blob: e83ad2c9228c1242a582920c3a03b691f5dd56f9 [file] [log] [blame]
/*
* Generic hugetlb support.
* (C) William Irwin, April 2004
*/
#include <linux/gfp.h>
#include <linux/list.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/mm.h>
#include <linux/seq_file.h>
#include <linux/sysctl.h>
#include <linux/highmem.h>
#include <linux/mmu_notifier.h>
#include <linux/nodemask.h>
#include <linux/pagemap.h>
#include <linux/mempolicy.h>
#include <linux/cpuset.h>
#include <linux/mutex.h>
#include <linux/bootmem.h>
#include <linux/sysfs.h>
#include <asm/page.h>
#include <asm/pgtable.h>
#include <asm/io.h>
#include <linux/hugetlb.h>
#include "internal.h"
const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
unsigned long hugepages_treat_as_movable;
static int max_hstate;
unsigned int default_hstate_idx;
struct hstate hstates[HUGE_MAX_HSTATE];
__initdata LIST_HEAD(huge_boot_pages);
/* for command line parsing */
static struct hstate * __initdata parsed_hstate;
static unsigned long __initdata default_hstate_max_huge_pages;
static unsigned long __initdata default_hstate_size;
#define for_each_hstate(h) \
for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
/*
* Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
*/
static DEFINE_SPINLOCK(hugetlb_lock);
/*
* Region tracking -- allows tracking of reservations and instantiated pages
* across the pages in a mapping.
*
* The region data structures are protected by a combination of the mmap_sem
* and the hugetlb_instantion_mutex. To access or modify a region the caller
* must either hold the mmap_sem for write, or the mmap_sem for read and
* the hugetlb_instantiation mutex:
*
* down_write(&mm->mmap_sem);
* or
* down_read(&mm->mmap_sem);
* mutex_lock(&hugetlb_instantiation_mutex);
*/
struct file_region {
struct list_head link;
long from;
long to;
};
static long region_add(struct list_head *head, long f, long t)
{
struct file_region *rg, *nrg, *trg;
/* Locate the region we are either in or before. */
list_for_each_entry(rg, head, link)
if (f <= rg->to)
break;
/* Round our left edge to the current segment if it encloses us. */
if (f > rg->from)
f = rg->from;
/* Check for and consume any regions we now overlap with. */
nrg = rg;
list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
if (&rg->link == head)
break;
if (rg->from > t)
break;
/* If this area reaches higher then extend our area to
* include it completely. If this is not the first area
* which we intend to reuse, free it. */
if (rg->to > t)
t = rg->to;
if (rg != nrg) {
list_del(&rg->link);
kfree(rg);
}
}
nrg->from = f;
nrg->to = t;
return 0;
}
static long region_chg(struct list_head *head, long f, long t)
{
struct file_region *rg, *nrg;
long chg = 0;
/* Locate the region we are before or in. */
list_for_each_entry(rg, head, link)
if (f <= rg->to)
break;
/* If we are below the current region then a new region is required.
* Subtle, allocate a new region at the position but make it zero
* size such that we can guarantee to record the reservation. */
if (&rg->link == head || t < rg->from) {
nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
if (!nrg)
return -ENOMEM;
nrg->from = f;
nrg->to = f;
INIT_LIST_HEAD(&nrg->link);
list_add(&nrg->link, rg->link.prev);
return t - f;
}
/* Round our left edge to the current segment if it encloses us. */
if (f > rg->from)
f = rg->from;
chg = t - f;
/* Check for and consume any regions we now overlap with. */
list_for_each_entry(rg, rg->link.prev, link) {
if (&rg->link == head)
break;
if (rg->from > t)
return chg;
/* We overlap with this area, if it extends futher than
* us then we must extend ourselves. Account for its
* existing reservation. */
if (rg->to > t) {
chg += rg->to - t;
t = rg->to;
}
chg -= rg->to - rg->from;
}
return chg;
}
static long region_truncate(struct list_head *head, long end)
{
struct file_region *rg, *trg;
long chg = 0;
/* Locate the region we are either in or before. */
list_for_each_entry(rg, head, link)
if (end <= rg->to)
break;
if (&rg->link == head)
return 0;
/* If we are in the middle of a region then adjust it. */
if (end > rg->from) {
chg = rg->to - end;
rg->to = end;
rg = list_entry(rg->link.next, typeof(*rg), link);
}
/* Drop any remaining regions. */
list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
if (&rg->link == head)
break;
chg += rg->to - rg->from;
list_del(&rg->link);
kfree(rg);
}
return chg;
}
static long region_count(struct list_head *head, long f, long t)
{
struct file_region *rg;
long chg = 0;
/* Locate each segment we overlap with, and count that overlap. */
list_for_each_entry(rg, head, link) {
int seg_from;
int seg_to;
if (rg->to <= f)
continue;
if (rg->from >= t)
break;
seg_from = max(rg->from, f);
seg_to = min(rg->to, t);
chg += seg_to - seg_from;
}
return chg;
}
/*
* Convert the address within this vma to the page offset within
* the mapping, in pagecache page units; huge pages here.
*/
static pgoff_t vma_hugecache_offset(struct hstate *h,
struct vm_area_struct *vma, unsigned long address)
{
return ((address - vma->vm_start) >> huge_page_shift(h)) +
(vma->vm_pgoff >> huge_page_order(h));
}
/*
* Return the size of the pages allocated when backing a VMA. In the majority
* cases this will be same size as used by the page table entries.
*/
unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
{
struct hstate *hstate;
if (!is_vm_hugetlb_page(vma))
return PAGE_SIZE;
hstate = hstate_vma(vma);
return 1UL << (hstate->order + PAGE_SHIFT);
}
/*
* Return the page size being used by the MMU to back a VMA. In the majority
* of cases, the page size used by the kernel matches the MMU size. On
* architectures where it differs, an architecture-specific version of this
* function is required.
*/
#ifndef vma_mmu_pagesize
unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
{
return vma_kernel_pagesize(vma);
}
#endif
/*
* Flags for MAP_PRIVATE reservations. These are stored in the bottom
* bits of the reservation map pointer, which are always clear due to
* alignment.
*/
#define HPAGE_RESV_OWNER (1UL << 0)
#define HPAGE_RESV_UNMAPPED (1UL << 1)
#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
/*
* These helpers are used to track how many pages are reserved for
* faults in a MAP_PRIVATE mapping. Only the process that called mmap()
* is guaranteed to have their future faults succeed.
*
* With the exception of reset_vma_resv_huge_pages() which is called at fork(),
* the reserve counters are updated with the hugetlb_lock held. It is safe
* to reset the VMA at fork() time as it is not in use yet and there is no
* chance of the global counters getting corrupted as a result of the values.
*
* The private mapping reservation is represented in a subtly different
* manner to a shared mapping. A shared mapping has a region map associated
* with the underlying file, this region map represents the backing file
* pages which have ever had a reservation assigned which this persists even
* after the page is instantiated. A private mapping has a region map
* associated with the original mmap which is attached to all VMAs which
* reference it, this region map represents those offsets which have consumed
* reservation ie. where pages have been instantiated.
