| /* |
| * linux/fs/file.c |
| * |
| * Copyright (C) 1998-1999, Stephen Tweedie and Bill Hawes |
| * |
| * Manage the dynamic fd arrays in the process files_struct. |
| */ |
| |
| #include <linux/fs.h> |
| #include <linux/mm.h> |
| #include <linux/time.h> |
| #include <linux/slab.h> |
| #include <linux/vmalloc.h> |
| #include <linux/file.h> |
| #include <linux/bitops.h> |
| #include <linux/interrupt.h> |
| #include <linux/spinlock.h> |
| #include <linux/rcupdate.h> |
| #include <linux/workqueue.h> |
| |
| struct fdtable_defer { |
| spinlock_t lock; |
| struct work_struct wq; |
| struct timer_list timer; |
| struct fdtable *next; |
| }; |
| |
| /* |
| * We use this list to defer free fdtables that have vmalloced |
| * sets/arrays. By keeping a per-cpu list, we avoid having to embed |
| * the work_struct in fdtable itself which avoids a 64 byte (i386) increase in |
| * this per-task structure. |
| */ |
| static DEFINE_PER_CPU(struct fdtable_defer, fdtable_defer_list); |
| |
| |
| /* |
| * Allocate an fd array, using kmalloc or vmalloc. |
| * Note: the array isn't cleared at allocation time. |
| */ |
| struct file ** alloc_fd_array(int num) |
| { |
| struct file **new_fds; |
| int size = num * sizeof(struct file *); |
| |
| if (size <= PAGE_SIZE) |
| new_fds = (struct file **) kmalloc(size, GFP_KERNEL); |
| else |
| new_fds = (struct file **) vmalloc(size); |
| return new_fds; |
| } |
| |
| void free_fd_array(struct file **array, int num) |
| { |
| int size = num * sizeof(struct file *); |
| |
| if (!array) { |
| printk (KERN_ERR "free_fd_array: array = 0 (num = %d)\n", num); |
| return; |
| } |
| |
| if (num <= NR_OPEN_DEFAULT) /* Don't free the embedded fd array! */ |
| return; |
| else if (size <= PAGE_SIZE) |
| kfree(array); |
| else |
| vfree(array); |
| } |
| |
| static void __free_fdtable(struct fdtable *fdt) |
| { |
| free_fdset(fdt->open_fds, fdt->max_fdset); |
| free_fdset(fdt->close_on_exec, fdt->max_fdset); |
| free_fd_array(fdt->fd, fdt->max_fds); |
| kfree(fdt); |
| } |
| |
| static void fdtable_timer(unsigned long data) |
| { |
| struct fdtable_defer *fddef = (struct fdtable_defer *)data; |
| |
| spin_lock(&fddef->lock); |
| /* |
| * If someone already emptied the queue return. |
| */ |
| if (!fddef->next) |
| goto out; |
| if (!schedule_work(&fddef->wq)) |
| mod_timer(&fddef->timer, 5); |
| out: |
| spin_unlock(&fddef->lock); |
| } |
| |
| static void free_fdtable_work(struct work_struct *work) |
| { |
| struct fdtable_defer *f = |
| container_of(work, struct fdtable_defer, wq); |
| struct fdtable *fdt; |
| |
| spin_lock_bh(&f->lock); |
| fdt = f->next; |
| f->next = NULL; |
| spin_unlock_bh(&f->lock); |
| while(fdt) { |
| struct fdtable *next = fdt->next; |
| __free_fdtable(fdt); |
| fdt = next; |
| } |
| } |
| |
| static void free_fdtable_rcu(struct rcu_head *rcu) |
| { |
| struct fdtable *fdt = container_of(rcu, struct fdtable, rcu); |
| int fdset_size, fdarray_size; |
| struct fdtable_defer *fddef; |
| |
| BUG_ON(!fdt); |
| fdset_size = fdt->max_fdset / 8; |
| fdarray_size = fdt->max_fds * sizeof(struct file *); |
| |
| if (fdt->free_files) { |
| /* |
| * The this fdtable was embedded in the files structure |
| * and the files structure itself was getting destroyed. |
| * It is now safe to free the files structure. |
| */ |
