| /* |
| * Copyright © 2010 Daniel Vetter |
| * Copyright © 2011-2014 Intel Corporation |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice (including the next |
| * paragraph) shall be included in all copies or substantial portions of the |
| * Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING |
| * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS |
| * IN THE SOFTWARE. |
| * |
| */ |
| |
| #include <linux/log2.h> |
| #include <linux/random.h> |
| #include <linux/seq_file.h> |
| #include <linux/stop_machine.h> |
| |
| #include <drm/drmP.h> |
| #include <drm/i915_drm.h> |
| |
| #include "i915_drv.h" |
| #include "i915_vgpu.h" |
| #include "i915_trace.h" |
| #include "intel_drv.h" |
| #include "intel_frontbuffer.h" |
| |
| #define I915_GFP_DMA (GFP_KERNEL | __GFP_HIGHMEM) |
| |
| /** |
| * DOC: Global GTT views |
| * |
| * Background and previous state |
| * |
| * Historically objects could exists (be bound) in global GTT space only as |
| * singular instances with a view representing all of the object's backing pages |
| * in a linear fashion. This view will be called a normal view. |
| * |
| * To support multiple views of the same object, where the number of mapped |
| * pages is not equal to the backing store, or where the layout of the pages |
| * is not linear, concept of a GGTT view was added. |
| * |
| * One example of an alternative view is a stereo display driven by a single |
| * image. In this case we would have a framebuffer looking like this |
| * (2x2 pages): |
| * |
| * 12 |
| * 34 |
| * |
| * Above would represent a normal GGTT view as normally mapped for GPU or CPU |
| * rendering. In contrast, fed to the display engine would be an alternative |
| * view which could look something like this: |
| * |
| * 1212 |
| * 3434 |
| * |
| * In this example both the size and layout of pages in the alternative view is |
| * different from the normal view. |
| * |
| * Implementation and usage |
| * |
| * GGTT views are implemented using VMAs and are distinguished via enum |
| * i915_ggtt_view_type and struct i915_ggtt_view. |
| * |
| * A new flavour of core GEM functions which work with GGTT bound objects were |
| * added with the _ggtt_ infix, and sometimes with _view postfix to avoid |
| * renaming in large amounts of code. They take the struct i915_ggtt_view |
| * parameter encapsulating all metadata required to implement a view. |
| * |
| * As a helper for callers which are only interested in the normal view, |
| * globally const i915_ggtt_view_normal singleton instance exists. All old core |
| * GEM API functions, the ones not taking the view parameter, are operating on, |
| * or with the normal GGTT view. |
| * |
| * Code wanting to add or use a new GGTT view needs to: |
| * |
| * 1. Add a new enum with a suitable name. |
| * 2. Extend the metadata in the i915_ggtt_view structure if required. |
| * 3. Add support to i915_get_vma_pages(). |
| * |
| * New views are required to build a scatter-gather table from within the |
| * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and |
| * exists for the lifetime of an VMA. |
| * |
| * Core API is designed to have copy semantics which means that passed in |
| * struct i915_ggtt_view does not need to be persistent (left around after |
| * calling the core API functions). |
| * |
| */ |
| |
| static int |
| i915_get_ggtt_vma_pages(struct i915_vma *vma); |
| |
| static void gen6_ggtt_invalidate(struct drm_i915_private *dev_priv) |
| { |
| /* Note that as an uncached mmio write, this should flush the |
| * WCB of the writes into the GGTT before it triggers the invalidate. |
| */ |
| I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN); |
| } |
| |
| static void guc_ggtt_invalidate(struct drm_i915_private *dev_priv) |
| { |
| gen6_ggtt_invalidate(dev_priv); |
| I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE); |
| } |
| |
| static void gmch_ggtt_invalidate(struct drm_i915_private *dev_priv) |
| { |
| intel_gtt_chipset_flush(); |
| } |
| |
| static inline void i915_ggtt_invalidate(struct drm_i915_private *i915) |
| { |
| i915->ggtt.invalidate(i915); |
| } |
| |
| int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv, |
| int enable_ppgtt) |
| { |
| bool has_aliasing_ppgtt; |
| bool has_full_ppgtt; |
| bool has_full_48bit_ppgtt; |
| |
| has_aliasing_ppgtt = dev_priv->info.has_aliasing_ppgtt; |
| has_full_ppgtt = dev_priv->info.has_full_ppgtt; |
| has_full_48bit_ppgtt = dev_priv->info.has_full_48bit_ppgtt; |
| |
| if (intel_vgpu_active(dev_priv)) { |
| /* emulation is too hard */ |
| has_full_ppgtt = false; |
| has_full_48bit_ppgtt = false; |
| } |
| |
| if (!has_aliasing_ppgtt) |
| return 0; |
| |
| /* |
| * We don't allow disabling PPGTT for gen9+ as it's a requirement for |
| * execlists, the sole mechanism available to submit work. |
| */ |
| if (enable_ppgtt == 0 && INTEL_GEN(dev_priv) < 9) |
| return 0; |
| |
| if (enable_ppgtt == 1) |
| return 1; |
| |
| if (enable_ppgtt == 2 && has_full_ppgtt) |
| return 2; |
| |
| if (enable_ppgtt == 3 && has_full_48bit_ppgtt) |
| return 3; |
| |
| #ifdef CONFIG_INTEL_IOMMU |
| /* Disable ppgtt on SNB if VT-d is on. */ |
| if (IS_GEN6(dev_priv) && intel_iommu_gfx_mapped) { |
| DRM_INFO("Disabling PPGTT because VT-d is on\n"); |
| return 0; |
| } |
| #endif |
| |
| /* Early VLV doesn't have this */ |
| if (IS_VALLEYVIEW(dev_priv) && dev_priv->drm.pdev->revision < 0xb) { |
| DRM_DEBUG_DRIVER("disabling PPGTT on pre-B3 step VLV\n"); |
| return 0; |
| } |
| |
| if (INTEL_GEN(dev_priv) >= 8 && i915.enable_execlists && has_full_ppgtt) |
| return has_full_48bit_ppgtt ? 3 : 2; |
| else |
| return has_aliasing_ppgtt ? 1 : 0; |
| } |
| |
| static int ppgtt_bind_vma(struct i915_vma *vma, |
| enum i915_cache_level cache_level, |
| u32 unused) |
| { |
| u32 pte_flags = 0; |
| |
| vma->pages = vma->obj->mm.pages; |
| |
| /* Currently applicable only to VLV */ |
| if (vma->obj->gt_ro) |
| pte_flags |= PTE_READ_ONLY; |
| |
| vma->vm->insert_entries(vma->vm, vma->pages, vma->node.start, |
| cache_level, pte_flags); |
| |
| return 0; |
| } |
| |
| static void ppgtt_unbind_vma(struct i915_vma *vma) |
| { |
| vma->vm->clear_range(vma->vm, |
| vma->node.start, |
| vma->size); |
| } |
| |
| static gen8_pte_t gen8_pte_encode(dma_addr_t addr, |
| enum i915_cache_level level) |
| { |
| gen8_pte_t pte = _PAGE_PRESENT | _PAGE_RW; |
| pte |= addr; |
| |
| switch (level) { |
| case I915_CACHE_NONE: |
| pte |= PPAT_UNCACHED_INDEX; |
| break; |
| case I915_CACHE_WT: |
| pte |= PPAT_DISPLAY_ELLC_INDEX; |
| break; |
| default: |
| pte |= PPAT_CACHED_INDEX; |
| break; |
| } |
| |
| return pte; |
| } |
| |
| static gen8_pde_t gen8_pde_encode(const dma_addr_t addr, |
| const enum i915_cache_level level) |
| { |
| gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW; |
| pde |= addr; |
| if (level != I915_CACHE_NONE) |
| pde |= PPAT_CACHED_PDE_INDEX; |
| else |
| pde |= PPAT_UNCACHED_INDEX; |
| return pde; |
| } |
| |
| #define gen8_pdpe_encode gen8_pde_encode |
| #define gen8_pml4e_encode gen8_pde_encode |
| |
| static gen6_pte_t snb_pte_encode(dma_addr_t addr, |
| enum i915_cache_level level, |
| u32 unused) |
| { |
| gen6_pte_t pte = GEN6_PTE_VALID; |
| pte |= GEN6_PTE_ADDR_ENCODE(addr); |
| |
| switch (level) { |
| case I915_CACHE_L3_LLC: |
| case I915_CACHE_LLC: |
| pte |= GEN6_PTE_CACHE_LLC; |
| break; |
| case I915_CACHE_NONE: |
| pte |= GEN6_PTE_UNCACHED; |
| break; |
| default: |
| MISSING_CASE(level); |
| } |
| |
| return pte; |
| } |
| |
| static gen6_pte_t ivb_pte_encode(dma_addr_t addr, |
| enum i915_cache_level level, |
| u32 unused) |
| { |
| gen6_pte_t pte = GEN6_PTE_VALID; |
| pte |= GEN6_PTE_ADDR_ENCODE(addr); |
| |
| switch (level) { |
| case I915_CACHE_L3_LLC: |
| pte |= GEN7_PTE_CACHE_L3_LLC; |
| break; |
| case I915_CACHE_LLC: |
| pte |= GEN6_PTE_CACHE_LLC; |
| break; |
| case I915_CACHE_NONE: |
| pte |= GEN6_PTE_UNCACHED; |
| break; |
| default: |
| MISSING_CASE(level); |
| } |
| |
| return pte; |
| } |
| |
| static gen6_pte_t byt_pte_encode(dma_addr_t addr, |
| enum i915_cache_level level, |
| u32 flags) |
| { |
| gen6_pte_t pte = GEN6_PTE_VALID; |
| pte |= GEN6_PTE_ADDR_ENCODE(addr); |
| |
| if (!(flags & PTE_READ_ONLY)) |
| pte |= BYT_PTE_WRITEABLE; |
| |
| if (level != I915_CACHE_NONE) |
| pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES; |
| |
| return pte; |
| } |
| |
| static gen6_pte_t hsw_pte_encode(dma_addr_t addr, |
| enum i915_cache_level level, |
| u32 unused) |
| { |
| gen6_pte_t pte = GEN6_PTE_VALID; |
| pte |= HSW_PTE_ADDR_ENCODE(addr); |
| |
| if (level != I915_CACHE_NONE) |
| pte |= HSW_WB_LLC_AGE3; |
| |
| return pte; |
| } |
| |
| static gen6_pte_t iris_pte_encode(dma_addr_t addr, |
| enum i915_cache_level level, |
| u32 unused) |
| { |
| gen6_pte_t pte = GEN6_PTE_VALID; |
| pte |= HSW_PTE_ADDR_ENCODE(addr); |
| |
| switch (level) { |
| case I915_CACHE_NONE: |
| break; |
| case I915_CACHE_WT: |
| pte |= HSW_WT_ELLC_LLC_AGE3; |
| break; |
| default: |
| pte |= HSW_WB_ELLC_LLC_AGE3; |
| break; |
| } |
| |
| return pte; |
| } |
| |
| static int __setup_page_dma(struct drm_i915_private *dev_priv, |
| struct i915_page_dma *p, gfp_t flags) |
| { |
| struct device *kdev = &dev_priv->drm.pdev->dev; |
| |
| p->page = alloc_page(flags); |
| if (!p->page) |
| return -ENOMEM; |
| |
| p->daddr = dma_map_page(kdev, |
| p->page, 0, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL); |
| |
| if (dma_mapping_error(kdev, p->daddr)) { |
| __free_page(p->page); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static int setup_page_dma(struct drm_i915_private *dev_priv, |
| struct i915_page_dma *p) |
| { |
| return __setup_page_dma(dev_priv, p, I915_GFP_DMA); |
| } |
| |
| static void cleanup_page_dma(struct drm_i915_private *dev_priv, |
| struct i915_page_dma *p) |
| { |
| struct pci_dev *pdev = dev_priv->drm.pdev; |
| |
| if (WARN_ON(!p->page)) |
| return; |
| |
| dma_unmap_page(&pdev->dev, p->daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL); |
| __free_page(p->page); |
| memset(p, 0, sizeof(*p)); |
| } |
| |
| static void *kmap_page_dma(struct i915_page_dma *p) |
| { |
| return kmap_atomic(p->page); |
| } |
| |
| /* We use the flushing unmap only with ppgtt structures: |
| * page directories, page tables and scratch pages. |
| */ |
| static void kunmap_page_dma(struct drm_i915_private *dev_priv, void *vaddr) |
| { |
| /* There are only few exceptions for gen >=6. chv and bxt. |
| * And we are not sure about the latter so play safe for now. |
| */ |
| if (IS_CHERRYVIEW(dev_priv) || IS_GEN9_LP(dev_priv)) |
| drm_clflush_virt_range(vaddr, PAGE_SIZE); |
| |
| kunmap_atomic(vaddr); |
| } |
| |
| #define kmap_px(px) kmap_page_dma(px_base(px)) |
| #define kunmap_px(ppgtt, vaddr) \ |
| kunmap_page_dma((ppgtt)->base.i915, (vaddr)) |
| |
| #define setup_px(dev_priv, px) setup_page_dma((dev_priv), px_base(px)) |
| #define cleanup_px(dev_priv, px) cleanup_page_dma((dev_priv), px_base(px)) |
| #define fill_px(dev_priv, px, v) fill_page_dma((dev_priv), px_base(px), (v)) |
| #define fill32_px(dev_priv, px, v) \ |
| fill_page_dma_32((dev_priv), px_base(px), (v)) |
| |
| static void fill_page_dma(struct drm_i915_private *dev_priv, |
| struct i915_page_dma *p, const uint64_t val) |
| { |
| int i; |
| uint64_t * const vaddr = kmap_page_dma(p); |
| |
| for (i = 0; i < 512; i++) |
| vaddr[i] = val; |
| |
| kunmap_page_dma(dev_priv, vaddr); |
| } |
| |
| static void fill_page_dma_32(struct drm_i915_private *dev_priv, |
| struct i915_page_dma *p, const uint32_t val32) |
| { |
| uint64_t v = val32; |
| |
| v = v << 32 | val32; |
| |
| fill_page_dma(dev_priv, p, v); |
| } |
| |
| static int |
| setup_scratch_page(struct drm_i915_private *dev_priv, |
| struct i915_page_dma *scratch, |
| gfp_t gfp) |
| { |
| return __setup_page_dma(dev_priv, scratch, gfp | __GFP_ZERO); |
| } |
| |
| static void cleanup_scratch_page(struct drm_i915_private *dev_priv, |
| struct i915_page_dma *scratch) |
| { |
| cleanup_page_dma(dev_priv, scratch); |
| } |
| |
| static struct i915_page_table *alloc_pt(struct drm_i915_private *dev_priv) |
| { |
| struct i915_page_table *pt; |
| const size_t count = INTEL_GEN(dev_priv) >= 8 ? GEN8_PTES : GEN6_PTES; |
| int ret = -ENOMEM; |
| |
| pt = kzalloc(sizeof(*pt), GFP_KERNEL); |
| if (!pt) |
| return ERR_PTR(-ENOMEM); |
| |
| pt->used_ptes = kcalloc(BITS_TO_LONGS(count), sizeof(*pt->used_ptes), |
| GFP_KERNEL); |
| |
| if (!pt->used_ptes) |
| goto fail_bitmap; |
| |
| ret = setup_px(dev_priv, pt); |
| if (ret) |
| goto fail_page_m; |
| |
| return pt; |
| |
| fail_page_m: |
| kfree(pt->used_ptes); |
| fail_bitmap: |
| kfree(pt); |
| |
| return ERR_PTR(ret); |
| } |
| |
| static void free_pt(struct drm_i915_private *dev_priv, |
| struct i915_page_table *pt) |
| { |
| cleanup_px(dev_priv, pt); |
| kfree(pt->used_ptes); |
| kfree(pt); |
| } |
| |
| static void gen8_initialize_pt(struct i915_address_space *vm, |
| struct i915_page_table *pt) |
| { |
| gen8_pte_t scratch_pte; |
| |
| scratch_pte = gen8_pte_encode(vm->scratch_page.daddr, |
| I915_CACHE_LLC); |
| |
| fill_px(vm->i915, pt, scratch_pte); |
| } |
| |
| static void gen6_initialize_pt(struct i915_address_space *vm, |
| struct i915_page_table *pt) |
| { |
| gen6_pte_t scratch_pte; |
| |
| WARN_ON(vm->scratch_page.daddr == 0); |
| |
| scratch_pte = vm->pte_encode(vm->scratch_page.daddr, |
| I915_CACHE_LLC, 0); |
| |
| fill32_px(vm->i915, pt, scratch_pte); |
| } |
| |
| static struct i915_page_directory *alloc_pd(struct drm_i915_private *dev_priv) |
| { |
| struct i915_page_directory *pd; |
| int ret = -ENOMEM; |
| |
| pd = kzalloc(sizeof(*pd), GFP_KERNEL); |
| if (!pd) |
| return ERR_PTR(-ENOMEM); |
| |
| pd->used_pdes = kcalloc(BITS_TO_LONGS(I915_PDES), |
| sizeof(*pd->used_pdes), GFP_KERNEL); |
| if (!pd->used_pdes) |
| goto fail_bitmap; |
| |
| ret = setup_px(dev_priv, pd); |
| if (ret) |
| goto fail_page_m; |
| |
| return pd; |
| |
| fail_page_m: |
| kfree(pd->used_pdes); |
| fail_bitmap: |
