| #include <linux/mm.h> |
| #include <linux/mmzone.h> |
| #include <linux/bootmem.h> |
| #include <linux/bit_spinlock.h> |
| #include <linux/page_cgroup.h> |
| #include <linux/hash.h> |
| #include <linux/slab.h> |
| #include <linux/memory.h> |
| #include <linux/vmalloc.h> |
| #include <linux/cgroup.h> |
| #include <linux/swapops.h> |
| #include <linux/kmemleak.h> |
| |
| static unsigned long total_usage; |
| |
| #if !defined(CONFIG_SPARSEMEM) |
| |
| |
| void __meminit pgdat_page_cgroup_init(struct pglist_data *pgdat) |
| { |
| pgdat->node_page_cgroup = NULL; |
| } |
| |
| struct page_cgroup *lookup_page_cgroup(struct page *page) |
| { |
| unsigned long pfn = page_to_pfn(page); |
| unsigned long offset; |
| struct page_cgroup *base; |
| |
| base = NODE_DATA(page_to_nid(page))->node_page_cgroup; |
| #ifdef CONFIG_DEBUG_VM |
| /* |
| * The sanity checks the page allocator does upon freeing a |
| * page can reach here before the page_cgroup arrays are |
| * allocated when feeding a range of pages to the allocator |
| * for the first time during bootup or memory hotplug. |
| */ |
| if (unlikely(!base)) |
| return NULL; |
| #endif |
| offset = pfn - NODE_DATA(page_to_nid(page))->node_start_pfn; |
| return base + offset; |
| } |
| |
| static int __init alloc_node_page_cgroup(int nid) |
| { |
| struct page_cgroup *base; |
| unsigned long table_size; |
| unsigned long nr_pages; |
| |
| nr_pages = NODE_DATA(nid)->node_spanned_pages; |
| if (!nr_pages) |
| return 0; |
| |
| table_size = sizeof(struct page_cgroup) * nr_pages; |
| |
| base = memblock_virt_alloc_try_nid_nopanic( |
| table_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS), |
| BOOTMEM_ALLOC_ACCESSIBLE, nid); |
| if (!base) |
| return -ENOMEM; |
| NODE_DATA(nid)->node_page_cgroup = base; |
| total_usage += table_size; |
| return 0; |
| } |
| |
| void __init page_cgroup_init_flatmem(void) |
| { |
| |
| int nid, fail; |
| |
| if (mem_cgroup_disabled()) |
| return; |
| |
| for_each_online_node(nid) { |
| fail = alloc_node_page_cgroup(nid); |
| if (fail) |
| goto fail; |
| } |
| printk(KERN_INFO "allocated %ld bytes of page_cgroup\n", total_usage); |
| printk(KERN_INFO "please try 'cgroup_disable=memory' option if you" |
| " don't want memory cgroups\n"); |
| return; |
| fail: |
| printk(KERN_CRIT "allocation of page_cgroup failed.\n"); |
| printk(KERN_CRIT "please try 'cgroup_disable=memory' boot option\n"); |
| panic("Out of memory"); |
| } |
| |
| #else /* CONFIG_FLAT_NODE_MEM_MAP */ |
| |
| struct page_cgroup *lookup_page_cgroup(struct page *page) |
| { |
| unsigned long pfn = page_to_pfn(page); |
| struct mem_section *section = __pfn_to_section(pfn); |
| #ifdef CONFIG_DEBUG_VM |
| /* |
| * The sanity checks the page allocator does upon freeing a |
| * page can reach here before the page_cgroup arrays are |
| * allocated when feeding a range of pages to the allocator |
| * for the first time during bootup or memory hotplug. |
| */ |
| if (!section->page_cgroup) |
| return NULL; |
| #endif |
| return section->page_cgroup + pfn; |
| } |
| |
| static void *__meminit alloc_page_cgroup(size_t size, int nid) |
| { |
| gfp_t flags = GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN; |
| void *addr = NULL; |
| |
| addr = alloc_pages_exact_nid(nid, size, flags); |
| if (addr) { |
| kmemleak_alloc(addr, size, 1, flags); |
| return addr; |
| } |
| |
| if (node_state(nid, N_HIGH_MEMORY)) |
| addr = vzalloc_node(size, nid); |