*/
static unsigned long get_vma_private_data(struct vm_area_struct *vma)
{
return (unsigned long)vma->vm_private_data;
}
static void set_vma_private_data(struct vm_area_struct *vma,
unsigned long value)
{
vma->vm_private_data = (void *)value;
}
struct resv_map {
struct kref refs;
struct list_head regions;
};
static struct resv_map *resv_map_alloc(void)
{
struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
if (!resv_map)
return NULL;
kref_init(&resv_map->refs);
INIT_LIST_HEAD(&resv_map->regions);
return resv_map;
}
static void resv_map_release(struct kref *ref)
{
struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
/* Clear out any active regions before we release the map. */
region_truncate(&resv_map->regions, 0);
kfree(resv_map);
}
static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
{
VM_BUG_ON(!is_vm_hugetlb_page(vma));
if (!(vma->vm_flags & VM_MAYSHARE))
return (struct resv_map *)(get_vma_private_data(vma) &
~HPAGE_RESV_MASK);
return NULL;
}
static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
{
VM_BUG_ON(!is_vm_hugetlb_page(vma));
VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
set_vma_private_data(vma, (get_vma_private_data(vma) &
HPAGE_RESV_MASK) | (unsigned long)map);
}
static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
{
VM_BUG_ON(!is_vm_hugetlb_page(vma));
VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
set_vma_private_data(vma, get_vma_private_data(vma) | flags);
}
static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
{
VM_BUG_ON(!is_vm_hugetlb_page(vma));
return (get_vma_private_data(vma) & flag) != 0;
}
/* Decrement the reserved pages in the hugepage pool by one */
static void decrement_hugepage_resv_vma(struct hstate *h,
struct vm_area_struct *vma)
{
if (vma->vm_flags & VM_NORESERVE)
return;
if (vma->vm_flags & VM_MAYSHARE) {
/* Shared mappings always use reserves */
h->resv_huge_pages--;
} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
/*
* Only the process that called mmap() has reserves for
* private mappings.
*/
h->resv_huge_pages--;
}
}
/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
{
VM_BUG_ON(!is_vm_hugetlb_page(vma));
if (!(vma->vm_flags & VM_MAYSHARE))
vma->vm_private_data = (void *)0;
}
/* Returns true if the VMA has associated reserve pages */
static int vma_has_reserves(struct vm_area_struct *vma)
{
if (vma->vm_flags & VM_MAYSHARE)
return 1;
if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
return 1;
return 0;
}
static void clear_gigantic_page(struct page *page,
unsigned long addr, unsigned long sz)
{
int i;
struct page *p = page;
might_sleep();
for (i = 0; i < sz/PAGE_SIZE; i++, p = mem_map_next(p, page, i)) {
cond_resched();
clear_user_highpage(p, addr + i * PAGE_SIZE);
}
}
static void clear_huge_page(struct page *page,
unsigned long addr, unsigned long sz)
{
int i;
if (unlikely(sz > MAX_ORDER_NR_PAGES)) {
clear_gigantic_page(page, addr, sz);
return;
}
might_sleep();
for (i = 0; i < sz/PAGE_SIZE; i++) {
cond_resched();
clear_user_highpage(page + i, addr + i * PAGE_SIZE);
}
}
static void copy_gigantic_page(struct page *dst, struct page *src,
unsigned long addr, struct vm_area_struct *vma)
{
int i;
struct hstate *h = hstate_vma(vma);
struct page *dst_base = dst;
struct page *src_base = src;
might_sleep();
for (i = 0; i < pages_per_huge_page(h); ) {
cond_resched();
copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
i++;
dst = mem_map_next(dst, dst_base, i);
src = mem_map_next(src, src_base, i);
}
}
static void copy_huge_page(struct page *dst, struct page *src,
unsigned long addr, struct vm_area_struct *vma)
{
int i;
struct hstate *h = hstate_vma(vma);
if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
copy_gigantic_page(dst, src, addr, vma);
return;
}
might_sleep();
for (i = 0; i < pages_per_huge_page(h); i++) {
cond_resched();
copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
}
}
static void enqueue_huge_page(struct hstate *h, struct page *page)
{
int nid = page_to_nid(page);
list_add(&page->lru, &h->hugepage_freelists[nid]);
h->free_huge_pages++;
h->free_huge_pages_node[nid]++;
}
static struct page *dequeue_huge_page(struct hstate *h)
{
int nid;
struct page *page = NULL;
for (nid = 0; nid < MAX_NUMNODES; ++nid) {
if (!list_empty(&h->hugepage_freelists[nid])) {
page = list_entry(h->hugepage_freelists[nid].next,
struct page, lru);
list_del(&page->lru);
h->free_huge_pages--;
h->free_huge_pages_node[nid]--;
break;
}
}
return page;
}
static struct page *dequeue_huge_page_vma(struct hstate *h,
struct vm_area_struct *vma,
unsigned long address, int avoid_reserve)
{
int nid;
struct page *page = NULL;
struct mempolicy *mpol;
nodemask_t *nodemask;
struct zonelist *zonelist = huge_zonelist(vma, address,
htlb_alloc_mask, &mpol, &nodemask);
struct zone *zone;
struct zoneref *z;
/*
* A child process with MAP_PRIVATE mappings created by their parent
* have no page reserves. This check ensures that reservations are
* not "stolen". The child may still get SIGKILLed
*/
if (!vma_has_reserves(vma) &&
h->free_huge_pages - h->resv_huge_pages == 0)
return NULL;
/* If reserves cannot be used, ensure enough pages are in the pool */
if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
return NULL;
for_each_zone_zonelist_nodemask(zone, z, zonelist,
MAX_NR_ZONES - 1, nodemask) {
nid = zone_to_nid(zone);
if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask) &&
!list_empty(&h->hugepage_freelists[nid])) {
page = list_entry(h->hugepage_freelists[nid].next,
struct page, lru);
list_del(&page->lru);
h->free_huge_pages--;
h->free_huge_pages_node[nid]--;
if (!avoid_reserve)
decrement_hugepage_resv_vma(h, vma);
break;
}
}
mpol_cond_put(mpol);
return page;
}
static void update_and_free_page(struct hstate *h, struct page *page)
{
int i;
VM_BUG_ON(h->order >= MAX_ORDER);
h->nr_huge_pages--;
h->nr_huge_pages_node[page_to_nid(page)]--;
for (i = 0; i < pages_per_huge_page(h); i++) {
page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
1 << PG_private | 1<< PG_writeback);
}
set_compound_page_dtor(page, NULL);
set_page_refcounted(page);
arch_release_hugepage(page);
__free_pages(page, huge_page_order(h));
}
struct hstate *size_to_hstate(unsigned long size)
{
struct hstate *h;
for_each_hstate(h) {
if (huge_page_size(h) == size)
return h;
}
return NULL;
}
static void free_huge_page(struct page *page)
{
/*
* Can't pass hstate in here because it is called from the
* compound page destructor.
*/
struct hstate *h = page_hstate(page);
int nid = page_to_nid(page);
struct address_space *mapping;
mapping = (struct address_space *) page_private(page);
set_page_private(page, 0);
BUG_ON(page_count(page));
INIT_LIST_HEAD(&page->lru);
spin_lock(&hugetlb_lock);
if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
update_and_free_page(h, page);
h->surplus_huge_pages--;
h->surplus_huge_pages_node[nid]--;
} else {
enqueue_huge_page(h, page);
}
spin_unlock(&hugetlb_lock);
if (mapping)
hugetlb_put_quota(mapping, 1);
}
/*
* Increment or decrement surplus_huge_pages. Keep node-specific counters
* balanced by operating on them in a round-robin fashion.
* Returns 1 if an adjustment was made.