| kmem_cache_free(files_cachep, fdt->free_files); |
| return; |
| } |
| if (fdt->max_fdset <= EMBEDDED_FD_SET_SIZE && |
| fdt->max_fds <= NR_OPEN_DEFAULT) { |
| /* |
| * The fdtable was embedded |
| */ |
| return; |
| } |
| if (fdset_size <= PAGE_SIZE && fdarray_size <= PAGE_SIZE) { |
| kfree(fdt->open_fds); |
| kfree(fdt->close_on_exec); |
| kfree(fdt->fd); |
| kfree(fdt); |
| } else { |
| fddef = &get_cpu_var(fdtable_defer_list); |
| spin_lock(&fddef->lock); |
| fdt->next = fddef->next; |
| fddef->next = fdt; |
| /* |
| * vmallocs are handled from the workqueue context. |
| * If the per-cpu workqueue is running, then we |
| * defer work scheduling through a timer. |
| */ |
| if (!schedule_work(&fddef->wq)) |
| mod_timer(&fddef->timer, 5); |
| spin_unlock(&fddef->lock); |
| put_cpu_var(fdtable_defer_list); |
| } |
| } |
| |
| void free_fdtable(struct fdtable *fdt) |
| { |
| if (fdt->free_files || |
| fdt->max_fdset > EMBEDDED_FD_SET_SIZE || |
| fdt->max_fds > NR_OPEN_DEFAULT) |
| call_rcu(&fdt->rcu, free_fdtable_rcu); |
| } |
| |
| /* |
| * Expand the fdset in the files_struct. Called with the files spinlock |
| * held for write. |
| */ |
| static void copy_fdtable(struct fdtable *nfdt, struct fdtable *fdt) |
| { |
| int i; |
| int count; |
| |
| BUG_ON(nfdt->max_fdset < fdt->max_fdset); |
| BUG_ON(nfdt->max_fds < fdt->max_fds); |
| /* Copy the existing tables and install the new pointers */ |
| |
| i = fdt->max_fdset / (sizeof(unsigned long) * 8); |
| count = (nfdt->max_fdset - fdt->max_fdset) / 8; |
| |
| /* |
| * Don't copy the entire array if the current fdset is |
| * not yet initialised. |
| */ |
| if (i) { |
| memcpy (nfdt->open_fds, fdt->open_fds, |
| fdt->max_fdset/8); |
| memcpy (nfdt->close_on_exec, fdt->close_on_exec, |
| fdt->max_fdset/8); |
| memset (&nfdt->open_fds->fds_bits[i], 0, count); |
| memset (&nfdt->close_on_exec->fds_bits[i], 0, count); |
| } |
| |
| /* Don't copy/clear the array if we are creating a new |
| fd array for fork() */ |
| if (fdt->max_fds) { |
| memcpy(nfdt->fd, fdt->fd, |
| fdt->max_fds * sizeof(struct file *)); |
| /* clear the remainder of the array */ |
| memset(&nfdt->fd[fdt->max_fds], 0, |
| (nfdt->max_fds - fdt->max_fds) * |
| sizeof(struct file *)); |
| } |
| } |
| |
| /* |
| * Allocate an fdset array, using kmalloc or vmalloc. |
| * Note: the array isn't cleared at allocation time. |
| */ |
| fd_set * alloc_fdset(int num) |
| { |
| fd_set *new_fdset; |
| int size = num / 8; |
| |
| if (size <= PAGE_SIZE) |
| new_fdset = (fd_set *) kmalloc(size, GFP_KERNEL); |
| else |
| new_fdset = (fd_set *) vmalloc(size); |
| return new_fdset; |
| } |
| |
| void free_fdset(fd_set *array, int num) |
| { |
| if (num <= EMBEDDED_FD_SET_SIZE) /* Don't free an embedded fdset */ |
| return; |
| else if (num <= 8 * PAGE_SIZE) |
| kfree(array); |
| else |
| vfree(array); |
| } |
| |
| static struct fdtable *alloc_fdtable(int nr) |
| { |
| struct fdtable *fdt = NULL; |
| int nfds = 0; |
| fd_set *new_openset = NULL, *new_execset = NULL; |
| struct file **new_fds; |
| |
| fdt = kzalloc(sizeof(*fdt), GFP_KERNEL); |
| if (!fdt) |
| goto out; |
| |
| nfds = max_t(int, 8 * L1_CACHE_BYTES, roundup_pow_of_two(nr + 1)); |
| if (nfds > NR_OPEN) |
| nfds = NR_OPEN; |
| |
| new_openset = alloc_fdset(nfds); |
| new_execset = alloc_fdset(nfds); |