| else |
| addr = vzalloc(size); |
| |
| return addr; |
| } |
| |
| static int __meminit init_section_page_cgroup(unsigned long pfn, int nid) |
| { |
| struct mem_section *section; |
| struct page_cgroup *base; |
| unsigned long table_size; |
| |
| section = __pfn_to_section(pfn); |
| |
| if (section->page_cgroup) |
| return 0; |
| |
| table_size = sizeof(struct page_cgroup) * PAGES_PER_SECTION; |
| base = alloc_page_cgroup(table_size, nid); |
| |
| /* |
| * The value stored in section->page_cgroup is (base - pfn) |
| * and it does not point to the memory block allocated above, |
| * causing kmemleak false positives. |
| */ |
| kmemleak_not_leak(base); |
| |
| if (!base) { |
| printk(KERN_ERR "page cgroup allocation failure\n"); |
| return -ENOMEM; |
| } |
| |
| /* |
| * The passed "pfn" may not be aligned to SECTION. For the calculation |
| * we need to apply a mask. |
| */ |
| pfn &= PAGE_SECTION_MASK; |
| section->page_cgroup = base - pfn; |
| total_usage += table_size; |
| return 0; |
| } |
| #ifdef CONFIG_MEMORY_HOTPLUG |
| static void free_page_cgroup(void *addr) |
| { |
| if (is_vmalloc_addr(addr)) { |
| vfree(addr); |
| } else { |
| struct page *page = virt_to_page(addr); |
| size_t table_size = |
| sizeof(struct page_cgroup) * PAGES_PER_SECTION; |
| |
| BUG_ON(PageReserved(page)); |
| free_pages_exact(addr, table_size); |
| } |
| } |
| |
| void __free_page_cgroup(unsigned long pfn) |
| { |
| struct mem_section *ms; |
| struct page_cgroup *base; |
| |
| ms = __pfn_to_section(pfn); |
| if (!ms || !ms->page_cgroup) |
| return; |
| base = ms->page_cgroup + pfn; |
| free_page_cgroup(base); |
| ms->page_cgroup = NULL; |
| } |
| |
| int __meminit online_page_cgroup(unsigned long start_pfn, |
| unsigned long nr_pages, |
| int nid) |
| { |
| unsigned long start, end, pfn; |
| int fail = 0; |
| |
| start = SECTION_ALIGN_DOWN(start_pfn); |
| end = SECTION_ALIGN_UP(start_pfn + nr_pages); |
| |
| if (nid == -1) { |
| /* |
| * In this case, "nid" already exists and contains valid memory. |
| * "start_pfn" passed to us is a pfn which is an arg for |
| * online__pages(), and start_pfn should exist. |
| */ |
| nid = pfn_to_nid(start_pfn); |
| VM_BUG_ON(!node_state(nid, N_ONLINE)); |
| } |
| |
| for (pfn = start; !fail && pfn < end; pfn += PAGES_PER_SECTION) { |
| if (!pfn_present(pfn)) |
| continue; |
| fail = init_section_page_cgroup(pfn, nid); |
| } |
| if (!fail) |
| return 0; |
| |
| /* rollback */ |
| for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) |
| __free_page_cgroup(pfn); |
| |
| return -ENOMEM; |
| } |
| |
| int __meminit offline_page_cgroup(unsigned long start_pfn, |
| unsigned long nr_pages, int nid) |
| { |
| unsigned long start, end, pfn; |
| |
| start = SECTION_ALIGN_DOWN(start_pfn); |
| end = SECTION_ALIGN_UP(start_pfn + nr_pages); |
| |
| for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) |
| __free_page_cgroup(pfn); |
| return 0; |
| |
| } |
| |
| static int __meminit page_cgroup_callback(struct notifier_block *self, |
| unsigned long action, void *arg) |
| { |
| struct memory_notify *mn = arg; |
| int ret = 0; |
| switch (action) { |
| case MEM_GOING_ONLINE: |
| ret = online_page_cgroup(mn->start_pfn, |
| mn->nr_pages, mn->status_change_nid); |
| break; |
| case MEM_OFFLINE: |
| offline_page_cgroup(mn->start_pfn, |
| mn->nr_pages, mn->status_change_nid); |
| break; |
| case MEM_CANCEL_ONLINE: |
| offline_page_cgroup(mn->start_pfn, |