| kfree(pd); |
| |
| return ERR_PTR(ret); |
| } |
| |
| static void free_pd(struct drm_i915_private *dev_priv, |
| struct i915_page_directory *pd) |
| { |
| if (px_page(pd)) { |
| cleanup_px(dev_priv, pd); |
| kfree(pd->used_pdes); |
| kfree(pd); |
| } |
| } |
| |
| static void gen8_initialize_pd(struct i915_address_space *vm, |
| struct i915_page_directory *pd) |
| { |
| gen8_pde_t scratch_pde; |
| |
| scratch_pde = gen8_pde_encode(px_dma(vm->scratch_pt), I915_CACHE_LLC); |
| |
| fill_px(vm->i915, pd, scratch_pde); |
| } |
| |
| static int __pdp_init(struct drm_i915_private *dev_priv, |
| struct i915_page_directory_pointer *pdp) |
| { |
| size_t pdpes = I915_PDPES_PER_PDP(dev_priv); |
| |
| pdp->used_pdpes = kcalloc(BITS_TO_LONGS(pdpes), |
| sizeof(unsigned long), |
| GFP_KERNEL); |
| if (!pdp->used_pdpes) |
| return -ENOMEM; |
| |
| pdp->page_directory = kcalloc(pdpes, sizeof(*pdp->page_directory), |
| GFP_KERNEL); |
| if (!pdp->page_directory) { |
| kfree(pdp->used_pdpes); |
| /* the PDP might be the statically allocated top level. Keep it |
| * as clean as possible */ |
| pdp->used_pdpes = NULL; |
| return -ENOMEM; |
| } |
| |
| return 0; |
| } |
| |
| static void __pdp_fini(struct i915_page_directory_pointer *pdp) |
| { |
| kfree(pdp->used_pdpes); |
| kfree(pdp->page_directory); |
| pdp->page_directory = NULL; |
| } |
| |
| static struct |
| i915_page_directory_pointer *alloc_pdp(struct drm_i915_private *dev_priv) |
| { |
| struct i915_page_directory_pointer *pdp; |
| int ret = -ENOMEM; |
| |
| WARN_ON(!USES_FULL_48BIT_PPGTT(dev_priv)); |
| |
| pdp = kzalloc(sizeof(*pdp), GFP_KERNEL); |
| if (!pdp) |
| return ERR_PTR(-ENOMEM); |
| |
| ret = __pdp_init(dev_priv, pdp); |
| if (ret) |
| goto fail_bitmap; |
| |
| ret = setup_px(dev_priv, pdp); |
| if (ret) |
| goto fail_page_m; |
| |
| return pdp; |
| |
| fail_page_m: |
| __pdp_fini(pdp); |
| fail_bitmap: |
| kfree(pdp); |
| |
| return ERR_PTR(ret); |
| } |
| |
| static void free_pdp(struct drm_i915_private *dev_priv, |
| struct i915_page_directory_pointer *pdp) |
| { |
| __pdp_fini(pdp); |
| if (USES_FULL_48BIT_PPGTT(dev_priv)) { |
| cleanup_px(dev_priv, pdp); |
| kfree(pdp); |
| } |
| } |
| |
| static void gen8_initialize_pdp(struct i915_address_space *vm, |
| struct i915_page_directory_pointer *pdp) |
| { |
| gen8_ppgtt_pdpe_t scratch_pdpe; |
| |
| scratch_pdpe = gen8_pdpe_encode(px_dma(vm->scratch_pd), I915_CACHE_LLC); |
| |
| fill_px(vm->i915, pdp, scratch_pdpe); |
| } |
| |
| static void gen8_initialize_pml4(struct i915_address_space *vm, |
| struct i915_pml4 *pml4) |
| { |
| gen8_ppgtt_pml4e_t scratch_pml4e; |
| |
| scratch_pml4e = gen8_pml4e_encode(px_dma(vm->scratch_pdp), |
| I915_CACHE_LLC); |
| |
| fill_px(vm->i915, pml4, scratch_pml4e); |
| } |
| |
| static void |
| gen8_setup_pdpe(struct i915_hw_ppgtt *ppgtt, |
| struct i915_page_directory_pointer *pdp, |
| struct i915_page_directory *pd, |
| int index) |
| { |
| gen8_ppgtt_pdpe_t *page_directorypo; |
| |
| if (!USES_FULL_48BIT_PPGTT(to_i915(ppgtt->base.dev))) |
| return; |
| |
| page_directorypo = kmap_px(pdp); |
| page_directorypo[index] = gen8_pdpe_encode(px_dma(pd), I915_CACHE_LLC); |
| kunmap_px(ppgtt, page_directorypo); |
| } |
| |
| static void |
| gen8_setup_pml4e(struct i915_hw_ppgtt *ppgtt, |
| struct i915_pml4 *pml4, |
| struct i915_page_directory_pointer *pdp, |
| int index) |
| { |
| gen8_ppgtt_pml4e_t *pagemap = kmap_px(pml4); |
| |
| WARN_ON(!USES_FULL_48BIT_PPGTT(to_i915(ppgtt->base.dev))); |
| pagemap[index] = gen8_pml4e_encode(px_dma(pdp), I915_CACHE_LLC); |
| kunmap_px(ppgtt, pagemap); |
| } |
| |
| /* Broadwell Page Directory Pointer Descriptors */ |
| static int gen8_write_pdp(struct drm_i915_gem_request *req, |
| unsigned entry, |
| dma_addr_t addr) |
| { |
| struct intel_ring *ring = req->ring; |
| struct intel_engine_cs *engine = req->engine; |
| int ret; |
| |
| BUG_ON(entry >= 4); |
| |
| ret = intel_ring_begin(req, 6); |
| if (ret) |
| return ret; |
| |
| intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1)); |
| intel_ring_emit_reg(ring, GEN8_RING_PDP_UDW(engine, entry)); |
| intel_ring_emit(ring, upper_32_bits(addr)); |
| intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1)); |
| intel_ring_emit_reg(ring, GEN8_RING_PDP_LDW(engine, entry)); |
| intel_ring_emit(ring, lower_32_bits(addr)); |
| intel_ring_advance(ring); |
| |
| return 0; |
| } |
| |
| static int gen8_legacy_mm_switch(struct i915_hw_ppgtt *ppgtt, |
| struct drm_i915_gem_request *req) |
| { |
| int i, ret; |
| |
| for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) { |
| const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i); |
| |
| ret = gen8_write_pdp(req, i, pd_daddr); |
| if (ret) |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static int gen8_48b_mm_switch(struct i915_hw_ppgtt *ppgtt, |
| struct drm_i915_gem_request *req) |
| { |
| return gen8_write_pdp(req, 0, px_dma(&ppgtt->pml4)); |
| } |
| |
| /* PDE TLBs are a pain to invalidate on GEN8+. When we modify |
| * the page table structures, we mark them dirty so that |
| * context switching/execlist queuing code takes extra steps |
| * to ensure that tlbs are flushed. |
| */ |
| static void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt) |
| { |
| ppgtt->pd_dirty_rings = INTEL_INFO(ppgtt->base.i915)->ring_mask; |
| } |
| |
| /* Removes entries from a single page table, releasing it if it's empty. |
| * Caller can use the return value to update higher-level entries. |
| */ |
| static bool gen8_ppgtt_clear_pt(struct i915_address_space *vm, |
| struct i915_page_table *pt, |
| uint64_t start, |
| uint64_t length) |
| { |
| struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm); |
| unsigned int num_entries = gen8_pte_count(start, length); |
| unsigned int pte = gen8_pte_index(start); |
| unsigned int pte_end = pte + num_entries; |
| gen8_pte_t *pt_vaddr; |
| gen8_pte_t scratch_pte = gen8_pte_encode(vm->scratch_page.daddr, |
| I915_CACHE_LLC); |
| |
| if (WARN_ON(!px_page(pt))) |
| return false; |
| |
| GEM_BUG_ON(pte_end > GEN8_PTES); |
| |
| bitmap_clear(pt->used_ptes, pte, num_entries); |
| if (USES_FULL_PPGTT(vm->i915)) { |
| if (bitmap_empty(pt->used_ptes, GEN8_PTES)) |
| return true; |
| } |
| |
| pt_vaddr = kmap_px(pt); |
| |
| while (pte < pte_end) |
| pt_vaddr[pte++] = scratch_pte; |
| |
| kunmap_px(ppgtt, pt_vaddr); |
| |
| return false; |
| } |
| |
| /* Removes entries from a single page dir, releasing it if it's empty. |
| * Caller can use the return value to update higher-level entries |
| */ |
| static bool gen8_ppgtt_clear_pd(struct i915_address_space *vm, |
| struct i915_page_directory *pd, |
| uint64_t start, |
| uint64_t length) |
| { |
| struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm); |
| struct i915_page_table *pt; |
| uint64_t pde; |
| gen8_pde_t *pde_vaddr; |
| gen8_pde_t scratch_pde = gen8_pde_encode(px_dma(vm->scratch_pt), |
| I915_CACHE_LLC); |
| |
| gen8_for_each_pde(pt, pd, start, length, pde) { |
| if (WARN_ON(!pd->page_table[pde])) |
| break; |
| |
| if (gen8_ppgtt_clear_pt(vm, pt, start, length)) { |
| __clear_bit(pde, pd->used_pdes); |
| pde_vaddr = kmap_px(pd); |
| pde_vaddr[pde] = scratch_pde; |
| kunmap_px(ppgtt, pde_vaddr); |
| free_pt(vm->i915, pt); |
| } |
| } |
| |
| if (bitmap_empty(pd->used_pdes, I915_PDES)) |
| return true; |
| |
| return false; |
| } |
| |
| /* Removes entries from a single page dir pointer, releasing it if it's empty. |
| * Caller can use the return value to update higher-level entries |
| */ |
| static bool gen8_ppgtt_clear_pdp(struct i915_address_space *vm, |
| struct i915_page_directory_pointer *pdp, |
| uint64_t start, |
| uint64_t length) |
| { |
| struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm); |
| struct i915_page_directory *pd; |
| uint64_t pdpe; |
| |
| gen8_for_each_pdpe(pd, pdp, start, length, pdpe) { |
| if (WARN_ON(!pdp->page_directory[pdpe])) |
| break; |
| |
| if (gen8_ppgtt_clear_pd(vm, pd, start, length)) { |
| __clear_bit(pdpe, pdp->used_pdpes); |
| gen8_setup_pdpe(ppgtt, pdp, vm->scratch_pd, pdpe); |
| free_pd(vm->i915, pd); |
| } |
| } |
| |
| mark_tlbs_dirty(ppgtt); |
| |
| if (bitmap_empty(pdp->used_pdpes, I915_PDPES_PER_PDP(dev_priv))) |
| return true; |
| |
| return false; |
| } |
| |
| /* Removes entries from a single pml4. |
| * This is the top-level structure in 4-level page tables used on gen8+. |
| * Empty entries are always scratch pml4e. |
| */ |
| static void gen8_ppgtt_clear_pml4(struct i915_address_space *vm, |
| struct i915_pml4 *pml4, |
| uint64_t start, |
| uint64_t length) |
| { |
| struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm); |
| struct i915_page_directory_pointer *pdp; |
| uint64_t pml4e; |
| |
| GEM_BUG_ON(!USES_FULL_48BIT_PPGTT(vm->i915)); |
| |
| gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) { |
| if (WARN_ON(!pml4->pdps[pml4e])) |
| break; |
| |
| if (gen8_ppgtt_clear_pdp(vm, pdp, start, length)) { |
| __clear_bit(pml4e, pml4->used_pml4es); |
| gen8_setup_pml4e(ppgtt, pml4, vm->scratch_pdp, pml4e); |
| free_pdp(vm->i915, pdp); |
| } |
| } |
| } |
| |
| static void gen8_ppgtt_clear_range(struct i915_address_space *vm, |
| uint64_t start, uint64_t length) |
| { |
| struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm); |
| |
| if (USES_FULL_48BIT_PPGTT(vm->i915)) |
| gen8_ppgtt_clear_pml4(vm, &ppgtt->pml4, start, length); |
| else |
| gen8_ppgtt_clear_pdp(vm, &ppgtt->pdp, start, length); |
| } |
| |
| static void |
| gen8_ppgtt_insert_pte_entries(struct i915_address_space *vm, |
| struct i915_page_directory_pointer *pdp, |
| struct sg_page_iter *sg_iter, |
| uint64_t start, |
| enum i915_cache_level cache_level) |
| { |
| struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm); |
| gen8_pte_t *pt_vaddr; |
| unsigned pdpe = gen8_pdpe_index(start); |
| unsigned pde = gen8_pde_index(start); |
| unsigned pte = gen8_pte_index(start); |
| |
| pt_vaddr = NULL; |
| |
| while (__sg_page_iter_next(sg_iter)) { |
| if (pt_vaddr == NULL) { |
| struct i915_page_directory *pd = pdp->page_directory[pdpe]; |
| struct i915_page_table *pt = pd->page_table[pde]; |
| pt_vaddr = kmap_px(pt); |
| } |
| |
| pt_vaddr[pte] = |
| gen8_pte_encode(sg_page_iter_dma_address(sg_iter), |
| cache_level); |
| if (++pte == GEN8_PTES) { |
| kunmap_px(ppgtt, pt_vaddr); |
| pt_vaddr = NULL; |
| if (++pde == I915_PDES) { |
| if (++pdpe == I915_PDPES_PER_PDP(vm->i915)) |
| break; |
| pde = 0; |
| } |
| pte = 0; |
| } |
| } |
| |
| if (pt_vaddr) |
| kunmap_px(ppgtt, pt_vaddr); |
| } |
| |
| static void gen8_ppgtt_insert_entries(struct i915_address_space *vm, |
| struct sg_table *pages, |
| uint64_t start, |
| enum i915_cache_level cache_level, |
| u32 unused) |
| { |
| struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm); |
| struct sg_page_iter sg_iter; |
| |
| __sg_page_iter_start(&sg_iter, pages->sgl, sg_nents(pages->sgl), 0); |
| |
| if (!USES_FULL_48BIT_PPGTT(vm->i915)) { |
| gen8_ppgtt_insert_pte_entries(vm, &ppgtt->pdp, &sg_iter, start, |
| cache_level); |
| } else { |
| struct i915_page_directory_pointer *pdp; |
| uint64_t pml4e; |
| uint64_t length = (uint64_t)pages->orig_nents << PAGE_SHIFT; |
| |
| gen8_for_each_pml4e(pdp, &ppgtt->pml4, start, length, pml4e) { |
| gen8_ppgtt_insert_pte_entries(vm, pdp, &sg_iter, |
| start, cache_level); |
| } |
| } |
| } |
| |
| static void gen8_free_page_tables(struct drm_i915_private *dev_priv, |
| struct i915_page_directory *pd) |
| { |
| int i; |
| |
| if (!px_page(pd)) |
| return; |
| |
| for_each_set_bit(i, pd->used_pdes, I915_PDES) { |
| if (WARN_ON(!pd->page_table[i])) |
| continue; |
| |
| free_pt(dev_priv, pd->page_table[i]); |
| pd->page_table[i] = NULL; |
| } |
| } |
| |
| static int gen8_init_scratch(struct i915_address_space *vm) |
| { |
| struct drm_i915_private *dev_priv = vm->i915; |
| int ret; |
| |
| ret = setup_scratch_page(dev_priv, &vm->scratch_page, I915_GFP_DMA); |
| if (ret) |
| return ret; |
| |
| vm->scratch_pt = alloc_pt(dev_priv); |
| if (IS_ERR(vm->scratch_pt)) { |
| ret = PTR_ERR(vm->scratch_pt); |
| goto free_scratch_page; |
| } |
| |
| vm->scratch_pd = alloc_pd(dev_priv); |
| if (IS_ERR(vm->scratch_pd)) { |
| ret = PTR_ERR(vm->scratch_pd); |
| goto free_pt; |
| } |
| |
| if (USES_FULL_48BIT_PPGTT(dev_priv)) { |
| vm->scratch_pdp = alloc_pdp(dev_priv); |
| if (IS_ERR(vm->scratch_pdp)) { |
| ret = PTR_ERR(vm->scratch_pdp); |
| goto free_pd; |
| } |
| } |
| |
| gen8_initialize_pt(vm, vm->scratch_pt); |
| gen8_initialize_pd(vm, vm->scratch_pd); |
| if (USES_FULL_48BIT_PPGTT(dev_priv)) |
| gen8_initialize_pdp(vm, vm->scratch_pdp); |
| |
| return 0; |
| |
| free_pd: |
| free_pd(dev_priv, vm->scratch_pd); |
| free_pt: |
| free_pt(dev_priv, vm->scratch_pt); |
| free_scratch_page: |
| cleanup_scratch_page(dev_priv, &vm->scratch_page); |
| |
| return ret; |
| } |
| |
| static int gen8_ppgtt_notify_vgt(struct i915_hw_ppgtt *ppgtt, bool create) |
| { |
| enum vgt_g2v_type msg; |
| struct drm_i915_private *dev_priv = ppgtt->base.i915; |
| int i; |
| |
| if (USES_FULL_48BIT_PPGTT(dev_priv)) { |
| u64 daddr = px_dma(&ppgtt->pml4); |
| |
| I915_WRITE(vgtif_reg(pdp[0].lo), lower_32_bits(daddr)); |
| I915_WRITE(vgtif_reg(pdp[0].hi), upper_32_bits(daddr)); |
| |
| msg = (create ? VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE : |
| VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY); |
| } else { |
| for (i = 0; i < GEN8_LEGACY_PDPES; i++) { |
| u64 daddr = i915_page_dir_dma_addr(ppgtt, i); |
| |
| I915_WRITE(vgtif_reg(pdp[i].lo), lower_32_bits(daddr)); |
| I915_WRITE(vgtif_reg(pdp[i].hi), upper_32_bits(daddr)); |
| } |
| |
| msg = (create ? VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE : |
| VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY); |
| } |
| |
| I915_WRITE(vgtif_reg(g2v_notify), msg); |
| |
| return 0; |
| } |
| |
| static void gen8_free_scratch(struct i915_address_space *vm) |
| { |
| struct drm_i915_private *dev_priv = vm->i915; |
| |
