| /* |
| * VMware vSockets Driver |
| * |
| * Copyright (C) 2007-2013 VMware, Inc. All rights reserved. |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms of the GNU General Public License as published by the Free |
| * Software Foundation version 2 and no later version. |
| * |
| * This program is distributed in the hope that it will be useful, but WITHOUT |
| * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| * more details. |
| */ |
| |
| /* Implementation notes: |
| * |
| * - There are two kinds of sockets: those created by user action (such as |
| * calling socket(2)) and those created by incoming connection request packets. |
| * |
| * - There are two "global" tables, one for bound sockets (sockets that have |
| * specified an address that they are responsible for) and one for connected |
| * sockets (sockets that have established a connection with another socket). |
| * These tables are "global" in that all sockets on the system are placed |
| * within them. - Note, though, that the bound table contains an extra entry |
| * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in |
| * that list. The bound table is used solely for lookup of sockets when packets |
| * are received and that's not necessary for SOCK_DGRAM sockets since we create |
| * a datagram handle for each and need not perform a lookup. Keeping SOCK_DGRAM |
| * sockets out of the bound hash buckets will reduce the chance of collisions |
| * when looking for SOCK_STREAM sockets and prevents us from having to check the |
| * socket type in the hash table lookups. |
| * |
| * - Sockets created by user action will either be "client" sockets that |
| * initiate a connection or "server" sockets that listen for connections; we do |
| * not support simultaneous connects (two "client" sockets connecting). |
| * |
| * - "Server" sockets are referred to as listener sockets throughout this |
| * implementation because they are in the TCP_LISTEN state. When a |
| * connection request is received (the second kind of socket mentioned above), |
| * we create a new socket and refer to it as a pending socket. These pending |
| * sockets are placed on the pending connection list of the listener socket. |
| * When future packets are received for the address the listener socket is |
| * bound to, we check if the source of the packet is from one that has an |
| * existing pending connection. If it does, we process the packet for the |
| * pending socket. When that socket reaches the connected state, it is removed |
| * from the listener socket's pending list and enqueued in the listener |
| * socket's accept queue. Callers of accept(2) will accept connected sockets |
| * from the listener socket's accept queue. If the socket cannot be accepted |
| * for some reason then it is marked rejected. Once the connection is |
| * accepted, it is owned by the user process and the responsibility for cleanup |
| * falls with that user process. |
| * |
| * - It is possible that these pending sockets will never reach the connected |
| * state; in fact, we may never receive another packet after the connection |
| * request. Because of this, we must schedule a cleanup function to run in the |
| * future, after some amount of time passes where a connection should have been |
| * established. This function ensures that the socket is off all lists so it |
| * cannot be retrieved, then drops all references to the socket so it is cleaned |
| * up (sock_put() -> sk_free() -> our sk_destruct implementation). Note this |
| * function will also cleanup rejected sockets, those that reach the connected |
| * state but leave it before they have been accepted. |
| * |
| * - Lock ordering for pending or accept queue sockets is: |
| * |
| * lock_sock(listener); |
| * lock_sock_nested(pending, SINGLE_DEPTH_NESTING); |
| * |
| * Using explicit nested locking keeps lockdep happy since normally only one |
| * lock of a given class may be taken at a time. |
| * |
| * - Sockets created by user action will be cleaned up when the user process |
| * calls close(2), causing our release implementation to be called. Our release |
| * implementation will perform some cleanup then drop the last reference so our |
| * sk_destruct implementation is invoked. Our sk_destruct implementation will |
| * perform additional cleanup that's common for both types of sockets. |
| * |
| * - A socket's reference count is what ensures that the structure won't be |
| * freed. Each entry in a list (such as the "global" bound and connected tables |
| * and the listener socket's pending list and connected queue) ensures a |
| * reference. When we defer work until process context and pass a socket as our |
| * argument, we must ensure the reference count is increased to ensure the |
| * socket isn't freed before the function is run; the deferred function will |
| * then drop the reference. |
| * |
| * - sk->sk_state uses the TCP state constants because they are widely used by |
| * other address families and exposed to userspace tools like ss(8): |
| * |
| * TCP_CLOSE - unconnected |
| * TCP_SYN_SENT - connecting |
| * TCP_ESTABLISHED - connected |
| * TCP_CLOSING - disconnecting |
| * TCP_LISTEN - listening |
| */ |
| |
| #include <linux/types.h> |
| #include <linux/bitops.h> |
| #include <linux/cred.h> |
| #include <linux/init.h> |
| #include <linux/io.h> |
| #include <linux/kernel.h> |
| #include <linux/sched/signal.h> |
| #include <linux/kmod.h> |
| #include <linux/list.h> |
| #include <linux/miscdevice.h> |
| #include <linux/module.h> |
| #include <linux/mutex.h> |
| #include <linux/net.h> |
| #include <linux/poll.h> |
| #include <linux/skbuff.h> |
| #include <linux/smp.h> |
| #include <linux/socket.h> |
| #include <linux/stddef.h> |
| #include <linux/unistd.h> |
| #include <linux/wait.h> |
| #include <linux/workqueue.h> |
| #include <net/sock.h> |
| #include <net/af_vsock.h> |
| |
| static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr); |
| static void vsock_sk_destruct(struct sock *sk); |
| static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb); |
| |
| /* Protocol family. */ |
| static struct proto vsock_proto = { |
| .name = "AF_VSOCK", |
| .owner = THIS_MODULE, |
| .obj_size = sizeof(struct vsock_sock), |
| }; |
| |
| /* The default peer timeout indicates how long we will wait for a peer response |
| * to a control message. |
| */ |
| #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ) |
| |
| static const struct vsock_transport *transport; |
| static DEFINE_MUTEX(vsock_register_mutex); |
| |
| /**** EXPORTS ****/ |
| |
| /* Get the ID of the local context. This is transport dependent. */ |
| |
| int vm_sockets_get_local_cid(void) |
| { |
| return transport->get_local_cid(); |