| mn->nr_pages, mn->status_change_nid); |
| break; |
| case MEM_GOING_OFFLINE: |
| break; |
| case MEM_ONLINE: |
| case MEM_CANCEL_OFFLINE: |
| break; |
| } |
| |
| return notifier_from_errno(ret); |
| } |
| |
| #endif |
| |
| void __init page_cgroup_init(void) |
| { |
| unsigned long pfn; |
| int nid; |
| |
| if (mem_cgroup_disabled()) |
| return; |
| |
| for_each_node_state(nid, N_MEMORY) { |
| unsigned long start_pfn, end_pfn; |
| |
| start_pfn = node_start_pfn(nid); |
| end_pfn = node_end_pfn(nid); |
| /* |
| * start_pfn and end_pfn may not be aligned to SECTION and the |
| * page->flags of out of node pages are not initialized. So we |
| * scan [start_pfn, the biggest section's pfn < end_pfn) here. |
| */ |
| for (pfn = start_pfn; |
| pfn < end_pfn; |
| pfn = ALIGN(pfn + 1, PAGES_PER_SECTION)) { |
| |
| if (!pfn_valid(pfn)) |
| continue; |
| /* |
| * Nodes's pfns can be overlapping. |
| * We know some arch can have a nodes layout such as |
| * -------------pfn--------------> |
| * N0 | N1 | N2 | N0 | N1 | N2|.... |
| */ |
| if (pfn_to_nid(pfn) != nid) |
| continue; |
| if (init_section_page_cgroup(pfn, nid)) |
| goto oom; |
| } |
| } |
| hotplug_memory_notifier(page_cgroup_callback, 0); |
| printk(KERN_INFO "allocated %ld bytes of page_cgroup\n", total_usage); |
| printk(KERN_INFO "please try 'cgroup_disable=memory' option if you " |
| "don't want memory cgroups\n"); |
| return; |
| oom: |
| printk(KERN_CRIT "try 'cgroup_disable=memory' boot option\n"); |
| panic("Out of memory"); |
| } |
| |
| void __meminit pgdat_page_cgroup_init(struct pglist_data *pgdat) |
| { |
| return; |
| } |
| |
| #endif |
| |
| |
| #ifdef CONFIG_MEMCG_SWAP |
| |
| static DEFINE_MUTEX(swap_cgroup_mutex); |
| struct swap_cgroup_ctrl { |
| struct page **map; |
| unsigned long length; |
| spinlock_t lock; |
| }; |
| |
| static struct swap_cgroup_ctrl swap_cgroup_ctrl[MAX_SWAPFILES]; |
| |
| struct swap_cgroup { |
| unsigned short id; |
| }; |
| #define SC_PER_PAGE (PAGE_SIZE/sizeof(struct swap_cgroup)) |
| |
| /* |
| * SwapCgroup implements "lookup" and "exchange" operations. |
| * In typical usage, this swap_cgroup is accessed via memcg's charge/uncharge |
| * against SwapCache. At swap_free(), this is accessed directly from swap. |
| * |
| * This means, |
| * - we have no race in "exchange" when we're accessed via SwapCache because |
| * SwapCache(and its swp_entry) is under lock. |
| * - When called via swap_free(), there is no user of this entry and no race. |
| * Then, we don't need lock around "exchange". |
| * |
| * TODO: we can push these buffers out to HIGHMEM. |
| */ |
| |
| /* |
| * allocate buffer for swap_cgroup. |
| */ |
| static int swap_cgroup_prepare(int type) |
| { |
| struct page *page; |
| struct swap_cgroup_ctrl *ctrl; |
| unsigned long idx, max; |
| |
| ctrl = &swap_cgroup_ctrl[type]; |
| |
| for (idx = 0; idx < ctrl->length; idx++) { |
| page = alloc_page(GFP_KERNEL | __GFP_ZERO); |
| if (!page) |
| goto not_enough_page; |
| ctrl->map[idx] = page; |
| } |
| return 0; |
| not_enough_page: |
| max = idx; |
| for (idx = 0; idx < max; idx++) |
| __free_page(ctrl->map[idx]); |
| |
| return -ENOMEM; |
| } |
| |
| static struct swap_cgroup *lookup_swap_cgroup(swp_entry_t ent, |
| struct swap_cgroup_ctrl **ctrlp) |
| { |
| pgoff_t offset = swp_offset(ent); |
| struct swap_cgroup_ctrl *ctrl; |
| struct page *mappage; |
| struct swap_cgroup *sc; |
| |
| ctrl = &swap_cgroup_ctrl[swp_type(ent)]; |