| if (USES_FULL_48BIT_PPGTT(dev_priv)) |
| free_pdp(dev_priv, vm->scratch_pdp); |
| free_pd(dev_priv, vm->scratch_pd); |
| free_pt(dev_priv, vm->scratch_pt); |
| cleanup_scratch_page(dev_priv, &vm->scratch_page); |
| } |
| |
| static void gen8_ppgtt_cleanup_3lvl(struct drm_i915_private *dev_priv, |
| struct i915_page_directory_pointer *pdp) |
| { |
| int i; |
| |
| for_each_set_bit(i, pdp->used_pdpes, I915_PDPES_PER_PDP(dev_priv)) { |
| if (WARN_ON(!pdp->page_directory[i])) |
| continue; |
| |
| gen8_free_page_tables(dev_priv, pdp->page_directory[i]); |
| free_pd(dev_priv, pdp->page_directory[i]); |
| } |
| |
| free_pdp(dev_priv, pdp); |
| } |
| |
| static void gen8_ppgtt_cleanup_4lvl(struct i915_hw_ppgtt *ppgtt) |
| { |
| struct drm_i915_private *dev_priv = ppgtt->base.i915; |
| int i; |
| |
| for_each_set_bit(i, ppgtt->pml4.used_pml4es, GEN8_PML4ES_PER_PML4) { |
| if (WARN_ON(!ppgtt->pml4.pdps[i])) |
| continue; |
| |
| gen8_ppgtt_cleanup_3lvl(dev_priv, ppgtt->pml4.pdps[i]); |
| } |
| |
| cleanup_px(dev_priv, &ppgtt->pml4); |
| } |
| |
| static void gen8_ppgtt_cleanup(struct i915_address_space *vm) |
| { |
| struct drm_i915_private *dev_priv = vm->i915; |
| struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm); |
| |
| if (intel_vgpu_active(dev_priv)) |
| gen8_ppgtt_notify_vgt(ppgtt, false); |
| |
| if (!USES_FULL_48BIT_PPGTT(dev_priv)) |
| gen8_ppgtt_cleanup_3lvl(dev_priv, &ppgtt->pdp); |
| else |
| gen8_ppgtt_cleanup_4lvl(ppgtt); |
| |
| gen8_free_scratch(vm); |
| } |
| |
| /** |
| * gen8_ppgtt_alloc_pagetabs() - Allocate page tables for VA range. |
| * @vm: Master vm structure. |
| * @pd: Page directory for this address range. |
| * @start: Starting virtual address to begin allocations. |
| * @length: Size of the allocations. |
| * @new_pts: Bitmap set by function with new allocations. Likely used by the |
| * caller to free on error. |
| * |
| * Allocate the required number of page tables. Extremely similar to |
| * gen8_ppgtt_alloc_page_directories(). The main difference is here we are limited by |
| * the page directory boundary (instead of the page directory pointer). That |
| * boundary is 1GB virtual. Therefore, unlike gen8_ppgtt_alloc_page_directories(), it is |
| * possible, and likely that the caller will need to use multiple calls of this |
| * function to achieve the appropriate allocation. |
| * |
| * Return: 0 if success; negative error code otherwise. |
| */ |
| static int gen8_ppgtt_alloc_pagetabs(struct i915_address_space *vm, |
| struct i915_page_directory *pd, |
| uint64_t start, |
| uint64_t length, |
| unsigned long *new_pts) |
| { |
| struct drm_i915_private *dev_priv = vm->i915; |
| struct i915_page_table *pt; |
| uint32_t pde; |
| |
| gen8_for_each_pde(pt, pd, start, length, pde) { |
| /* Don't reallocate page tables */ |
| if (test_bit(pde, pd->used_pdes)) { |
| /* Scratch is never allocated this way */ |
| WARN_ON(pt == vm->scratch_pt); |
| continue; |
| } |
| |
| pt = alloc_pt(dev_priv); |
| if (IS_ERR(pt)) |
| goto unwind_out; |
| |
| gen8_initialize_pt(vm, pt); |
| pd->page_table[pde] = pt; |
| __set_bit(pde, new_pts); |
| trace_i915_page_table_entry_alloc(vm, pde, start, GEN8_PDE_SHIFT); |
| } |
| |
| return 0; |
| |
| unwind_out: |
| for_each_set_bit(pde, new_pts, I915_PDES) |
| free_pt(dev_priv, pd->page_table[pde]); |
| |
| return -ENOMEM; |
| } |
| |
| /** |
| * gen8_ppgtt_alloc_page_directories() - Allocate page directories for VA range. |
| * @vm: Master vm structure. |
| * @pdp: Page directory pointer for this address range. |
| * @start: Starting virtual address to begin allocations. |
| * @length: Size of the allocations. |
| * @new_pds: Bitmap set by function with new allocations. Likely used by the |
| * caller to free on error. |
| * |
| * Allocate the required number of page directories starting at the pde index of |
| * @start, and ending at the pde index @start + @length. This function will skip |
| * over already allocated page directories within the range, and only allocate |
| * new ones, setting the appropriate pointer within the pdp as well as the |
| * correct position in the bitmap @new_pds. |
| * |
| * The function will only allocate the pages within the range for a give page |
| * directory pointer. In other words, if @start + @length straddles a virtually |
| * addressed PDP boundary (512GB for 4k pages), there will be more allocations |
| * required by the caller, This is not currently possible, and the BUG in the |
| * code will prevent it. |
| * |
| * Return: 0 if success; negative error code otherwise. |
| */ |
| static int |
| gen8_ppgtt_alloc_page_directories(struct i915_address_space *vm, |
| struct i915_page_directory_pointer *pdp, |
| uint64_t start, |
| uint64_t length, |
| unsigned long *new_pds) |
| { |
| struct drm_i915_private *dev_priv = vm->i915; |
| struct i915_page_directory *pd; |
| uint32_t pdpe; |
| uint32_t pdpes = I915_PDPES_PER_PDP(dev_priv); |
| |
| WARN_ON(!bitmap_empty(new_pds, pdpes)); |
| |
| gen8_for_each_pdpe(pd, pdp, start, length, pdpe) { |
| if (test_bit(pdpe, pdp->used_pdpes)) |
| continue; |
| |
| pd = alloc_pd(dev_priv); |
| if (IS_ERR(pd)) |
| goto unwind_out; |
| |
| gen8_initialize_pd(vm, pd); |
| pdp->page_directory[pdpe] = pd; |
| __set_bit(pdpe, new_pds); |
| trace_i915_page_directory_entry_alloc(vm, pdpe, start, GEN8_PDPE_SHIFT); |
| } |
| |
| return 0; |
| |
| unwind_out: |
| for_each_set_bit(pdpe, new_pds, pdpes) |
| free_pd(dev_priv, pdp->page_directory[pdpe]); |
| |
| return -ENOMEM; |
| } |
| |
| /** |
| * gen8_ppgtt_alloc_page_dirpointers() - Allocate pdps for VA range. |
| * @vm: Master vm structure. |
| * @pml4: Page map level 4 for this address range. |
| * @start: Starting virtual address to begin allocations. |
| * @length: Size of the allocations. |
| * @new_pdps: Bitmap set by function with new allocations. Likely used by the |
| * caller to free on error. |
| * |
| * Allocate the required number of page directory pointers. Extremely similar to |
| * gen8_ppgtt_alloc_page_directories() and gen8_ppgtt_alloc_pagetabs(). |
| * The main difference is here we are limited by the pml4 boundary (instead of |
| * the page directory pointer). |
| * |
| * Return: 0 if success; negative error code otherwise. |
| */ |
| static int |
| gen8_ppgtt_alloc_page_dirpointers(struct i915_address_space *vm, |
| struct i915_pml4 *pml4, |
| uint64_t start, |
| uint64_t length, |
| unsigned long *new_pdps) |
| { |
| struct drm_i915_private *dev_priv = vm->i915; |
| struct i915_page_directory_pointer *pdp; |
| uint32_t pml4e; |
| |
| WARN_ON(!bitmap_empty(new_pdps, GEN8_PML4ES_PER_PML4)); |
| |
| gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) { |
| if (!test_bit(pml4e, pml4->used_pml4es)) { |
| pdp = alloc_pdp(dev_priv); |
| if (IS_ERR(pdp)) |
| goto unwind_out; |
| |
| gen8_initialize_pdp(vm, pdp); |
| pml4->pdps[pml4e] = pdp; |
| __set_bit(pml4e, new_pdps); |
| trace_i915_page_directory_pointer_entry_alloc(vm, |
| pml4e, |
| start, |
| GEN8_PML4E_SHIFT); |
| } |
| } |
| |
| return 0; |
| |
| unwind_out: |
| for_each_set_bit(pml4e, new_pdps, GEN8_PML4ES_PER_PML4) |
| free_pdp(dev_priv, pml4->pdps[pml4e]); |
| |
| return -ENOMEM; |
| } |
| |
| static void |
| free_gen8_temp_bitmaps(unsigned long *new_pds, unsigned long *new_pts) |
| { |
| kfree(new_pts); |
| kfree(new_pds); |
| } |
| |
| /* Fills in the page directory bitmap, and the array of page tables bitmap. Both |
| * of these are based on the number of PDPEs in the system. |
| */ |
| static |
| int __must_check alloc_gen8_temp_bitmaps(unsigned long **new_pds, |
| unsigned long **new_pts, |
| uint32_t pdpes) |
| { |
| unsigned long *pds; |
| unsigned long *pts; |
| |
| pds = kcalloc(BITS_TO_LONGS(pdpes), sizeof(unsigned long), GFP_TEMPORARY); |
| if (!pds) |
| return -ENOMEM; |
| |
| pts = kcalloc(pdpes, BITS_TO_LONGS(I915_PDES) * sizeof(unsigned long), |
| GFP_TEMPORARY); |
| if (!pts) |
| goto err_out; |
| |
| *new_pds = pds; |
| *new_pts = pts; |
| |
| return 0; |
| |
| err_out: |
| free_gen8_temp_bitmaps(pds, pts); |
| return -ENOMEM; |
| } |
| |
| static int gen8_alloc_va_range_3lvl(struct i915_address_space *vm, |
| struct i915_page_directory_pointer *pdp, |
| uint64_t start, |
| uint64_t length) |
| { |
| struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm); |
| unsigned long *new_page_dirs, *new_page_tables; |
| struct drm_i915_private *dev_priv = vm->i915; |
| struct i915_page_directory *pd; |
| const uint64_t orig_start = start; |
| const uint64_t orig_length = length; |
| uint32_t pdpe; |
| uint32_t pdpes = I915_PDPES_PER_PDP(dev_priv); |
| int ret; |
| |
| ret = alloc_gen8_temp_bitmaps(&new_page_dirs, &new_page_tables, pdpes); |
| if (ret) |
| return ret; |
| |
| /* Do the allocations first so we can easily bail out */ |
| ret = gen8_ppgtt_alloc_page_directories(vm, pdp, start, length, |
| new_page_dirs); |
| if (ret) { |
| free_gen8_temp_bitmaps(new_page_dirs, new_page_tables); |
| return ret; |
| } |
| |
| /* For every page directory referenced, allocate page tables */ |
| gen8_for_each_pdpe(pd, pdp, start, length, pdpe) { |
| ret = gen8_ppgtt_alloc_pagetabs(vm, pd, start, length, |
| new_page_tables + pdpe * BITS_TO_LONGS(I915_PDES)); |
| if (ret) |
| goto err_out; |
| } |
| |
| start = orig_start; |
| length = orig_length; |
| |
| /* Allocations have completed successfully, so set the bitmaps, and do |
| * the mappings. */ |
| gen8_for_each_pdpe(pd, pdp, start, length, pdpe) { |
| gen8_pde_t *const page_directory = kmap_px(pd); |
| struct i915_page_table *pt; |
| uint64_t pd_len = length; |
| uint64_t pd_start = start; |
| uint32_t pde; |
| |
| /* Every pd should be allocated, we just did that above. */ |
| WARN_ON(!pd); |
| |
| gen8_for_each_pde(pt, pd, pd_start, pd_len, pde) { |
| /* Same reasoning as pd */ |
| WARN_ON(!pt); |
| WARN_ON(!pd_len); |
| WARN_ON(!gen8_pte_count(pd_start, pd_len)); |
| |
| /* Set our used ptes within the page table */ |
| bitmap_set(pt->used_ptes, |
| gen8_pte_index(pd_start), |
| gen8_pte_count(pd_start, pd_len)); |
| |
| /* Our pde is now pointing to the pagetable, pt */ |
| __set_bit(pde, pd->used_pdes); |
| |
| /* Map the PDE to the page table */ |
| page_directory[pde] = gen8_pde_encode(px_dma(pt), |
| I915_CACHE_LLC); |
| trace_i915_page_table_entry_map(&ppgtt->base, pde, pt, |
| gen8_pte_index(start), |
| gen8_pte_count(start, length), |
| GEN8_PTES); |
| |
| /* NB: We haven't yet mapped ptes to pages. At this |
| * point we're still relying on insert_entries() */ |
| } |
| |
| kunmap_px(ppgtt, page_directory); |
| __set_bit(pdpe, pdp->used_pdpes); |
| gen8_setup_pdpe(ppgtt, pdp, pd, pdpe); |
| } |
| |
| free_gen8_temp_bitmaps(new_page_dirs, new_page_tables); |
| mark_tlbs_dirty(ppgtt); |
| return 0; |
| |
| err_out: |
| while (pdpe--) { |
| unsigned long temp; |
| |
| for_each_set_bit(temp, new_page_tables + pdpe * |
| BITS_TO_LONGS(I915_PDES), I915_PDES) |
| free_pt(dev_priv, |
| pdp->page_directory[pdpe]->page_table[temp]); |
| } |
| |
| for_each_set_bit(pdpe, new_page_dirs, pdpes) |
| free_pd(dev_priv, pdp->page_directory[pdpe]); |
| |
| free_gen8_temp_bitmaps(new_page_dirs, new_page_tables); |
| mark_tlbs_dirty(ppgtt); |
| return ret; |
| } |
| |
| static int gen8_alloc_va_range_4lvl(struct i915_address_space *vm, |
| struct i915_pml4 *pml4, |
| uint64_t start, |
| uint64_t length) |
| { |
| DECLARE_BITMAP(new_pdps, GEN8_PML4ES_PER_PML4); |
| struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm); |
| struct i915_page_directory_pointer *pdp; |
| uint64_t pml4e; |
| int ret = 0; |
| |
| /* Do the pml4 allocations first, so we don't need to track the newly |
| * allocated tables below the pdp */ |
| bitmap_zero(new_pdps, GEN8_PML4ES_PER_PML4); |
| |
| /* The pagedirectory and pagetable allocations are done in the shared 3 |
| * and 4 level code. Just allocate the pdps. |
| */ |
| ret = gen8_ppgtt_alloc_page_dirpointers(vm, pml4, start, length, |
| new_pdps); |
| if (ret) |
| return ret; |
| |
| gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) { |
| WARN_ON(!pdp); |
| |
| ret = gen8_alloc_va_range_3lvl(vm, pdp, start, length); |
| if (ret) |
| goto err_out; |
| |
| gen8_setup_pml4e(ppgtt, pml4, pdp, pml4e); |
| } |
| |
| bitmap_or(pml4->used_pml4es, new_pdps, pml4->used_pml4es, |
| GEN8_PML4ES_PER_PML4); |
| |
| return 0; |
| |
| err_out: |
| for_each_set_bit(pml4e, new_pdps, GEN8_PML4ES_PER_PML4) |
| gen8_ppgtt_cleanup_3lvl(vm->i915, pml4->pdps[pml4e]); |
| |
| return ret; |
| } |
| |
| static int gen8_alloc_va_range(struct i915_address_space *vm, |
| uint64_t start, uint64_t length) |
| { |
| struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm); |
| |
| if (USES_FULL_48BIT_PPGTT(vm->i915)) |
| return gen8_alloc_va_range_4lvl(vm, &ppgtt->pml4, start, length); |
| else |
| return gen8_alloc_va_range_3lvl(vm, &ppgtt->pdp, start, length); |
| } |
| |
| static void gen8_dump_pdp(struct i915_page_directory_pointer *pdp, |
| uint64_t start, uint64_t length, |
| gen8_pte_t scratch_pte, |
| struct seq_file *m) |
| { |
| struct i915_page_directory *pd; |
| uint32_t pdpe; |
| |
| gen8_for_each_pdpe(pd, pdp, start, length, pdpe) { |
| struct i915_page_table *pt; |
| uint64_t pd_len = length; |
| uint64_t pd_start = start; |
| uint32_t pde; |
| |
| if (!test_bit(pdpe, pdp->used_pdpes)) |
| continue; |
| |
| seq_printf(m, "\tPDPE #%d\n", pdpe); |
| gen8_for_each_pde(pt, pd, pd_start, pd_len, pde) { |
| uint32_t pte; |
| gen8_pte_t *pt_vaddr; |
| |
| if (!test_bit(pde, pd->used_pdes)) |
| continue; |
| |
| pt_vaddr = kmap_px(pt); |
| for (pte = 0; pte < GEN8_PTES; pte += 4) { |
| uint64_t va = |
| (pdpe << GEN8_PDPE_SHIFT) | |
| (pde << GEN8_PDE_SHIFT) | |
| (pte << GEN8_PTE_SHIFT); |
| int i; |
| bool found = false; |
| |
| for (i = 0; i < 4; i++) |
| if (pt_vaddr[pte + i] != scratch_pte) |
| found = true; |
| if (!found) |
| continue; |
| |
| seq_printf(m, "\t\t0x%llx [%03d,%03d,%04d]: =", va, pdpe, pde, pte); |
| for (i = 0; i < 4; i++) { |
| if (pt_vaddr[pte + i] != scratch_pte) |