| } |
| EXPORT_SYMBOL_GPL(vm_sockets_get_local_cid); |
| |
| /**** UTILS ****/ |
| |
| /* Each bound VSocket is stored in the bind hash table and each connected |
| * VSocket is stored in the connected hash table. |
| * |
| * Unbound sockets are all put on the same list attached to the end of the hash |
| * table (vsock_unbound_sockets). Bound sockets are added to the hash table in |
| * the bucket that their local address hashes to (vsock_bound_sockets(addr) |
| * represents the list that addr hashes to). |
| * |
| * Specifically, we initialize the vsock_bind_table array to a size of |
| * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through |
| * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and |
| * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets. The hash function |
| * mods with VSOCK_HASH_SIZE to ensure this. |
| */ |
| #define MAX_PORT_RETRIES 24 |
| |
| #define VSOCK_HASH(addr) ((addr)->svm_port % VSOCK_HASH_SIZE) |
| #define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)]) |
| #define vsock_unbound_sockets (&vsock_bind_table[VSOCK_HASH_SIZE]) |
| |
| /* XXX This can probably be implemented in a better way. */ |
| #define VSOCK_CONN_HASH(src, dst) \ |
| (((src)->svm_cid ^ (dst)->svm_port) % VSOCK_HASH_SIZE) |
| #define vsock_connected_sockets(src, dst) \ |
| (&vsock_connected_table[VSOCK_CONN_HASH(src, dst)]) |
| #define vsock_connected_sockets_vsk(vsk) \ |
| vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr) |
| |
| struct list_head vsock_bind_table[VSOCK_HASH_SIZE + 1]; |
| EXPORT_SYMBOL_GPL(vsock_bind_table); |
| struct list_head vsock_connected_table[VSOCK_HASH_SIZE]; |
| EXPORT_SYMBOL_GPL(vsock_connected_table); |
| DEFINE_SPINLOCK(vsock_table_lock); |
| EXPORT_SYMBOL_GPL(vsock_table_lock); |
| |
| /* Autobind this socket to the local address if necessary. */ |
| static int vsock_auto_bind(struct vsock_sock *vsk) |
| { |
| struct sock *sk = sk_vsock(vsk); |
| struct sockaddr_vm local_addr; |
| |
| if (vsock_addr_bound(&vsk->local_addr)) |
| return 0; |
| vsock_addr_init(&local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY); |
| return __vsock_bind(sk, &local_addr); |
| } |
| |
| static int __init vsock_init_tables(void) |
| { |
| int i; |
| |
| for (i = 0; i < ARRAY_SIZE(vsock_bind_table); i++) |
| INIT_LIST_HEAD(&vsock_bind_table[i]); |
| |
| for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) |
| INIT_LIST_HEAD(&vsock_connected_table[i]); |
| return 0; |
| } |
| |
| static void __vsock_insert_bound(struct list_head *list, |
| struct vsock_sock *vsk) |
| { |
| sock_hold(&vsk->sk); |
| list_add(&vsk->bound_table, list); |
| } |
| |
| static void __vsock_insert_connected(struct list_head *list, |
| struct vsock_sock *vsk) |
| { |
| sock_hold(&vsk->sk); |
| list_add(&vsk->connected_table, list); |
| } |
| |
| static void __vsock_remove_bound(struct vsock_sock *vsk) |
| { |
| list_del_init(&vsk->bound_table); |
| sock_put(&vsk->sk); |
| } |
| |
| static void __vsock_remove_connected(struct vsock_sock *vsk) |
| { |
| list_del_init(&vsk->connected_table); |
| sock_put(&vsk->sk); |
| } |
| |
| static struct sock *__vsock_find_bound_socket(struct sockaddr_vm *addr) |
| { |
| struct vsock_sock *vsk; |
| |
| list_for_each_entry(vsk, vsock_bound_sockets(addr), bound_table) |
| if (addr->svm_port == vsk->local_addr.svm_port) |
| return sk_vsock(vsk); |
| |
| return NULL; |
| } |
| |
| static struct sock *__vsock_find_connected_socket(struct sockaddr_vm *src, |
| struct sockaddr_vm *dst) |
| { |
| struct vsock_sock *vsk; |
| |
| list_for_each_entry(vsk, vsock_connected_sockets(src, dst), |
| connected_table) { |
| if (vsock_addr_equals_addr(src, &vsk->remote_addr) && |
| dst->svm_port == vsk->local_addr.svm_port) { |
| return sk_vsock(vsk); |
| } |
| } |
| |
| return NULL; |
| } |
| |
| static void vsock_insert_unbound(struct vsock_sock *vsk) |
| { |
| spin_lock_bh(&vsock_table_lock); |
| __vsock_insert_bound(vsock_unbound_sockets, vsk); |
| spin_unlock_bh(&vsock_table_lock); |
| } |
| |
| void vsock_insert_connected(struct vsock_sock *vsk) |
| { |
| struct list_head *list = vsock_connected_sockets( |
| &vsk->remote_addr, &vsk->local_addr); |
| |
| spin_lock_bh(&vsock_table_lock); |
| __vsock_insert_connected(list, vsk); |
| spin_unlock_bh(&vsock_table_lock); |
| } |
| EXPORT_SYMBOL_GPL(vsock_insert_connected); |
| |
| void vsock_remove_bound(struct vsock_sock *vsk) |
| { |
| spin_lock_bh(&vsock_table_lock); |
| __vsock_remove_bound(vsk); |
| spin_unlock_bh(&vsock_table_lock); |
| } |
| EXPORT_SYMBOL_GPL(vsock_remove_bound); |
| |
| void vsock_remove_connected(struct vsock_sock *vsk) |
| { |
| spin_lock_bh(&vsock_table_lock); |
| __vsock_remove_connected(vsk); |
| spin_unlock_bh(&vsock_table_lock); |
| } |
| EXPORT_SYMBOL_GPL(vsock_remove_connected); |
| |
| struct sock *vsock_find_bound_socket(struct sockaddr_vm *addr) |
| { |
| struct sock *sk; |
| |
| spin_lock_bh(&vsock_table_lock); |
| sk = __vsock_find_bound_socket(addr); |
| if (sk) |
| sock_hold(sk); |
| |
| spin_unlock_bh(&vsock_table_lock); |
| |
| return sk; |
| } |
| EXPORT_SYMBOL_GPL(vsock_find_bound_socket); |
| |
| struct sock *vsock_find_connected_socket(struct sockaddr_vm *src, |
| struct sockaddr_vm *dst) |
| { |
| struct sock *sk; |
| |
| spin_lock_bh(&vsock_table_lock); |
| sk = __vsock_find_connected_socket(src, dst); |
| if (sk) |
| sock_hold(sk); |
| |
| spin_unlock_bh(&vsock_table_lock); |
| |
| return sk; |
| } |
| EXPORT_SYMBOL_GPL(vsock_find_connected_socket); |
| |
| static bool vsock_in_bound_table(struct vsock_sock *vsk) |
| { |
| bool ret; |
| |
| spin_lock_bh(&vsock_table_lock); |
| ret = __vsock_in_bound_table(vsk); |
| spin_unlock_bh(&vsock_table_lock); |
| |
| return ret; |
| } |
| |
| static bool vsock_in_connected_table(struct vsock_sock *vsk) |
| { |
| bool ret; |
| |
| spin_lock_bh(&vsock_table_lock); |
| ret = __vsock_in_connected_table(vsk); |
| spin_unlock_bh(&vsock_table_lock); |
| |
| return ret; |
| } |
| |
| void vsock_remove_sock(struct vsock_sock *vsk) |
| { |
| if (vsock_in_bound_table(vsk)) |
| vsock_remove_bound(vsk); |
| |
| if (vsock_in_connected_table(vsk)) |
| vsock_remove_connected(vsk); |
| } |
| EXPORT_SYMBOL_GPL(vsock_remove_sock); |
| |
| void vsock_for_each_connected_socket(void (*fn)(struct sock *sk)) |
| { |
| int i; |
| |
| spin_lock_bh(&vsock_table_lock); |
| |
| for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) { |
| struct vsock_sock *vsk; |
| list_for_each_entry(vsk, &vsock_connected_table[i], |
| connected_table) |
| fn(sk_vsock(vsk)); |
| } |
| |
| spin_unlock_bh(&vsock_table_lock); |
| } |
| EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket); |
| |
| void vsock_add_pending(struct sock *listener, struct sock *pending) |
