| /* |
| * linux/arch/arm/mm/init.c |
| * |
| * Copyright (C) 1995-2002 Russell King |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| */ |
| #include <linux/config.h> |
| #include <linux/kernel.h> |
| #include <linux/errno.h> |
| #include <linux/ptrace.h> |
| #include <linux/swap.h> |
| #include <linux/init.h> |
| #include <linux/bootmem.h> |
| #include <linux/mman.h> |
| #include <linux/nodemask.h> |
| #include <linux/initrd.h> |
| |
| #include <asm/mach-types.h> |
| #include <asm/hardware.h> |
| #include <asm/setup.h> |
| #include <asm/tlb.h> |
| |
| #include <asm/mach/arch.h> |
| #include <asm/mach/map.h> |
| |
| #define TABLE_SIZE (2 * PTRS_PER_PTE * sizeof(pte_t)) |
| |
| DEFINE_PER_CPU(struct mmu_gather, mmu_gathers); |
| |
| extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; |
| extern void _stext, _text, _etext, __data_start, _end, __init_begin, __init_end; |
| extern unsigned long phys_initrd_start; |
| extern unsigned long phys_initrd_size; |
| |
| /* |
| * The sole use of this is to pass memory configuration |
| * data from paging_init to mem_init. |
| */ |
| static struct meminfo meminfo __initdata = { 0, }; |
| |
| /* |
| * empty_zero_page is a special page that is used for |
| * zero-initialized data and COW. |
| */ |
| struct page *empty_zero_page; |
| |
| void show_mem(void) |
| { |
| int free = 0, total = 0, reserved = 0; |
| int shared = 0, cached = 0, slab = 0, node; |
| |
| printk("Mem-info:\n"); |
| show_free_areas(); |
| printk("Free swap: %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10)); |
| |
| for_each_online_node(node) { |
| struct page *page, *end; |
| |
| page = NODE_MEM_MAP(node); |
| end = page + NODE_DATA(node)->node_spanned_pages; |
| |
| do { |
| total++; |
| if (PageReserved(page)) |
| reserved++; |
| else if (PageSwapCache(page)) |
| cached++; |
| else if (PageSlab(page)) |
| slab++; |
| else if (!page_count(page)) |
| free++; |
| else |
| shared += page_count(page) - 1; |
| page++; |
| } while (page < end); |
| } |
| |
| printk("%d pages of RAM\n", total); |
| printk("%d free pages\n", free); |
| printk("%d reserved pages\n", reserved); |
| printk("%d slab pages\n", slab); |
| printk("%d pages shared\n", shared); |
| printk("%d pages swap cached\n", cached); |
| } |
| |
| struct node_info { |
| unsigned int start; |
| unsigned int end; |
| int bootmap_pages; |
| }; |
| |
| #define O_PFN_DOWN(x) ((x) >> PAGE_SHIFT) |
| #define O_PFN_UP(x) (PAGE_ALIGN(x) >> PAGE_SHIFT) |
| |
| /* |
| * FIXME: We really want to avoid allocating the bootmap bitmap |
| * over the top of the initrd. Hopefully, this is located towards |
| * the start of a bank, so if we allocate the bootmap bitmap at |
| * the end, we won't clash. |
| */ |
| static unsigned int __init |
| find_bootmap_pfn(int node, struct meminfo *mi, unsigned int bootmap_pages) |
| { |
| unsigned int start_pfn, bank, bootmap_pfn; |
| |
| start_pfn = O_PFN_UP(__pa(&_end)); |
| bootmap_pfn = 0; |
| |
| for (bank = 0; bank < mi->nr_banks; bank ++) { |
| unsigned int start, end; |
| |
| if (mi->bank[bank].node != node) |
| continue; |
| |
| start = mi->bank[bank].start >> PAGE_SHIFT; |
| end = (mi->bank[bank].size + |
| mi->bank[bank].start) >> PAGE_SHIFT; |
| |
| if (end < start_pfn) |
| continue; |
| |
| if (start < start_pfn) |
| start = start_pfn; |
| |
| if (end <= start) |
| continue; |
| |
| if (end - start >= bootmap_pages) { |
| bootmap_pfn = start; |
| break; |
| } |
| } |
| |
| if (bootmap_pfn == 0) |
| BUG(); |
| |
| return bootmap_pfn; |
| } |
| |
| /* |
| * Scan the memory info structure and pull out: |
