_sb_version_haslogv2(&mp->m_sb)) {
if ((ap->logbufsize <= 0) &&
(mp->m_sb.sb_logsunit > XLOG_BIG_RECORD_BSIZE)) {
mp->m_logbsize = mp->m_sb.sb_logsunit;
} else if (ap->logbufsize > 0 &&
ap->logbufsize < mp->m_sb.sb_logsunit) {
cmn_err(CE_WARN,
"XFS: logbuf size must be greater than or equal to log stripe size");
return XFS_ERROR(EINVAL);
}
} else {
/* Fail a mount if the logbuf is larger than 32K */
if (ap->logbufsize > XLOG_BIG_RECORD_BSIZE) {
cmn_err(CE_WARN,
"XFS: logbuf size for version 1 logs must be 16K or 32K");
return XFS_ERROR(EINVAL);
}
}
/*
* mkfs'ed attr2 will turn on attr2 mount unless explicitly
* told by noattr2 to turn it off
*/
if (xfs_sb_version_hasattr2(&mp->m_sb) &&
!(ap->flags & XFSMNT_NOATTR2))
mp->m_flags |= XFS_MOUNT_ATTR2;
/*
* prohibit r/w mounts of read-only filesystems
*/
if ((mp->m_sb.sb_flags & XFS_SBF_READONLY) && !ronly) {
cmn_err(CE_WARN,
"XFS: cannot mount a read-only filesystem as read-write");
return XFS_ERROR(EROFS);
}
/*
* check for shared mount.
*/
if (ap->flags & XFSMNT_SHARED) {
if (!xfs_sb_version_hasshared(&mp->m_sb))
return XFS_ERROR(EINVAL);
/*
* For IRIX 6.5, shared mounts must have the shared
* version bit set, have the persistent readonly
* field set, must be version 0 and can only be mounted
* read-only.
*/
if (!ronly || !(mp->m_sb.sb_flags & XFS_SBF_READONLY) ||
(mp->m_sb.sb_shared_vn != 0))
return XFS_ERROR(EINVAL);
mp->m_flags |= XFS_MOUNT_SHARED;
/*
* Shared XFS V0 can't deal with DMI. Return EINVAL.
*/
if (mp->m_sb.sb_shared_vn == 0 && (ap->flags & XFSMNT_DMAPI))
return XFS_ERROR(EINVAL);
}
if (ap->flags & XFSMNT_UQUOTA) {
mp->m_qflags |= (XFS_UQUOTA_ACCT | XFS_UQUOTA_ACTIVE);
if (ap->flags & XFSMNT_UQUOTAENF)
mp->m_qflags |= XFS_UQUOTA_ENFD;
}
if (ap->flags & XFSMNT_GQUOTA) {
mp->m_qflags |= (XFS_GQUOTA_ACCT | XFS_GQUOTA_ACTIVE);
if (ap->flags & XFSMNT_GQUOTAENF)
mp->m_qflags |= XFS_OQUOTA_ENFD;
} else if (ap->flags & XFSMNT_PQUOTA) {
mp->m_qflags |= (XFS_PQUOTA_ACCT | XFS_PQUOTA_ACTIVE);
if (ap->flags & XFSMNT_PQUOTAENF)
mp->m_qflags |= XFS_OQUOTA_ENFD;
}
return 0;
}
STATIC int
xfs_fs_fill_super(
struct super_block *sb,
void *data,
int silent)
{
struct inode *root;
struct xfs_mount *mp = NULL;
struct xfs_mount_args *args;
int flags = 0, error = ENOMEM;
args = xfs_args_allocate(sb, silent);
if (!args)
return -ENOMEM;
mp = kzalloc(sizeof(struct xfs_mount), GFP_KERNEL);
if (!mp)
goto out_free_args;
spin_lock_init(&mp->m_sb_lock);
mutex_init(&mp->m_ilock);
mutex_init(&mp->m_growlock);
atomic_set(&mp->m_active_trans, 0);
INIT_LIST_HEAD(&mp->m_sync_list);
spin_lock_init(&mp->m_sync_lock);
init_waitqueue_head(&mp->m_wait_single_sync_task);
mp->m_super = sb;
sb->s_fs_info = mp;
if (sb->s_flags & MS_RDONLY)
mp->m_flags |= XFS_MOUNT_RDONLY;
error = xfs_parseargs(mp, (char *)data, args, 0);
if (error)
goto out_free_mp;
sb_min_blocksize(sb, BBSIZE);
sb->s_export_op = &xfs_export_operations;
sb->s_qcop = &xfs_quotactl_operations;
sb->s_op = &xfs_super_operations;
error = xfs_dmops_get(mp, args);
if (error)
goto out_free_mp;
error = xfs_qmops_get(mp, args);
if (error)
goto out_put_dmops;
if (args->flags & XFSMNT_QUIET)
flags |= XFS_MFSI_QUIET;
error = xfs_open_devices(mp, args);
if (error)
goto out_put_qmops;
if (xfs_icsb_init_counters(mp))
mp->m_flags |= XFS_MOUNT_NO_PERCPU_SB;
/*
* Setup flags based on mount(2) options and then the superblock
*/
error = xfs_start_flags(args, mp);
if (error)
goto out_destroy_counters;
error = xfs_readsb(mp, flags);
if (error)
goto out_destroy_counters;
error = xfs_finish_flags(args, mp);
if (error)
goto out_free_sb;
error = xfs_setup_devices(mp);
if (error)
goto out_free_sb;
if (mp->m_flags & XFS_MOUNT_BARRIER)