*/
static int adjust_pool_surplus(struct hstate *h, int delta)
{
static int prev_nid;
int nid = prev_nid;
int ret = 0;
VM_BUG_ON(delta != -1 && delta != 1);
do {
nid = next_node(nid, node_online_map);
if (nid == MAX_NUMNODES)
nid = first_node(node_online_map);
/* To shrink on this node, there must be a surplus page */
if (delta < 0 && !h->surplus_huge_pages_node[nid])
continue;
/* Surplus cannot exceed the total number of pages */
if (delta > 0 && h->surplus_huge_pages_node[nid] >=
h->nr_huge_pages_node[nid])
continue;
h->surplus_huge_pages += delta;
h->surplus_huge_pages_node[nid] += delta;
ret = 1;
break;
} while (nid != prev_nid);
prev_nid = nid;
return ret;
}
static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
{
set_compound_page_dtor(page, free_huge_page);
spin_lock(&hugetlb_lock);
h->nr_huge_pages++;
h->nr_huge_pages_node[nid]++;
spin_unlock(&hugetlb_lock);
put_page(page); /* free it into the hugepage allocator */
}
static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
{
struct page *page;
if (h->order >= MAX_ORDER)
return NULL;
page = alloc_pages_node(nid,
htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
__GFP_REPEAT|__GFP_NOWARN,
huge_page_order(h));
if (page) {
if (arch_prepare_hugepage(page)) {
__free_pages(page, huge_page_order(h));
return NULL;
}
prep_new_huge_page(h, page, nid);
}
return page;
}
/*
* Use a helper variable to find the next node and then
* copy it back to hugetlb_next_nid afterwards:
* otherwise there's a window in which a racer might
* pass invalid nid MAX_NUMNODES to alloc_pages_node.
* But we don't need to use a spin_lock here: it really
* doesn't matter if occasionally a racer chooses the
* same nid as we do. Move nid forward in the mask even
* if we just successfully allocated a hugepage so that
* the next caller gets hugepages on the next node.
*/
static int hstate_next_node(struct hstate *h)
{
int next_nid;
next_nid = next_node(h->hugetlb_next_nid, node_online_map);
if (next_nid == MAX_NUMNODES)
next_nid = first_node(node_online_map);
h->hugetlb_next_nid = next_nid;
return next_nid;
}
static int alloc_fresh_huge_page(struct hstate *h)
{
struct page *page;
int start_nid;
int next_nid;
int ret = 0;
start_nid = h->hugetlb_next_nid;
do {
page = alloc_fresh_huge_page_node(h, h->hugetlb_next_nid);
if (page)
ret = 1;
next_nid = hstate_next_node(h);
} while (!page && h->hugetlb_next_nid != start_nid);
if (ret)
count_vm_event(HTLB_BUDDY_PGALLOC);
else
count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
return ret;
}
static struct page *alloc_buddy_huge_page(struct hstate *h,
struct vm_area_struct *vma, unsigned long address)
{
struct page *page;
unsigned int nid;
if (h->order >= MAX_ORDER)
return NULL;
/*
* Assume we will successfully allocate the surplus page to
* prevent racing processes from causing the surplus to exceed
* overcommit
*
* This however introduces a different race, where a process B
* tries to grow the static hugepage pool while alloc_pages() is
* called by process A. B will only examine the per-node
* counters in determining if surplus huge pages can be
* converted to normal huge pages in adjust_pool_surplus(). A
* won't be able to increment the per-node counter, until the
* lock is dropped by B, but B doesn't drop hugetlb_lock until
* no more huge pages can be converted from surplus to normal
* state (and doesn't try to convert again). Thus, we have a
* case where a surplus huge page exists, the pool is grown, and
* the surplus huge page still exists after, even though it
* should just have been converted to a normal huge page. This
* does not leak memory, though, as the hugepage will be freed
* once it is out of use. It also does not allow the counters to
* go out of whack in adjust_pool_surplus() as we don't modify
* the node values until we've gotten the hugepage and only the
* per-node value is checked there.
*/
spin_lock(&hugetlb_lock);
if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
spin_unlock(&hugetlb_lock);
return NULL;
} else {
h->nr_huge_pages++;
h->surplus_huge_pages++;
}
spin_unlock(&hugetlb_lock);
page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
__GFP_REPEAT|__GFP_NOWARN,
huge_page_order(h));
if (page && arch_prepare_hugepage(page)) {
__free_pages(page, huge_page_order(h));
return NULL;
}
spin_lock(&hugetlb_lock);
if (page) {
/*
* This page is now managed by the hugetlb allocator and has
* no users -- drop the buddy allocator's reference.
*/
put_page_testzero(page);
VM_BUG_ON(page_count(page));
nid = page_to_nid(page);
set_compound_page_dtor(page, free_huge_page);
/*
* We incremented the global counters already
*/
h->nr_huge_pages_node[nid]++;
h->surplus_huge_pages_node[nid]++;
__count_vm_event(HTLB_BUDDY_PGALLOC);
} else {
h->nr_huge_pages--;
h->surplus_huge_pages--;
__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
}
spin_unlock(&hugetlb_lock);
return page;
}
/*
* Increase the hugetlb pool such that it can accomodate a reservation
* of size 'delta'.
*/
static int gather_surplus_pages(struct hstate *h, int delta)
{
struct list_head surplus_list;
struct page *page, *tmp;
int ret, i;
int needed, allocated;
needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
if (needed <= 0) {
h->resv_huge_pages += delta;
return 0;
}
allocated = 0;
INIT_LIST_HEAD(&surplus_list);
ret = -ENOMEM;
retry:
spin_unlock(&hugetlb_lock);
for (i = 0; i < needed; i++) {
page = alloc_buddy_huge_page(h, NULL, 0);
if (!page) {
/*
* We were not able to allocate enough pages to
* satisfy the entire reservation so we free what
* we've allocated so far.
*/
spin_lock(&hugetlb_lock);
needed = 0;
goto free;
}
list_add(&page->lru, &surplus_list);
}
allocated += needed;
/*
* After retaking hugetlb_lock, we need to recalculate 'needed'
* because either resv_huge_pages or free_huge_pages may have changed.
*/
spin_lock(&hugetlb_lock);
needed = (h->resv_huge_pages + delta) -
(h->free_huge_pages + allocated);
if (needed > 0)
goto retry;
/*
* The surplus_list now contains _at_least_ the number of extra pages
* needed to accomodate the reservation. Add the appropriate number
* of pages to the hugetlb pool and free the extras back to the buddy
* allocator. Commit the entire reservation here to prevent another
* process from stealing the pages as they are added to the pool but
* before they are reserved.
*/
needed += allocated;
h->resv_huge_pages += delta;
ret = 0;
free:
/* Free the needed pages to the hugetlb pool */
list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
if ((--needed) < 0)
break;
list_del(&page->lru);
enqueue_huge_page(h, page);
}
/* Free unnecessary surplus pages to the buddy allocator */
if (!list_empty(&surplus_list)) {
spin_unlock(&hugetlb_lock);
list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
list_del(&page->lru);
/*
* The page has a reference count of zero already, so
* call free_huge_page directly instead of using
* put_page. This must be done with hugetlb_lock
* unlocked which is safe because free_huge_page takes
* hugetlb_lock before deciding how to free the page.
*/
free_huge_page(page);
}
spin_lock(&hugetlb_lock);
}
return ret;
}
/*
* When releasing a hugetlb pool reservation, any surplus pages that were
* allocated to satisfy the reservation must be explicitly freed if they were
* never used.
*/
static void return_unused_surplus_pages(struct hstate *h,
unsigned long unused_resv_pages)
{
static int nid = -1;
struct page *page;
unsigned long nr_pages;
/*
* We want to release as many surplus pages as possible, spread
* evenly across all nodes. Iterate across all nodes until we
* can no longer free unreserved surplus pages. This occurs when
* the nodes with surplus pages have no free pages.
*/
unsigned long remaining_iterations = num_online_nodes();
/* Uncommit the reservation */
h->resv_huge_pages -= unused_resv_pages;
/* Cannot return gigantic pages currently */
if (h->order >= MAX_ORDER)
return;
nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
while (remaining_iterations-- && nr_pages) {
nid = next_node(nid, node_online_map);
if (nid == MAX_NUMNODES)
nid = first_node(node_online_map);
if (!h->surplus_huge_pages_node[nid])
continue;
if (!list_empty(&h->hugepage_freelists[nid])) {
page = list_entry(h->hugepage_freelists[nid].next,
struct page, lru);
list_del(&page->lru);
update_and_free_page(h, page);
h->free_huge_pages--;
h->free_huge_pages_node[nid]--;
h->surplus_huge_pages--;
h->surplus_huge_pages_node[nid]--;
nr_pages--;
remaining_iterations = num_online_nodes();
}
}
}
/*
* Determine if the huge page at addr within the vma has an associated
* reservation. Where it does not we will need to logically increase
* reservation and actually increase quota before an allocation can occur.