| seq_printf(m, " %llx", pt_vaddr[pte + i]); |
| else |
| seq_puts(m, " SCRATCH "); |
| } |
| seq_puts(m, "\n"); |
| } |
| /* don't use kunmap_px, it could trigger |
| * an unnecessary flush. |
| */ |
| kunmap_atomic(pt_vaddr); |
| } |
| } |
| } |
| |
| static void gen8_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m) |
| { |
| struct i915_address_space *vm = &ppgtt->base; |
| uint64_t start = ppgtt->base.start; |
| uint64_t length = ppgtt->base.total; |
| gen8_pte_t scratch_pte = gen8_pte_encode(vm->scratch_page.daddr, |
| I915_CACHE_LLC); |
| |
| if (!USES_FULL_48BIT_PPGTT(vm->i915)) { |
| gen8_dump_pdp(&ppgtt->pdp, start, length, scratch_pte, m); |
| } else { |
| uint64_t pml4e; |
| struct i915_pml4 *pml4 = &ppgtt->pml4; |
| struct i915_page_directory_pointer *pdp; |
| |
| gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) { |
| if (!test_bit(pml4e, pml4->used_pml4es)) |
| continue; |
| |
| seq_printf(m, " PML4E #%llu\n", pml4e); |
| gen8_dump_pdp(pdp, start, length, scratch_pte, m); |
| } |
| } |
| } |
| |
| static int gen8_preallocate_top_level_pdps(struct i915_hw_ppgtt *ppgtt) |
| { |
| unsigned long *new_page_dirs, *new_page_tables; |
| uint32_t pdpes = I915_PDPES_PER_PDP(to_i915(ppgtt->base.dev)); |
| int ret; |
| |
| /* We allocate temp bitmap for page tables for no gain |
| * but as this is for init only, lets keep the things simple |
| */ |
| ret = alloc_gen8_temp_bitmaps(&new_page_dirs, &new_page_tables, pdpes); |
| if (ret) |
| return ret; |
| |
| /* Allocate for all pdps regardless of how the ppgtt |
| * was defined. |
| */ |
| ret = gen8_ppgtt_alloc_page_directories(&ppgtt->base, &ppgtt->pdp, |
| 0, 1ULL << 32, |
| new_page_dirs); |
| if (!ret) |
| *ppgtt->pdp.used_pdpes = *new_page_dirs; |
| |
| free_gen8_temp_bitmaps(new_page_dirs, new_page_tables); |
| |
| return ret; |
| } |
| |
| /* |
| * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers |
| * with a net effect resembling a 2-level page table in normal x86 terms. Each |
| * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address |
| * space. |
| * |
| */ |
| static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt) |
| { |
| struct drm_i915_private *dev_priv = ppgtt->base.i915; |
| int ret; |
| |
| ret = gen8_init_scratch(&ppgtt->base); |
| if (ret) |
| return ret; |
| |
| ppgtt->base.start = 0; |
| ppgtt->base.cleanup = gen8_ppgtt_cleanup; |
| ppgtt->base.allocate_va_range = gen8_alloc_va_range; |
| ppgtt->base.insert_entries = gen8_ppgtt_insert_entries; |
| ppgtt->base.clear_range = gen8_ppgtt_clear_range; |
| ppgtt->base.unbind_vma = ppgtt_unbind_vma; |
| ppgtt->base.bind_vma = ppgtt_bind_vma; |
| ppgtt->debug_dump = gen8_dump_ppgtt; |
| |
| if (USES_FULL_48BIT_PPGTT(dev_priv)) { |
| ret = setup_px(dev_priv, &ppgtt->pml4); |
| if (ret) |
| goto free_scratch; |
| |
| gen8_initialize_pml4(&ppgtt->base, &ppgtt->pml4); |
| |
| ppgtt->base.total = 1ULL << 48; |
| ppgtt->switch_mm = gen8_48b_mm_switch; |
| } else { |
| ret = __pdp_init(dev_priv, &ppgtt->pdp); |
| if (ret) |
| goto free_scratch; |
| |
| ppgtt->base.total = 1ULL << 32; |
| ppgtt->switch_mm = gen8_legacy_mm_switch; |
| trace_i915_page_directory_pointer_entry_alloc(&ppgtt->base, |
| 0, 0, |
| GEN8_PML4E_SHIFT); |
| |
| if (intel_vgpu_active(dev_priv)) { |
| ret = gen8_preallocate_top_level_pdps(ppgtt); |
| if (ret) |
| goto free_scratch; |
| } |
| } |
| |
| if (intel_vgpu_active(dev_priv)) |
| gen8_ppgtt_notify_vgt(ppgtt, true); |
| |
| return 0; |
| |
| free_scratch: |
| gen8_free_scratch(&ppgtt->base); |
| return ret; |
| } |
| |
| static void gen6_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m) |
| { |
| struct i915_address_space *vm = &ppgtt->base; |
| struct i915_page_table *unused; |
| gen6_pte_t scratch_pte; |
| uint32_t pd_entry; |
| uint32_t pte, pde; |
| uint32_t start = ppgtt->base.start, length = ppgtt->base.total; |
| |
| scratch_pte = vm->pte_encode(vm->scratch_page.daddr, |
| I915_CACHE_LLC, 0); |
| |
| gen6_for_each_pde(unused, &ppgtt->pd, start, length, pde) { |
| u32 expected; |
| gen6_pte_t *pt_vaddr; |
| const dma_addr_t pt_addr = px_dma(ppgtt->pd.page_table[pde]); |
| pd_entry = readl(ppgtt->pd_addr + pde); |
| expected = (GEN6_PDE_ADDR_ENCODE(pt_addr) | GEN6_PDE_VALID); |
| |
| if (pd_entry != expected) |
| seq_printf(m, "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n", |
| pde, |
| pd_entry, |
| expected); |
| seq_printf(m, "\tPDE: %x\n", pd_entry); |
| |
| pt_vaddr = kmap_px(ppgtt->pd.page_table[pde]); |
| |
| for (pte = 0; pte < GEN6_PTES; pte+=4) { |
| unsigned long va = |
| (pde * PAGE_SIZE * GEN6_PTES) + |
| (pte * PAGE_SIZE); |
| int i; |
| bool found = false; |
| for (i = 0; i < 4; i++) |
| if (pt_vaddr[pte + i] != scratch_pte) |
| found = true; |
| if (!found) |
| continue; |
| |
| seq_printf(m, "\t\t0x%lx [%03d,%04d]: =", va, pde, pte); |
| for (i = 0; i < 4; i++) { |
| if (pt_vaddr[pte + i] != scratch_pte) |
| seq_printf(m, " %08x", pt_vaddr[pte + i]); |
| else |
| seq_puts(m, " SCRATCH "); |
| } |
| seq_puts(m, "\n"); |
| } |
| kunmap_px(ppgtt, pt_vaddr); |
| } |
| } |
| |
| /* Write pde (index) from the page directory @pd to the page table @pt */ |
| static void gen6_write_pde(struct i915_page_directory *pd, |
| const int pde, struct i915_page_table *pt) |
| { |
| /* Caller needs to make sure the write completes if necessary */ |
| struct i915_hw_ppgtt *ppgtt = |
| container_of(pd, struct i915_hw_ppgtt, pd); |
| u32 pd_entry; |
| |
| pd_entry = GEN6_PDE_ADDR_ENCODE(px_dma(pt)); |
| pd_entry |= GEN6_PDE_VALID; |
| |
| writel(pd_entry, ppgtt->pd_addr + pde); |
| } |
| |
| /* Write all the page tables found in the ppgtt structure to incrementing page |
| * directories. */ |
| static void gen6_write_page_range(struct drm_i915_private *dev_priv, |
| struct i915_page_directory *pd, |
| uint32_t start, uint32_t length) |
| { |
| struct i915_ggtt *ggtt = &dev_priv->ggtt; |
| struct i915_page_table *pt; |
| uint32_t pde; |
| |
| gen6_for_each_pde(pt, pd, start, length, pde) |
| gen6_write_pde(pd, pde, pt); |
| |
| /* Make sure write is complete before other code can use this page |
| * table. Also require for WC mapped PTEs */ |
| readl(ggtt->gsm); |
| } |
| |
| static uint32_t get_pd_offset(struct i915_hw_ppgtt *ppgtt) |
| { |
| BUG_ON(ppgtt->pd.base.ggtt_offset & 0x3f); |
| |
| return (ppgtt->pd.base.ggtt_offset / 64) << 16; |
| } |
| |
| static int hsw_mm_switch(struct i915_hw_ppgtt *ppgtt, |
| struct drm_i915_gem_request *req) |
| { |
| struct intel_ring *ring = req->ring; |
| struct intel_engine_cs *engine = req->engine; |
| int ret; |
| |
| /* NB: TLBs must be flushed and invalidated before a switch */ |
| ret = engine->emit_flush(req, EMIT_INVALIDATE | EMIT_FLUSH); |
| if (ret) |
| return ret; |
| |
| ret = intel_ring_begin(req, 6); |
| if (ret) |
| return ret; |
| |
| intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2)); |
| intel_ring_emit_reg(ring, RING_PP_DIR_DCLV(engine)); |
| intel_ring_emit(ring, PP_DIR_DCLV_2G); |
| intel_ring_emit_reg(ring, RING_PP_DIR_BASE(engine)); |
| intel_ring_emit(ring, get_pd_offset(ppgtt)); |
| intel_ring_emit(ring, MI_NOOP); |
| intel_ring_advance(ring); |
| |
| return 0; |
| } |
| |
| static int gen7_mm_switch(struct i915_hw_ppgtt *ppgtt, |
| struct drm_i915_gem_request *req) |
| { |
| struct intel_ring *ring = req->ring; |
| struct intel_engine_cs *engine = req->engine; |
| int ret; |
| |
| /* NB: TLBs must be flushed and invalidated before a switch */ |
| ret = engine->emit_flush(req, EMIT_INVALIDATE | EMIT_FLUSH); |
| if (ret) |
| return ret; |
| |
| ret = intel_ring_begin(req, 6); |
| if (ret) |
| return ret; |
| |
| intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2)); |
| intel_ring_emit_reg(ring, RING_PP_DIR_DCLV(engine)); |
| intel_ring_emit(ring, PP_DIR_DCLV_2G); |
| intel_ring_emit_reg(ring, RING_PP_DIR_BASE(engine)); |
| intel_ring_emit(ring, get_pd_offset(ppgtt)); |
| intel_ring_emit(ring, MI_NOOP); |
| intel_ring_advance(ring); |
| |
| /* XXX: RCS is the only one to auto invalidate the TLBs? */ |
| if (engine->id != RCS) { |
| ret = engine->emit_flush(req, EMIT_INVALIDATE | EMIT_FLUSH); |
| if (ret) |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static int gen6_mm_switch(struct i915_hw_ppgtt *ppgtt, |
| struct drm_i915_gem_request *req) |
| { |
| struct intel_engine_cs *engine = req->engine; |
| struct drm_i915_private *dev_priv = req->i915; |
| |
| I915_WRITE(RING_PP_DIR_DCLV(engine), PP_DIR_DCLV_2G); |
| I915_WRITE(RING_PP_DIR_BASE(engine), get_pd_offset(ppgtt)); |
| return 0; |
| } |
| |
| static void gen8_ppgtt_enable(struct drm_i915_private *dev_priv) |
| { |
| struct intel_engine_cs *engine; |
| enum intel_engine_id id; |
| |
| for_each_engine(engine, dev_priv, id) { |
| u32 four_level = USES_FULL_48BIT_PPGTT(dev_priv) ? |
| GEN8_GFX_PPGTT_48B : 0; |
| I915_WRITE(RING_MODE_GEN7(engine), |
| _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE | four_level)); |
| } |
| } |
| |
| static void gen7_ppgtt_enable(struct drm_i915_private *dev_priv) |
| { |
| struct intel_engine_cs *engine; |
| uint32_t ecochk, ecobits; |
| enum intel_engine_id id; |
| |
| ecobits = I915_READ(GAC_ECO_BITS); |
| I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B); |
| |
| ecochk = I915_READ(GAM_ECOCHK); |
| if (IS_HASWELL(dev_priv)) { |
| ecochk |= ECOCHK_PPGTT_WB_HSW; |
| } else { |
| ecochk |= ECOCHK_PPGTT_LLC_IVB; |
| ecochk &= ~ECOCHK_PPGTT_GFDT_IVB; |
| } |
| I915_WRITE(GAM_ECOCHK, ecochk); |
| |
| for_each_engine(engine, dev_priv, id) { |
| /* GFX_MODE is per-ring on gen7+ */ |
| I915_WRITE(RING_MODE_GEN7(engine), |
| _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE)); |
| } |
| } |
| |
| static void gen6_ppgtt_enable(struct drm_i915_private *dev_priv) |
| { |
| uint32_t ecochk, gab_ctl, ecobits; |
| |
| ecobits = I915_READ(GAC_ECO_BITS); |
| I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT | |
| ECOBITS_PPGTT_CACHE64B); |
| |
| gab_ctl = I915_READ(GAB_CTL); |
| I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT); |
| |
| ecochk = I915_READ(GAM_ECOCHK); |
| I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B); |
| |
| I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE)); |
| } |
| |
| /* PPGTT support for Sandybdrige/Gen6 and later */ |
| static void gen6_ppgtt_clear_range(struct i915_address_space *vm, |
| uint64_t start, |
| uint64_t length) |
| { |
| struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm); |
| gen6_pte_t *pt_vaddr, scratch_pte; |
| unsigned first_entry = start >> PAGE_SHIFT; |
| unsigned num_entries = length >> PAGE_SHIFT; |
| unsigned act_pt = first_entry / GEN6_PTES; |
| unsigned first_pte = first_entry % GEN6_PTES; |
| unsigned last_pte, i; |
| |
| scratch_pte = vm->pte_encode(vm->scratch_page.daddr, |
| I915_CACHE_LLC, 0); |
| |
| while (num_entries) { |
| last_pte = first_pte + num_entries; |
| if (last_pte > GEN6_PTES) |
| last_pte = GEN6_PTES; |
| |
| pt_vaddr = kmap_px(ppgtt->pd.page_table[act_pt]); |
| |
| for (i = first_pte; i < last_pte; i++) |
| pt_vaddr[i] = scratch_pte; |
| |
| kunmap_px(ppgtt, pt_vaddr); |
| |
| num_entries -= last_pte - first_pte; |
| first_pte = 0; |
| act_pt++; |
| } |
| } |
| |
| static void gen6_ppgtt_insert_entries(struct i915_address_space *vm, |
| struct sg_table *pages, |
| uint64_t start, |
| enum i915_cache_level cache_level, u32 flags) |
| { |
| struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm); |
| unsigned first_entry = start >> PAGE_SHIFT; |
| unsigned act_pt = first_entry / GEN6_PTES; |
| unsigned act_pte = first_entry % GEN6_PTES; |
| gen6_pte_t *pt_vaddr = NULL; |
| struct sgt_iter sgt_iter; |
| dma_addr_t addr; |
| |
| for_each_sgt_dma(addr, sgt_iter, pages) { |
| if (pt_vaddr == NULL) |
| pt_vaddr = kmap_px(ppgtt->pd.page_table[act_pt]); |
| |
| pt_vaddr[act_pte] = |
| vm->pte_encode(addr, cache_level, flags); |
| |
| if (++act_pte == GEN6_PTES) { |
| kunmap_px(ppgtt, pt_vaddr); |
| pt_vaddr = NULL; |
| act_pt++; |
| act_pte = 0; |
| } |
| } |
| |
| if (pt_vaddr) |
| kunmap_px(ppgtt, pt_vaddr); |
| } |
| |
| static int gen6_alloc_va_range(struct i915_address_space *vm, |
| uint64_t start_in, uint64_t length_in) |
| { |
| DECLARE_BITMAP(new_page_tables, I915_PDES); |
| struct drm_i915_private *dev_priv = vm->i915; |
| struct i915_ggtt *ggtt = &dev_priv->ggtt; |
| struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm); |
| struct i915_page_table *pt; |
| uint32_t start, length, start_save, length_save; |
| uint32_t pde; |
| int ret; |
| |
| start = start_save = start_in; |
| length = length_save = length_in; |
| |
| bitmap_zero(new_page_tables, I915_PDES); |
| |
| /* The allocation is done in two stages so that we can bail out with |
| * minimal amount of pain. The first stage finds new page tables that |
| * need allocation. The second stage marks use ptes within the page |
| * tables. |
| */ |
| gen6_for_each_pde(pt, &ppgtt->pd, start, length, pde) { |
| if (pt != vm->scratch_pt) { |
| WARN_ON(bitmap_empty(pt->used_ptes, GEN6_PTES)); |
| continue; |
| } |
| |
| /* We've already allocated a page table */ |
| WARN_ON(!bitmap_empty(pt->used_ptes, GEN6_PTES)); |
| |
| pt = alloc_pt(dev_priv); |
| if (IS_ERR(pt)) { |
| ret = PTR_ERR(pt); |
| goto unwind_out; |
| } |
| |
| gen6_initialize_pt(vm, pt); |
| |
| ppgtt->pd.page_table[pde] = pt; |
| __set_bit(pde, new_page_tables); |
| trace_i915_page_table_entry_alloc(vm, pde, start, GEN6_PDE_SHIFT); |
| } |
| |
| start = start_save; |
| length = length_save; |
| |
| gen6_for_each_pde(pt, &ppgtt->pd, start, length, pde) { |
| DECLARE_BITMAP(tmp_bitmap, GEN6_PTES); |
| |
| bitmap_zero(tmp_bitmap, GEN6_PTES); |
| bitmap_set(tmp_bitmap, gen6_pte_index(start), |
| gen6_pte_count(start, length)); |
| |
| if (__test_and_clear_bit(pde, new_page_tables)) |
| gen6_write_pde(&ppgtt->pd, pde, pt); |
| |
| trace_i915_page_table_entry_map(vm, pde, pt, |
| gen6_pte_index(start), |
| gen6_pte_count(start, length), |
| GEN6_PTES); |