| { |
| struct vsock_sock *vlistener; |
| struct vsock_sock *vpending; |
| |
| vlistener = vsock_sk(listener); |
| vpending = vsock_sk(pending); |
| |
| sock_hold(pending); |
| sock_hold(listener); |
| list_add_tail(&vpending->pending_links, &vlistener->pending_links); |
| } |
| EXPORT_SYMBOL_GPL(vsock_add_pending); |
| |
| void vsock_remove_pending(struct sock *listener, struct sock *pending) |
| { |
| struct vsock_sock *vpending = vsock_sk(pending); |
| |
| list_del_init(&vpending->pending_links); |
| sock_put(listener); |
| sock_put(pending); |
| } |
| EXPORT_SYMBOL_GPL(vsock_remove_pending); |
| |
| void vsock_enqueue_accept(struct sock *listener, struct sock *connected) |
| { |
| struct vsock_sock *vlistener; |
| struct vsock_sock *vconnected; |
| |
| vlistener = vsock_sk(listener); |
| vconnected = vsock_sk(connected); |
| |
| sock_hold(connected); |
| sock_hold(listener); |
| list_add_tail(&vconnected->accept_queue, &vlistener->accept_queue); |
| } |
| EXPORT_SYMBOL_GPL(vsock_enqueue_accept); |
| |
| static struct sock *vsock_dequeue_accept(struct sock *listener) |
| { |
| struct vsock_sock *vlistener; |
| struct vsock_sock *vconnected; |
| |
| vlistener = vsock_sk(listener); |
| |
| if (list_empty(&vlistener->accept_queue)) |
| return NULL; |
| |
| vconnected = list_entry(vlistener->accept_queue.next, |
| struct vsock_sock, accept_queue); |
| |
| list_del_init(&vconnected->accept_queue); |
| sock_put(listener); |
| /* The caller will need a reference on the connected socket so we let |
| * it call sock_put(). |
| */ |
| |
| return sk_vsock(vconnected); |
| } |
| |
| static bool vsock_is_accept_queue_empty(struct sock *sk) |
| { |
| struct vsock_sock *vsk = vsock_sk(sk); |
| return list_empty(&vsk->accept_queue); |
| } |
| |
| static bool vsock_is_pending(struct sock *sk) |
| { |
| struct vsock_sock *vsk = vsock_sk(sk); |
| return !list_empty(&vsk->pending_links); |
| } |
| |
| static int vsock_send_shutdown(struct sock *sk, int mode) |
| { |
| return transport->shutdown(vsock_sk(sk), mode); |
| } |
| |
| void vsock_pending_work(struct work_struct *work) |
| { |
| struct sock *sk; |
| struct sock *listener; |
| struct vsock_sock *vsk; |
| bool cleanup; |
| |
| vsk = container_of(work, struct vsock_sock, dwork.work); |
| sk = sk_vsock(vsk); |
| listener = vsk->listener; |
| cleanup = true; |
| |
| lock_sock(listener); |
| lock_sock_nested(sk, SINGLE_DEPTH_NESTING); |
| |
| if (vsock_is_pending(sk)) { |
| vsock_remove_pending(listener, sk); |
| |
| listener->sk_ack_backlog--; |
| } else if (!vsk->rejected) { |
| /* We are not on the pending list and accept() did not reject |
| * us, so we must have been accepted by our user process. We |
| * just need to drop our references to the sockets and be on |
| * our way. |
| */ |
| cleanup = false; |
| goto out; |
| } |
| |
| /* We need to remove ourself from the global connected sockets list so |
| * incoming packets can't find this socket, and to reduce the reference |
| * count. |
| */ |
| if (vsock_in_connected_table(vsk)) |
| vsock_remove_connected(vsk); |
| |
| sk->sk_state = TCP_CLOSE; |
| |
| out: |
| release_sock(sk); |
| release_sock(listener); |
| if (cleanup) |
| sock_put(sk); |
| |
| sock_put(sk); |
| sock_put(listener); |
| } |
| EXPORT_SYMBOL_GPL(vsock_pending_work); |
| |
| /**** SOCKET OPERATIONS ****/ |
| |
| static int __vsock_bind_stream(struct vsock_sock *vsk, |
| struct sockaddr_vm *addr) |
| { |
| static u32 port = LAST_RESERVED_PORT + 1; |
| struct sockaddr_vm new_addr; |
| |
| vsock_addr_init(&new_addr, addr->svm_cid, addr->svm_port); |
| |
| if (addr->svm_port == VMADDR_PORT_ANY) { |
| bool found = false; |
| unsigned int i; |
| |
| for (i = 0; i < MAX_PORT_RETRIES; i++) { |
| if (port <= LAST_RESERVED_PORT) |
| port = LAST_RESERVED_PORT + 1; |
| |
| new_addr.svm_port = port++; |
| |
| if (!__vsock_find_bound_socket(&new_addr)) { |
| found = true; |
| break; |
| } |
| } |
| |
| if (!found) |
| return -EADDRNOTAVAIL; |
| } else { |
| /* If port is in reserved range, ensure caller |
| * has necessary privileges. |
| */ |
| if (addr->svm_port <= LAST_RESERVED_PORT && |
| !capable(CAP_NET_BIND_SERVICE)) { |
| return -EACCES; |
| } |
| |
| if (__vsock_find_bound_socket(&new_addr)) |
| return -EADDRINUSE; |
| } |
| |
| vsock_addr_init(&vsk->local_addr, new_addr.svm_cid, new_addr.svm_port); |
| |
| /* Remove stream sockets from the unbound list and add them to the hash |
| * table for easy lookup by its address. The unbound list is simply an |
| * extra entry at the end of the hash table, a trick used by AF_UNIX. |
| */ |
| __vsock_remove_bound(vsk); |
| __vsock_insert_bound(vsock_bound_sockets(&vsk->local_addr), vsk); |
| |
| return 0; |
| } |
| |
| static int __vsock_bind_dgram(struct vsock_sock *vsk, |
| struct sockaddr_vm *addr) |
| { |
| return transport->dgram_bind(vsk, addr); |
| } |
| |
| static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr) |
| { |
| struct vsock_sock *vsk = vsock_sk(sk); |
| u32 cid; |
| int retval; |
| |
| /* First ensure this socket isn't already bound. */ |
| if (vsock_addr_bound(&vsk->local_addr)) |
| return -EINVAL; |
| |
| /* Now bind to the provided address or select appropriate values if |
| * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY). Note that |
| * like AF_INET prevents binding to a non-local IP address (in most |
| * cases), we only allow binding to the local CID. |
| */ |
| cid = transport->get_local_cid(); |
| if (addr->svm_cid != cid && addr->svm_cid != VMADDR_CID_ANY) |
| return -EADDRNOTAVAIL; |
| |
| switch (sk->sk_socket->type) { |
| case SOCK_STREAM: |
| spin_lock_bh(&vsock_table_lock); |
| retval = __vsock_bind_stream(vsk, addr); |
| spin_unlock_bh(&vsock_table_lock); |
| break; |
| |
| case SOCK_DGRAM: |
| retval = __vsock_bind_dgram(vsk, addr); |
| break; |
| |
| default: |
| retval = -EINVAL; |
| break; |
| } |
| |
| return retval; |
| } |
| |
| struct sock *__vsock_create(struct net *net, |
| struct socket *sock, |
| struct sock *parent, |
| gfp_t priority, |
| unsigned short type, |
| int kern) |
| { |
| struct sock *sk; |
| struct vsock_sock *psk; |
| struct vsock_sock *vsk; |
| |
| sk = sk_alloc(net, AF_VSOCK, priority, &vsock_proto, kern); |
| if (!sk) |
| return NULL; |
| |
| sock_init_data(sock, sk); |
| |
| /* sk->sk_type is normally set in sock_init_data, but only if sock is |
| * non-NULL. We make sure that our sockets always have a type by |
| * setting it here if needed. |
| */ |
| if (!sock) |
| sk->sk_type = type; |
| |
| vsk = vsock_sk(sk); |
| vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY); |
| vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY); |
| |
| sk->sk_destruct = vsock_sk_destruct; |
| sk->sk_backlog_rcv = vsock_queue_rcv_skb; |