* Where any new reservation would be required the reservation change is
* prepared, but not committed. Once the page has been quota'd allocated
* an instantiated the change should be committed via vma_commit_reservation.
* No action is required on failure.
*/
static long vma_needs_reservation(struct hstate *h,
struct vm_area_struct *vma, unsigned long addr)
{
struct address_space *mapping = vma->vm_file->f_mapping;
struct inode *inode = mapping->host;
if (vma->vm_flags & VM_MAYSHARE) {
pgoff_t idx = vma_hugecache_offset(h, vma, addr);
return region_chg(&inode->i_mapping->private_list,
idx, idx + 1);
} else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
return 1;
} else {
long err;
pgoff_t idx = vma_hugecache_offset(h, vma, addr);
struct resv_map *reservations = vma_resv_map(vma);
err = region_chg(&reservations->regions, idx, idx + 1);
if (err < 0)
return err;
return 0;
}
}
static void vma_commit_reservation(struct hstate *h,
struct vm_area_struct *vma, unsigned long addr)
{
struct address_space *mapping = vma->vm_file->f_mapping;
struct inode *inode = mapping->host;
if (vma->vm_flags & VM_MAYSHARE) {
pgoff_t idx = vma_hugecache_offset(h, vma, addr);
region_add(&inode->i_mapping->private_list, idx, idx + 1);
} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
pgoff_t idx = vma_hugecache_offset(h, vma, addr);
struct resv_map *reservations = vma_resv_map(vma);
/* Mark this page used in the map. */
region_add(&reservations->regions, idx, idx + 1);
}
}
static struct page *alloc_huge_page(struct vm_area_struct *vma,
unsigned long addr, int avoid_reserve)
{
struct hstate *h = hstate_vma(vma);
struct page *page;
struct address_space *mapping = vma->vm_file->f_mapping;
struct inode *inode = mapping->host;
long chg;
/*
* Processes that did not create the mapping will have no reserves and
* will not have accounted against quota. Check that the quota can be
* made before satisfying the allocation
* MAP_NORESERVE mappings may also need pages and quota allocated
* if no reserve mapping overlaps.
*/
chg = vma_needs_reservation(h, vma, addr);
if (chg < 0)
return ERR_PTR(chg);
if (chg)
if (hugetlb_get_quota(inode->i_mapping, chg))
return ERR_PTR(-ENOSPC);
spin_lock(&hugetlb_lock);
page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
spin_unlock(&hugetlb_lock);
if (!page) {
page = alloc_buddy_huge_page(h, vma, addr);
if (!page) {
hugetlb_put_quota(inode->i_mapping, chg);
return ERR_PTR(-VM_FAULT_OOM);
}
}
set_page_refcounted(page);
set_page_private(page, (unsigned long) mapping);
vma_commit_reservation(h, vma, addr);
return page;
}
int __weak alloc_bootmem_huge_page(struct hstate *h)
{
struct huge_bootmem_page *m;
int nr_nodes = nodes_weight(node_online_map);
while (nr_nodes) {
void *addr;
addr = __alloc_bootmem_node_nopanic(
NODE_DATA(h->hugetlb_next_nid),
huge_page_size(h), huge_page_size(h), 0);
if (addr) {
/*
* Use the beginning of the huge page to store the
* huge_bootmem_page struct (until gather_bootmem
* puts them into the mem_map).
*/
m = addr;
goto found;
}
hstate_next_node(h);
nr_nodes--;
}
return 0;
found:
BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
/* Put them into a private list first because mem_map is not up yet */
list_add(&m->list, &huge_boot_pages);
m->hstate = h;
return 1;
}
static void prep_compound_huge_page(struct page *page, int order)
{
if (unlikely(order > (MAX_ORDER - 1)))
prep_compound_gigantic_page(page, order);
else
prep_compound_page(page, order);
}
/* Put bootmem huge pages into the standard lists after mem_map is up */
static void __init gather_bootmem_prealloc(void)
{
struct huge_bootmem_page *m;
list_for_each_entry(m, &huge_boot_pages, list) {
struct page *page = virt_to_page(m);
struct hstate *h = m->hstate;
__ClearPageReserved(page);
WARN_ON(page_count(page) != 1);
prep_compound_huge_page(page, h->order);
prep_new_huge_page(h, page, page_to_nid(page));
}
}
static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
{
unsigned long i;
for (i = 0; i < h->max_huge_pages; ++i) {
if (h->order >= MAX_ORDER) {
if (!alloc_bootmem_huge_page(h))
break;
} else if (!alloc_fresh_huge_page(h))
break;
}
h->max_huge_pages = i;
}
static void __init hugetlb_init_hstates(void)
{
struct hstate *h;
for_each_hstate(h) {
/* oversize hugepages were init'ed in early boot */
if (h->order < MAX_ORDER)
hugetlb_hstate_alloc_pages(h);
}
}
static char * __init memfmt(char *buf, unsigned long n)
{
if (n >= (1UL << 30))
sprintf(buf, "%lu GB", n >> 30);
else if (n >= (1UL << 20))
sprintf(buf, "%lu MB", n >> 20);
else
sprintf(buf, "%lu KB", n >> 10);
return buf;
}
static void __init report_hugepages(void)
{
struct hstate *h;
for_each_hstate(h) {
char buf[32];
printk(KERN_INFO "HugeTLB registered %s page size, "
"pre-allocated %ld pages\n",
memfmt(buf, huge_page_size(h)),
h->free_huge_pages);
}
}
#ifdef CONFIG_HIGHMEM
static void try_to_free_low(struct hstate *h, unsigned long count)
{
int i;
if (h->order >= MAX_ORDER)
return;
for (i = 0; i < MAX_NUMNODES; ++i) {
struct page *page, *next;
struct list_head *freel = &h->hugepage_freelists[i];
list_for_each_entry_safe(page, next, freel, lru) {
if (count >= h->nr_huge_pages)
return;
if (PageHighMem(page))
continue;
list_del(&page->lru);
update_and_free_page(h, page);
h->free_huge_pages--;
h->free_huge_pages_node[page_to_nid(page)]--;
}
}
}
#else
static inline void try_to_free_low(struct hstate *h, unsigned long count)
{
}
#endif
#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count)
{
unsigned long min_count, ret;
if (h->order >= MAX_ORDER)
return h->max_huge_pages;
/*
* Increase the pool size
* First take pages out of surplus state. Then make up the
* remaining difference by allocating fresh huge pages.
*
* We might race with alloc_buddy_huge_page() here and be unable
* to convert a surplus huge page to a normal huge page. That is
* not critical, though, it just means the overall size of the
* pool might be one hugepage larger than it needs to be, but
* within all the constraints specified by the sysctls.
*/
spin_lock(&hugetlb_lock);
while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
if (!adjust_pool_surplus(h, -1))
break;
}
while (count > persistent_huge_pages(h)) {
/*
* If this allocation races such that we no longer need the
* page, free_huge_page will handle it by freeing the page
* and reducing the surplus.
*/
spin_unlock(&hugetlb_lock);
ret = alloc_fresh_huge_page(h);
spin_lock(&hugetlb_lock);
if (!ret)
goto out;
}
/*
* Decrease the pool size
* First return free pages to the buddy allocator (being careful
* to keep enough around to satisfy reservations). Then place
* pages into surplus state as needed so the pool will shrink
* to the desired size as pages become free.