| * - the end of memory |
| * - the number of nodes |
| * - the pfn range of each node |
| * - the number of bootmem bitmap pages |
| */ |
| static unsigned int __init |
| find_memend_and_nodes(struct meminfo *mi, struct node_info *np) |
| { |
| unsigned int i, bootmem_pages = 0, memend_pfn = 0; |
| |
| for (i = 0; i < MAX_NUMNODES; i++) { |
| np[i].start = -1U; |
| np[i].end = 0; |
| np[i].bootmap_pages = 0; |
| } |
| |
| for (i = 0; i < mi->nr_banks; i++) { |
| unsigned long start, end; |
| int node; |
| |
| if (mi->bank[i].size == 0) { |
| /* |
| * Mark this bank with an invalid node number |
| */ |
| mi->bank[i].node = -1; |
| continue; |
| } |
| |
| node = mi->bank[i].node; |
| |
| /* |
| * Make sure we haven't exceeded the maximum number of nodes |
| * that we have in this configuration. If we have, we're in |
| * trouble. (maybe we ought to limit, instead of bugging?) |
| */ |
| if (node >= MAX_NUMNODES) |
| BUG(); |
| node_set_online(node); |
| |
| /* |
| * Get the start and end pfns for this bank |
| */ |
| start = mi->bank[i].start >> PAGE_SHIFT; |
| end = (mi->bank[i].start + mi->bank[i].size) >> PAGE_SHIFT; |
| |
| if (np[node].start > start) |
| np[node].start = start; |
| |
| if (np[node].end < end) |
| np[node].end = end; |
| |
| if (memend_pfn < end) |
| memend_pfn = end; |
| } |
| |
| /* |
| * Calculate the number of pages we require to |
| * store the bootmem bitmaps. |
| */ |
| for_each_online_node(i) { |
| if (np[i].end == 0) |
| continue; |
| |
| np[i].bootmap_pages = bootmem_bootmap_pages(np[i].end - |
| np[i].start); |
| bootmem_pages += np[i].bootmap_pages; |
| } |
| |
| high_memory = __va(memend_pfn << PAGE_SHIFT); |
| |
| /* |
| * This doesn't seem to be used by the Linux memory |
| * manager any more. If we can get rid of it, we |
| * also get rid of some of the stuff above as well. |
| * |
| * Note: max_low_pfn and max_pfn reflect the number |
| * of _pages_ in the system, not the maximum PFN. |
| */ |
| max_low_pfn = memend_pfn - O_PFN_DOWN(PHYS_OFFSET); |
| max_pfn = memend_pfn - O_PFN_DOWN(PHYS_OFFSET); |
| |
| return bootmem_pages; |
| } |
| |
| static int __init check_initrd(struct meminfo *mi) |
| { |
| int initrd_node = -2; |
| #ifdef CONFIG_BLK_DEV_INITRD |
| unsigned long end = phys_initrd_start + phys_initrd_size; |
| |
| /* |
| * Make sure that the initrd is within a valid area of |
| * memory. |
| */ |
| if (phys_initrd_size) { |
| unsigned int i; |
| |
| initrd_node = -1; |
| |
| for (i = 0; i < mi->nr_banks; i++) { |
| unsigned long bank_end; |
| |
| bank_end = mi->bank[i].start + mi->bank[i].size; |
| |
| if (mi->bank[i].start <= phys_initrd_start && |
| end <= bank_end) |
| initrd_node = mi->bank[i].node; |
| } |
| } |
| |
| if (initrd_node == -1) { |
| printk(KERN_ERR "initrd (0x%08lx - 0x%08lx) extends beyond " |
| "physical memory - disabling initrd\n", |
| phys_initrd_start, end); |
| phys_initrd_start = phys_initrd_size = 0; |
| } |
| #endif |
| |
| return initrd_node; |
| } |
| |
| /* |
| * Reserve the various regions of node 0 |
| */ |
| static __init void reserve_node_zero(unsigned int bootmap_pfn, unsigned int bootmap_pages) |
| { |
| pg_data_t *pgdat = NODE_DATA(0); |
| unsigned long res_size = 0; |
| |
| /* |
| * Register the kernel text and data with bootmem. |
| * Note that this can only be in node 0. |
| */ |
| #ifdef CONFIG_XIP_KERNEL |
| reserve_bootmem_node(pgdat, __pa(&__data_start), &_end - &__data_start); |
| #else |
| reserve_bootmem_node(pgdat, __pa(&_stext), &_end - &_stext); |
| #endif |
| |
| /* |
| * Reserve the page tables. These are already in use, |