| bitmap_or(pt->used_ptes, tmp_bitmap, pt->used_ptes, |
| GEN6_PTES); |
| } |
| |
| WARN_ON(!bitmap_empty(new_page_tables, I915_PDES)); |
| |
| /* Make sure write is complete before other code can use this page |
| * table. Also require for WC mapped PTEs */ |
| readl(ggtt->gsm); |
| |
| mark_tlbs_dirty(ppgtt); |
| return 0; |
| |
| unwind_out: |
| for_each_set_bit(pde, new_page_tables, I915_PDES) { |
| struct i915_page_table *pt = ppgtt->pd.page_table[pde]; |
| |
| ppgtt->pd.page_table[pde] = vm->scratch_pt; |
| free_pt(dev_priv, pt); |
| } |
| |
| mark_tlbs_dirty(ppgtt); |
| return ret; |
| } |
| |
| static int gen6_init_scratch(struct i915_address_space *vm) |
| { |
| struct drm_i915_private *dev_priv = vm->i915; |
| int ret; |
| |
| ret = setup_scratch_page(dev_priv, &vm->scratch_page, I915_GFP_DMA); |
| if (ret) |
| return ret; |
| |
| vm->scratch_pt = alloc_pt(dev_priv); |
| if (IS_ERR(vm->scratch_pt)) { |
| cleanup_scratch_page(dev_priv, &vm->scratch_page); |
| return PTR_ERR(vm->scratch_pt); |
| } |
| |
| gen6_initialize_pt(vm, vm->scratch_pt); |
| |
| return 0; |
| } |
| |
| static void gen6_free_scratch(struct i915_address_space *vm) |
| { |
| struct drm_i915_private *dev_priv = vm->i915; |
| |
| free_pt(dev_priv, vm->scratch_pt); |
| cleanup_scratch_page(dev_priv, &vm->scratch_page); |
| } |
| |
| static void gen6_ppgtt_cleanup(struct i915_address_space *vm) |
| { |
| struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm); |
| struct i915_page_directory *pd = &ppgtt->pd; |
| struct drm_i915_private *dev_priv = vm->i915; |
| struct i915_page_table *pt; |
| uint32_t pde; |
| |
| drm_mm_remove_node(&ppgtt->node); |
| |
| gen6_for_all_pdes(pt, pd, pde) |
| if (pt != vm->scratch_pt) |
| free_pt(dev_priv, pt); |
| |
| gen6_free_scratch(vm); |
| } |
| |
| static int gen6_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt) |
| { |
| struct i915_address_space *vm = &ppgtt->base; |
| struct drm_i915_private *dev_priv = ppgtt->base.i915; |
| struct i915_ggtt *ggtt = &dev_priv->ggtt; |
| int ret; |
| |
| /* PPGTT PDEs reside in the GGTT and consists of 512 entries. The |
| * allocator works in address space sizes, so it's multiplied by page |
| * size. We allocate at the top of the GTT to avoid fragmentation. |
| */ |
| BUG_ON(!drm_mm_initialized(&ggtt->base.mm)); |
| |
| ret = gen6_init_scratch(vm); |
| if (ret) |
| return ret; |
| |
| ret = i915_gem_gtt_insert(&ggtt->base, &ppgtt->node, |
| GEN6_PD_SIZE, GEN6_PD_ALIGN, |
| I915_COLOR_UNEVICTABLE, |
| 0, ggtt->base.total, |
| PIN_HIGH); |
| if (ret) |
| goto err_out; |
| |
| if (ppgtt->node.start < ggtt->mappable_end) |
| DRM_DEBUG("Forced to use aperture for PDEs\n"); |
| |
| return 0; |
| |
| err_out: |
| gen6_free_scratch(vm); |
| return ret; |
| } |
| |
| static int gen6_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt) |
| { |
| return gen6_ppgtt_allocate_page_directories(ppgtt); |
| } |
| |
| static void gen6_scratch_va_range(struct i915_hw_ppgtt *ppgtt, |
| uint64_t start, uint64_t length) |
| { |
| struct i915_page_table *unused; |
| uint32_t pde; |
| |
| gen6_for_each_pde(unused, &ppgtt->pd, start, length, pde) |
| ppgtt->pd.page_table[pde] = ppgtt->base.scratch_pt; |
| } |
| |
| static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt) |
| { |
| struct drm_i915_private *dev_priv = ppgtt->base.i915; |
| struct i915_ggtt *ggtt = &dev_priv->ggtt; |
| int ret; |
| |
| ppgtt->base.pte_encode = ggtt->base.pte_encode; |
| if (intel_vgpu_active(dev_priv) || IS_GEN6(dev_priv)) |
| ppgtt->switch_mm = gen6_mm_switch; |
| else if (IS_HASWELL(dev_priv)) |
| ppgtt->switch_mm = hsw_mm_switch; |
| else if (IS_GEN7(dev_priv)) |
| ppgtt->switch_mm = gen7_mm_switch; |
| else |
| BUG(); |
| |
| ret = gen6_ppgtt_alloc(ppgtt); |
| if (ret) |
| return ret; |
| |
| ppgtt->base.allocate_va_range = gen6_alloc_va_range; |
| ppgtt->base.clear_range = gen6_ppgtt_clear_range; |
| ppgtt->base.insert_entries = gen6_ppgtt_insert_entries; |
| ppgtt->base.unbind_vma = ppgtt_unbind_vma; |
| ppgtt->base.bind_vma = ppgtt_bind_vma; |
| ppgtt->base.cleanup = gen6_ppgtt_cleanup; |
| ppgtt->base.start = 0; |
| ppgtt->base.total = I915_PDES * GEN6_PTES * PAGE_SIZE; |
| ppgtt->debug_dump = gen6_dump_ppgtt; |
| |
| ppgtt->pd.base.ggtt_offset = |
| ppgtt->node.start / PAGE_SIZE * sizeof(gen6_pte_t); |
| |
| ppgtt->pd_addr = (gen6_pte_t __iomem *)ggtt->gsm + |
| ppgtt->pd.base.ggtt_offset / sizeof(gen6_pte_t); |
| |
| gen6_scratch_va_range(ppgtt, 0, ppgtt->base.total); |
| |
| gen6_write_page_range(dev_priv, &ppgtt->pd, 0, ppgtt->base.total); |
| |
| DRM_DEBUG_DRIVER("Allocated pde space (%lldM) at GTT entry: %llx\n", |
| ppgtt->node.size >> 20, |
| ppgtt->node.start / PAGE_SIZE); |
| |
| DRM_DEBUG("Adding PPGTT at offset %x\n", |
| ppgtt->pd.base.ggtt_offset << 10); |
| |
| return 0; |
| } |
| |
| static int __hw_ppgtt_init(struct i915_hw_ppgtt *ppgtt, |
| struct drm_i915_private *dev_priv) |
| { |
| ppgtt->base.i915 = dev_priv; |
| |
| if (INTEL_INFO(dev_priv)->gen < 8) |
| return gen6_ppgtt_init(ppgtt); |
| else |
| return gen8_ppgtt_init(ppgtt); |
| } |
| |
| static void i915_address_space_init(struct i915_address_space *vm, |
| struct drm_i915_private *dev_priv, |
| const char *name) |
| { |
| i915_gem_timeline_init(dev_priv, &vm->timeline, name); |
| |
| drm_mm_init(&vm->mm, vm->start, vm->total); |
| vm->mm.head_node.color = I915_COLOR_UNEVICTABLE; |
| |
| INIT_LIST_HEAD(&vm->active_list); |
| INIT_LIST_HEAD(&vm->inactive_list); |
| INIT_LIST_HEAD(&vm->unbound_list); |
| |
| list_add_tail(&vm->global_link, &dev_priv->vm_list); |
| } |
| |
| static void i915_address_space_fini(struct i915_address_space *vm) |
| { |
| i915_gem_timeline_fini(&vm->timeline); |
| drm_mm_takedown(&vm->mm); |
| list_del(&vm->global_link); |
| } |
| |
| static void gtt_write_workarounds(struct drm_i915_private *dev_priv) |
| { |
| /* This function is for gtt related workarounds. This function is |
| * called on driver load and after a GPU reset, so you can place |
| * workarounds here even if they get overwritten by GPU reset. |
| */ |
| /* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt,kbl,glk */ |
| if (IS_BROADWELL(dev_priv)) |
| I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW); |
| else if (IS_CHERRYVIEW(dev_priv)) |
| I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV); |
| else if (IS_GEN9_BC(dev_priv)) |
| I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL); |
| else if (IS_GEN9_LP(dev_priv)) |
| I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT); |
| } |
| |
| static int i915_ppgtt_init(struct i915_hw_ppgtt *ppgtt, |
| struct drm_i915_private *dev_priv, |
| struct drm_i915_file_private *file_priv, |
| const char *name) |
| { |
| int ret; |
| |
| ret = __hw_ppgtt_init(ppgtt, dev_priv); |
| if (ret == 0) { |
| kref_init(&ppgtt->ref); |
| i915_address_space_init(&ppgtt->base, dev_priv, name); |
| ppgtt->base.file = file_priv; |
| } |
| |
| return ret; |
| } |
| |
| int i915_ppgtt_init_hw(struct drm_i915_private *dev_priv) |
| { |
| gtt_write_workarounds(dev_priv); |
| |
| /* In the case of execlists, PPGTT is enabled by the context descriptor |
| * and the PDPs are contained within the context itself. We don't |
| * need to do anything here. */ |
| if (i915.enable_execlists) |
| return 0; |
| |
| if (!USES_PPGTT(dev_priv)) |
| return 0; |
| |
| if (IS_GEN6(dev_priv)) |
| gen6_ppgtt_enable(dev_priv); |
| else if (IS_GEN7(dev_priv)) |
| gen7_ppgtt_enable(dev_priv); |
| else if (INTEL_GEN(dev_priv) >= 8) |
| gen8_ppgtt_enable(dev_priv); |
| else |
| MISSING_CASE(INTEL_GEN(dev_priv)); |
| |
| return 0; |
| } |
| |
| struct i915_hw_ppgtt * |
| i915_ppgtt_create(struct drm_i915_private *dev_priv, |
| struct drm_i915_file_private *fpriv, |
| const char *name) |
| { |
| struct i915_hw_ppgtt *ppgtt; |
| int ret; |
| |
| ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL); |
| if (!ppgtt) |
| return ERR_PTR(-ENOMEM); |
| |
| ret = i915_ppgtt_init(ppgtt, dev_priv, fpriv, name); |
| if (ret) { |
| kfree(ppgtt); |
| return ERR_PTR(ret); |
| } |
| |
| trace_i915_ppgtt_create(&ppgtt->base); |
| |
| return ppgtt; |
| } |
| |
| void i915_ppgtt_close(struct i915_address_space *vm) |
| { |
| struct list_head *phases[] = { |
| &vm->active_list, |
| &vm->inactive_list, |
| &vm->unbound_list, |
| NULL, |
| }, **phase; |
| |
| GEM_BUG_ON(vm->closed); |
| vm->closed = true; |
| |
| for (phase = phases; *phase; phase++) { |
| struct i915_vma *vma, *vn; |
| |
| list_for_each_entry_safe(vma, vn, *phase, vm_link) |
| if (!i915_vma_is_closed(vma)) |
| i915_vma_close(vma); |
| } |
| } |
| |
| void i915_ppgtt_release(struct kref *kref) |
| { |
| struct i915_hw_ppgtt *ppgtt = |
| container_of(kref, struct i915_hw_ppgtt, ref); |
| |
| trace_i915_ppgtt_release(&ppgtt->base); |
| |
| /* vmas should already be unbound and destroyed */ |
| WARN_ON(!list_empty(&ppgtt->base.active_list)); |
| WARN_ON(!list_empty(&ppgtt->base.inactive_list)); |
| WARN_ON(!list_empty(&ppgtt->base.unbound_list)); |
| |
| i915_address_space_fini(&ppgtt->base); |
| |
| ppgtt->base.cleanup(&ppgtt->base); |
| kfree(ppgtt); |
| } |
| |
| /* Certain Gen5 chipsets require require idling the GPU before |
| * unmapping anything from the GTT when VT-d is enabled. |
| */ |
| static bool needs_idle_maps(struct drm_i915_private *dev_priv) |
| { |
| #ifdef CONFIG_INTEL_IOMMU |
| /* Query intel_iommu to see if we need the workaround. Presumably that |
| * was loaded first. |
| */ |
| if (IS_GEN5(dev_priv) && IS_MOBILE(dev_priv) && intel_iommu_gfx_mapped) |
| return true; |
| #endif |
| return false; |
| } |
| |
| void i915_check_and_clear_faults(struct drm_i915_private *dev_priv) |
| { |
| struct intel_engine_cs *engine; |
| enum intel_engine_id id; |
| |
| if (INTEL_INFO(dev_priv)->gen < 6) |
| return; |
| |
| for_each_engine(engine, dev_priv, id) { |
| u32 fault_reg; |
| fault_reg = I915_READ(RING_FAULT_REG(engine)); |
| if (fault_reg & RING_FAULT_VALID) { |
| DRM_DEBUG_DRIVER("Unexpected fault\n" |
| "\tAddr: 0x%08lx\n" |
| "\tAddress space: %s\n" |
| "\tSource ID: %d\n" |
| "\tType: %d\n", |
| fault_reg & PAGE_MASK, |
| fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT", |
| RING_FAULT_SRCID(fault_reg), |
| RING_FAULT_FAULT_TYPE(fault_reg)); |
| I915_WRITE(RING_FAULT_REG(engine), |
| fault_reg & ~RING_FAULT_VALID); |
| } |
| } |
| |
| /* Engine specific init may not have been done till this point. */ |
| if (dev_priv->engine[RCS]) |
| POSTING_READ(RING_FAULT_REG(dev_priv->engine[RCS])); |
| } |
| |
| void i915_gem_suspend_gtt_mappings(struct drm_i915_private *dev_priv) |
| { |
| struct i915_ggtt *ggtt = &dev_priv->ggtt; |
| |
| /* Don't bother messing with faults pre GEN6 as we have little |
| * documentation supporting that it's a good idea. |
| */ |
| if (INTEL_GEN(dev_priv) < 6) |
| return; |
| |
| i915_check_and_clear_faults(dev_priv); |
| |
| ggtt->base.clear_range(&ggtt->base, ggtt->base.start, ggtt->base.total); |
| |
| i915_ggtt_invalidate(dev_priv); |
| } |
| |
| int i915_gem_gtt_prepare_pages(struct drm_i915_gem_object *obj, |
| struct sg_table *pages) |
| { |
| do { |
| if (dma_map_sg(&obj->base.dev->pdev->dev, |
| pages->sgl, pages->nents, |
| PCI_DMA_BIDIRECTIONAL)) |
| return 0; |
| |
| /* If the DMA remap fails, one cause can be that we have |
| * too many objects pinned in a small remapping table, |
| * such as swiotlb. Incrementally purge all other objects and |
| * try again - if there are no more pages to remove from |
| * the DMA remapper, i915_gem_shrink will return 0. |
| */ |
| GEM_BUG_ON(obj->mm.pages == pages); |
| } while (i915_gem_shrink(to_i915(obj->base.dev), |
| obj->base.size >> PAGE_SHIFT, |
| I915_SHRINK_BOUND | |
| I915_SHRINK_UNBOUND | |
| I915_SHRINK_ACTIVE)); |
| |
| return -ENOSPC; |
| } |
| |
| static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte) |
| { |
| writeq(pte, addr); |
| } |
| |
| static void gen8_ggtt_insert_page(struct i915_address_space *vm, |
| dma_addr_t addr, |
| uint64_t offset, |
| enum i915_cache_level level, |
| u32 unused) |
| { |
| struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); |
| gen8_pte_t __iomem *pte = |
| (gen8_pte_t __iomem *)ggtt->gsm + (offset >> PAGE_SHIFT); |
| |
| gen8_set_pte(pte, gen8_pte_encode(addr, level)); |
| |
| ggtt->invalidate(vm->i915); |
| } |
| |
| static void gen8_ggtt_insert_entries(struct i915_address_space *vm, |
| struct sg_table *st, |
| uint64_t start, |
| enum i915_cache_level level, u32 unused) |
| { |
| struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); |
| struct sgt_iter sgt_iter; |
| gen8_pte_t __iomem *gtt_entries; |
| gen8_pte_t gtt_entry; |
| dma_addr_t addr; |
| int i = 0; |
| |
| gtt_entries = (gen8_pte_t __iomem *)ggtt->gsm + (start >> PAGE_SHIFT); |
| |
| for_each_sgt_dma(addr, sgt_iter, st) { |
| gtt_entry = gen8_pte_encode(addr, level); |
| gen8_set_pte(>t_entries[i++], gtt_entry); |
| } |
| |
| /* |
| * XXX: This serves as a posting read to make sure that the PTE has |
| * actually been updated. There is some concern that even though |
| * registers and PTEs are within the same BAR that they are potentially |
| * of NUMA access patterns. Therefore, even with the way we assume |
| * hardware should work, we must keep this posting read for paranoia. |
| */ |
| if (i != 0) |
| WARN_ON(readq(>t_entries[i-1]) != gtt_entry); |
| |
| /* This next bit makes the above posting read even more important. We |
| * want to flush the TLBs only after we're certain all the PTE updates |
| * have finished. |
| */ |
| ggtt->invalidate(vm->i915); |
| } |
| |
| struct insert_entries { |
| struct i915_address_space *vm; |
| struct sg_table *st; |
| uint64_t start; |
| enum i915_cache_level level; |
| u32 flags; |
| }; |
| |
| static int gen8_ggtt_insert_entries__cb(void *_arg) |
| { |
| struct insert_entries *arg = _arg; |
| gen8_ggtt_insert_entries(arg->vm, arg->st, |
| arg->start, arg->level, arg->flags); |
| return 0; |
| } |
| |
| static void gen8_ggtt_insert_entries__BKL(struct i915_address_space *vm, |
