| /* |
| * Copyright 2012 Advanced Micro Devices, Inc. |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR |
| * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, |
| * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR |
| * OTHER DEALINGS IN THE SOFTWARE. |
| * |
| * Authors: Alex Deucher |
| */ |
| #include <linux/firmware.h> |
| #include <linux/platform_device.h> |
| #include <linux/slab.h> |
| #include <linux/module.h> |
| #include "drmP.h" |
| #include "radeon.h" |
| #include "radeon_asic.h" |
| #include "cikd.h" |
| #include "atom.h" |
| #include "cik_blit_shaders.h" |
| |
| /* GFX */ |
| #define CIK_PFP_UCODE_SIZE 2144 |
| #define CIK_ME_UCODE_SIZE 2144 |
| #define CIK_CE_UCODE_SIZE 2144 |
| /* compute */ |
| #define CIK_MEC_UCODE_SIZE 4192 |
| /* interrupts */ |
| #define BONAIRE_RLC_UCODE_SIZE 2048 |
| #define KB_RLC_UCODE_SIZE 2560 |
| #define KV_RLC_UCODE_SIZE 2560 |
| /* gddr controller */ |
| #define CIK_MC_UCODE_SIZE 7866 |
| /* sdma */ |
| #define CIK_SDMA_UCODE_SIZE 1050 |
| #define CIK_SDMA_UCODE_VERSION 64 |
| |
| MODULE_FIRMWARE("radeon/BONAIRE_pfp.bin"); |
| MODULE_FIRMWARE("radeon/BONAIRE_me.bin"); |
| MODULE_FIRMWARE("radeon/BONAIRE_ce.bin"); |
| MODULE_FIRMWARE("radeon/BONAIRE_mec.bin"); |
| MODULE_FIRMWARE("radeon/BONAIRE_mc.bin"); |
| MODULE_FIRMWARE("radeon/BONAIRE_rlc.bin"); |
| MODULE_FIRMWARE("radeon/BONAIRE_sdma.bin"); |
| MODULE_FIRMWARE("radeon/KAVERI_pfp.bin"); |
| MODULE_FIRMWARE("radeon/KAVERI_me.bin"); |
| MODULE_FIRMWARE("radeon/KAVERI_ce.bin"); |
| MODULE_FIRMWARE("radeon/KAVERI_mec.bin"); |
| MODULE_FIRMWARE("radeon/KAVERI_rlc.bin"); |
| MODULE_FIRMWARE("radeon/KAVERI_sdma.bin"); |
| MODULE_FIRMWARE("radeon/KABINI_pfp.bin"); |
| MODULE_FIRMWARE("radeon/KABINI_me.bin"); |
| MODULE_FIRMWARE("radeon/KABINI_ce.bin"); |
| MODULE_FIRMWARE("radeon/KABINI_mec.bin"); |
| MODULE_FIRMWARE("radeon/KABINI_rlc.bin"); |
| MODULE_FIRMWARE("radeon/KABINI_sdma.bin"); |
| |
| extern int r600_ih_ring_alloc(struct radeon_device *rdev); |
| extern void r600_ih_ring_fini(struct radeon_device *rdev); |
| extern void evergreen_mc_stop(struct radeon_device *rdev, struct evergreen_mc_save *save); |
| extern void evergreen_mc_resume(struct radeon_device *rdev, struct evergreen_mc_save *save); |
| extern void si_vram_gtt_location(struct radeon_device *rdev, struct radeon_mc *mc); |
| |
| #define BONAIRE_IO_MC_REGS_SIZE 36 |
| |
| static const u32 bonaire_io_mc_regs[BONAIRE_IO_MC_REGS_SIZE][2] = |
| { |
| {0x00000070, 0x04400000}, |
| {0x00000071, 0x80c01803}, |
| {0x00000072, 0x00004004}, |
| {0x00000073, 0x00000100}, |
| {0x00000074, 0x00ff0000}, |
| {0x00000075, 0x34000000}, |
| {0x00000076, 0x08000014}, |
| {0x00000077, 0x00cc08ec}, |
| {0x00000078, 0x00000400}, |
| {0x00000079, 0x00000000}, |
| {0x0000007a, 0x04090000}, |
| {0x0000007c, 0x00000000}, |
| {0x0000007e, 0x4408a8e8}, |
| {0x0000007f, 0x00000304}, |
| {0x00000080, 0x00000000}, |
| {0x00000082, 0x00000001}, |
| {0x00000083, 0x00000002}, |
| {0x00000084, 0xf3e4f400}, |
| {0x00000085, 0x052024e3}, |
| {0x00000087, 0x00000000}, |
| {0x00000088, 0x01000000}, |
| {0x0000008a, 0x1c0a0000}, |
| {0x0000008b, 0xff010000}, |
| {0x0000008d, 0xffffefff}, |
| {0x0000008e, 0xfff3efff}, |
| {0x0000008f, 0xfff3efbf}, |
| {0x00000092, 0xf7ffffff}, |
| {0x00000093, 0xffffff7f}, |
| {0x00000095, 0x00101101}, |
| {0x00000096, 0x00000fff}, |
| {0x00000097, 0x00116fff}, |
| {0x00000098, 0x60010000}, |
| {0x00000099, 0x10010000}, |
| {0x0000009a, 0x00006000}, |
| {0x0000009b, 0x00001000}, |
| {0x0000009f, 0x00b48000} |
| }; |
| |
| /* ucode loading */ |
| /** |
| * ci_mc_load_microcode - load MC ucode into the hw |
| * |
| * @rdev: radeon_device pointer |
| * |
| * Load the GDDR MC ucode into the hw (CIK). |
| * Returns 0 on success, error on failure. |
| */ |
| static int ci_mc_load_microcode(struct radeon_device *rdev) |
| { |
| const __be32 *fw_data; |
| u32 running, blackout = 0; |
| u32 *io_mc_regs; |
| int i, ucode_size, regs_size; |
| |
| if (!rdev->mc_fw) |
| return -EINVAL; |
| |
| switch (rdev->family) { |
| case CHIP_BONAIRE: |
| default: |
| io_mc_regs = (u32 *)&bonaire_io_mc_regs; |
| ucode_size = CIK_MC_UCODE_SIZE; |
| regs_size = BONAIRE_IO_MC_REGS_SIZE; |
| break; |
| } |
| |
| running = RREG32(MC_SEQ_SUP_CNTL) & RUN_MASK; |
| |
| if (running == 0) { |
| if (running) { |
| blackout = RREG32(MC_SHARED_BLACKOUT_CNTL); |
| WREG32(MC_SHARED_BLACKOUT_CNTL, blackout | 1); |
| } |
| |
| /* reset the engine and set to writable */ |