| if (ctrlp) |
| *ctrlp = ctrl; |
| |
| mappage = ctrl->map[offset / SC_PER_PAGE]; |
| sc = page_address(mappage); |
| return sc + offset % SC_PER_PAGE; |
| } |
| |
| /** |
| * swap_cgroup_cmpxchg - cmpxchg mem_cgroup's id for this swp_entry. |
| * @ent: swap entry to be cmpxchged |
| * @old: old id |
| * @new: new id |
| * |
| * Returns old id at success, 0 at failure. |
| * (There is no mem_cgroup using 0 as its id) |
| */ |
| unsigned short swap_cgroup_cmpxchg(swp_entry_t ent, |
| unsigned short old, unsigned short new) |
| { |
| struct swap_cgroup_ctrl *ctrl; |
| struct swap_cgroup *sc; |
| unsigned long flags; |
| unsigned short retval; |
| |
| sc = lookup_swap_cgroup(ent, &ctrl); |
| |
| spin_lock_irqsave(&ctrl->lock, flags); |
| retval = sc->id; |
| if (retval == old) |
| sc->id = new; |
| else |
| retval = 0; |
| spin_unlock_irqrestore(&ctrl->lock, flags); |
| return retval; |
| } |
| |
| /** |
| * swap_cgroup_record - record mem_cgroup for this swp_entry. |
| * @ent: swap entry to be recorded into |
| * @id: mem_cgroup to be recorded |
| * |
| * Returns old value at success, 0 at failure. |
| * (Of course, old value can be 0.) |
| */ |
| unsigned short swap_cgroup_record(swp_entry_t ent, unsigned short id) |
| { |
| struct swap_cgroup_ctrl *ctrl; |
| struct swap_cgroup *sc; |
| unsigned short old; |
| unsigned long flags; |
| |
| sc = lookup_swap_cgroup(ent, &ctrl); |
| |
| spin_lock_irqsave(&ctrl->lock, flags); |
| old = sc->id; |
| sc->id = id; |
| spin_unlock_irqrestore(&ctrl->lock, flags); |
| |
| return old; |
| } |
| |
| /** |
| * lookup_swap_cgroup_id - lookup mem_cgroup id tied to swap entry |
| * @ent: swap entry to be looked up. |
| * |
| * Returns CSS ID of mem_cgroup at success. 0 at failure. (0 is invalid ID) |
| */ |
| unsigned short lookup_swap_cgroup_id(swp_entry_t ent) |
| { |
| return lookup_swap_cgroup(ent, NULL)->id; |
| } |
| |
| int swap_cgroup_swapon(int type, unsigned long max_pages) |
| { |
| void *array; |
| unsigned long array_size; |
| unsigned long length; |
| struct swap_cgroup_ctrl *ctrl; |
| |
| if (!do_swap_account) |
| return 0; |
| |
| length = DIV_ROUND_UP(max_pages, SC_PER_PAGE); |
| array_size = length * sizeof(void *); |
| |
| array = vzalloc(array_size); |
| if (!array) |
| goto nomem; |
| |
| ctrl = &swap_cgroup_ctrl[type]; |
| mutex_lock(&swap_cgroup_mutex); |
| ctrl->length = length; |
| ctrl->map = array; |
| spin_lock_init(&ctrl->lock); |
| if (swap_cgroup_prepare(type)) { |
| /* memory shortage */ |
| ctrl->map = NULL; |
| ctrl->length = 0; |
| mutex_unlock(&swap_cgroup_mutex); |
| vfree(array); |
| goto nomem; |
| } |
| mutex_unlock(&swap_cgroup_mutex); |
| |
| return 0; |
| nomem: |
| printk(KERN_INFO "couldn't allocate enough memory for swap_cgroup.\n"); |
| printk(KERN_INFO |
| "swap_cgroup can be disabled by swapaccount=0 boot option\n"); |
| return -ENOMEM; |
| } |
| |
| void swap_cgroup_swapoff(int type) |
| { |
| struct page **map; |
| unsigned long i, length; |
| struct swap_cgroup_ctrl *ctrl; |
| |
| if (!do_swap_account) |
| return; |
| |
| mutex_lock(&swap_cgroup_mutex); |
| ctrl = &swap_cgroup_ctrl[type]; |
| map = ctrl->map; |
| length = ctrl->length; |
| ctrl->map = NULL; |
| ctrl->length = 0; |
| mutex_unlock(&swap_cgroup_mutex); |
| |
| if (map) { |
| for (i = 0; i < length; i++) { |
| struct page *page = map[i]; |
| if (page) |
| __free_page(page); |
| } |
| vfree(map); |
| } |
| } |
| |
| #endif |