| struct sg_table *st, |
| uint64_t start, |
| enum i915_cache_level level, |
| u32 flags) |
| { |
| struct insert_entries arg = { vm, st, start, level, flags }; |
| stop_machine(gen8_ggtt_insert_entries__cb, &arg, NULL); |
| } |
| |
| static void gen6_ggtt_insert_page(struct i915_address_space *vm, |
| dma_addr_t addr, |
| uint64_t offset, |
| enum i915_cache_level level, |
| u32 flags) |
| { |
| struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); |
| gen6_pte_t __iomem *pte = |
| (gen6_pte_t __iomem *)ggtt->gsm + (offset >> PAGE_SHIFT); |
| |
| iowrite32(vm->pte_encode(addr, level, flags), pte); |
| |
| ggtt->invalidate(vm->i915); |
| } |
| |
| /* |
| * Binds an object into the global gtt with the specified cache level. The object |
| * will be accessible to the GPU via commands whose operands reference offsets |
| * within the global GTT as well as accessible by the GPU through the GMADR |
| * mapped BAR (dev_priv->mm.gtt->gtt). |
| */ |
| static void gen6_ggtt_insert_entries(struct i915_address_space *vm, |
| struct sg_table *st, |
| uint64_t start, |
| enum i915_cache_level level, u32 flags) |
| { |
| struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); |
| struct sgt_iter sgt_iter; |
| gen6_pte_t __iomem *gtt_entries; |
| gen6_pte_t gtt_entry; |
| dma_addr_t addr; |
| int i = 0; |
| |
| gtt_entries = (gen6_pte_t __iomem *)ggtt->gsm + (start >> PAGE_SHIFT); |
| |
| for_each_sgt_dma(addr, sgt_iter, st) { |
| gtt_entry = vm->pte_encode(addr, level, flags); |
| iowrite32(gtt_entry, >t_entries[i++]); |
| } |
| |
| /* XXX: This serves as a posting read to make sure that the PTE has |
| * actually been updated. There is some concern that even though |
| * registers and PTEs are within the same BAR that they are potentially |
| * of NUMA access patterns. Therefore, even with the way we assume |
| * hardware should work, we must keep this posting read for paranoia. |
| */ |
| if (i != 0) |
| WARN_ON(readl(>t_entries[i-1]) != gtt_entry); |
| |
| /* This next bit makes the above posting read even more important. We |
| * want to flush the TLBs only after we're certain all the PTE updates |
| * have finished. |
| */ |
| ggtt->invalidate(vm->i915); |
| } |
| |
| static void nop_clear_range(struct i915_address_space *vm, |
| uint64_t start, uint64_t length) |
| { |
| } |
| |
| static void gen8_ggtt_clear_range(struct i915_address_space *vm, |
| uint64_t start, uint64_t length) |
| { |
| struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); |
| unsigned first_entry = start >> PAGE_SHIFT; |
| unsigned num_entries = length >> PAGE_SHIFT; |
| gen8_pte_t scratch_pte, __iomem *gtt_base = |
| (gen8_pte_t __iomem *)ggtt->gsm + first_entry; |
| const int max_entries = ggtt_total_entries(ggtt) - first_entry; |
| int i; |
| |
| if (WARN(num_entries > max_entries, |
| "First entry = %d; Num entries = %d (max=%d)\n", |
| first_entry, num_entries, max_entries)) |
| num_entries = max_entries; |
| |
| scratch_pte = gen8_pte_encode(vm->scratch_page.daddr, |
| I915_CACHE_LLC); |
| for (i = 0; i < num_entries; i++) |
| gen8_set_pte(>t_base[i], scratch_pte); |
| readl(gtt_base); |
| } |
| |
| static void gen6_ggtt_clear_range(struct i915_address_space *vm, |
| uint64_t start, |
| uint64_t length) |
| { |
| struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); |
| unsigned first_entry = start >> PAGE_SHIFT; |
| unsigned num_entries = length >> PAGE_SHIFT; |
| gen6_pte_t scratch_pte, __iomem *gtt_base = |
| (gen6_pte_t __iomem *)ggtt->gsm + first_entry; |
| const int max_entries = ggtt_total_entries(ggtt) - first_entry; |
| int i; |
| |
| if (WARN(num_entries > max_entries, |
| "First entry = %d; Num entries = %d (max=%d)\n", |
| first_entry, num_entries, max_entries)) |
| num_entries = max_entries; |
| |
| scratch_pte = vm->pte_encode(vm->scratch_page.daddr, |
| I915_CACHE_LLC, 0); |
| |
| for (i = 0; i < num_entries; i++) |
| iowrite32(scratch_pte, >t_base[i]); |
| readl(gtt_base); |
| } |
| |
| static void i915_ggtt_insert_page(struct i915_address_space *vm, |
| dma_addr_t addr, |
| uint64_t offset, |
| enum i915_cache_level cache_level, |
| u32 unused) |
| { |
| unsigned int flags = (cache_level == I915_CACHE_NONE) ? |
| AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY; |
| |
| intel_gtt_insert_page(addr, offset >> PAGE_SHIFT, flags); |
| } |
| |
| static void i915_ggtt_insert_entries(struct i915_address_space *vm, |
| struct sg_table *pages, |
| uint64_t start, |
| enum i915_cache_level cache_level, u32 unused) |
| { |
| unsigned int flags = (cache_level == I915_CACHE_NONE) ? |
| AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY; |
| |
| intel_gtt_insert_sg_entries(pages, start >> PAGE_SHIFT, flags); |
| |
| } |
| |
| static void i915_ggtt_clear_range(struct i915_address_space *vm, |
| uint64_t start, |
| uint64_t length) |
| { |
| intel_gtt_clear_range(start >> PAGE_SHIFT, length >> PAGE_SHIFT); |
| } |
| |
| static int ggtt_bind_vma(struct i915_vma *vma, |
| enum i915_cache_level cache_level, |
| u32 flags) |
| { |
| struct drm_i915_private *i915 = vma->vm->i915; |
| struct drm_i915_gem_object *obj = vma->obj; |
| u32 pte_flags = 0; |
| int ret; |
| |
| ret = i915_get_ggtt_vma_pages(vma); |
| if (ret) |
| return ret; |
| |
| /* Currently applicable only to VLV */ |
| if (obj->gt_ro) |
| pte_flags |= PTE_READ_ONLY; |
| |
| intel_runtime_pm_get(i915); |
| vma->vm->insert_entries(vma->vm, vma->pages, vma->node.start, |
| cache_level, pte_flags); |
| intel_runtime_pm_put(i915); |
| |
| /* |
| * Without aliasing PPGTT there's no difference between |
| * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally |
| * upgrade to both bound if we bind either to avoid double-binding. |
| */ |
| vma->flags |= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND; |
| |
| return 0; |
| } |
| |
| static int aliasing_gtt_bind_vma(struct i915_vma *vma, |
| enum i915_cache_level cache_level, |
| u32 flags) |
| { |
| struct drm_i915_private *i915 = vma->vm->i915; |
| u32 pte_flags; |
| int ret; |
| |
| ret = i915_get_ggtt_vma_pages(vma); |
| if (ret) |
| return ret; |
| |
| /* Currently applicable only to VLV */ |
| pte_flags = 0; |
| if (vma->obj->gt_ro) |
| pte_flags |= PTE_READ_ONLY; |
| |
| |
| if (flags & I915_VMA_GLOBAL_BIND) { |
| intel_runtime_pm_get(i915); |
| vma->vm->insert_entries(vma->vm, |
| vma->pages, vma->node.start, |
| cache_level, pte_flags); |
| intel_runtime_pm_put(i915); |
| } |
| |
| if (flags & I915_VMA_LOCAL_BIND) { |
| struct i915_hw_ppgtt *appgtt = i915->mm.aliasing_ppgtt; |
| appgtt->base.insert_entries(&appgtt->base, |
| vma->pages, vma->node.start, |
| cache_level, pte_flags); |
| } |
| |
| return 0; |
| } |
| |
| static void ggtt_unbind_vma(struct i915_vma *vma) |
| { |
| struct drm_i915_private *i915 = vma->vm->i915; |
| struct i915_hw_ppgtt *appgtt = i915->mm.aliasing_ppgtt; |
| const u64 size = min(vma->size, vma->node.size); |
| |
| if (vma->flags & I915_VMA_GLOBAL_BIND) { |
| intel_runtime_pm_get(i915); |
| vma->vm->clear_range(vma->vm, |
| vma->node.start, size); |
| intel_runtime_pm_put(i915); |
| } |
| |
| if (vma->flags & I915_VMA_LOCAL_BIND && appgtt) |
| appgtt->base.clear_range(&appgtt->base, |
| vma->node.start, size); |
| } |
| |
| void i915_gem_gtt_finish_pages(struct drm_i915_gem_object *obj, |
| struct sg_table *pages) |
| { |
| struct drm_i915_private *dev_priv = to_i915(obj->base.dev); |
| struct device *kdev = &dev_priv->drm.pdev->dev; |
| struct i915_ggtt *ggtt = &dev_priv->ggtt; |
| |
| if (unlikely(ggtt->do_idle_maps)) { |
| if (i915_gem_wait_for_idle(dev_priv, I915_WAIT_LOCKED)) { |
| DRM_ERROR("Failed to wait for idle; VT'd may hang.\n"); |
| /* Wait a bit, in hopes it avoids the hang */ |
| udelay(10); |
| } |
| } |
| |
| dma_unmap_sg(kdev, pages->sgl, pages->nents, PCI_DMA_BIDIRECTIONAL); |
| } |
| |
| static void i915_gtt_color_adjust(const struct drm_mm_node *node, |
| unsigned long color, |
| u64 *start, |
| u64 *end) |
| { |
| if (node->allocated && node->color != color) |
| *start += I915_GTT_PAGE_SIZE; |
| |
| /* Also leave a space between the unallocated reserved node after the |
| * GTT and any objects within the GTT, i.e. we use the color adjustment |
| * to insert a guard page to prevent prefetches crossing over the |
| * GTT boundary. |
| */ |
| node = list_next_entry(node, node_list); |
| if (node->color != color) |
| *end -= I915_GTT_PAGE_SIZE; |
| } |
| |
| int i915_gem_init_ggtt(struct drm_i915_private *dev_priv) |
| { |
| /* Let GEM Manage all of the aperture. |
| * |
| * However, leave one page at the end still bound to the scratch page. |
| * There are a number of places where the hardware apparently prefetches |
| * past the end of the object, and we've seen multiple hangs with the |
| * GPU head pointer stuck in a batchbuffer bound at the last page of the |
| * aperture. One page should be enough to keep any prefetching inside |
| * of the aperture. |
| */ |
| struct i915_ggtt *ggtt = &dev_priv->ggtt; |
| unsigned long hole_start, hole_end; |
| struct i915_hw_ppgtt *ppgtt; |
| struct drm_mm_node *entry; |
| int ret; |
| |
| ret = intel_vgt_balloon(dev_priv); |
| if (ret) |
| return ret; |
| |
| /* Reserve a mappable slot for our lockless error capture */ |
| ret = drm_mm_insert_node_in_range(&ggtt->base.mm, &ggtt->error_capture, |
| PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE, |
| 0, ggtt->mappable_end, |
| DRM_MM_INSERT_LOW); |
| if (ret) |
| return ret; |
| |
| /* Clear any non-preallocated blocks */ |
| drm_mm_for_each_hole(entry, &ggtt->base.mm, hole_start, hole_end) { |
| DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n", |
| hole_start, hole_end); |
| ggtt->base.clear_range(&ggtt->base, hole_start, |
| hole_end - hole_start); |
| } |
| |
| /* And finally clear the reserved guard page */ |
| ggtt->base.clear_range(&ggtt->base, |
| ggtt->base.total - PAGE_SIZE, PAGE_SIZE); |
| |
| if (USES_PPGTT(dev_priv) && !USES_FULL_PPGTT(dev_priv)) { |
| ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL); |
| if (!ppgtt) { |
| ret = -ENOMEM; |
| goto err; |
| } |
| |
| ret = __hw_ppgtt_init(ppgtt, dev_priv); |
| if (ret) |
| goto err_ppgtt; |
| |
| if (ppgtt->base.allocate_va_range) { |
| ret = ppgtt->base.allocate_va_range(&ppgtt->base, 0, |
| ppgtt->base.total); |
| if (ret) |
| goto err_ppgtt_cleanup; |
| } |
| |
| ppgtt->base.clear_range(&ppgtt->base, |
| ppgtt->base.start, |
| ppgtt->base.total); |
| |
| dev_priv->mm.aliasing_ppgtt = ppgtt; |
| WARN_ON(ggtt->base.bind_vma != ggtt_bind_vma); |
| ggtt->base.bind_vma = aliasing_gtt_bind_vma; |
| } |
| |
| return 0; |
| |
| err_ppgtt_cleanup: |
| ppgtt->base.cleanup(&ppgtt->base); |
| err_ppgtt: |
| kfree(ppgtt); |
| err: |
| drm_mm_remove_node(&ggtt->error_capture); |
| return ret; |
| } |
| |
| /** |
| * i915_ggtt_cleanup_hw - Clean up GGTT hardware initialization |
| * @dev_priv: i915 device |
| */ |
| void i915_ggtt_cleanup_hw(struct drm_i915_private *dev_priv) |
| { |
| struct i915_ggtt *ggtt = &dev_priv->ggtt; |
| struct i915_vma *vma, *vn; |
| |
| ggtt->base.closed = true; |
| |
| mutex_lock(&dev_priv->drm.struct_mutex); |
| WARN_ON(!list_empty(&ggtt->base.active_list)); |
| list_for_each_entry_safe(vma, vn, &ggtt->base.inactive_list, vm_link) |
| WARN_ON(i915_vma_unbind(vma)); |
| mutex_unlock(&dev_priv->drm.struct_mutex); |
| |
| if (dev_priv->mm.aliasing_ppgtt) { |
| struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt; |
| ppgtt->base.cleanup(&ppgtt->base); |
| kfree(ppgtt); |
| } |
| |
| i915_gem_cleanup_stolen(&dev_priv->drm); |
| |
| if (drm_mm_node_allocated(&ggtt->error_capture)) |
| drm_mm_remove_node(&ggtt->error_capture); |
| |
| if (drm_mm_initialized(&ggtt->base.mm)) { |
| intel_vgt_deballoon(dev_priv); |
| |
| mutex_lock(&dev_priv->drm.struct_mutex); |
| i915_address_space_fini(&ggtt->base); |
| mutex_unlock(&dev_priv->drm.struct_mutex); |
| } |
| |
| ggtt->base.cleanup(&ggtt->base); |
| |
| arch_phys_wc_del(ggtt->mtrr); |
| io_mapping_fini(&ggtt->mappable); |
| } |
| |
| static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl) |
| { |
| snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT; |
| snb_gmch_ctl &= SNB_GMCH_GGMS_MASK; |
| return snb_gmch_ctl << 20; |
| } |
| |
| static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl) |
| { |
| bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT; |
| bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK; |
| if (bdw_gmch_ctl) |
| bdw_gmch_ctl = 1 << bdw_gmch_ctl; |
| |
| #ifdef CONFIG_X86_32 |
| /* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * PAGE_SIZE */ |
| if (bdw_gmch_ctl > 4) |
| bdw_gmch_ctl = 4; |
| #endif |
| |
| return bdw_gmch_ctl << 20; |
| } |
| |
| static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl) |
| { |
| gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT; |
| gmch_ctrl &= SNB_GMCH_GGMS_MASK; |
| |
| if (gmch_ctrl) |
| return 1 << (20 + gmch_ctrl); |
| |
| return 0; |
| } |
| |
| static size_t gen6_get_stolen_size(u16 snb_gmch_ctl) |
| { |
| snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT; |
| snb_gmch_ctl &= SNB_GMCH_GMS_MASK; |
| return snb_gmch_ctl << 25; /* 32 MB units */ |
| } |
| |
| static size_t gen8_get_stolen_size(u16 bdw_gmch_ctl) |
| { |
| bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT; |
| bdw_gmch_ctl &= BDW_GMCH_GMS_MASK; |
| return bdw_gmch_ctl << 25; /* 32 MB units */ |
| } |
| |
| static size_t chv_get_stolen_size(u16 gmch_ctrl) |
| { |
| gmch_ctrl >>= SNB_GMCH_GMS_SHIFT; |
| gmch_ctrl &= SNB_GMCH_GMS_MASK; |
| |
| /* |
| * 0x0 to 0x10: 32MB increments starting at 0MB |
| * 0x11 to 0x16: 4MB increments starting at 8MB |
| * 0x17 to 0x1d: 4MB increments start at 36MB |
| */ |
| if (gmch_ctrl < 0x11) |
| return gmch_ctrl << 25; |
| else if (gmch_ctrl < 0x17) |
| return (gmch_ctrl - 0x11 + 2) << 22; |
| else |
| return (gmch_ctrl - 0x17 + 9) << 22; |
| } |
| |
| static size_t gen9_get_stolen_size(u16 gen9_gmch_ctl) |
| { |
| gen9_gmch_ctl >>= BDW_GMCH_GMS_SHIFT; |