| * and can only be in node 0. |
| */ |
| reserve_bootmem_node(pgdat, __pa(swapper_pg_dir), |
| PTRS_PER_PGD * sizeof(pgd_t)); |
| |
| /* |
| * And don't forget to reserve the allocator bitmap, |
| * which will be freed later. |
| */ |
| reserve_bootmem_node(pgdat, bootmap_pfn << PAGE_SHIFT, |
| bootmap_pages << PAGE_SHIFT); |
| |
| /* |
| * Hmm... This should go elsewhere, but we really really need to |
| * stop things allocating the low memory; ideally we need a better |
| * implementation of GFP_DMA which does not assume that DMA-able |
| * memory starts at zero. |
| */ |
| if (machine_is_integrator() || machine_is_cintegrator()) |
| res_size = __pa(swapper_pg_dir) - PHYS_OFFSET; |
| |
| /* |
| * These should likewise go elsewhere. They pre-reserve the |
| * screen memory region at the start of main system memory. |
| */ |
| if (machine_is_edb7211()) |
| res_size = 0x00020000; |
| if (machine_is_p720t()) |
| res_size = 0x00014000; |
| |
| #ifdef CONFIG_SA1111 |
| /* |
| * Because of the SA1111 DMA bug, we want to preserve our |
| * precious DMA-able memory... |
| */ |
| res_size = __pa(swapper_pg_dir) - PHYS_OFFSET; |
| #endif |
| if (res_size) |
| reserve_bootmem_node(pgdat, PHYS_OFFSET, res_size); |
| } |
| |
| /* |
| * Register all available RAM in this node with the bootmem allocator. |
| */ |
| static inline void free_bootmem_node_bank(int node, struct meminfo *mi) |
| { |
| pg_data_t *pgdat = NODE_DATA(node); |
| int bank; |
| |
| for (bank = 0; bank < mi->nr_banks; bank++) |
| if (mi->bank[bank].node == node) |
| free_bootmem_node(pgdat, mi->bank[bank].start, |
| mi->bank[bank].size); |
| } |
| |
| /* |
| * Initialise the bootmem allocator for all nodes. This is called |
| * early during the architecture specific initialisation. |
| */ |
| static void __init bootmem_init(struct meminfo *mi) |
| { |
| struct node_info node_info[MAX_NUMNODES], *np = node_info; |
| unsigned int bootmap_pages, bootmap_pfn, map_pg; |
| int node, initrd_node; |
| |
| bootmap_pages = find_memend_and_nodes(mi, np); |
| bootmap_pfn = find_bootmap_pfn(0, mi, bootmap_pages); |
| initrd_node = check_initrd(mi); |
| |
| map_pg = bootmap_pfn; |
| |
| /* |
| * Initialise the bootmem nodes. |
| * |
| * What we really want to do is: |
| * |
| * unmap_all_regions_except_kernel(); |
| * for_each_node_in_reverse_order(node) { |
| * map_node(node); |
| * allocate_bootmem_map(node); |
| * init_bootmem_node(node); |
| * free_bootmem_node(node); |
| * } |
| * |
| * but this is a 2.5-type change. For now, we just set |
| * the nodes up in reverse order. |
| * |
| * (we could also do with rolling bootmem_init and paging_init |
| * into one generic "memory_init" type function). |
| */ |
| np += num_online_nodes() - 1; |
| for (node = num_online_nodes() - 1; node >= 0; node--, np--) { |
| /* |
| * If there are no pages in this node, ignore it. |
| * Note that node 0 must always have some pages. |
| */ |
| if (np->end == 0 || !node_online(node)) { |
| if (node == 0) |
| BUG(); |
| continue; |
| } |
| |
| /* |
| * Initialise the bootmem allocator. |
| */ |
| init_bootmem_node(NODE_DATA(node), map_pg, np->start, np->end); |
| free_bootmem_node_bank(node, mi); |
| map_pg += np->bootmap_pages; |
| |
| /* |
| * If this is node 0, we need to reserve some areas ASAP - |
| * we may use bootmem on node 0 to setup the other nodes. |
| */ |
| if (node == 0) |
| reserve_node_zero(bootmap_pfn, bootmap_pages); |
| } |
| |
| |
| #ifdef CONFIG_BLK_DEV_INITRD |
| if (phys_initrd_size && initrd_node >= 0) { |
| reserve_bootmem_node(NODE_DATA(initrd_node), phys_initrd_start, |