| sock_reset_flag(sk, SOCK_DONE); |
| |
| INIT_LIST_HEAD(&vsk->bound_table); |
| INIT_LIST_HEAD(&vsk->connected_table); |
| vsk->listener = NULL; |
| INIT_LIST_HEAD(&vsk->pending_links); |
| INIT_LIST_HEAD(&vsk->accept_queue); |
| vsk->rejected = false; |
| vsk->sent_request = false; |
| vsk->ignore_connecting_rst = false; |
| vsk->peer_shutdown = 0; |
| |
| psk = parent ? vsock_sk(parent) : NULL; |
| if (parent) { |
| vsk->trusted = psk->trusted; |
| vsk->owner = get_cred(psk->owner); |
| vsk->connect_timeout = psk->connect_timeout; |
| } else { |
| vsk->trusted = capable(CAP_NET_ADMIN); |
| vsk->owner = get_current_cred(); |
| vsk->connect_timeout = VSOCK_DEFAULT_CONNECT_TIMEOUT; |
| } |
| |
| if (transport->init(vsk, psk) < 0) { |
| sk_free(sk); |
| return NULL; |
| } |
| |
| if (sock) |
| vsock_insert_unbound(vsk); |
| |
| return sk; |
| } |
| EXPORT_SYMBOL_GPL(__vsock_create); |
| |
| static void __vsock_release(struct sock *sk) |
| { |
| if (sk) { |
| struct sk_buff *skb; |
| struct sock *pending; |
| struct vsock_sock *vsk; |
| |
| vsk = vsock_sk(sk); |
| pending = NULL; /* Compiler warning. */ |
| |
| transport->release(vsk); |
| |
| lock_sock(sk); |
| sock_orphan(sk); |
| sk->sk_shutdown = SHUTDOWN_MASK; |
| |
| while ((skb = skb_dequeue(&sk->sk_receive_queue))) |
| kfree_skb(skb); |
| |
| /* Clean up any sockets that never were accepted. */ |
| while ((pending = vsock_dequeue_accept(sk)) != NULL) { |
| __vsock_release(pending); |
| sock_put(pending); |
| } |
| |
| release_sock(sk); |
| sock_put(sk); |
| } |
| } |
| |
| static void vsock_sk_destruct(struct sock *sk) |
| { |
| struct vsock_sock *vsk = vsock_sk(sk); |
| |
| transport->destruct(vsk); |
| |
| /* When clearing these addresses, there's no need to set the family and |
| * possibly register the address family with the kernel. |
| */ |
| vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY); |
| vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY); |
| |
| put_cred(vsk->owner); |
| } |
| |
| static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) |
| { |
| int err; |
| |
| err = sock_queue_rcv_skb(sk, skb); |
| if (err) |
| kfree_skb(skb); |
| |
| return err; |
| } |
| |
| s64 vsock_stream_has_data(struct vsock_sock *vsk) |
| { |
| return transport->stream_has_data(vsk); |
| } |
| EXPORT_SYMBOL_GPL(vsock_stream_has_data); |
| |
| s64 vsock_stream_has_space(struct vsock_sock *vsk) |
| { |
| return transport->stream_has_space(vsk); |
| } |
| EXPORT_SYMBOL_GPL(vsock_stream_has_space); |
| |
| static int vsock_release(struct socket *sock) |
| { |
| __vsock_release(sock->sk); |
| sock->sk = NULL; |
| sock->state = SS_FREE; |
| |
| return 0; |
| } |
| |
| static int |
| vsock_bind(struct socket *sock, struct sockaddr *addr, int addr_len) |
| { |
| int err; |
| struct sock *sk; |
| struct sockaddr_vm *vm_addr; |
| |
| sk = sock->sk; |
| |
| if (vsock_addr_cast(addr, addr_len, &vm_addr) != 0) |
| return -EINVAL; |
| |
| lock_sock(sk); |
| err = __vsock_bind(sk, vm_addr); |
| release_sock(sk); |
| |
| return err; |
| } |
| |
| static int vsock_getname(struct socket *sock, |
| struct sockaddr *addr, int *addr_len, int peer) |
| { |
| int err; |
| struct sock *sk; |
| struct vsock_sock *vsk; |
| struct sockaddr_vm *vm_addr; |
| |
| sk = sock->sk; |
| vsk = vsock_sk(sk); |
| err = 0; |
| |
| lock_sock(sk); |
| |
| if (peer) { |
| if (sock->state != SS_CONNECTED) { |
| err = -ENOTCONN; |
| goto out; |
| } |
| vm_addr = &vsk->remote_addr; |
| } else { |
| vm_addr = &vsk->local_addr; |
| } |
| |
| if (!vm_addr) { |
| err = -EINVAL; |
| goto out; |
| } |
| |
| /* sys_getsockname() and sys_getpeername() pass us a |
| * MAX_SOCK_ADDR-sized buffer and don't set addr_len. Unfortunately |
| * that macro is defined in socket.c instead of .h, so we hardcode its |
| * value here. |
| */ |
| BUILD_BUG_ON(sizeof(*vm_addr) > 128); |
| memcpy(addr, vm_addr, sizeof(*vm_addr)); |
| *addr_len = sizeof(*vm_addr); |
| |
| out: |
| release_sock(sk); |
| return err; |
| } |
| |
| static int vsock_shutdown(struct socket *sock, int mode) |
| { |
| int err; |
| struct sock *sk; |
| |
| /* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses |
| * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode |
| * here like the other address families do. Note also that the |
| * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3), |
| * which is what we want. |
| */ |
| mode++; |
| |
| if ((mode & ~SHUTDOWN_MASK) || !mode) |
| return -EINVAL; |
| |
| /* If this is a STREAM socket and it is not connected then bail out |
| * immediately. If it is a DGRAM socket then we must first kick the |
| * socket so that it wakes up from any sleeping calls, for example |
| * recv(), and then afterwards return the error. |
| */ |
| |
| sk = sock->sk; |
| if (sock->state == SS_UNCONNECTED) { |
| err = -ENOTCONN; |
| if (sk->sk_type == SOCK_STREAM) |
| return err; |
| } else { |
| sock->state = SS_DISCONNECTING; |
| err = 0; |
| } |
| |
| /* Receive and send shutdowns are treated alike. */ |
| mode = mode & (RCV_SHUTDOWN | SEND_SHUTDOWN); |
| if (mode) { |
| lock_sock(sk); |
| sk->sk_shutdown |= mode; |
| sk->sk_state_change(sk); |
| release_sock(sk); |
| |
| if (sk->sk_type == SOCK_STREAM) { |
| sock_reset_flag(sk, SOCK_DONE); |
| vsock_send_shutdown(sk, mode); |
| } |
| } |
| |
| return err; |
| } |
| |
| static unsigned int vsock_poll(struct file *file, struct socket *sock, |
| poll_table *wait) |
| { |
| struct sock *sk; |
| unsigned int mask; |
| struct vsock_sock *vsk; |
| |
| sk = sock->sk; |
| vsk = vsock_sk(sk); |
| |
| poll_wait(file, sk_sleep(sk), wait); |
| mask = 0; |
| |
| if (sk->sk_err) |
| /* Signify that there has been an error on this socket. */ |
| mask |= POLLERR; |
| |
| /* INET sockets treat local write shutdown and peer write shutdown as a |
| * case of POLLHUP set. |
| */ |
| if ((sk->sk_shutdown == SHUTDOWN_MASK) || |
| ((sk->sk_shutdown & SEND_SHUTDOWN) && |
| (vsk->peer_shutdown & SEND_SHUTDOWN))) { |
| mask |= POLLHUP; |
| } |
| |
| if (sk->sk_shutdown & RCV_SHUTDOWN || |
| vsk->peer_shutdown & SEND_SHUTDOWN) { |
| mask |= POLLRDHUP; |
| } |
| |
| if (sock->type == SOCK_DGRAM) { |
| /* For datagram sockets we can read if there is something in |
| * the queue and write as long as the socket isn't shutdown for |
| * sending. |
| */ |
| if (!skb_queue_empty(&sk->sk_receive_queue) || |
| (sk->sk_shutdown & RCV_SHUTDOWN)) { |
| mask |= POLLIN | POLLRDNORM; |
| } |
| |
| if (!(sk->sk_shutdown & SEND_SHUTDOWN)) |
| mask |= POLLOUT | POLLWRNORM | POLLWRBAND; |
| |
| } else if (sock->type == SOCK_STREAM) { |
| lock_sock(sk); |
| |
| /* Listening sockets that have connections in their accept |
| * queue can be read. |
| */ |
| if (sk->sk_state == TCP_LISTEN |