| gen9_gmch_ctl &= BDW_GMCH_GMS_MASK; |
| |
| if (gen9_gmch_ctl < 0xf0) |
| return gen9_gmch_ctl << 25; /* 32 MB units */ |
| else |
| /* 4MB increments starting at 0xf0 for 4MB */ |
| return (gen9_gmch_ctl - 0xf0 + 1) << 22; |
| } |
| |
| static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size) |
| { |
| struct drm_i915_private *dev_priv = ggtt->base.i915; |
| struct pci_dev *pdev = dev_priv->drm.pdev; |
| phys_addr_t phys_addr; |
| int ret; |
| |
| /* For Modern GENs the PTEs and register space are split in the BAR */ |
| phys_addr = pci_resource_start(pdev, 0) + pci_resource_len(pdev, 0) / 2; |
| |
| /* |
| * On BXT writes larger than 64 bit to the GTT pagetable range will be |
| * dropped. For WC mappings in general we have 64 byte burst writes |
| * when the WC buffer is flushed, so we can't use it, but have to |
| * resort to an uncached mapping. The WC issue is easily caught by the |
| * readback check when writing GTT PTE entries. |
| */ |
| if (IS_GEN9_LP(dev_priv)) |
| ggtt->gsm = ioremap_nocache(phys_addr, size); |
| else |
| ggtt->gsm = ioremap_wc(phys_addr, size); |
| if (!ggtt->gsm) { |
| DRM_ERROR("Failed to map the ggtt page table\n"); |
| return -ENOMEM; |
| } |
| |
| ret = setup_scratch_page(dev_priv, &ggtt->base.scratch_page, GFP_DMA32); |
| if (ret) { |
| DRM_ERROR("Scratch setup failed\n"); |
| /* iounmap will also get called at remove, but meh */ |
| iounmap(ggtt->gsm); |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability |
| * bits. When using advanced contexts each context stores its own PAT, but |
| * writing this data shouldn't be harmful even in those cases. */ |
| static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv) |
| { |
| uint64_t pat; |
| |
| pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC) | /* for normal objects, no eLLC */ |
| GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */ |
| GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */ |
| GEN8_PPAT(3, GEN8_PPAT_UC) | /* Uncached objects, mostly for scanout */ |
| GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) | |
| GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) | |
| GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) | |
| GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3)); |
| |
| if (!USES_PPGTT(dev_priv)) |
| /* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry, |
| * so RTL will always use the value corresponding to |
| * pat_sel = 000". |
| * So let's disable cache for GGTT to avoid screen corruptions. |
| * MOCS still can be used though. |
| * - System agent ggtt writes (i.e. cpu gtt mmaps) already work |
| * before this patch, i.e. the same uncached + snooping access |
| * like on gen6/7 seems to be in effect. |
| * - So this just fixes blitter/render access. Again it looks |
| * like it's not just uncached access, but uncached + snooping. |
| * So we can still hold onto all our assumptions wrt cpu |
| * clflushing on LLC machines. |
| */ |
| pat = GEN8_PPAT(0, GEN8_PPAT_UC); |
| |
| /* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b |
| * write would work. */ |
| I915_WRITE(GEN8_PRIVATE_PAT_LO, pat); |
| I915_WRITE(GEN8_PRIVATE_PAT_HI, pat >> 32); |
| } |
| |
| static void chv_setup_private_ppat(struct drm_i915_private *dev_priv) |
| { |
| uint64_t pat; |
| |
| /* |
| * Map WB on BDW to snooped on CHV. |
| * |
| * Only the snoop bit has meaning for CHV, the rest is |
| * ignored. |
| * |
| * The hardware will never snoop for certain types of accesses: |
| * - CPU GTT (GMADR->GGTT->no snoop->memory) |
| * - PPGTT page tables |
| * - some other special cycles |
| * |
| * As with BDW, we also need to consider the following for GT accesses: |
| * "For GGTT, there is NO pat_sel[2:0] from the entry, |
| * so RTL will always use the value corresponding to |
| * pat_sel = 000". |
| * Which means we must set the snoop bit in PAT entry 0 |
| * in order to keep the global status page working. |
| */ |
| pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) | |
| GEN8_PPAT(1, 0) | |
| GEN8_PPAT(2, 0) | |
| GEN8_PPAT(3, 0) | |
| GEN8_PPAT(4, CHV_PPAT_SNOOP) | |
| GEN8_PPAT(5, CHV_PPAT_SNOOP) | |
| GEN8_PPAT(6, CHV_PPAT_SNOOP) | |
| GEN8_PPAT(7, CHV_PPAT_SNOOP); |
| |
| I915_WRITE(GEN8_PRIVATE_PAT_LO, pat); |
| I915_WRITE(GEN8_PRIVATE_PAT_HI, pat >> 32); |
| } |
| |
| static void gen6_gmch_remove(struct i915_address_space *vm) |
| { |
| struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); |
| |
| iounmap(ggtt->gsm); |
| cleanup_scratch_page(vm->i915, &vm->scratch_page); |
| } |
| |
| static int gen8_gmch_probe(struct i915_ggtt *ggtt) |
| { |
| struct drm_i915_private *dev_priv = ggtt->base.i915; |
| struct pci_dev *pdev = dev_priv->drm.pdev; |
| unsigned int size; |
| u16 snb_gmch_ctl; |
| |
| /* TODO: We're not aware of mappable constraints on gen8 yet */ |
| ggtt->mappable_base = pci_resource_start(pdev, 2); |
| ggtt->mappable_end = pci_resource_len(pdev, 2); |
| |
| if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(39))) |
| pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(39)); |
| |
| pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl); |
| |
| if (INTEL_GEN(dev_priv) >= 9) { |
| ggtt->stolen_size = gen9_get_stolen_size(snb_gmch_ctl); |
| size = gen8_get_total_gtt_size(snb_gmch_ctl); |
| } else if (IS_CHERRYVIEW(dev_priv)) { |
| ggtt->stolen_size = chv_get_stolen_size(snb_gmch_ctl); |
| size = chv_get_total_gtt_size(snb_gmch_ctl); |
| } else { |
| ggtt->stolen_size = gen8_get_stolen_size(snb_gmch_ctl); |
| size = gen8_get_total_gtt_size(snb_gmch_ctl); |
| } |
| |
| ggtt->base.total = (size / sizeof(gen8_pte_t)) << PAGE_SHIFT; |
| |
| if (IS_CHERRYVIEW(dev_priv) || IS_GEN9_LP(dev_priv)) |
| chv_setup_private_ppat(dev_priv); |
| else |
| bdw_setup_private_ppat(dev_priv); |
| |
| ggtt->base.cleanup = gen6_gmch_remove; |
| ggtt->base.bind_vma = ggtt_bind_vma; |
| ggtt->base.unbind_vma = ggtt_unbind_vma; |
| ggtt->base.insert_page = gen8_ggtt_insert_page; |
| ggtt->base.clear_range = nop_clear_range; |
| if (!USES_FULL_PPGTT(dev_priv) || intel_scanout_needs_vtd_wa(dev_priv)) |
| ggtt->base.clear_range = gen8_ggtt_clear_range; |
| |
| ggtt->base.insert_entries = gen8_ggtt_insert_entries; |
| if (IS_CHERRYVIEW(dev_priv)) |
| ggtt->base.insert_entries = gen8_ggtt_insert_entries__BKL; |
| |
| ggtt->invalidate = gen6_ggtt_invalidate; |
| |
| return ggtt_probe_common(ggtt, size); |
| } |
| |
| static int gen6_gmch_probe(struct i915_ggtt *ggtt) |
| { |
| struct drm_i915_private *dev_priv = ggtt->base.i915; |
| struct pci_dev *pdev = dev_priv->drm.pdev; |
| unsigned int size; |
| u16 snb_gmch_ctl; |
| |
| ggtt->mappable_base = pci_resource_start(pdev, 2); |
| ggtt->mappable_end = pci_resource_len(pdev, 2); |
| |
| /* 64/512MB is the current min/max we actually know of, but this is just |
| * a coarse sanity check. |
| */ |
| if (ggtt->mappable_end < (64<<20) || ggtt->mappable_end > (512<<20)) { |
| DRM_ERROR("Unknown GMADR size (%llx)\n", ggtt->mappable_end); |
| return -ENXIO; |
| } |
| |
| if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(40))) |
| pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(40)); |
| pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl); |
| |
| ggtt->stolen_size = gen6_get_stolen_size(snb_gmch_ctl); |
| |
| size = gen6_get_total_gtt_size(snb_gmch_ctl); |
| ggtt->base.total = (size / sizeof(gen6_pte_t)) << PAGE_SHIFT; |
| |
| ggtt->base.clear_range = gen6_ggtt_clear_range; |
| ggtt->base.insert_page = gen6_ggtt_insert_page; |
| ggtt->base.insert_entries = gen6_ggtt_insert_entries; |
| ggtt->base.bind_vma = ggtt_bind_vma; |
| ggtt->base.unbind_vma = ggtt_unbind_vma; |
| ggtt->base.cleanup = gen6_gmch_remove; |
| |
| ggtt->invalidate = gen6_ggtt_invalidate; |
| |
| if (HAS_EDRAM(dev_priv)) |
| ggtt->base.pte_encode = iris_pte_encode; |
| else if (IS_HASWELL(dev_priv)) |
| ggtt->base.pte_encode = hsw_pte_encode; |
| else if (IS_VALLEYVIEW(dev_priv)) |
| ggtt->base.pte_encode = byt_pte_encode; |
| else if (INTEL_GEN(dev_priv) >= 7) |
| ggtt->base.pte_encode = ivb_pte_encode; |
| else |
| ggtt->base.pte_encode = snb_pte_encode; |
| |
| return ggtt_probe_common(ggtt, size); |
| } |
| |
| static void i915_gmch_remove(struct i915_address_space *vm) |
| { |
| intel_gmch_remove(); |
| } |
| |
| static int i915_gmch_probe(struct i915_ggtt *ggtt) |
| { |
| struct drm_i915_private *dev_priv = ggtt->base.i915; |
| int ret; |
| |
| ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->drm.pdev, NULL); |
| if (!ret) { |
| DRM_ERROR("failed to set up gmch\n"); |
| return -EIO; |
| } |
| |
| intel_gtt_get(&ggtt->base.total, |
| &ggtt->stolen_size, |
| &ggtt->mappable_base, |
| &ggtt->mappable_end); |
| |
| ggtt->do_idle_maps = needs_idle_maps(dev_priv); |
| ggtt->base.insert_page = i915_ggtt_insert_page; |
| ggtt->base.insert_entries = i915_ggtt_insert_entries; |
| ggtt->base.clear_range = i915_ggtt_clear_range; |
| ggtt->base.bind_vma = ggtt_bind_vma; |
| ggtt->base.unbind_vma = ggtt_unbind_vma; |
| ggtt->base.cleanup = i915_gmch_remove; |
| |
| ggtt->invalidate = gmch_ggtt_invalidate; |
| |
| if (unlikely(ggtt->do_idle_maps)) |
| DRM_INFO("applying Ironlake quirks for intel_iommu\n"); |
| |
| return 0; |
| } |
| |
| /** |
| * i915_ggtt_probe_hw - Probe GGTT hardware location |
| * @dev_priv: i915 device |
| */ |
| int i915_ggtt_probe_hw(struct drm_i915_private *dev_priv) |
| { |
| struct i915_ggtt *ggtt = &dev_priv->ggtt; |
| int ret; |
| |
| ggtt->base.i915 = dev_priv; |
| |
| if (INTEL_GEN(dev_priv) <= 5) |
| ret = i915_gmch_probe(ggtt); |
| else if (INTEL_GEN(dev_priv) < 8) |
| ret = gen6_gmch_probe(ggtt); |
| else |
| ret = gen8_gmch_probe(ggtt); |
| if (ret) |
| return ret; |
| |
| /* Trim the GGTT to fit the GuC mappable upper range (when enabled). |
| * This is easier than doing range restriction on the fly, as we |
| * currently don't have any bits spare to pass in this upper |
| * restriction! |
| */ |
| if (HAS_GUC(dev_priv) && i915.enable_guc_loading) { |
| ggtt->base.total = min_t(u64, ggtt->base.total, GUC_GGTT_TOP); |
| ggtt->mappable_end = min(ggtt->mappable_end, ggtt->base.total); |
| } |
| |
| if ((ggtt->base.total - 1) >> 32) { |
| DRM_ERROR("We never expected a Global GTT with more than 32bits" |
| " of address space! Found %lldM!\n", |
| ggtt->base.total >> 20); |
| ggtt->base.total = 1ULL << 32; |
| ggtt->mappable_end = min(ggtt->mappable_end, ggtt->base.total); |
| } |
| |
| if (ggtt->mappable_end > ggtt->base.total) { |
| DRM_ERROR("mappable aperture extends past end of GGTT," |
| " aperture=%llx, total=%llx\n", |
| ggtt->mappable_end, ggtt->base.total); |
| ggtt->mappable_end = ggtt->base.total; |
| } |
| |
| /* GMADR is the PCI mmio aperture into the global GTT. */ |
| DRM_INFO("Memory usable by graphics device = %lluM\n", |
| ggtt->base.total >> 20); |
| DRM_DEBUG_DRIVER("GMADR size = %lldM\n", ggtt->mappable_end >> 20); |
| DRM_DEBUG_DRIVER("GTT stolen size = %uM\n", ggtt->stolen_size >> 20); |
| #ifdef CONFIG_INTEL_IOMMU |
| if (intel_iommu_gfx_mapped) |
| DRM_INFO("VT-d active for gfx access\n"); |
| #endif |
| |
| return 0; |
| } |
| |
| /** |
| * i915_ggtt_init_hw - Initialize GGTT hardware |
| * @dev_priv: i915 device |
| */ |
| int i915_ggtt_init_hw(struct drm_i915_private *dev_priv) |
| { |
| struct i915_ggtt *ggtt = &dev_priv->ggtt; |
| int ret; |
| |
| INIT_LIST_HEAD(&dev_priv->vm_list); |
| |
| /* Note that we use page colouring to enforce a guard page at the |
| * end of the address space. This is required as the CS may prefetch |
| * beyond the end of the batch buffer, across the page boundary, |
| * and beyond the end of the GTT if we do not provide a guard. |
| */ |
| mutex_lock(&dev_priv->drm.struct_mutex); |
| i915_address_space_init(&ggtt->base, dev_priv, "[global]"); |
| if (!HAS_LLC(dev_priv) && !USES_PPGTT(dev_priv)) |
| ggtt->base.mm.color_adjust = i915_gtt_color_adjust; |
| mutex_unlock(&dev_priv->drm.struct_mutex); |
| |
| if (!io_mapping_init_wc(&dev_priv->ggtt.mappable, |
| dev_priv->ggtt.mappable_base, |
| dev_priv->ggtt.mappable_end)) { |
| ret = -EIO; |
| goto out_gtt_cleanup; |
| } |
| |
| ggtt->mtrr = arch_phys_wc_add(ggtt->mappable_base, ggtt->mappable_end); |
| |
| /* |
| * Initialise stolen early so that we may reserve preallocated |
| * objects for the BIOS to KMS transition. |
| */ |
| ret = i915_gem_init_stolen(dev_priv); |
| if (ret) |
| goto out_gtt_cleanup; |
| |
| return 0; |
| |
| out_gtt_cleanup: |
| ggtt->base.cleanup(&ggtt->base); |
| return ret; |
| } |
| |
| int i915_ggtt_enable_hw(struct drm_i915_private *dev_priv) |
| { |
| if (INTEL_GEN(dev_priv) < 6 && !intel_enable_gtt()) |
| return -EIO; |
| |
| return 0; |
| } |
| |
| void i915_ggtt_enable_guc(struct drm_i915_private *i915) |
| { |
| i915->ggtt.invalidate = guc_ggtt_invalidate; |
| } |
| |
| void i915_ggtt_disable_guc(struct drm_i915_private *i915) |
| { |
| i915->ggtt.invalidate = gen6_ggtt_invalidate; |
| } |
| |
| void i915_gem_restore_gtt_mappings(struct drm_i915_private *dev_priv) |
| { |
| struct i915_ggtt *ggtt = &dev_priv->ggtt; |
| struct drm_i915_gem_object *obj, *on; |
| |
| i915_check_and_clear_faults(dev_priv); |
| |
| /* First fill our portion of the GTT with scratch pages */ |
| ggtt->base.clear_range(&ggtt->base, ggtt->base.start, ggtt->base.total); |
| |
| ggtt->base.closed = true; /* skip rewriting PTE on VMA unbind */ |
| |
| /* clflush objects bound into the GGTT and rebind them. */ |
| list_for_each_entry_safe(obj, on, |
| &dev_priv->mm.bound_list, global_link) { |
| bool ggtt_bound = false; |
| struct i915_vma *vma; |
| |
| list_for_each_entry(vma, &obj->vma_list, obj_link) { |
| if (vma->vm != &ggtt->base) |
| continue; |
| |
| if (!i915_vma_unbind(vma)) |
| continue; |
| |
| WARN_ON(i915_vma_bind(vma, obj->cache_level, |
| PIN_UPDATE)); |
| ggtt_bound = true; |
| } |
| |
| if (ggtt_bound) |
| WARN_ON(i915_gem_object_set_to_gtt_domain(obj, false)); |
| } |
| |
| ggtt->base.closed = false; |
| |