| phys_initrd_size); |
| initrd_start = __phys_to_virt(phys_initrd_start); |
| initrd_end = initrd_start + phys_initrd_size; |
| } |
| #endif |
| |
| BUG_ON(map_pg != bootmap_pfn + bootmap_pages); |
| } |
| |
| /* |
| * paging_init() sets up the page tables, initialises the zone memory |
| * maps, and sets up the zero page, bad page and bad page tables. |
| */ |
| void __init paging_init(struct meminfo *mi, struct machine_desc *mdesc) |
| { |
| void *zero_page; |
| int node; |
| |
| bootmem_init(mi); |
| |
| memcpy(&meminfo, mi, sizeof(meminfo)); |
| |
| /* |
| * allocate the zero page. Note that we count on this going ok. |
| */ |
| zero_page = alloc_bootmem_low_pages(PAGE_SIZE); |
| |
| /* |
| * initialise the page tables. |
| */ |
| memtable_init(mi); |
| if (mdesc->map_io) |
| mdesc->map_io(); |
| local_flush_tlb_all(); |
| |
| /* |
| * initialise the zones within each node |
| */ |
| for_each_online_node(node) { |
| unsigned long zone_size[MAX_NR_ZONES]; |
| unsigned long zhole_size[MAX_NR_ZONES]; |
| struct bootmem_data *bdata; |
| pg_data_t *pgdat; |
| int i; |
| |
| /* |
| * Initialise the zone size information. |
| */ |
| for (i = 0; i < MAX_NR_ZONES; i++) { |
| zone_size[i] = 0; |
| zhole_size[i] = 0; |
| } |
| |
| pgdat = NODE_DATA(node); |
| bdata = pgdat->bdata; |
| |
| /* |
| * The size of this node has already been determined. |
| * If we need to do anything fancy with the allocation |
| * of this memory to the zones, now is the time to do |
| * it. |
| */ |
| zone_size[0] = bdata->node_low_pfn - |
| (bdata->node_boot_start >> PAGE_SHIFT); |
| |
| /* |
| * If this zone has zero size, skip it. |
| */ |
| if (!zone_size[0]) |
| continue; |
| |
| /* |
| * For each bank in this node, calculate the size of the |
| * holes. holes = node_size - sum(bank_sizes_in_node) |
| */ |
| zhole_size[0] = zone_size[0]; |
| for (i = 0; i < mi->nr_banks; i++) { |
| if (mi->bank[i].node != node) |
| continue; |
| |
| zhole_size[0] -= mi->bank[i].size >> PAGE_SHIFT; |
| } |
| |
| /* |
| * Adjust the sizes according to any special |
| * requirements for this machine type. |
| */ |
| arch_adjust_zones(node, zone_size, zhole_size); |
| |
| free_area_init_node(node, pgdat, zone_size, |
| bdata->node_boot_start >> PAGE_SHIFT, zhole_size); |
| } |
| |
| /* |
| * finish off the bad pages once |
| * the mem_map is initialised |
| */ |
| memzero(zero_page, PAGE_SIZE); |
| empty_zero_page = virt_to_page(zero_page); |
| flush_dcache_page(empty_zero_page); |
| } |
| |
| static inline void free_area(unsigned long addr, unsigned long end, char *s) |
| { |
| unsigned int size = (end - addr) >> 10; |
| |
| for (; addr < end; addr += PAGE_SIZE) { |
| struct page *page = virt_to_page(addr); |
| ClearPageReserved(page); |
| set_page_count(page, 1); |
| free_page(addr); |
| totalram_pages++; |
| } |
| |
| if (size && s) |
| printk(KERN_INFO "Freeing %s memory: %dK\n", s, size); |
| } |
| |
| static inline void |
| free_memmap(int node, unsigned long start_pfn, unsigned long end_pfn) |
| { |
| struct page *start_pg, *end_pg; |
| unsigned long pg, pgend; |
| |
| /* |
| * Convert start_pfn/end_pfn to a struct page pointer. |
| */ |
| start_pg = pfn_to_page(start_pfn); |
| end_pg = pfn_to_page(end_pfn); |
| |
| /* |
| * Convert to physical addresses, and |
| * round start upwards and end downwards. |
| */ |
| pg = PAGE_ALIGN(__pa(start_pg)); |
| pgend = __pa(end_pg) & PAGE_MASK; |
| |
| /* |
| * If there are free pages between these, |
| * free the section of the memmap array. |
| */ |
| if (pg < pgend) |
| free_bootmem_node(NODE_DATA(node), pg, pgend - pg); |