| && !vsock_is_accept_queue_empty(sk)) |
| mask |= POLLIN | POLLRDNORM; |
| |
| /* If there is something in the queue then we can read. */ |
| if (transport->stream_is_active(vsk) && |
| !(sk->sk_shutdown & RCV_SHUTDOWN)) { |
| bool data_ready_now = false; |
| int ret = transport->notify_poll_in( |
| vsk, 1, &data_ready_now); |
| if (ret < 0) { |
| mask |= POLLERR; |
| } else { |
| if (data_ready_now) |
| mask |= POLLIN | POLLRDNORM; |
| |
| } |
| } |
| |
| /* Sockets whose connections have been closed, reset, or |
| * terminated should also be considered read, and we check the |
| * shutdown flag for that. |
| */ |
| if (sk->sk_shutdown & RCV_SHUTDOWN || |
| vsk->peer_shutdown & SEND_SHUTDOWN) { |
| mask |= POLLIN | POLLRDNORM; |
| } |
| |
| /* Connected sockets that can produce data can be written. */ |
| if (sk->sk_state == TCP_ESTABLISHED) { |
| if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { |
| bool space_avail_now = false; |
| int ret = transport->notify_poll_out( |
| vsk, 1, &space_avail_now); |
| if (ret < 0) { |
| mask |= POLLERR; |
| } else { |
| if (space_avail_now) |
| /* Remove POLLWRBAND since INET |
| * sockets are not setting it. |
| */ |
| mask |= POLLOUT | POLLWRNORM; |
| |
| } |
| } |
| } |
| |
| /* Simulate INET socket poll behaviors, which sets |
| * POLLOUT|POLLWRNORM when peer is closed and nothing to read, |
| * but local send is not shutdown. |
| */ |
| if (sk->sk_state == TCP_CLOSE) { |
| if (!(sk->sk_shutdown & SEND_SHUTDOWN)) |
| mask |= POLLOUT | POLLWRNORM; |
| |
| } |
| |
| release_sock(sk); |
| } |
| |
| return mask; |
| } |
| |
| static int vsock_dgram_sendmsg(struct socket *sock, struct msghdr *msg, |
| size_t len) |
| { |
| int err; |
| struct sock *sk; |
| struct vsock_sock *vsk; |
| struct sockaddr_vm *remote_addr; |
| |
| if (msg->msg_flags & MSG_OOB) |
| return -EOPNOTSUPP; |
| |
| /* For now, MSG_DONTWAIT is always assumed... */ |
| err = 0; |
| sk = sock->sk; |
| vsk = vsock_sk(sk); |
| |
| lock_sock(sk); |
| |
| err = vsock_auto_bind(vsk); |
| if (err) |
| goto out; |
| |
| |
| /* If the provided message contains an address, use that. Otherwise |
| * fall back on the socket's remote handle (if it has been connected). |
| */ |
| if (msg->msg_name && |
| vsock_addr_cast(msg->msg_name, msg->msg_namelen, |
| &remote_addr) == 0) { |
| /* Ensure this address is of the right type and is a valid |
| * destination. |
| */ |
| |
| if (remote_addr->svm_cid == VMADDR_CID_ANY) |
| remote_addr->svm_cid = transport->get_local_cid(); |
| |
| if (!vsock_addr_bound(remote_addr)) { |
| err = -EINVAL; |
| goto out; |
| } |
| } else if (sock->state == SS_CONNECTED) { |
| remote_addr = &vsk->remote_addr; |
| |
| if (remote_addr->svm_cid == VMADDR_CID_ANY) |
| remote_addr->svm_cid = transport->get_local_cid(); |
| |
| /* XXX Should connect() or this function ensure remote_addr is |
| * bound? |
| */ |
| if (!vsock_addr_bound(&vsk->remote_addr)) { |
| err = -EINVAL; |
| goto out; |
| } |
| } else { |
| err = -EINVAL; |
| goto out; |
| } |
| |
| if (!transport->dgram_allow(remote_addr->svm_cid, |
| remote_addr->svm_port)) { |
| err = -EINVAL; |
| goto out; |
| } |
| |
| err = transport->dgram_enqueue(vsk, remote_addr, msg, len); |
| |
| out: |
| release_sock(sk); |
| return err; |
| } |
| |
| static int vsock_dgram_connect(struct socket *sock, |
| struct sockaddr *addr, int addr_len, int flags) |
| { |
| int err; |
| struct sock *sk; |
| struct vsock_sock *vsk; |
| struct sockaddr_vm *remote_addr; |
| |
| sk = sock->sk; |
| vsk = vsock_sk(sk); |
| |
| err = vsock_addr_cast(addr, addr_len, &remote_addr); |
| if (err == -EAFNOSUPPORT && remote_addr->svm_family == AF_UNSPEC) { |
| lock_sock(sk); |
| vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, |
| VMADDR_PORT_ANY); |
| sock->state = SS_UNCONNECTED; |
| release_sock(sk); |
| return 0; |
| } else if (err != 0) |
| return -EINVAL; |
| |
| lock_sock(sk); |
| |
| err = vsock_auto_bind(vsk); |
| if (err) |
| goto out; |
| |
| if (!transport->dgram_allow(remote_addr->svm_cid, |
| remote_addr->svm_port)) { |
| err = -EINVAL; |
| goto out; |
| } |
| |
| memcpy(&vsk->remote_addr, remote_addr, sizeof(vsk->remote_addr)); |
| sock->state = SS_CONNECTED; |
| |
| out: |
| release_sock(sk); |
| return err; |
| } |
| |
| static int vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg, |
| size_t len, int flags) |
| { |
| return transport->dgram_dequeue(vsock_sk(sock->sk), msg, len, flags); |
| } |
| |
| static const struct proto_ops vsock_dgram_ops = { |
| .family = PF_VSOCK, |
| .owner = THIS_MODULE, |
| .release = vsock_release, |
| .bind = vsock_bind, |
| .connect = vsock_dgram_connect, |
| .socketpair = sock_no_socketpair, |
| .accept = sock_no_accept, |
| .getname = vsock_getname, |
| .poll = vsock_poll, |
| .ioctl = sock_no_ioctl, |
| .listen = sock_no_listen, |
| .shutdown = vsock_shutdown, |
| .setsockopt = sock_no_setsockopt, |
| .getsockopt = sock_no_getsockopt, |
| .sendmsg = vsock_dgram_sendmsg, |
| .recvmsg = vsock_dgram_recvmsg, |
| .mmap = sock_no_mmap, |
| .sendpage = sock_no_sendpage, |
| }; |
| |
| static int vsock_transport_cancel_pkt(struct vsock_sock *vsk) |
| { |
| if (!transport->cancel_pkt) |
| return -EOPNOTSUPP; |
| |
| return transport->cancel_pkt(vsk); |
| } |
| |
| static void vsock_connect_timeout(struct work_struct *work) |
| { |
| struct sock *sk; |
| struct vsock_sock *vsk; |
| int cancel = 0; |
| |
| vsk = container_of(work, struct vsock_sock, dwork.work); |
| sk = sk_vsock(vsk); |
| |
| lock_sock(sk); |
| if (sk->sk_state == TCP_SYN_SENT && |
| (sk->sk_shutdown != SHUTDOWN_MASK)) { |
| sk->sk_state = TCP_CLOSE; |
| sk->sk_err = ETIMEDOUT; |
| sk->sk_error_report(sk); |
| cancel = 1; |
| } |
| release_sock(sk); |
| if (cancel) |
| vsock_transport_cancel_pkt(vsk); |
| |
| sock_put(sk); |
| } |
| |
| static int vsock_stream_connect(struct socket *sock, struct sockaddr *addr, |
| int addr_len, int flags) |
| { |
| int err; |
| struct sock *sk; |
| struct vsock_sock *vsk; |
| struct sockaddr_vm *remote_addr; |
| long timeout; |
| DEFINE_WAIT(wait); |
| |
| err = 0; |
| sk = sock->sk; |
| vsk = vsock_sk(sk); |
| |
| lock_sock(sk); |
| |
| /* XXX AF_UNSPEC should make us disconnect like AF_INET. */ |
| switch (sock->state) { |
| case SS_CONNECTED: |
| err = -EISCONN; |
| goto out; |
| case SS_DISCONNECTING: |
| err = -EINVAL; |
| goto out; |
| case SS_CONNECTING: |
| /* This continues on so we can move sock into the SS_CONNECTED |
| * state once the connection has completed (at which point err |
| * will be set to zero also). Otherwise, we will either wait |
| * for the connection or return -EALREADY should this be a |
| * non-blocking call. |
| */ |
| err = -EALREADY; |
| break; |