*
* By placing pages into the surplus state independent of the
* overcommit value, we are allowing the surplus pool size to
* exceed overcommit. There are few sane options here. Since
* alloc_buddy_huge_page() is checking the global counter,
* though, we'll note that we're not allowed to exceed surplus
* and won't grow the pool anywhere else. Not until one of the
* sysctls are changed, or the surplus pages go out of use.
*/
min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
min_count = max(count, min_count);
try_to_free_low(h, min_count);
while (min_count < persistent_huge_pages(h)) {
struct page *page = dequeue_huge_page(h);
if (!page)
break;
update_and_free_page(h, page);
}
while (count < persistent_huge_pages(h)) {
if (!adjust_pool_surplus(h, 1))
break;
}
out:
ret = persistent_huge_pages(h);
spin_unlock(&hugetlb_lock);
return ret;
}
#define HSTATE_ATTR_RO(_name) \
static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
#define HSTATE_ATTR(_name) \
static struct kobj_attribute _name##_attr = \
__ATTR(_name, 0644, _name##_show, _name##_store)
static struct kobject *hugepages_kobj;
static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
static struct hstate *kobj_to_hstate(struct kobject *kobj)
{
int i;
for (i = 0; i < HUGE_MAX_HSTATE; i++)
if (hstate_kobjs[i] == kobj)
return &hstates[i];
BUG();
return NULL;
}
static ssize_t nr_hugepages_show(struct kobject *kobj,
struct kobj_attribute *attr, char *buf)
{
struct hstate *h = kobj_to_hstate(kobj);
return sprintf(buf, "%lu\n", h->nr_huge_pages);
}
static ssize_t nr_hugepages_store(struct kobject *kobj,
struct kobj_attribute *attr, const char *buf, size_t count)
{
int err;
unsigned long input;
struct hstate *h = kobj_to_hstate(kobj);
err = strict_strtoul(buf, 10, &input);
if (err)
return 0;
h->max_huge_pages = set_max_huge_pages(h, input);
return count;
}
HSTATE_ATTR(nr_hugepages);
static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
struct kobj_attribute *attr, char *buf)
{
struct hstate *h = kobj_to_hstate(kobj);
return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
}
static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
struct kobj_attribute *attr, const char *buf, size_t count)
{
int err;
unsigned long input;
struct hstate *h = kobj_to_hstate(kobj);
err = strict_strtoul(buf, 10, &input);
if (err)
return 0;
spin_lock(&hugetlb_lock);
h->nr_overcommit_huge_pages = input;
spin_unlock(&hugetlb_lock);
return count;
}
HSTATE_ATTR(nr_overcommit_hugepages);
static ssize_t free_hugepages_show(struct kobject *kobj,
struct kobj_attribute *attr, char *buf)
{
struct hstate *h = kobj_to_hstate(kobj);
return sprintf(buf, "%lu\n", h->free_huge_pages);
}
HSTATE_ATTR_RO(free_hugepages);
static ssize_t resv_hugepages_show(struct kobject *kobj,
struct kobj_attribute *attr, char *buf)
{
struct hstate *h = kobj_to_hstate(kobj);
return sprintf(buf, "%lu\n", h->resv_huge_pages);
}
HSTATE_ATTR_RO(resv_hugepages);
static ssize_t surplus_hugepages_show(struct kobject *kobj,
struct kobj_attribute *attr, char *buf)
{
struct hstate *h = kobj_to_hstate(kobj);
return sprintf(buf, "%lu\n", h->surplus_huge_pages);
}
HSTATE_ATTR_RO(surplus_hugepages);
static struct attribute *hstate_attrs[] = {
&nr_hugepages_attr.attr,
&nr_overcommit_hugepages_attr.attr,
&free_hugepages_attr.attr,
&resv_hugepages_attr.attr,
&surplus_hugepages_attr.attr,
NULL,
};
static struct attribute_group hstate_attr_group = {
.attrs = hstate_attrs,
};
static int __init hugetlb_sysfs_add_hstate(struct hstate *h)
{
int retval;
hstate_kobjs[h - hstates] = kobject_create_and_add(h->name,
hugepages_kobj);
if (!hstate_kobjs[h - hstates])
return -ENOMEM;
retval = sysfs_create_group(hstate_kobjs[h - hstates],
&hstate_attr_group);
if (retval)
kobject_put(hstate_kobjs[h - hstates]);
return retval;
}
static void __init hugetlb_sysfs_init(void)
{
struct hstate *h;
int err;
hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
if (!hugepages_kobj)
return;
for_each_hstate(h) {
err = hugetlb_sysfs_add_hstate(h);
if (err)
printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
h->name);
}
}
static void __exit hugetlb_exit(void)
{
struct hstate *h;
for_each_hstate(h) {
kobject_put(hstate_kobjs[h - hstates]);
}
kobject_put(hugepages_kobj);
}
module_exit(hugetlb_exit);
static int __init hugetlb_init(void)
{
/* Some platform decide whether they support huge pages at boot
* time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
* there is no such support
*/
if (HPAGE_SHIFT == 0)
return 0;
if (!size_to_hstate(default_hstate_size)) {
default_hstate_size = HPAGE_SIZE;
if (!size_to_hstate(default_hstate_size))
hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
}
default_hstate_idx = size_to_hstate(default_hstate_size) - hstates;
if (default_hstate_max_huge_pages)
default_hstate.max_huge_pages = default_hstate_max_huge_pages;
hugetlb_init_hstates();
gather_bootmem_prealloc();
report_hugepages();
hugetlb_sysfs_init();
return 0;
}
module_init(hugetlb_init);
/* Should be called on processing a hugepagesz=... option */
void __init hugetlb_add_hstate(unsigned order)
{
struct hstate *h;
unsigned long i;
if (size_to_hstate(PAGE_SIZE << order)) {
printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
return;
}
BUG_ON(max_hstate >= HUGE_MAX_HSTATE);
BUG_ON(order == 0);
h = &hstates[max_hstate++];
h->order = order;
h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
h->nr_huge_pages = 0;
h->free_huge_pages = 0;
for (i = 0; i < MAX_NUMNODES; ++i)
INIT_LIST_HEAD(&h->hugepage_freelists[i]);
h->hugetlb_next_nid = first_node(node_online_map);
snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
huge_page_size(h)/1024);
parsed_hstate = h;
}
static int __init hugetlb_nrpages_setup(char *s)
{
unsigned long *mhp;
static unsigned long *last_mhp;
/*
* !max_hstate means we haven't parsed a hugepagesz= parameter yet,
* so this hugepages= parameter goes to the "default hstate".
*/
if (!max_hstate)
mhp = &default_hstate_max_huge_pages;
else
mhp = &parsed_hstate->max_huge_pages;
if (mhp == last_mhp) {
printk(KERN_WARNING "hugepages= specified twice without "
"interleaving hugepagesz=, ignoring\n");
return 1;
}
if (sscanf(s, "%lu", mhp) <= 0)
*mhp = 0;
/*
* Global state is always initialized later in hugetlb_init.
* But we need to allocate >= MAX_ORDER hstates here early to still
* use the bootmem allocator.