| WREG32(MC_SEQ_SUP_CNTL, 0x00000008); |
| WREG32(MC_SEQ_SUP_CNTL, 0x00000010); |
| |
| /* load mc io regs */ |
| for (i = 0; i < regs_size; i++) { |
| WREG32(MC_SEQ_IO_DEBUG_INDEX, io_mc_regs[(i << 1)]); |
| WREG32(MC_SEQ_IO_DEBUG_DATA, io_mc_regs[(i << 1) + 1]); |
| } |
| /* load the MC ucode */ |
| fw_data = (const __be32 *)rdev->mc_fw->data; |
| for (i = 0; i < ucode_size; i++) |
| WREG32(MC_SEQ_SUP_PGM, be32_to_cpup(fw_data++)); |
| |
| /* put the engine back into the active state */ |
| WREG32(MC_SEQ_SUP_CNTL, 0x00000008); |
| WREG32(MC_SEQ_SUP_CNTL, 0x00000004); |
| WREG32(MC_SEQ_SUP_CNTL, 0x00000001); |
| |
| /* wait for training to complete */ |
| for (i = 0; i < rdev->usec_timeout; i++) { |
| if (RREG32(MC_SEQ_TRAIN_WAKEUP_CNTL) & TRAIN_DONE_D0) |
| break; |
| udelay(1); |
| } |
| for (i = 0; i < rdev->usec_timeout; i++) { |
| if (RREG32(MC_SEQ_TRAIN_WAKEUP_CNTL) & TRAIN_DONE_D1) |
| break; |
| udelay(1); |
| } |
| |
| if (running) |
| WREG32(MC_SHARED_BLACKOUT_CNTL, blackout); |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * cik_init_microcode - load ucode images from disk |
| * |
| * @rdev: radeon_device pointer |
| * |
| * Use the firmware interface to load the ucode images into |
| * the driver (not loaded into hw). |
| * Returns 0 on success, error on failure. |
| */ |
| static int cik_init_microcode(struct radeon_device *rdev) |
| { |
| struct platform_device *pdev; |
| const char *chip_name; |
| size_t pfp_req_size, me_req_size, ce_req_size, |
| mec_req_size, rlc_req_size, mc_req_size, |
| sdma_req_size; |
| char fw_name[30]; |
| int err; |
| |
| DRM_DEBUG("\n"); |
| |
| pdev = platform_device_register_simple("radeon_cp", 0, NULL, 0); |
| err = IS_ERR(pdev); |
| if (err) { |
| printk(KERN_ERR "radeon_cp: Failed to register firmware\n"); |
| return -EINVAL; |
| } |
| |
| switch (rdev->family) { |
| case CHIP_BONAIRE: |
| chip_name = "BONAIRE"; |
| pfp_req_size = CIK_PFP_UCODE_SIZE * 4; |
| me_req_size = CIK_ME_UCODE_SIZE * 4; |
| ce_req_size = CIK_CE_UCODE_SIZE * 4; |
| mec_req_size = CIK_MEC_UCODE_SIZE * 4; |
| rlc_req_size = BONAIRE_RLC_UCODE_SIZE * 4; |
| mc_req_size = CIK_MC_UCODE_SIZE * 4; |
| sdma_req_size = CIK_SDMA_UCODE_SIZE * 4; |
| break; |
| case CHIP_KAVERI: |
| chip_name = "KAVERI"; |
| pfp_req_size = CIK_PFP_UCODE_SIZE * 4; |
| me_req_size = CIK_ME_UCODE_SIZE * 4; |
| ce_req_size = CIK_CE_UCODE_SIZE * 4; |
| mec_req_size = CIK_MEC_UCODE_SIZE * 4; |
| rlc_req_size = KV_RLC_UCODE_SIZE * 4; |
| sdma_req_size = CIK_SDMA_UCODE_SIZE * 4; |
| break; |
| case CHIP_KABINI: |
| chip_name = "KABINI"; |
| pfp_req_size = CIK_PFP_UCODE_SIZE * 4; |
| me_req_size = CIK_ME_UCODE_SIZE * 4; |
| ce_req_size = CIK_CE_UCODE_SIZE * 4; |
| mec_req_size = CIK_MEC_UCODE_SIZE * 4; |
| rlc_req_size = KB_RLC_UCODE_SIZE * 4; |
| sdma_req_size = CIK_SDMA_UCODE_SIZE * 4; |
| break; |
| default: BUG(); |
| } |
| |
| DRM_INFO("Loading %s Microcode\n", chip_name); |
| |
| snprintf(fw_name, sizeof(fw_name), "radeon/%s_pfp.bin", chip_name); |
| err = request_firmware(&rdev->pfp_fw, fw_name, &pdev->dev); |
| if (err) |
| goto out; |
| if (rdev->pfp_fw->size != pfp_req_size) { |
| printk(KERN_ERR |
| "cik_cp: Bogus length %zu in firmware \"%s\"\n", |
| rdev->pfp_fw->size, fw_name); |
| err = -EINVAL; |
| goto out; |
| } |
| |
| snprintf(fw_name, sizeof(fw_name), "radeon/%s_me.bin", chip_name); |
| err = request_firmware(&rdev->me_fw, fw_name, &pdev->dev); |
| if (err) |
| goto out; |
| if (rdev->me_fw->size != me_req_size) { |
| printk(KERN_ERR |
| "cik_cp: Bogus length %zu in firmware \"%s\"\n", |
| rdev->me_fw->size, fw_name); |
| err = -EINVAL; |
| } |
| |
| snprintf(fw_name, sizeof(fw_name), "radeon/%s_ce.bin", chip_name); |
| err = request_firmware(&rdev->ce_fw, fw_name, &pdev->dev); |
| if (err) |
| goto out; |
| if (rdev->ce_fw->size != ce_req_size) { |
| printk(KERN_ERR |
| "cik_cp: Bogus length %zu in firmware \"%s\"\n", |
| rdev->ce_fw->size, fw_name); |
| err = -EINVAL; |
| } |
| |
| snprintf(fw_name, sizeof(fw_name), "radeon/%s_mec.bin", chip_name); |
| err = request_firmware(&rdev->mec_fw, fw_name, &pdev->dev); |
| if (err) |
| goto out; |
| if (rdev->mec_fw->size != mec_req_size) { |
| printk(KERN_ERR |
| "cik_cp: Bogus length %zu in firmware \"%s\"\n", |
| rdev->mec_fw->size, fw_name); |
| err = -EINVAL; |
| } |
| |
| snprintf(fw_name, sizeof(fw_name), "radeon/%s_rlc.bin", chip_name); |
| err = request_firmware(&rdev->rlc_fw, fw_name, &pdev->dev); |