| default: |
| if ((sk->sk_state == TCP_LISTEN) || |
| vsock_addr_cast(addr, addr_len, &remote_addr) != 0) { |
| err = -EINVAL; |
| goto out; |
| } |
| |
| /* The hypervisor and well-known contexts do not have socket |
| * endpoints. |
| */ |
| if (!transport->stream_allow(remote_addr->svm_cid, |
| remote_addr->svm_port)) { |
| err = -ENETUNREACH; |
| goto out; |
| } |
| |
| /* Set the remote address that we are connecting to. */ |
| memcpy(&vsk->remote_addr, remote_addr, |
| sizeof(vsk->remote_addr)); |
| |
| err = vsock_auto_bind(vsk); |
| if (err) |
| goto out; |
| |
| sk->sk_state = TCP_SYN_SENT; |
| |
| err = transport->connect(vsk); |
| if (err < 0) |
| goto out; |
| |
| /* Mark sock as connecting and set the error code to in |
| * progress in case this is a non-blocking connect. |
| */ |
| sock->state = SS_CONNECTING; |
| err = -EINPROGRESS; |
| } |
| |
| /* The receive path will handle all communication until we are able to |
| * enter the connected state. Here we wait for the connection to be |
| * completed or a notification of an error. |
| */ |
| timeout = vsk->connect_timeout; |
| prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); |
| |
| while (sk->sk_state != TCP_ESTABLISHED && sk->sk_err == 0) { |
| if (flags & O_NONBLOCK) { |
| /* If we're not going to block, we schedule a timeout |
| * function to generate a timeout on the connection |
| * attempt, in case the peer doesn't respond in a |
| * timely manner. We hold on to the socket until the |
| * timeout fires. |
| */ |
| sock_hold(sk); |
| INIT_DELAYED_WORK(&vsk->dwork, |
| vsock_connect_timeout); |
| schedule_delayed_work(&vsk->dwork, timeout); |
| |
| /* Skip ahead to preserve error code set above. */ |
| goto out_wait; |
| } |
| |
| release_sock(sk); |
| timeout = schedule_timeout(timeout); |
| lock_sock(sk); |
| |
| if (signal_pending(current)) { |
| err = sock_intr_errno(timeout); |
| sk->sk_state = TCP_CLOSE; |
| sock->state = SS_UNCONNECTED; |
| vsock_transport_cancel_pkt(vsk); |
| goto out_wait; |
| } else if (timeout == 0) { |
| err = -ETIMEDOUT; |
| sk->sk_state = TCP_CLOSE; |
| sock->state = SS_UNCONNECTED; |
| vsock_transport_cancel_pkt(vsk); |
| goto out_wait; |
| } |
| |
| prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); |
| } |
| |
| if (sk->sk_err) { |
| err = -sk->sk_err; |
| sk->sk_state = TCP_CLOSE; |
| sock->state = SS_UNCONNECTED; |
| } else { |
| err = 0; |
| } |
| |
| out_wait: |
| finish_wait(sk_sleep(sk), &wait); |
| out: |
| release_sock(sk); |
| return err; |
| } |
| |
| static int vsock_accept(struct socket *sock, struct socket *newsock, int flags, |
| bool kern) |
| { |
| struct sock *listener; |
| int err; |
| struct sock *connected; |
| struct vsock_sock *vconnected; |
| long timeout; |
| DEFINE_WAIT(wait); |
| |
| err = 0; |
| listener = sock->sk; |
| |
| lock_sock(listener); |
| |
| if (sock->type != SOCK_STREAM) { |
| err = -EOPNOTSUPP; |
| goto out; |
| } |
| |
| if (listener->sk_state != TCP_LISTEN) { |
| err = -EINVAL; |
| goto out; |
| } |
| |
| /* Wait for children sockets to appear; these are the new sockets |
| * created upon connection establishment. |
| */ |
| timeout = sock_sndtimeo(listener, flags & O_NONBLOCK); |
| prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE); |
| |
| while ((connected = vsock_dequeue_accept(listener)) == NULL && |
| listener->sk_err == 0) { |
| release_sock(listener); |
| timeout = schedule_timeout(timeout); |
| finish_wait(sk_sleep(listener), &wait); |
| lock_sock(listener); |
| |
| if (signal_pending(current)) { |
| err = sock_intr_errno(timeout); |
| goto out; |
| } else if (timeout == 0) { |
| err = -EAGAIN; |
| goto out; |
| } |
| |
| prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE); |
| } |
| finish_wait(sk_sleep(listener), &wait); |
| |
| if (listener->sk_err) |
| err = -listener->sk_err; |
| |
| if (connected) { |
| listener->sk_ack_backlog--; |
| |
| lock_sock_nested(connected, SINGLE_DEPTH_NESTING); |
| vconnected = vsock_sk(connected); |
| |
| /* If the listener socket has received an error, then we should |
| * reject this socket and return. Note that we simply mark the |
| * socket rejected, drop our reference, and let the cleanup |
| * function handle the cleanup; the fact that we found it in |
| * the listener's accept queue guarantees that the cleanup |
| * function hasn't run yet. |
| */ |
| if (err) { |
| vconnected->rejected = true; |
| } else { |
| newsock->state = SS_CONNECTED; |
| sock_graft(connected, newsock); |
| } |
| |
| release_sock(connected); |
| sock_put(connected); |
| } |
| |
| out: |
| release_sock(listener); |
| return err; |
| } |
| |
| static int vsock_listen(struct socket *sock, int backlog) |
| { |
| int err; |
| struct sock *sk; |
| struct vsock_sock *vsk; |
| |
| sk = sock->sk; |
| |
| lock_sock(sk); |
| |
| if (sock->type != SOCK_STREAM) { |
| err = -EOPNOTSUPP; |
| goto out; |
| } |
| |
| if (sock->state != SS_UNCONNECTED) { |
| err = -EINVAL; |
| goto out; |
| } |
| |
| vsk = vsock_sk(sk); |
| |
| if (!vsock_addr_bound(&vsk->local_addr)) { |
| err = -EINVAL; |
| goto out; |
| } |
| |
| sk->sk_max_ack_backlog = backlog; |
| sk->sk_state = TCP_LISTEN; |
| |
| err = 0; |
| |
| out: |
| release_sock(sk); |
| return err; |
| } |
| |
| static int vsock_stream_setsockopt(struct socket *sock, |
| int level, |
| int optname, |
| char __user *optval, |
| unsigned int optlen) |
| { |
| int err; |
| struct sock *sk; |
| struct vsock_sock *vsk; |
| u64 val; |
| |
| if (level != AF_VSOCK) |
| return -ENOPROTOOPT; |
| |
| #define COPY_IN(_v) \ |
| do { \ |
| if (optlen < sizeof(_v)) { \ |
| err = -EINVAL; \ |
| goto exit; \ |
| } \ |
| if (copy_from_user(&_v, optval, sizeof(_v)) != 0) { \ |
| err = -EFAULT; \ |
| goto exit; \ |
| } \ |
| } while (0) |
| |
| err = 0; |
| sk = sock->sk; |
| vsk = vsock_sk(sk); |
| |
| lock_sock(sk); |
| |
| switch (optname) { |
| case SO_VM_SOCKETS_BUFFER_SIZE: |
| COPY_IN(val); |
| transport->set_buffer_size(vsk, val); |
| break; |
| |
| case SO_VM_SOCKETS_BUFFER_MAX_SIZE: |
| COPY_IN(val); |
| transport->set_max_buffer_size(vsk, val); |
| break; |
| |
| case SO_VM_SOCKETS_BUFFER_MIN_SIZE: |
| COPY_IN(val); |
| transport->set_min_buffer_size(vsk, val); |
| break; |
| |
| case SO_VM_SOCKETS_CONNECT_TIMEOUT: { |
| struct timeval tv; |
| COPY_IN(tv); |
| if (tv.tv_sec >= 0 && tv.tv_usec < USEC_PER_SEC && |
| tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) { |
| vsk->connect_timeout = tv.tv_sec * HZ + |
| DIV_ROUND_UP(tv.tv_usec, (1000000 / HZ)); |
| if (vsk->connect_timeout == 0) |
| vsk->connect_timeout = |
| VSOCK_DEFAULT_CONNECT_TIMEOUT; |
| |
| } else { |
| err = -ERANGE; |
| } |
| break; |
| } |
| |
| default: |
| err = -ENOPROTOOPT; |
| break; |
| } |
| |
| #undef COPY_IN |