*/
if (max_hstate && parsed_hstate->order >= MAX_ORDER)
hugetlb_hstate_alloc_pages(parsed_hstate);
last_mhp = mhp;
return 1;
}
__setup("hugepages=", hugetlb_nrpages_setup);
static int __init hugetlb_default_setup(char *s)
{
default_hstate_size = memparse(s, &s);
return 1;
}
__setup("default_hugepagesz=", hugetlb_default_setup);
static unsigned int cpuset_mems_nr(unsigned int *array)
{
int node;
unsigned int nr = 0;
for_each_node_mask(node, cpuset_current_mems_allowed)
nr += array[node];
return nr;
}
#ifdef CONFIG_SYSCTL
int hugetlb_sysctl_handler(struct ctl_table *table, int write,
struct file *file, void __user *buffer,
size_t *length, loff_t *ppos)
{
struct hstate *h = &default_hstate;
unsigned long tmp;
if (!write)
tmp = h->max_huge_pages;
table->data = &tmp;
table->maxlen = sizeof(unsigned long);
proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
if (write)
h->max_huge_pages = set_max_huge_pages(h, tmp);
return 0;
}
int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
struct file *file, void __user *buffer,
size_t *length, loff_t *ppos)
{
proc_dointvec(table, write, file, buffer, length, ppos);
if (hugepages_treat_as_movable)
htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
else
htlb_alloc_mask = GFP_HIGHUSER;
return 0;
}
int hugetlb_overcommit_handler(struct ctl_table *table, int write,
struct file *file, void __user *buffer,
size_t *length, loff_t *ppos)
{
struct hstate *h = &default_hstate;
unsigned long tmp;
if (!write)
tmp = h->nr_overcommit_huge_pages;
table->data = &tmp;
table->maxlen = sizeof(unsigned long);
proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
if (write) {
spin_lock(&hugetlb_lock);
h->nr_overcommit_huge_pages = tmp;
spin_unlock(&hugetlb_lock);
}
return 0;
}
#endif /* CONFIG_SYSCTL */
void hugetlb_report_meminfo(struct seq_file *m)
{
struct hstate *h = &default_hstate;
seq_printf(m,
"HugePages_Total: %5lu\n"
"HugePages_Free: %5lu\n"
"HugePages_Rsvd: %5lu\n"
"HugePages_Surp: %5lu\n"
"Hugepagesize: %8lu kB\n",
h->nr_huge_pages,
h->free_huge_pages,
h->resv_huge_pages,
h->surplus_huge_pages,
1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
}
int hugetlb_report_node_meminfo(int nid, char *buf)
{
struct hstate *h = &default_hstate;
return sprintf(buf,
"Node %d HugePages_Total: %5u\n"
"Node %d HugePages_Free: %5u\n"
"Node %d HugePages_Surp: %5u\n",
nid, h->nr_huge_pages_node[nid],
nid, h->free_huge_pages_node[nid],
nid, h->surplus_huge_pages_node[nid]);
}
/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
unsigned long hugetlb_total_pages(void)
{
struct hstate *h = &default_hstate;
return h->nr_huge_pages * pages_per_huge_page(h);
}
static int hugetlb_acct_memory(struct hstate *h, long delta)
{
int ret = -ENOMEM;
spin_lock(&hugetlb_lock);
/*
* When cpuset is configured, it breaks the strict hugetlb page
* reservation as the accounting is done on a global variable. Such
* reservation is completely rubbish in the presence of cpuset because
* the reservation is not checked against page availability for the
* current cpuset. Application can still potentially OOM'ed by kernel
* with lack of free htlb page in cpuset that the task is in.
* Attempt to enforce strict accounting with cpuset is almost
* impossible (or too ugly) because cpuset is too fluid that
* task or memory node can be dynamically moved between cpusets.
*
* The change of semantics for shared hugetlb mapping with cpuset is
* undesirable. However, in order to preserve some of the semantics,
* we fall back to check against current free page availability as
* a best attempt and hopefully to minimize the impact of changing
* semantics that cpuset has.
*/
if (delta > 0) {
if (gather_surplus_pages(h, delta) < 0)
goto out;
if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
return_unused_surplus_pages(h, delta);
goto out;
}
}
ret = 0;
if (delta < 0)
return_unused_surplus_pages(h, (unsigned long) -delta);
out:
spin_unlock(&hugetlb_lock);
return ret;
}
static void hugetlb_vm_op_open(struct vm_area_struct *vma)
{
struct resv_map *reservations = vma_resv_map(vma);
/*
* This new VMA should share its siblings reservation map if present.
* The VMA will only ever have a valid reservation map pointer where
* it is being copied for another still existing VMA. As that VMA
* has a reference to the reservation map it cannot dissappear until
* after this open call completes. It is therefore safe to take a
* new reference here without additional locking.
*/
if (reservations)
kref_get(&reservations->refs);
}
static void hugetlb_vm_op_close(struct vm_area_struct *vma)
{
struct hstate *h = hstate_vma(vma);
struct resv_map *reservations = vma_resv_map(vma);
unsigned long reserve;
unsigned long start;
unsigned long end;
if (reservations) {
start = vma_hugecache_offset(h, vma, vma->vm_start);
end = vma_hugecache_offset(h, vma, vma->vm_end);
reserve = (end - start) -
region_count(&reservations->regions, start, end);
kref_put(&reservations->refs, resv_map_release);
if (reserve) {
hugetlb_acct_memory(h, -reserve);
hugetlb_put_quota(vma->vm_file->f_mapping, reserve);
}
}
}
/*
* We cannot handle pagefaults against hugetlb pages at all. They cause
* handle_mm_fault() to try to instantiate regular-sized pages in the
* hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
* this far.
*/
static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
BUG();
return 0;
}
struct vm_operations_struct hugetlb_vm_ops = {
.fault = hugetlb_vm_op_fault,
.open = hugetlb_vm_op_open,
.close = hugetlb_vm_op_close,
};
static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
int writable)
{
pte_t entry;
if (writable) {
entry =
pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
} else {
entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
}
entry = pte_mkyoung(entry);
entry = pte_mkhuge(entry);
return entry;
}
static void set_huge_ptep_writable(struct vm_area_struct *vma,
unsigned long address, pte_t *ptep)
{
pte_t entry;
entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) {
update_mmu_cache(vma, address, entry);
}
}
int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
struct vm_area_struct *vma)
{
pte_t *src_pte, *dst_pte, entry;
struct page *ptepage;
unsigned long addr;
int cow;
struct hstate *h = hstate_vma(vma);
unsigned long sz = huge_page_size(h);
cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
src_pte = huge_pte_offset(src, addr);
if (!src_pte)
continue;
dst_pte = huge_pte_alloc(dst, addr, sz);
if (!dst_pte)
goto nomem;
/* If the pagetables are shared don't copy or take references */
if (dst_pte == src_pte)
continue;
spin_lock(&dst->page_table_lock);
spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
if (!huge_pte_none(huge_ptep_get(src_pte))) {
if (cow)
huge_ptep_set_wrprotect(src, addr, src_pte);
entry = huge_ptep_get(src_pte);
ptepage = pte_page(entry);
get_page(ptepage);
set_huge_pte_at(dst, addr, dst_pte, entry);
}
spin_unlock(&src->page_table_lock);
spin_unlock(&dst->page_table_lock);
}
return 0;
nomem:
return -ENOMEM;
}
void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
unsigned long end, struct page *ref_page)
{
struct mm_struct *mm = vma->vm_mm;
unsigned long address;
pte_t *ptep;
pte_t pte;
struct page *page;
struct page *tmp;
struct hstate *h = hstate_vma(vma);
unsigned long sz = huge_page_size(h);
/*
* A page gathering list, protected by per file i_mmap_lock. The
* lock is used to avoid list corruption from multiple unmapping
* of the same page since we are using page->lru.
*/
LIST_HEAD(page_list);
WARN_ON(!is_vm_hugetlb_page(vma));
BUG_ON(start & ~huge_page_mask(h));
BUG_ON(end & ~huge_page_mask(h));
mmu_notifier_invalidate_range_start(mm, start, end);
spin_lock(&mm->page_table_lock);
for (address = start; address < end; address += sz) {
ptep = huge_pte_offset(mm, address);
if (!ptep)
continue;
if (huge_pmd_unshare(mm, &address, ptep))
continue;
/*
* If a reference page is supplied, it is because a specific
* page is being unmapped, not a range. Ensure the page we
* are about to unmap is the actual page of interest.