| if (INTEL_GEN(dev_priv) >= 8) { |
| if (IS_CHERRYVIEW(dev_priv) || IS_GEN9_LP(dev_priv)) |
| chv_setup_private_ppat(dev_priv); |
| else |
| bdw_setup_private_ppat(dev_priv); |
| |
| return; |
| } |
| |
| if (USES_PPGTT(dev_priv)) { |
| struct i915_address_space *vm; |
| |
| list_for_each_entry(vm, &dev_priv->vm_list, global_link) { |
| /* TODO: Perhaps it shouldn't be gen6 specific */ |
| |
| struct i915_hw_ppgtt *ppgtt; |
| |
| if (i915_is_ggtt(vm)) |
| ppgtt = dev_priv->mm.aliasing_ppgtt; |
| else |
| ppgtt = i915_vm_to_ppgtt(vm); |
| |
| gen6_write_page_range(dev_priv, &ppgtt->pd, |
| 0, ppgtt->base.total); |
| } |
| } |
| |
| i915_ggtt_invalidate(dev_priv); |
| } |
| |
| static struct scatterlist * |
| rotate_pages(const dma_addr_t *in, unsigned int offset, |
| unsigned int width, unsigned int height, |
| unsigned int stride, |
| struct sg_table *st, struct scatterlist *sg) |
| { |
| unsigned int column, row; |
| unsigned int src_idx; |
| |
| for (column = 0; column < width; column++) { |
| src_idx = stride * (height - 1) + column; |
| for (row = 0; row < height; row++) { |
| st->nents++; |
| /* We don't need the pages, but need to initialize |
| * the entries so the sg list can be happily traversed. |
| * The only thing we need are DMA addresses. |
| */ |
| sg_set_page(sg, NULL, PAGE_SIZE, 0); |
| sg_dma_address(sg) = in[offset + src_idx]; |
| sg_dma_len(sg) = PAGE_SIZE; |
| sg = sg_next(sg); |
| src_idx -= stride; |
| } |
| } |
| |
| return sg; |
| } |
| |
| static struct sg_table * |
| intel_rotate_fb_obj_pages(const struct intel_rotation_info *rot_info, |
| struct drm_i915_gem_object *obj) |
| { |
| const size_t n_pages = obj->base.size / PAGE_SIZE; |
| unsigned int size = intel_rotation_info_size(rot_info); |
| struct sgt_iter sgt_iter; |
| dma_addr_t dma_addr; |
| unsigned long i; |
| dma_addr_t *page_addr_list; |
| struct sg_table *st; |
| struct scatterlist *sg; |
| int ret = -ENOMEM; |
| |
| /* Allocate a temporary list of source pages for random access. */ |
| page_addr_list = drm_malloc_gfp(n_pages, |
| sizeof(dma_addr_t), |
| GFP_TEMPORARY); |
| if (!page_addr_list) |
| return ERR_PTR(ret); |
| |
| /* Allocate target SG list. */ |
| st = kmalloc(sizeof(*st), GFP_KERNEL); |
| if (!st) |
| goto err_st_alloc; |
| |
| ret = sg_alloc_table(st, size, GFP_KERNEL); |
| if (ret) |
| goto err_sg_alloc; |
| |
| /* Populate source page list from the object. */ |
| i = 0; |
| for_each_sgt_dma(dma_addr, sgt_iter, obj->mm.pages) |
| page_addr_list[i++] = dma_addr; |
| |
| GEM_BUG_ON(i != n_pages); |
| st->nents = 0; |
| sg = st->sgl; |
| |
| for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) { |
| sg = rotate_pages(page_addr_list, rot_info->plane[i].offset, |
| rot_info->plane[i].width, rot_info->plane[i].height, |
| rot_info->plane[i].stride, st, sg); |
| } |
| |
| DRM_DEBUG_KMS("Created rotated page mapping for object size %zu (%ux%u tiles, %u pages)\n", |
| obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size); |
| |
| drm_free_large(page_addr_list); |
| |
| return st; |
| |
| err_sg_alloc: |
| kfree(st); |
| err_st_alloc: |
| drm_free_large(page_addr_list); |
| |
| DRM_DEBUG_KMS("Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n", |
| obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size); |
| |
| return ERR_PTR(ret); |
| } |
| |
| static struct sg_table * |
| intel_partial_pages(const struct i915_ggtt_view *view, |
| struct drm_i915_gem_object *obj) |
| { |
| struct sg_table *st; |
| struct scatterlist *sg, *iter; |
| unsigned int count = view->partial.size; |
| unsigned int offset; |
| int ret = -ENOMEM; |
| |
| st = kmalloc(sizeof(*st), GFP_KERNEL); |
| if (!st) |
| goto err_st_alloc; |
| |
| ret = sg_alloc_table(st, count, GFP_KERNEL); |
| if (ret) |
| goto err_sg_alloc; |
| |
| iter = i915_gem_object_get_sg(obj, view->partial.offset, &offset); |
| GEM_BUG_ON(!iter); |
| |
| sg = st->sgl; |
| st->nents = 0; |
| do { |
| unsigned int len; |
| |
| len = min(iter->length - (offset << PAGE_SHIFT), |
| count << PAGE_SHIFT); |
| sg_set_page(sg, NULL, len, 0); |
| sg_dma_address(sg) = |
| sg_dma_address(iter) + (offset << PAGE_SHIFT); |
| sg_dma_len(sg) = len; |
| |
| st->nents++; |
| count -= len >> PAGE_SHIFT; |
| if (count == 0) { |
| sg_mark_end(sg); |
| return st; |
| } |
| |
| sg = __sg_next(sg); |
| iter = __sg_next(iter); |
| offset = 0; |
| } while (1); |
| |
| err_sg_alloc: |
| kfree(st); |
| err_st_alloc: |
| return ERR_PTR(ret); |
| } |
| |
| static int |
| i915_get_ggtt_vma_pages(struct i915_vma *vma) |
| { |
| int ret = 0; |
| |
| /* The vma->pages are only valid within the lifespan of the borrowed |
| * obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so |
| * must be the vma->pages. A simple rule is that vma->pages must only |
| * be accessed when the obj->mm.pages are pinned. |
| */ |
| GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj)); |
| |
| if (vma->pages) |
| return 0; |
| |
| if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) |
| vma->pages = vma->obj->mm.pages; |
| else if (vma->ggtt_view.type == I915_GGTT_VIEW_ROTATED) |
| vma->pages = |
| intel_rotate_fb_obj_pages(&vma->ggtt_view.rotated, |
| vma->obj); |
| else if (vma->ggtt_view.type == I915_GGTT_VIEW_PARTIAL) |
| vma->pages = intel_partial_pages(&vma->ggtt_view, vma->obj); |
| else |
| WARN_ONCE(1, "GGTT view %u not implemented!\n", |
| vma->ggtt_view.type); |
| |
| if (!vma->pages) { |
| DRM_ERROR("Failed to get pages for GGTT view type %u!\n", |
| vma->ggtt_view.type); |
| ret = -EINVAL; |
| } else if (IS_ERR(vma->pages)) { |
| ret = PTR_ERR(vma->pages); |
| vma->pages = NULL; |
| DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n", |
| vma->ggtt_view.type, ret); |
| } |
| |
| return ret; |
| } |
| |
| /** |
| * i915_gem_gtt_reserve - reserve a node in an address_space (GTT) |
| * @vm: the &struct i915_address_space |
| * @node: the &struct drm_mm_node (typically i915_vma.mode) |
| * @size: how much space to allocate inside the GTT, |
| * must be #I915_GTT_PAGE_SIZE aligned |
| * @offset: where to insert inside the GTT, |
| * must be #I915_GTT_MIN_ALIGNMENT aligned, and the node |
| * (@offset + @size) must fit within the address space |
| * @color: color to apply to node, if this node is not from a VMA, |
| * color must be #I915_COLOR_UNEVICTABLE |
| * @flags: control search and eviction behaviour |
| * |
| * i915_gem_gtt_reserve() tries to insert the @node at the exact @offset inside |
| * the address space (using @size and @color). If the @node does not fit, it |
| * tries to evict any overlapping nodes from the GTT, including any |
| * neighbouring nodes if the colors do not match (to ensure guard pages between |
| * differing domains). See i915_gem_evict_for_node() for the gory details |
| * on the eviction algorithm. #PIN_NONBLOCK may used to prevent waiting on |
| * evicting active overlapping objects, and any overlapping node that is pinned |
| * or marked as unevictable will also result in failure. |
| * |
| * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if |
| * asked to wait for eviction and interrupted. |
| */ |
| int i915_gem_gtt_reserve(struct i915_address_space *vm, |
| struct drm_mm_node *node, |
| u64 size, u64 offset, unsigned long color, |
| unsigned int flags) |
| { |
| int err; |
| |
| GEM_BUG_ON(!size); |
| GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE)); |
| GEM_BUG_ON(!IS_ALIGNED(offset, I915_GTT_MIN_ALIGNMENT)); |
| GEM_BUG_ON(range_overflows(offset, size, vm->total)); |
| GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->base); |
| GEM_BUG_ON(drm_mm_node_allocated(node)); |
| |
| node->size = size; |
| node->start = offset; |
| node->color = color; |
| |
| err = drm_mm_reserve_node(&vm->mm, node); |
| if (err != -ENOSPC) |
| return err; |
| |
| err = i915_gem_evict_for_node(vm, node, flags); |
| if (err == 0) |
| err = drm_mm_reserve_node(&vm->mm, node); |
| |
| return err; |
| } |
| |
| static u64 random_offset(u64 start, u64 end, u64 len, u64 align) |
| { |
| u64 range, addr; |
| |
| GEM_BUG_ON(range_overflows(start, len, end)); |
| GEM_BUG_ON(round_up(start, align) > round_down(end - len, align)); |
| |
| range = round_down(end - len, align) - round_up(start, align); |
| if (range) { |
| if (sizeof(unsigned long) == sizeof(u64)) { |
| addr = get_random_long(); |
| } else { |
| addr = get_random_int(); |
| if (range > U32_MAX) { |
| addr <<= 32; |
| addr |= get_random_int(); |
| } |
| } |
| div64_u64_rem(addr, range, &addr); |
| start += addr; |
| } |
| |
| return round_up(start, align); |
| } |
| |
| /** |
| * i915_gem_gtt_insert - insert a node into an address_space (GTT) |
| * @vm: the &struct i915_address_space |
| * @node: the &struct drm_mm_node (typically i915_vma.node) |
| * @size: how much space to allocate inside the GTT, |
| * must be #I915_GTT_PAGE_SIZE aligned |
| * @alignment: required alignment of starting offset, may be 0 but |
| * if specified, this must be a power-of-two and at least |
| * #I915_GTT_MIN_ALIGNMENT |
| * @color: color to apply to node |
| * @start: start of any range restriction inside GTT (0 for all), |
| * must be #I915_GTT_PAGE_SIZE aligned |
| * @end: end of any range restriction inside GTT (U64_MAX for all), |
| * must be #I915_GTT_PAGE_SIZE aligned if not U64_MAX |
| * @flags: control search and eviction behaviour |
| * |
| * i915_gem_gtt_insert() first searches for an available hole into which |
| * is can insert the node. The hole address is aligned to @alignment and |
| * its @size must then fit entirely within the [@start, @end] bounds. The |
| * nodes on either side of the hole must match @color, or else a guard page |
| * will be inserted between the two nodes (or the node evicted). If no |
| * suitable hole is found, first a victim is randomly selected and tested |
| * for eviction, otherwise then the LRU list of objects within the GTT |
| * is scanned to find the first set of replacement nodes to create the hole. |
| * Those old overlapping nodes are evicted from the GTT (and so must be |
| * rebound before any future use). Any node that is currently pinned cannot |
| * be evicted (see i915_vma_pin()). Similar if the node's VMA is currently |
| * active and #PIN_NONBLOCK is specified, that node is also skipped when |
| * searching for an eviction candidate. See i915_gem_evict_something() for |
| * the gory details on the eviction algorithm. |
| * |
| * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if |
| * asked to wait for eviction and interrupted. |
| */ |
| int i915_gem_gtt_insert(struct i915_address_space *vm, |
| struct drm_mm_node *node, |
| u64 size, u64 alignment, unsigned long color, |
| u64 start, u64 end, unsigned int flags) |
| { |
| enum drm_mm_insert_mode mode; |
| u64 offset; |
| int err; |
| |
| lockdep_assert_held(&vm->i915->drm.struct_mutex); |
| GEM_BUG_ON(!size); |
| GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE)); |
| GEM_BUG_ON(alignment && !is_power_of_2(alignment)); |
| GEM_BUG_ON(alignment && !IS_ALIGNED(alignment, I915_GTT_MIN_ALIGNMENT)); |
| GEM_BUG_ON(start >= end); |
| GEM_BUG_ON(start > 0 && !IS_ALIGNED(start, I915_GTT_PAGE_SIZE)); |
| GEM_BUG_ON(end < U64_MAX && !IS_ALIGNED(end, I915_GTT_PAGE_SIZE)); |
| GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->base); |
| GEM_BUG_ON(drm_mm_node_allocated(node)); |
| |
| if (unlikely(range_overflows(start, size, end))) |
| return -ENOSPC; |
| |
| if (unlikely(round_up(start, alignment) > round_down(end - size, alignment))) |
| return -ENOSPC; |
| |
| mode = DRM_MM_INSERT_BEST; |
| if (flags & PIN_HIGH) |
| mode = DRM_MM_INSERT_HIGH; |
| if (flags & PIN_MAPPABLE) |
| mode = DRM_MM_INSERT_LOW; |
| |
| /* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks, |
| * so we know that we always have a minimum alignment of 4096. |
| * The drm_mm range manager is optimised to return results |
| * with zero alignment, so where possible use the optimal |
| * path. |
| */ |
| BUILD_BUG_ON(I915_GTT_MIN_ALIGNMENT > I915_GTT_PAGE_SIZE); |
| if (alignment <= I915_GTT_MIN_ALIGNMENT) |
| alignment = 0; |
| |
| err = drm_mm_insert_node_in_range(&vm->mm, node, |
| size, alignment, color, |
| start, end, mode); |
| if (err != -ENOSPC) |
| return err; |
| |
| /* No free space, pick a slot at random. |
| * |
| * There is a pathological case here using a GTT shared between |
| * mmap and GPU (i.e. ggtt/aliasing_ppgtt but not full-ppgtt): |
| * |
| * |<-- 256 MiB aperture -->||<-- 1792 MiB unmappable -->| |
| * (64k objects) (448k objects) |
| * |
| * Now imagine that the eviction LRU is ordered top-down (just because |
| * pathology meets real life), and that we need to evict an object to |
| * make room inside the aperture. The eviction scan then has to walk |
| * the 448k list before it finds one within range. And now imagine that |
| * it has to search for a new hole between every byte inside the memcpy, |
| * for several simultaneous clients. |
| * |
| * On a full-ppgtt system, if we have run out of available space, there |
| * will be lots and lots of objects in the eviction list! Again, |
| * searching that LRU list may be slow if we are also applying any |
| * range restrictions (e.g. restriction to low 4GiB) and so, for |
| * simplicity and similarilty between different GTT, try the single |
| * random replacement first. |
| */ |
| offset = random_offset(start, end, |
| size, alignment ?: I915_GTT_MIN_ALIGNMENT); |
| err = i915_gem_gtt_reserve(vm, node, size, offset, color, flags); |
| if (err != -ENOSPC) |
| return err; |
| |
| /* Randomly selected placement is pinned, do a search */ |
| err = i915_gem_evict_something(vm, size, alignment, color, |
| start, end, flags); |
| if (err) |
| return err; |
| |
| return drm_mm_insert_node_in_range(&vm->mm, node, |
| size, alignment, color, |
| start, end, DRM_MM_INSERT_EVICT); |
| } |
| |
| #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) |
| #include "selftests/mock_gtt.c" |
| #include "selftests/i915_gem_gtt.c" |
| #endif |