| if (err) |
| goto out; |
| if (rdev->rlc_fw->size != rlc_req_size) { |
| printk(KERN_ERR |
| "cik_rlc: Bogus length %zu in firmware \"%s\"\n", |
| rdev->rlc_fw->size, fw_name); |
| err = -EINVAL; |
| } |
| |
| snprintf(fw_name, sizeof(fw_name), "radeon/%s_sdma.bin", chip_name); |
| err = request_firmware(&rdev->sdma_fw, fw_name, &pdev->dev); |
| if (err) |
| goto out; |
| if (rdev->sdma_fw->size != sdma_req_size) { |
| printk(KERN_ERR |
| "cik_sdma: Bogus length %zu in firmware \"%s\"\n", |
| rdev->sdma_fw->size, fw_name); |
| err = -EINVAL; |
| } |
| |
| /* No MC ucode on APUs */ |
| if (!(rdev->flags & RADEON_IS_IGP)) { |
| snprintf(fw_name, sizeof(fw_name), "radeon/%s_mc.bin", chip_name); |
| err = request_firmware(&rdev->mc_fw, fw_name, &pdev->dev); |
| if (err) |
| goto out; |
| if (rdev->mc_fw->size != mc_req_size) { |
| printk(KERN_ERR |
| "cik_mc: Bogus length %zu in firmware \"%s\"\n", |
| rdev->mc_fw->size, fw_name); |
| err = -EINVAL; |
| } |
| } |
| |
| out: |
| platform_device_unregister(pdev); |
| |
| if (err) { |
| if (err != -EINVAL) |
| printk(KERN_ERR |
| "cik_cp: Failed to load firmware \"%s\"\n", |
| fw_name); |
| release_firmware(rdev->pfp_fw); |
| rdev->pfp_fw = NULL; |
| release_firmware(rdev->me_fw); |
| rdev->me_fw = NULL; |
| release_firmware(rdev->ce_fw); |
| rdev->ce_fw = NULL; |
| release_firmware(rdev->rlc_fw); |
| rdev->rlc_fw = NULL; |
| release_firmware(rdev->mc_fw); |
| rdev->mc_fw = NULL; |
| } |
| return err; |
| } |
| |
| /* |
| * Core functions |
| */ |
| /** |
| * cik_tiling_mode_table_init - init the hw tiling table |
| * |
| * @rdev: radeon_device pointer |
| * |
| * Starting with SI, the tiling setup is done globally in a |
| * set of 32 tiling modes. Rather than selecting each set of |
| * parameters per surface as on older asics, we just select |
| * which index in the tiling table we want to use, and the |
| * surface uses those parameters (CIK). |
| */ |
| static void cik_tiling_mode_table_init(struct radeon_device *rdev) |
| { |
| const u32 num_tile_mode_states = 32; |
| const u32 num_secondary_tile_mode_states = 16; |
| u32 reg_offset, gb_tile_moden, split_equal_to_row_size; |
| u32 num_pipe_configs; |
| u32 num_rbs = rdev->config.cik.max_backends_per_se * |
| rdev->config.cik.max_shader_engines; |
| |
| switch (rdev->config.cik.mem_row_size_in_kb) { |
| case 1: |
| split_equal_to_row_size = ADDR_SURF_TILE_SPLIT_1KB; |
| break; |
| case 2: |
| default: |
| split_equal_to_row_size = ADDR_SURF_TILE_SPLIT_2KB; |
| break; |
| case 4: |
| split_equal_to_row_size = ADDR_SURF_TILE_SPLIT_4KB; |
| break; |
| } |
| |
| num_pipe_configs = rdev->config.cik.max_tile_pipes; |
| if (num_pipe_configs > 8) |
| num_pipe_configs = 8; /* ??? */ |
| |
| if (num_pipe_configs == 8) { |
| for (reg_offset = 0; reg_offset < num_tile_mode_states; reg_offset++) { |
| switch (reg_offset) { |
| case 0: |
| gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | |
| MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) | |
| PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) | |
| TILE_SPLIT(ADDR_SURF_TILE_SPLIT_64B)); |
| break; |
| case 1: |
| gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | |
| MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) | |
| PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) | |
| TILE_SPLIT(ADDR_SURF_TILE_SPLIT_128B)); |
| break; |
| case 2: |
| gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | |
| MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) | |
| PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) | |
| TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B)); |
| break; |
| case 3: |
| gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | |
| MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) | |
| PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) | |
| TILE_SPLIT(ADDR_SURF_TILE_SPLIT_512B)); |
| break; |
| case 4: |
| gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | |
| MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) | |
| PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) | |
| TILE_SPLIT(split_equal_to_row_size)); |
| break; |
| case 5: |
| gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) | |
| MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING)); |
| break; |
| case 6: |
| gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) | |
| MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) | |
| PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) | |
| TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B)); |
| break; |
| case 7: |
| gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) | |
| MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) | |
| PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) | |
| TILE_SPLIT(split_equal_to_row_size)); |
| break; |
| case 8: |
| gb_tile_moden = (ARRAY_MODE(ARRAY_LINEAR_ALIGNED) | |
| PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16)); |
| break; |
| case 9: |
| gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) | |
| MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING)); |
| break; |
| case 10: |
| gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | |
| MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) | |
| PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) | |
| SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); |
| break; |
| case 11: |
| gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) | |
| MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) | |
| PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) | |
| SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); |
| break; |
| case 12: |
| gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) | |
| MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) | |
| PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) | |
| SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); |
| break; |
| case 13: |
| gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) | |
| MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING)); |
| break; |
| case 14: |
| gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | |
| MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) | |
| PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) | |
| SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); |
| break; |
| case 16: |
| gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) | |
| MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) | |
| PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) | |
| SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); |
| break; |
| case 17: |
| gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) | |
| MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) | |
| PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) | |
| SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); |
| break; |
| case 27: |
| gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) | |
| MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING)); |
| break; |
| case 28: |
| gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | |
| MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) | |
| PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) | |
| SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); |
| break; |
| case 29: |
| gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) | |
| MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) | |
| PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) | |
| SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); |
| break; |
| case 30: |
| gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) | |
| MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) | |
| PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) | |
| SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); |
| break; |
| default: |
| gb_tile_moden = 0; |
| break; |
| } |
| WREG32(GB_TILE_MODE0 + (reg_offset * 4), gb_tile_moden); |
| } |
| for (reg_offset = 0; reg_offset < num_secondary_tile_mode_states; reg_offset++) { |
| switch (reg_offset) { |
| case 0: |
| gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | |
| BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) | |
| MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) | |
| NUM_BANKS(ADDR_SURF_16_BANK)); |
| break; |
| case 1: |
| gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | |
| BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) | |
| MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) | |
| NUM_BANKS(ADDR_SURF_16_BANK)); |
| break; |
| case 2: |
| gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | |
| BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | |
| MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) | |
| NUM_BANKS(ADDR_SURF_16_BANK)); |
| break; |
| case 3: |
| gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | |
| BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | |
| MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) | |
| NUM_BANKS(ADDR_SURF_16_BANK)); |
| break; |
| case 4: |
| gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | |
| BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | |
| MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1) | |
| NUM_BANKS(ADDR_SURF_8_BANK)); |
| break; |
| case 5: |
| gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | |
| BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | |
| MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1) | |
| NUM_BANKS(ADDR_SURF_4_BANK)); |
| break; |
| case 6: |
| gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | |
| BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | |
| MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1) | |
| NUM_BANKS(ADDR_SURF_2_BANK)); |
| break; |
| case 8: |
| gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | |
| BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_8) | |
| MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) | |
| NUM_BANKS(ADDR_SURF_16_BANK)); |
| break; |
| case 9: |
| gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | |
| BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) | |
| MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) | |
| NUM_BANKS(ADDR_SURF_16_BANK)); |
| break; |
| case 10: |
| gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | |
| BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) | |
| MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) | |
| NUM_BANKS(ADDR_SURF_16_BANK)); |
| break; |
| case 11: |
| gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | |
| BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | |
| MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) | |
| NUM_BANKS(ADDR_SURF_16_BANK)); |
| break; |
| case 12: |
| gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | |
| BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | |
| MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1) | |
| NUM_BANKS(ADDR_SURF_8_BANK)); |
| break; |
| case 13: |
| gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | |
| BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | |
| MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1) | |
| NUM_BANKS(ADDR_SURF_4_BANK)); |
| break; |
| case 14: |
| gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | |
| BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | |
| MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1) | |
| NUM_BANKS(ADDR_SURF_2_BANK)); |
| break; |
| default: |
| gb_tile_moden = 0; |
| break; |
| } |
| WREG32(GB_MACROTILE_MODE0 + (reg_offset * 4), gb_tile_moden); |
| } |
| } else if (num_pipe_configs == 4) { |
| if (num_rbs == 4) { |
| for (reg_offset = 0; reg_offset < num_tile_mode_states; reg_offset++) { |
| switch (reg_offset) { |
| case 0: |
| gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | |
| MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) | |
| PIPE_CONFIG(ADDR_SURF_P4_16x16) | |
| TILE_SPLIT(ADDR_SURF_TILE_SPLIT_64B)); |
| break; |
| case 1: |
| gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | |
| MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) | |
| PIPE_CONFIG(ADDR_SURF_P4_16x16) | |
| TILE_SPLIT(ADDR_SURF_TILE_SPLIT_128B)); |
| break; |
| case 2: |
| gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | |
| MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) | |
| PIPE_CONFIG(ADDR_SURF_P4_16x16) | |
| TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B)); |
| break; |
| case 3: |
| gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | |
| MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) | |
| PIPE_CONFIG(ADDR_SURF_P4_16x16) | |
| TILE_SPLIT(ADDR_SURF_TILE_SPLIT_512B)); |
| break; |
| case 4: |
| gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | |
| MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) | |
| PIPE_CONFIG(ADDR_SURF_P4_16x16) | |
| TILE_SPLIT(split_equal_to_row_size)); |
| break; |
| case 5: |
| gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) | |
| MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING)); |
| break; |
| case 6: |
| gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) | |
| MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) | |
| PIPE_CONFIG(ADDR_SURF_P4_16x16) | |
| TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B)); |
| break; |
| case 7: |
| gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) | |
| MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) | |