*/
if (ref_page) {
pte = huge_ptep_get(ptep);
if (huge_pte_none(pte))
continue;
page = pte_page(pte);
if (page != ref_page)
continue;
/*
* Mark the VMA as having unmapped its page so that
* future faults in this VMA will fail rather than
* looking like data was lost
*/
set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
}
pte = huge_ptep_get_and_clear(mm, address, ptep);
if (huge_pte_none(pte))
continue;
page = pte_page(pte);
if (pte_dirty(pte))
set_page_dirty(page);
list_add(&page->lru, &page_list);
}
spin_unlock(&mm->page_table_lock);
flush_tlb_range(vma, start, end);
mmu_notifier_invalidate_range_end(mm, start, end);
list_for_each_entry_safe(page, tmp, &page_list, lru) {
list_del(&page->lru);
put_page(page);
}
}
void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
unsigned long end, struct page *ref_page)
{
spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
__unmap_hugepage_range(vma, start, end, ref_page);
spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
}
/*
* This is called when the original mapper is failing to COW a MAP_PRIVATE
* mappping it owns the reserve page for. The intention is to unmap the page
* from other VMAs and let the children be SIGKILLed if they are faulting the
* same region.
*/
static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
struct page *page, unsigned long address)
{
struct hstate *h = hstate_vma(vma);
struct vm_area_struct *iter_vma;
struct address_space *mapping;
struct prio_tree_iter iter;
pgoff_t pgoff;
/*
* vm_pgoff is in PAGE_SIZE units, hence the different calculation
* from page cache lookup which is in HPAGE_SIZE units.
*/
address = address & huge_page_mask(h);
pgoff = ((address - vma->vm_start) >> PAGE_SHIFT)
+ (vma->vm_pgoff >> PAGE_SHIFT);
mapping = (struct address_space *)page_private(page);
vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
/* Do not unmap the current VMA */
if (iter_vma == vma)
continue;
/*
* Unmap the page from other VMAs without their own reserves.
* They get marked to be SIGKILLed if they fault in these
* areas. This is because a future no-page fault on this VMA
* could insert a zeroed page instead of the data existing
* from the time of fork. This would look like data corruption
*/
if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
unmap_hugepage_range(iter_vma,
address, address + huge_page_size(h),
page);
}
return 1;
}
static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
unsigned long address, pte_t *ptep, pte_t pte,
struct page *pagecache_page)
{
struct hstate *h = hstate_vma(vma);
struct page *old_page, *new_page;
int avoidcopy;
int outside_reserve = 0;
old_page = pte_page(pte);
retry_avoidcopy:
/* If no-one else is actually using this page, avoid the copy
* and just make the page writable */
avoidcopy = (page_count(old_page) == 1);
if (avoidcopy) {
set_huge_ptep_writable(vma, address, ptep);
return 0;
}
/*
* If the process that created a MAP_PRIVATE mapping is about to
* perform a COW due to a shared page count, attempt to satisfy
* the allocation without using the existing reserves. The pagecache
* page is used to determine if the reserve at this address was
* consumed or not. If reserves were used, a partial faulted mapping
* at the time of fork() could consume its reserves on COW instead
* of the full address range.
*/
if (!(vma->vm_flags & VM_MAYSHARE) &&
is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
old_page != pagecache_page)
outside_reserve = 1;
page_cache_get(old_page);
new_page = alloc_huge_page(vma, address, outside_reserve);
if (IS_ERR(new_page)) {
page_cache_release(old_page);
/*
* If a process owning a MAP_PRIVATE mapping fails to COW,
* it is due to references held by a child and an insufficient
* huge page pool. To guarantee the original mappers
* reliability, unmap the page from child processes. The child
* may get SIGKILLed if it later faults.
*/
if (outside_reserve) {
BUG_ON(huge_pte_none(pte));
if (unmap_ref_private(mm, vma, old_page, address)) {
BUG_ON(page_count(old_page) != 1);
BUG_ON(huge_pte_none(pte));
goto retry_avoidcopy;
}
WARN_ON_ONCE(1);
}
return -PTR_ERR(new_page);
}
spin_unlock(&mm->page_table_lock);
copy_huge_page(new_page, old_page, address, vma);
__SetPageUptodate(new_page);
spin_lock(&mm->page_table_lock);
ptep = huge_pte_offset(mm, address & huge_page_mask(h));
if (likely(pte_same(huge_ptep_get(ptep), pte))) {
/* Break COW */
huge_ptep_clear_flush(vma, address, ptep);
set_huge_pte_at(mm, address, ptep,
make_huge_pte(vma, new_page, 1));
/* Make the old page be freed below */
new_page = old_page;
}
page_cache_release(new_page);
page_cache_release(old_page);
return 0;
}
/* Return the pagecache page at a given address within a VMA */
static struct page *hugetlbfs_pagecache_page(struct hstate *h,
struct vm_area_struct *vma, unsigned long address)
{
struct address_space *mapping;
pgoff_t idx;
mapping = vma->vm_file->f_mapping;
idx = vma_hugecache_offset(h, vma, address);
return find_lock_page(mapping, idx);
}
static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
unsigned long address, pte_t *ptep, int write_access)
{
struct hstate *h = hstate_vma(vma);
int ret = VM_FAULT_SIGBUS;
pgoff_t idx;
unsigned long size;
struct page *page;
struct address_space *mapping;
pte_t new_pte;
/*
* Currently, we are forced to kill the process in the event the
* original mapper has unmapped pages from the child due to a failed
* COW. Warn that such a situation has occured as it may not be obvious
*/
if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
printk(KERN_WARNING
"PID %d killed due to inadequate hugepage pool\n",
current->pid);
return ret;
}
mapping = vma->vm_file->f_mapping;
idx = vma_hugecache_offset(h, vma, address);
/*
* Use page lock to guard against racing truncation
* before we get page_table_lock.
*/
retry:
page = find_lock_page(mapping, idx);
if (!page) {
size = i_size_read(mapping->host) >> huge_page_shift(h);
if (idx >= size)
goto out;
page = alloc_huge_page(vma, address, 0);
if (IS_ERR(page)) {
ret = -PTR_ERR(page);
goto out;
}
clear_huge_page(page, address, huge_page_size(h));
__SetPageUptodate(page);
if (vma->vm_flags & VM_MAYSHARE) {
int err;
struct inode *inode = mapping->host;
err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
if (err) {
put_page(page);
if (err == -EEXIST)
goto retry;
goto out;
}
spin_lock(&inode->i_lock);
inode->i_blocks += blocks_per_huge_page(h);
spin_unlock(&inode->i_lock);
} else
lock_page(page);
}
/*
* If we are going to COW a private mapping later, we examine the
* pending reservations for this page now. This will ensure that
* any allocations necessary to record that reservation occur outside
* the spinlock.
*/
if (write_access && !(vma->vm_flags & VM_SHARED))
if (vma_needs_reservation(h, vma, address) < 0) {
ret = VM_FAULT_OOM;
goto backout_unlocked;
}
spin_lock(&mm->page_table_lock);
size = i_size_read(mapping->host) >> huge_page_shift(h);
if (idx >= size)
goto backout;
ret = 0;
if (!huge_pte_none(huge_ptep_get(ptep)))
goto backout;
new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
&& (vma->vm_flags & VM_SHARED)));
set_huge_pte_at(mm, address, ptep, new_pte);
if (write_access && !(vma->vm_flags & VM_SHARED)) {
/* Optimization, do the COW without a second fault */
ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
}
spin_unlock(&mm->page_table_lock);
unlock_page(page);
out:
return ret;
backout:
spin_unlock(&mm->page_table_lock);
backout_unlocked:
unlock_page(page);
put_page(page);
goto out;
}
int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
unsigned long address, int write_access)
{
pte_t *ptep;
pte_t entry;
int ret;
struct page *pagecache_page = NULL;
static DEFINE_MUTEX(hugetlb_instantiation_mutex);
struct hstate *h = hstate_vma(vma);
ptep = huge_pte_alloc(mm, address, huge_page_size(h));
if (!ptep)
return VM_FAULT_OOM;
/*
* Serialize hugepage allocation and instantiation, so that we don't
* get spurious allocation failures if two CPUs race to instantiate
* the same page in the page cache.