xfs_mountfs_check_barriers(mp);
error = xfs_filestream_mount(mp);
if (error)
goto out_free_sb;
error = xfs_mountfs(mp, flags);
if (error)
goto out_filestream_unmount;
XFS_SEND_MOUNT(mp, DM_RIGHT_NULL, args->mtpt, args->fsname);
sb->s_dirt = 1;
sb->s_magic = XFS_SB_MAGIC;
sb->s_blocksize = mp->m_sb.sb_blocksize;
sb->s_blocksize_bits = ffs(sb->s_blocksize) - 1;
sb->s_maxbytes = xfs_max_file_offset(sb->s_blocksize_bits);
sb->s_time_gran = 1;
set_posix_acl_flag(sb);
root = igrab(mp->m_rootip->i_vnode);
if (!root) {
error = ENOENT;
goto fail_unmount;
}
if (is_bad_inode(root)) {
error = EINVAL;
goto fail_vnrele;
}
sb->s_root = d_alloc_root(root);
if (!sb->s_root) {
error = ENOMEM;
goto fail_vnrele;
}
mp->m_sync_work.w_syncer = xfs_sync_worker;
mp->m_sync_work.w_mount = mp;
mp->m_sync_task = kthread_run(xfssyncd, mp, "xfssyncd");
if (IS_ERR(mp->m_sync_task)) {
error = -PTR_ERR(mp->m_sync_task);
goto fail_vnrele;
}
xfs_itrace_exit(XFS_I(sb->s_root->d_inode));
kfree(args);
return 0;
out_filestream_unmount:
xfs_filestream_unmount(mp);
out_free_sb:
xfs_freesb(mp);
out_destroy_counters:
xfs_icsb_destroy_counters(mp);
xfs_close_devices(mp);
out_put_qmops:
xfs_qmops_put(mp);
out_put_dmops:
xfs_dmops_put(mp);
out_free_mp:
kfree(mp);
out_free_args:
kfree(args);
return -error;
fail_vnrele:
if (sb->s_root) {
dput(sb->s_root);
sb->s_root = NULL;
} else {
iput(root);
}
fail_unmount:
/*
* Blow away any referenced inode in the filestreams cache.
* This can and will cause log traffic as inodes go inactive
* here.
*/
xfs_filestream_unmount(mp);
XFS_bflush(mp->m_ddev_targp);
error = xfs_unmount_flush(mp, 0);
WARN_ON(error);
IRELE(mp->m_rootip);
xfs_unmountfs(mp);
goto out_destroy_counters;
}
STATIC int
xfs_fs_get_sb(
struct file_system_type *fs_type,
int flags,
const char *dev_name,
void *data,
struct vfsmount *mnt)
{
return get_sb_bdev(fs_type, flags, dev_name, data, xfs_fs_fill_super,
mnt);
}
static struct super_operations xfs_super_operations = {
.alloc_inode = xfs_fs_alloc_inode,
.destroy_inode = xfs_fs_destroy_inode,
.write_inode = xfs_fs_write_inode,
.clear_inode = xfs_fs_clear_inode,
.put_super = xfs_fs_put_super,
.write_super = xfs_fs_write_super,
.sync_fs = xfs_fs_sync_super,
.write_super_lockfs = xfs_fs_lockfs,
.statfs = xfs_fs_statfs,
.remount_fs = xfs_fs_remount,
.show_options = xfs_fs_show_options,
};
static struct quotactl_ops xfs_quotactl_operations = {
.quota_sync = xfs_fs_quotasync,
.get_xstate = xfs_fs_getxstate,
.set_xstate = xfs_fs_setxstate,
.get_xquota = xfs_fs_getxquota,
.set_xquota = xfs_fs_setxquota,
};
static struct file_system_type xfs_fs_type = {
.owner = THIS_MODULE,
.name = "xfs",
.get_sb = xfs_fs_get_sb,
.kill_sb = kill_block_super,
.fs_flags = FS_REQUIRES_DEV,
};
STATIC int __init
init_xfs_fs( void )
{
int error;
static char message[] __initdata = KERN_INFO \
XFS_VERSION_STRING " with " XFS_BUILD_OPTIONS " enabled\n";
printk(message);
ktrace_init(64);
error = xfs_init_zones();
if (error < 0)
goto undo_zones;
error = xfs_buf_init();
if (error < 0)
goto undo_buffers;
vn_init();
xfs_init();
uuid_init();
vfs_initquota();
error = register_filesystem(&xfs_fs_type);
if (error)
goto undo_register;
return 0;
undo_register:
xfs_buf_terminate();
undo_buffers:
xfs_destroy_zones();
undo_zones:
return error;
}
STATIC void __exit
exit_xfs_fs( void )
{
vfs_exitquota();
unregister_filesystem(&xfs_fs_type);
xfs_cleanup();
xfs_buf_terminate();
xfs_destroy_zones();
ktrace_uninit();
}
module_init(init_xfs_fs);
module_exit(exit_xfs_fs);
MODULE_AUTHOR("Silicon Graphics, Inc.");
MODULE_DESCRIPTION(XFS_VERSION_STRING " with " XFS_BUILD_OPTIONS " enabled");
MODULE_LICENSE("GPL");