| } |
| |
| /* |
| * The mem_map array can get very big. Free the unused area of the memory map. |
| */ |
| static void __init free_unused_memmap_node(int node, struct meminfo *mi) |
| { |
| unsigned long bank_start, prev_bank_end = 0; |
| unsigned int i; |
| |
| /* |
| * [FIXME] This relies on each bank being in address order. This |
| * may not be the case, especially if the user has provided the |
| * information on the command line. |
| */ |
| for (i = 0; i < mi->nr_banks; i++) { |
| if (mi->bank[i].size == 0 || mi->bank[i].node != node) |
| continue; |
| |
| bank_start = mi->bank[i].start >> PAGE_SHIFT; |
| if (bank_start < prev_bank_end) { |
| printk(KERN_ERR "MEM: unordered memory banks. " |
| "Not freeing memmap.\n"); |
| break; |
| } |
| |
| /* |
| * If we had a previous bank, and there is a space |
| * between the current bank and the previous, free it. |
| */ |
| if (prev_bank_end && prev_bank_end != bank_start) |
| free_memmap(node, prev_bank_end, bank_start); |
| |
| prev_bank_end = (mi->bank[i].start + |
| mi->bank[i].size) >> PAGE_SHIFT; |
| } |
| } |
| |
| /* |
| * mem_init() marks the free areas in the mem_map and tells us how much |
| * memory is free. This is done after various parts of the system have |
| * claimed their memory after the kernel image. |
| */ |
| void __init mem_init(void) |
| { |
| unsigned int codepages, datapages, initpages; |
| int i, node; |
| |
| codepages = &_etext - &_text; |
| datapages = &_end - &__data_start; |
| initpages = &__init_end - &__init_begin; |
| |
| #ifndef CONFIG_DISCONTIGMEM |
| max_mapnr = virt_to_page(high_memory) - mem_map; |
| #endif |
| |
| /* this will put all unused low memory onto the freelists */ |
| for_each_online_node(node) { |
| pg_data_t *pgdat = NODE_DATA(node); |
| |
| free_unused_memmap_node(node, &meminfo); |
| |
| if (pgdat->node_spanned_pages != 0) |
| totalram_pages += free_all_bootmem_node(pgdat); |
| } |
| |
| #ifdef CONFIG_SA1111 |
| /* now that our DMA memory is actually so designated, we can free it */ |
| free_area(PAGE_OFFSET, (unsigned long)swapper_pg_dir, NULL); |
| #endif |
| |
| /* |
| * Since our memory may not be contiguous, calculate the |
| * real number of pages we have in this system |
| */ |
| printk(KERN_INFO "Memory:"); |
| |
| num_physpages = 0; |
| for (i = 0; i < meminfo.nr_banks; i++) { |
| num_physpages += meminfo.bank[i].size >> PAGE_SHIFT; |
| printk(" %ldMB", meminfo.bank[i].size >> 20); |
| } |
| |
| printk(" = %luMB total\n", num_physpages >> (20 - PAGE_SHIFT)); |
| printk(KERN_NOTICE "Memory: %luKB available (%dK code, " |
| "%dK data, %dK init)\n", |
| (unsigned long) nr_free_pages() << (PAGE_SHIFT-10), |
| codepages >> 10, datapages >> 10, initpages >> 10); |
| |
| if (PAGE_SIZE >= 16384 && num_physpages <= 128) { |
| extern int sysctl_overcommit_memory; |
| /* |
| * On a machine this small we won't get |
| * anywhere without overcommit, so turn |
| * it on by default. |
| */ |
| sysctl_overcommit_memory = OVERCOMMIT_ALWAYS; |
| } |
| } |
| |
| void free_initmem(void) |
| { |
| if (!machine_is_integrator() && !machine_is_cintegrator()) { |
| free_area((unsigned long)(&__init_begin), |
| (unsigned long)(&__init_end), |
| "init"); |
| } |
| } |
| |
| #ifdef CONFIG_BLK_DEV_INITRD |
| |
| static int keep_initrd; |
| |
| void free_initrd_mem(unsigned long start, unsigned long end) |
| { |
| if (!keep_initrd) |
| free_area(start, end, "initrd"); |
| } |
| |
| static int __init keepinitrd_setup(char *__unused) |
| { |
| keep_initrd = 1; |
| return 1; |
| } |
| |
| __setup("keepinitrd", keepinitrd_setup); |
| #endif |