*/
mutex_lock(&hugetlb_instantiation_mutex);
entry = huge_ptep_get(ptep);
if (huge_pte_none(entry)) {
ret = hugetlb_no_page(mm, vma, address, ptep, write_access);
goto out_mutex;
}
ret = 0;
/*
* If we are going to COW the mapping later, we examine the pending
* reservations for this page now. This will ensure that any
* allocations necessary to record that reservation occur outside the
* spinlock. For private mappings, we also lookup the pagecache
* page now as it is used to determine if a reservation has been
* consumed.
*/
if (write_access && !pte_write(entry)) {
if (vma_needs_reservation(h, vma, address) < 0) {
ret = VM_FAULT_OOM;
goto out_mutex;
}
if (!(vma->vm_flags & VM_MAYSHARE))
pagecache_page = hugetlbfs_pagecache_page(h,
vma, address);
}
spin_lock(&mm->page_table_lock);
/* Check for a racing update before calling hugetlb_cow */
if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
goto out_page_table_lock;
if (write_access) {
if (!pte_write(entry)) {
ret = hugetlb_cow(mm, vma, address, ptep, entry,
pagecache_page);
goto out_page_table_lock;
}
entry = pte_mkdirty(entry);
}
entry = pte_mkyoung(entry);
if (huge_ptep_set_access_flags(vma, address, ptep, entry, write_access))
update_mmu_cache(vma, address, entry);
out_page_table_lock:
spin_unlock(&mm->page_table_lock);
if (pagecache_page) {
unlock_page(pagecache_page);
put_page(pagecache_page);
}
out_mutex:
mutex_unlock(&hugetlb_instantiation_mutex);
return ret;
}
/* Can be overriden by architectures */
__attribute__((weak)) struct page *
follow_huge_pud(struct mm_struct *mm, unsigned long address,
pud_t *pud, int write)
{
BUG();
return NULL;
}
static int huge_zeropage_ok(pte_t *ptep, int write, int shared)
{
if (!ptep || write || shared)
return 0;
else
return huge_pte_none(huge_ptep_get(ptep));
}
int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
struct page **pages, struct vm_area_struct **vmas,
unsigned long *position, int *length, int i,
int write)
{
unsigned long pfn_offset;
unsigned long vaddr = *position;
int remainder = *length;
struct hstate *h = hstate_vma(vma);
int zeropage_ok = 0;
int shared = vma->vm_flags & VM_SHARED;
spin_lock(&mm->page_table_lock);
while (vaddr < vma->vm_end && remainder) {
pte_t *pte;
struct page *page;
/*
* Some archs (sparc64, sh*) have multiple pte_ts to
* each hugepage. We have to make * sure we get the
* first, for the page indexing below to work.
*/
pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
if (huge_zeropage_ok(pte, write, shared))
zeropage_ok = 1;
if (!pte ||
(huge_pte_none(huge_ptep_get(pte)) && !zeropage_ok) ||
(write && !pte_write(huge_ptep_get(pte)))) {
int ret;
spin_unlock(&mm->page_table_lock);
ret = hugetlb_fault(mm, vma, vaddr, write);
spin_lock(&mm->page_table_lock);
if (!(ret & VM_FAULT_ERROR))
continue;
remainder = 0;
if (!i)
i = -EFAULT;
break;
}
pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
page = pte_page(huge_ptep_get(pte));
same_page:
if (pages) {
if (zeropage_ok)
pages[i] = ZERO_PAGE(0);
else
pages[i] = mem_map_offset(page, pfn_offset);
get_page(pages[i]);
}
if (vmas)
vmas[i] = vma;
vaddr += PAGE_SIZE;
++pfn_offset;
--remainder;
++i;
if (vaddr < vma->vm_end && remainder &&
pfn_offset < pages_per_huge_page(h)) {
/*
* We use pfn_offset to avoid touching the pageframes
* of this compound page.
*/
goto same_page;
}
}
spin_unlock(&mm->page_table_lock);
*length = remainder;
*position = vaddr;
return i;
}
void hugetlb_change_protection(struct vm_area_struct *vma,
unsigned long address, unsigned long end, pgprot_t newprot)
{
struct mm_struct *mm = vma->vm_mm;
unsigned long start = address;
pte_t *ptep;
pte_t pte;
struct hstate *h = hstate_vma(vma);
BUG_ON(address >= end);
flush_cache_range(vma, address, end);
spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
spin_lock(&mm->page_table_lock);
for (; address < end; address += huge_page_size(h)) {
ptep = huge_pte_offset(mm, address);
if (!ptep)
continue;
if (huge_pmd_unshare(mm, &address, ptep))
continue;
if (!huge_pte_none(huge_ptep_get(ptep))) {
pte = huge_ptep_get_and_clear(mm, address, ptep);
pte = pte_mkhuge(pte_modify(pte, newprot));
set_huge_pte_at(mm, address, ptep, pte);
}
}
spin_unlock(&mm->page_table_lock);
spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
flush_tlb_range(vma, start, end);
}
int hugetlb_reserve_pages(struct inode *inode,
long from, long to,
struct vm_area_struct *vma,
int acctflag)
{
long ret, chg;
struct hstate *h = hstate_inode(inode);
/*
* Only apply hugepage reservation if asked. At fault time, an
* attempt will be made for VM_NORESERVE to allocate a page
* and filesystem quota without using reserves
*/
if (acctflag & VM_NORESERVE)
return 0;
/*
* Shared mappings base their reservation on the number of pages that
* are already allocated on behalf of the file. Private mappings need
* to reserve the full area even if read-only as mprotect() may be
* called to make the mapping read-write. Assume !vma is a shm mapping
*/
if (!vma || vma->vm_flags & VM_MAYSHARE)
chg = region_chg(&inode->i_mapping->private_list, from, to);
else {
struct resv_map *resv_map = resv_map_alloc();
if (!resv_map)
return -ENOMEM;
chg = to - from;
set_vma_resv_map(vma, resv_map);
set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
}
if (chg < 0)
return chg;
/* There must be enough filesystem quota for the mapping */
if (hugetlb_get_quota(inode->i_mapping, chg))
return -ENOSPC;
/*
* Check enough hugepages are available for the reservation.
* Hand back the quota if there are not
*/
ret = hugetlb_acct_memory(h, chg);
if (ret < 0) {
hugetlb_put_quota(inode->i_mapping, chg);
return ret;
}
/*
* Account for the reservations made. Shared mappings record regions
* that have reservations as they are shared by multiple VMAs.
* When the last VMA disappears, the region map says how much
* the reservation was and the page cache tells how much of
* the reservation was consumed. Private mappings are per-VMA and
* only the consumed reservations are tracked. When the VMA
* disappears, the original reservation is the VMA size and the
* consumed reservations are stored in the map. Hence, nothing
* else has to be done for private mappings here
*/
if (!vma || vma->vm_flags & VM_MAYSHARE)
region_add(&inode->i_mapping->private_list, from, to);
return 0;
}
void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
{
struct hstate *h = hstate_inode(inode);
long chg = region_truncate(&inode->i_mapping->private_list, offset);
spin_lock(&inode->i_lock);
inode->i_blocks -= blocks_per_huge_page(h);
spin_unlock(&inode->i_lock);
hugetlb_put_quota(inode->i_mapping, (chg - freed));
hugetlb_acct_memory(h, -(chg - freed));
}