| |
| exit: |
| release_sock(sk); |
| return err; |
| } |
| |
| static int vsock_stream_getsockopt(struct socket *sock, |
| int level, int optname, |
| char __user *optval, |
| int __user *optlen) |
| { |
| int err; |
| int len; |
| struct sock *sk; |
| struct vsock_sock *vsk; |
| u64 val; |
| |
| if (level != AF_VSOCK) |
| return -ENOPROTOOPT; |
| |
| err = get_user(len, optlen); |
| if (err != 0) |
| return err; |
| |
| #define COPY_OUT(_v) \ |
| do { \ |
| if (len < sizeof(_v)) \ |
| return -EINVAL; \ |
| \ |
| len = sizeof(_v); \ |
| if (copy_to_user(optval, &_v, len) != 0) \ |
| return -EFAULT; \ |
| \ |
| } while (0) |
| |
| err = 0; |
| sk = sock->sk; |
| vsk = vsock_sk(sk); |
| |
| switch (optname) { |
| case SO_VM_SOCKETS_BUFFER_SIZE: |
| val = transport->get_buffer_size(vsk); |
| COPY_OUT(val); |
| break; |
| |
| case SO_VM_SOCKETS_BUFFER_MAX_SIZE: |
| val = transport->get_max_buffer_size(vsk); |
| COPY_OUT(val); |
| break; |
| |
| case SO_VM_SOCKETS_BUFFER_MIN_SIZE: |
| val = transport->get_min_buffer_size(vsk); |
| COPY_OUT(val); |
| break; |
| |
| case SO_VM_SOCKETS_CONNECT_TIMEOUT: { |
| struct timeval tv; |
| tv.tv_sec = vsk->connect_timeout / HZ; |
| tv.tv_usec = |
| (vsk->connect_timeout - |
| tv.tv_sec * HZ) * (1000000 / HZ); |
| COPY_OUT(tv); |
| break; |
| } |
| default: |
| return -ENOPROTOOPT; |
| } |
| |
| err = put_user(len, optlen); |
| if (err != 0) |
| return -EFAULT; |
| |
| #undef COPY_OUT |
| |
| return 0; |
| } |
| |
| static int vsock_stream_sendmsg(struct socket *sock, struct msghdr *msg, |
| size_t len) |
| { |
| struct sock *sk; |
| struct vsock_sock *vsk; |
| ssize_t total_written; |
| long timeout; |
| int err; |
| struct vsock_transport_send_notify_data send_data; |
| DEFINE_WAIT_FUNC(wait, woken_wake_function); |
| |
| sk = sock->sk; |
| vsk = vsock_sk(sk); |
| total_written = 0; |
| err = 0; |
| |
| if (msg->msg_flags & MSG_OOB) |
| return -EOPNOTSUPP; |
| |
| lock_sock(sk); |
| |
| /* Callers should not provide a destination with stream sockets. */ |
| if (msg->msg_namelen) { |
| err = sk->sk_state == TCP_ESTABLISHED ? -EISCONN : -EOPNOTSUPP; |
| goto out; |
| } |
| |
| /* Send data only if both sides are not shutdown in the direction. */ |
| if (sk->sk_shutdown & SEND_SHUTDOWN || |
| vsk->peer_shutdown & RCV_SHUTDOWN) { |
| err = -EPIPE; |
| goto out; |
| } |
| |
| if (sk->sk_state != TCP_ESTABLISHED || |
| !vsock_addr_bound(&vsk->local_addr)) { |
| err = -ENOTCONN; |
| goto out; |
| } |
| |
| if (!vsock_addr_bound(&vsk->remote_addr)) { |
| err = -EDESTADDRREQ; |
| goto out; |
| } |
| |
| /* Wait for room in the produce queue to enqueue our user's data. */ |
| timeout = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); |
| |
| err = transport->notify_send_init(vsk, &send_data); |
| if (err < 0) |
| goto out; |
| |
| while (total_written < len) { |
| ssize_t written; |
| |
| add_wait_queue(sk_sleep(sk), &wait); |
| while (vsock_stream_has_space(vsk) == 0 && |
| sk->sk_err == 0 && |
| !(sk->sk_shutdown & SEND_SHUTDOWN) && |
| !(vsk->peer_shutdown & RCV_SHUTDOWN)) { |
| |
| /* Don't wait for non-blocking sockets. */ |
| if (timeout == 0) { |
| err = -EAGAIN; |
| remove_wait_queue(sk_sleep(sk), &wait); |
| goto out_err; |
| } |
| |
| err = transport->notify_send_pre_block(vsk, &send_data); |
| if (err < 0) { |
| remove_wait_queue(sk_sleep(sk), &wait); |
| goto out_err; |
| } |
| |
| release_sock(sk); |
| timeout = wait_woken(&wait, TASK_INTERRUPTIBLE, timeout); |
| lock_sock(sk); |
| if (signal_pending(current)) { |
| err = sock_intr_errno(timeout); |
| remove_wait_queue(sk_sleep(sk), &wait); |
| goto out_err; |
| } else if (timeout == 0) { |
| err = -EAGAIN; |
| remove_wait_queue(sk_sleep(sk), &wait); |
| goto out_err; |
| } |
| } |
| remove_wait_queue(sk_sleep(sk), &wait); |
| |
| /* These checks occur both as part of and after the loop |
| * conditional since we need to check before and after |
| * sleeping. |
| */ |
| if (sk->sk_err) { |
| err = -sk->sk_err; |
| goto out_err; |
| } else if ((sk->sk_shutdown & SEND_SHUTDOWN) || |
| (vsk->peer_shutdown & RCV_SHUTDOWN)) { |
| err = -EPIPE; |
| goto out_err; |
| } |
| |
| err = transport->notify_send_pre_enqueue(vsk, &send_data); |
| if (err < 0) |
| goto out_err; |
| |
| /* Note that enqueue will only write as many bytes as are free |
| * in the produce queue, so we don't need to ensure len is |
| * smaller than the queue size. It is the caller's |
| * responsibility to check how many bytes we were able to send. |
| */ |
| |
| written = transport->stream_enqueue( |
| vsk, msg, |
| len - total_written); |
| if (written < 0) { |
| err = -ENOMEM; |
| goto out_err; |
| } |
| |
| total_written += written; |
| |
| err = transport->notify_send_post_enqueue( |
| vsk, written, &send_data); |
| if (err < 0) |
| goto out_err; |
| |
| } |
| |
| out_err: |
| if (total_written > 0) |
| err = total_written; |
| out: |
| release_sock(sk); |
| return err; |
| } |
| |
| |
| static int |
| vsock_stream_recvmsg(struct socket *sock, struct msghdr *msg, size_t len, |
| int flags) |
| { |
| struct sock *sk; |
| struct vsock_sock *vsk; |
| int err; |
| size_t target; |
| ssize_t copied; |
| long timeout; |
| struct vsock_transport_recv_notify_data recv_data; |
| |
| DEFINE_WAIT(wait); |
| |
| sk = sock->sk; |
| vsk = vsock_sk(sk); |
| err = 0; |
| |
| lock_sock(sk); |
| |
| if (sk->sk_state != TCP_ESTABLISHED) { |
| /* Recvmsg is supposed to return 0 if a peer performs an |
| * orderly shutdown. Differentiate between that case and when a |
| * peer has not connected or a local shutdown occured with the |
| * SOCK_DONE flag. |
| */ |
| if (sock_flag(sk, SOCK_DONE)) |
| err = 0; |
| else |
| err = -ENOTCONN; |
| |
| goto out; |
| } |
| |
| if (flags & MSG_OOB) { |
| err = -EOPNOTSUPP; |
| goto out; |
| } |
| |
| /* We don't check peer_shutdown flag here since peer may actually shut |
| * down, but there can be data in the queue that a local socket can |
| * receive. |
| */ |
| if (sk->sk_shutdown & RCV_SHUTDOWN) { |
| err = 0; |
| goto out; |
| } |
| |
| /* It is valid on Linux to pass in a zero-length receive buffer. This |
| * is not an error. We may as well bail out now. |
| */ |
| if (!len) { |
| err = 0; |
| goto out; |
| } |
| |
| /* We must not copy less than target bytes into the user's buffer |
| * before returning successfully, so we wait for the consume queue to |
| * have that much data to consume before dequeueing. Note that this |
| * makes it impossible to handle cases where target is greater than the |
| * queue size. |
| */ |
| target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); |
| if (target >= transport->stream_rcvhiwat(vsk)) { |
| err = -ENOMEM; |
| goto out; |
| } |
| timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); |
| copied = 0; |
| |
| err = transport->notify_recv_init(vsk, target, &recv_data); |
| if (err < 0) |
| goto out; |
| |
| |
| while (1) { |
| s64 ready; |
| |
| prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); |
| ready = vsock_stream_has_data(vsk); |
| |
| if (ready == 0) { |
| if (sk->sk_err != 0 || |
| (sk->sk_shutdown & RCV_SHUTDOWN) || |
| (vsk->peer_shutdown & SEND_SHUTDOWN)) { |
| finish_wait(sk_sleep(sk), &wait); |
| break; |
| } |
| /* Don't wait for non-blocking sockets. */ |
| if (timeout == 0) { |
| err = -EAGAIN; |
| finish_wait(sk_sleep(sk), &wait); |
| break; |
| } |
| |
| err = transport->notify_recv_pre_block( |
| vsk, target, &recv_data); |
| if (err < 0) { |
| finish_wait(sk_sleep(sk), &wait); |
| break; |
| } |
| release_sock(sk); |
| timeout = schedule_timeout(timeout); |
| lock_sock(sk); |
| |
| if (signal_pending(current)) { |
| err = sock_intr_errno(timeout); |
| finish_wait(sk_sleep(sk), &wait); |
| break; |
| } else if (timeout == 0) { |
| err = -EAGAIN; |
| finish_wait(sk_sleep(sk), &wait); |
| break; |
| } |
| } else { |
| ssize_t read; |
| |
| finish_wait(sk_sleep(sk), &wait); |
| |
| if (ready < 0) { |
| /* Invalid queue pair content. XXX This should |
| * be changed to a connection reset in a later |
| * change. |
| */ |
| |
| err = -ENOMEM; |
| goto out; |
| } |
| |
| err = transport->notify_recv_pre_dequeue( |
| vsk, target, &recv_data); |
| if (err < 0) |
| break; |
| |
| read = transport->stream_dequeue( |
| vsk, msg, |
| len - copied, flags); |
| if (read < 0) { |
| err = -ENOMEM; |
| break; |
| } |
| |
| copied += read; |
| |
| err = transport->notify_recv_post_dequeue( |
| vsk, target, read, |
| !(flags & MSG_PEEK), &recv_data); |
| if (err < 0) |
| goto out; |
| |
| if (read >= target || flags & MSG_PEEK) |
| break; |
| |
| target -= read; |
| } |
| } |
| |
| if (sk->sk_err) |
| err = -sk->sk_err; |
| else if (sk->sk_shutdown & RCV_SHUTDOWN) |
| err = 0; |
| |
| if (copied > 0) |
| err = copied; |
| |
| out: |
| release_sock(sk); |
| return err; |
| } |
| |
| static const struct proto_ops vsock_stream_ops = { |
| .family = PF_VSOCK, |
| .owner = THIS_MODULE, |
| .release = vsock_release, |
| .bind = vsock_bind, |
| .connect = vsock_stream_connect, |
| .socketpair = sock_no_socketpair, |
| .accept = vsock_accept, |
| .getname = vsock_getname, |
| .poll = vsock_poll, |
| .ioctl = sock_no_ioctl, |
| .listen = vsock_listen, |
| .shutdown = vsock_shutdown, |
| .setsockopt = vsock_stream_setsockopt, |
| .getsockopt = vsock_stream_getsockopt, |
| .sendmsg = vsock_stream_sendmsg, |
| .recvmsg = vsock_stream_recvmsg, |
| .mmap = sock_no_mmap, |
| .sendpage = sock_no_sendpage, |
| }; |
| |
| static int vsock_create(struct net *net, struct socket *sock, |
| int protocol, int kern) |
| { |
| if (!sock) |
| return -EINVAL; |
| |
| if (protocol && protocol != PF_VSOCK) |
| return -EPROTONOSUPPORT; |
| |
| switch (sock->type) { |
| case SOCK_DGRAM: |
| sock->ops = &vsock_dgram_ops; |
| break; |
| case SOCK_STREAM: |
| sock->ops = &vsock_stream_ops; |
| break; |
| default: |
| return -ESOCKTNOSUPPORT; |
| } |
| |
| sock->state = SS_UNCONNECTED; |
| |
| return __vsock_create(net, sock, NULL, GFP_KERNEL, 0, kern) ? 0 : -ENOMEM; |
| } |
| |
| static const struct net_proto_family vsock_family_ops = { |
| .family = AF_VSOCK, |
| .create = vsock_create, |
| .owner = THIS_MODULE, |
| }; |
| |
| static long vsock_dev_do_ioctl(struct file *filp, |
| unsigned int cmd, void __user *ptr) |
| { |
| u32 __user *p = ptr; |
| int retval = 0; |
| |
| switch (cmd) { |
| case IOCTL_VM_SOCKETS_GET_LOCAL_CID: |
| if (put_user(transport->get_local_cid(), p) != 0) |
| retval = -EFAULT; |
| break; |
| |
| default: |
| pr_err("Unknown ioctl %d\n", cmd); |
| retval = -EINVAL; |
| } |
| |
| return retval; |
| } |
| |
| static long vsock_dev_ioctl(struct file *filp, |
| unsigned int cmd, unsigned long arg) |
| { |
| return vsock_dev_do_ioctl(filp, cmd, (void __user *)arg); |
| } |
| |
| #ifdef CONFIG_COMPAT |
| static long vsock_dev_compat_ioctl(struct file *filp, |
| unsigned int cmd, unsigned long arg) |
| { |
| return vsock_dev_do_ioctl(filp, cmd, compat_ptr(arg)); |
| } |
| #endif |
| |
| static const struct file_operations vsock_device_ops = { |
| .owner = THIS_MODULE, |
| .unlocked_ioctl = vsock_dev_ioctl, |
| #ifdef CONFIG_COMPAT |
| .compat_ioctl = vsock_dev_compat_ioctl, |
| #endif |
| .open = nonseekable_open, |
| }; |
| |
| static struct miscdevice vsock_device = { |
| .name = "vsock", |
| .fops = &vsock_device_ops, |
| }; |
| |
| int __vsock_core_init(const struct vsock_transport *t, struct module *owner) |
| { |
| int err = mutex_lock_interruptible(&vsock_register_mutex); |
| |
| if (err) |
| return err; |
| |
| if (transport) { |
| err = -EBUSY; |
| goto err_busy; |
| } |
| |
| /* Transport must be the owner of the protocol so that it can't |
| * unload while there are open sockets. |
| */ |
| vsock_proto.owner = owner; |
| transport = t; |
| |
| vsock_device.minor = MISC_DYNAMIC_MINOR; |
| err = misc_register(&vsock_device); |
| if (err) { |
| pr_err("Failed to register misc device\n"); |
| goto err_reset_transport; |
| } |
| |
| err = proto_register(&vsock_proto, 1); /* we want our slab */ |
| if (err) { |
| pr_err("Cannot register vsock protocol\n"); |
| goto err_deregister_misc; |
| } |
| |
| err = sock_register(&vsock_family_ops); |
| if (err) { |
| pr_err("could not register af_vsock (%d) address family: %d\n", |
| AF_VSOCK, err); |
| goto err_unregister_proto; |
| } |
| |
| mutex_unlock(&vsock_register_mutex); |
| return 0; |
| |
| err_unregister_proto: |
| proto_unregister(&vsock_proto); |
| err_deregister_misc: |
| misc_deregister(&vsock_device); |
| err_reset_transport: |
| transport = NULL; |
| err_busy: |
| mutex_unlock(&vsock_register_mutex); |
| return err; |
| } |
| EXPORT_SYMBOL_GPL(__vsock_core_init); |
| |
| void vsock_core_exit(void) |
| { |
| mutex_lock(&vsock_register_mutex); |
| |
| misc_deregister(&vsock_device); |
| sock_unregister(AF_VSOCK); |
| proto_unregister(&vsock_proto); |
| |
| /* We do not want the assignment below re-ordered. */ |
| mb(); |
| transport = NULL; |
| |
| mutex_unlock(&vsock_register_mutex); |
| } |
| EXPORT_SYMBOL_GPL(vsock_core_exit); |
| |
| const struct vsock_transport *vsock_core_get_transport(void) |
| { |
| /* vsock_register_mutex not taken since only the transport uses this |
| * function and only while registered. |
| */ |
| return transport; |
| } |
| EXPORT_SYMBOL_GPL(vsock_core_get_transport); |
| |
| module_init(vsock_init_tables); |
| |
| MODULE_AUTHOR("VMware, Inc."); |
| MODULE_DESCRIPTION("VMware Virtual Socket Family"); |
| MODULE_VERSION("1.0.2.0-k"); |
| MODULE_LICENSE("GPL v2"); |