| if (!new_openset || !new_execset) |
| goto out; |
| fdt->open_fds = new_openset; |
| fdt->close_on_exec = new_execset; |
| fdt->max_fdset = nfds; |
| |
| nfds = NR_OPEN_DEFAULT; |
| /* |
| * Expand to the max in easy steps, and keep expanding it until |
| * we have enough for the requested fd array size. |
| */ |
| do { |
| #if NR_OPEN_DEFAULT < 256 |
| if (nfds < 256) |
| nfds = 256; |
| else |
| #endif |
| if (nfds < (PAGE_SIZE / sizeof(struct file *))) |
| nfds = PAGE_SIZE / sizeof(struct file *); |
| else { |
| nfds = nfds * 2; |
| if (nfds > NR_OPEN) |
| nfds = NR_OPEN; |
| } |
| } while (nfds <= nr); |
| new_fds = alloc_fd_array(nfds); |
| if (!new_fds) |
| goto out2; |
| fdt->fd = new_fds; |
| fdt->max_fds = nfds; |
| fdt->free_files = NULL; |
| return fdt; |
| out2: |
| nfds = fdt->max_fdset; |
| out: |
| free_fdset(new_openset, nfds); |
| free_fdset(new_execset, nfds); |
| kfree(fdt); |
| return NULL; |
| } |
| |
| /* |
| * Expand the file descriptor table. |
| * This function will allocate a new fdtable and both fd array and fdset, of |
| * the given size. |
| * Return <0 error code on error; 1 on successful completion. |
| * The files->file_lock should be held on entry, and will be held on exit. |
| */ |
| static int expand_fdtable(struct files_struct *files, int nr) |
| __releases(files->file_lock) |
| __acquires(files->file_lock) |
| { |
| struct fdtable *new_fdt, *cur_fdt; |
| |
| spin_unlock(&files->file_lock); |
| new_fdt = alloc_fdtable(nr); |
| spin_lock(&files->file_lock); |
| if (!new_fdt) |
| return -ENOMEM; |
| /* |
| * Check again since another task may have expanded the fd table while |
| * we dropped the lock |
| */ |
| cur_fdt = files_fdtable(files); |
| if (nr >= cur_fdt->max_fds || nr >= cur_fdt->max_fdset) { |
| /* Continue as planned */ |
| copy_fdtable(new_fdt, cur_fdt); |
| rcu_assign_pointer(files->fdt, new_fdt); |
| free_fdtable(cur_fdt); |
| } else { |
| /* Somebody else expanded, so undo our attempt */ |
| __free_fdtable(new_fdt); |
| } |
| return 1; |
| } |
| |
| /* |
| * Expand files. |
| * This function will expand the file structures, if the requested size exceeds |
| * the current capacity and there is room for expansion. |
| * Return <0 error code on error; 0 when nothing done; 1 when files were |
| * expanded and execution may have blocked. |
| * The files->file_lock should be held on entry, and will be held on exit. |
| */ |
| int expand_files(struct files_struct *files, int nr) |
| { |
| struct fdtable *fdt; |
| |
| fdt = files_fdtable(files); |
| /* Do we need to expand? */ |
| if (nr < fdt->max_fdset && nr < fdt->max_fds) |
| return 0; |
| /* Can we expand? */ |
| if (fdt->max_fdset >= NR_OPEN || fdt->max_fds >= NR_OPEN || |
| nr >= NR_OPEN) |
| return -EMFILE; |
| |
| /* All good, so we try */ |
| return expand_fdtable(files, nr); |
| } |
| |
| static void __devinit fdtable_defer_list_init(int cpu) |
| { |
| struct fdtable_defer *fddef = &per_cpu(fdtable_defer_list, cpu); |
| spin_lock_init(&fddef->lock); |
| INIT_WORK(&fddef->wq, free_fdtable_work); |
| init_timer(&fddef->timer); |
| fddef->timer.data = (unsigned long)fddef; |
| fddef->timer.function = fdtable_timer; |
| fddef->next = NULL; |
| } |
| |
| void __init files_defer_init(void) |
| { |
| int i; |
| for_each_possible_cpu(i) |
| fdtable_defer_list_init(i); |
| } |