| PIPE_CONFIG(ADDR_SURF_P4_16x16) | |
| TILE_SPLIT(split_equal_to_row_size)); |
| break; |
| case 8: |
| gb_tile_moden = (ARRAY_MODE(ARRAY_LINEAR_ALIGNED) | |
| PIPE_CONFIG(ADDR_SURF_P4_16x16)); |
| break; |
| case 9: |
| gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) | |
| MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING)); |
| break; |
| case 10: |
| gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | |
| MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) | |
| PIPE_CONFIG(ADDR_SURF_P4_16x16) | |
| SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); |
| break; |
| case 11: |
| gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) | |
| MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) | |
| PIPE_CONFIG(ADDR_SURF_P4_8x16) | |
| SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); |
| break; |
| case 12: |
| gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) | |
| MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) | |
| PIPE_CONFIG(ADDR_SURF_P4_16x16) | |
| SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); |
| break; |
| case 13: |
| gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) | |
| MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING)); |
| break; |
| case 14: |
| gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | |
| MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) | |
| PIPE_CONFIG(ADDR_SURF_P4_16x16) | |
| SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); |
| break; |
| case 16: |
| gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) | |
| MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) | |
| PIPE_CONFIG(ADDR_SURF_P4_8x16) | |
| SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); |
| break; |
| case 17: |
| gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) | |
| MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) | |
| PIPE_CONFIG(ADDR_SURF_P4_16x16) | |
| SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); |
| break; |
| case 27: |
| gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) | |
| MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING)); |
| break; |
| case 28: |
| gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) | |
| MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) | |
| PIPE_CONFIG(ADDR_SURF_P4_16x16) | |
| SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); |
| break; |
| case 29: |
| gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) | |
| MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) | |
| PIPE_CONFIG(ADDR_SURF_P4_8x16) | |
| SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); |
| break; |
| case 30: |
| gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) | |
| MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) | |
| PIPE_CONFIG(ADDR_SURF_P4_16x16) | |
| SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); |
| break; |
| default: |
| gb_tile_moden = 0; |
| break; |
| } |
| WREG32(GB_TILE_MODE0 + (reg_offset * 4), gb_tile_moden); |
| } |
| } else if (num_rbs < 4) { |
| for (reg_offset = 0; reg_offset < num_tile_mode_states; reg_offset++) { |
| switch (reg_offset) { |
| case 0: |
| gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | |
| MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) | |
| PIPE_CONFIG(ADDR_SURF_P4_8x16) | |
| TILE_SPLIT(ADDR_SURF_TILE_SPLIT_64B)); |
| break; |
| case 1: |
| gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | |
| MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) | |
| PIPE_CONFIG(ADDR_SURF_P4_8x16) | |
| TILE_SPLIT(ADDR_SURF_TILE_SPLIT_128B)); |
| break; |
| case 2: |
| gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | |
| MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) | |
| PIPE_CONFIG(ADDR_SURF_P4_8x16) | |
| TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B)); |
| break; |
| case 3: |
| gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | |
| MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) | |
| PIPE_CONFIG(ADDR_SURF_P4_8x16) | |
| TILE_SPLIT(ADDR_SURF_TILE_SPLIT_512B)); |
| break; |
| case 4: |
| gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | |
| MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) | |
| PIPE_CONFIG(ADDR_SURF_P4_8x16) | |
| TILE_SPLIT(split_equal_to_row_size)); |
| break; |
| case 5: |
| gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) | |
| MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING)); |
| break; |
| case 6: |
| gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) | |
| MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) | |
| PIPE_CONFIG(ADDR_SURF_P4_8x16) | |
| TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B)); |
| break; |
| case 7: |
| gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) | |
| MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) | |
| PIPE_CONFIG(ADDR_SURF_P4_8x16) | |
| TILE_SPLIT(split_equal_to_row_size)); |
| break; |
| case 8: |
| gb_tile_moden = (ARRAY_MODE(ARRAY_LINEAR_ALIGNED) | |
| PIPE_CONFIG(ADDR_SURF_P4_8x16)); |
| break; |
| case 9: |
| gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) | |
| MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING)); |
| break; |
| case 10: |
| gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | |
| MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) | |
| PIPE_CONFIG(ADDR_SURF_P4_8x16) | |
| SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); |
| break; |
| case 11: |
| gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) | |
| MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) | |
| PIPE_CONFIG(ADDR_SURF_P4_8x16) | |
| SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); |
| break; |
| case 12: |
| gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) | |
| MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) | |
| PIPE_CONFIG(ADDR_SURF_P4_8x16) | |
| SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); |
| break; |
| case 13: |
| gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) | |
| MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING)); |
| break; |
| case 14: |
| gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | |
| MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) | |
| PIPE_CONFIG(ADDR_SURF_P4_8x16) | |
| SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); |
| break; |
| case 16: |
| gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) | |
| MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) | |
| PIPE_CONFIG(ADDR_SURF_P4_8x16) | |
| SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); |
| break; |
| case 17: |
| gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) | |
| MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) | |
| PIPE_CONFIG(ADDR_SURF_P4_8x16) | |
| SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); |
| break; |
| case 27: |
| gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) | |
| MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING)); |
| break; |
| case 28: |
| gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) | |
| MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) | |
| PIPE_CONFIG(ADDR_SURF_P4_8x16) | |
| SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); |
| break; |
| case 29: |
| gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) | |
| MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) | |
| PIPE_CONFIG(ADDR_SURF_P4_8x16) | |
| SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); |
| break; |
| case 30: |
| gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) | |
| MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) | |
| PIPE_CONFIG(ADDR_SURF_P4_8x16) | |
| SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); |
| break; |
| default: |
| gb_tile_moden = 0; |
| break; |
| } |
| WREG32(GB_TILE_MODE0 + (reg_offset * 4), gb_tile_moden); |
| } |
| } |
| for (reg_offset = 0; reg_offset < num_secondary_tile_mode_states; reg_offset++) { |
| switch (reg_offset) { |
| case 0: |
| gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | |
| BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) | |
| MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) | |
| NUM_BANKS(ADDR_SURF_16_BANK)); |
| break; |
| case 1: |
| gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | |
| BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) | |
| MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) | |
| NUM_BANKS(ADDR_SURF_16_BANK)); |
| break; |
| case 2: |
| gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | |
| BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | |
| MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) | |
| NUM_BANKS(ADDR_SURF_16_BANK)); |
| break; |
| case 3: |
| gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | |
| BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | |
| MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) | |
| NUM_BANKS(ADDR_SURF_16_BANK)); |
| break; |
| case 4: |
| gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | |
| BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | |
| MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) | |
| NUM_BANKS(ADDR_SURF_16_BANK)); |
| break; |
| case 5: |
| gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | |
| BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | |
| MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) | |
| NUM_BANKS(ADDR_SURF_8_BANK)); |
| break; |
| case 6: |
| gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | |
| BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | |
| MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1) | |
| NUM_BANKS(ADDR_SURF_4_BANK)); |
| break; |
| case 8: |
| gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_2) | |
| BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_8) | |
| MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) | |
| NUM_BANKS(ADDR_SURF_16_BANK)); |
| break; |
| case 9: |
| gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_2) | |
| BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) | |
| MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) | |
| NUM_BANKS(ADDR_SURF_16_BANK)); |
| break; |
| case 10: |
| gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | |
| BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) | |
| MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) | |
| NUM_BANKS(ADDR_SURF_16_BANK)); |
| break; |
| case 11: |
| gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | |
| BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) | |
| MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) | |
| NUM_BANKS(ADDR_SURF_16_BANK)); |
| break; |
| case 12: |
| gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | |
| BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | |
| MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) | |
| NUM_BANKS(ADDR_SURF_16_BANK)); |
| break; |
| case 13: |
| gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | |
| BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | |
| MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) | |
| NUM_BANKS(ADDR_SURF_8_BANK)); |
| break; |
| case 14: |
| gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | |
| BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | |
| MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1) | |
| NUM_BANKS(ADDR_SURF_4_BANK)); |
| break; |
| default: |
| gb_tile_moden = 0; |
| break; |
| } |
| WREG32(GB_MACROTILE_MODE0 + (reg_offset * 4), gb_tile_moden); |
| } |
| } else if (num_pipe_configs == 2) { |
| for (reg_offset = 0; reg_offset < num_tile_mode_states; reg_offset++) { |
| switch (reg_offset) { |
| case 0: |
| gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | |
| MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) | |
| PIPE_CONFIG(ADDR_SURF_P2) | |
| TILE_SPLIT(ADDR_SURF_TILE_SPLIT_64B)); |
| break; |
| case 1: |
| gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | |
| MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) | |
| PIPE_CONFIG(ADDR_SURF_P2) | |
| TILE_SPLIT(ADDR_SURF_TILE_SPLIT_128B)); |
| break; |
| case 2: |
| gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | |
| MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) | |
| PIPE_CONFIG(ADDR_SURF_P2) | |
| TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B)); |
| break; |
| case 3: |
| gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | |
| MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) | |
| PIPE_CONFIG(ADDR_SURF_P2) | |
| TILE_SPLIT(ADDR_SURF_TILE_SPLIT_512B)); |
| break; |
| case 4: |
| gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | |
| MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) | |
| PIPE_CONFIG(ADDR_SURF_P2) | |
| TILE_SPLIT(split_equal_to_row_size)); |
| break; |
| case 5: |
| gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) | |
| MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING)); |
| break; |
| case 6: |
| gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) | |
| MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) | |
| PIPE_CONFIG(ADDR_SURF_P2) | |
| TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B)); |
| break; |
| case 7: |
| gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) | |
| MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) | |
| PIPE_CONFIG(ADDR_SURF_P2) | |
| TILE_SPLIT(split_equal_to_row_size)); |
| break; |
| case 8: |
| gb_tile_moden = ARRAY_MODE(ARRAY_LINEAR_ALIGNED); |
| break; |
| case 9: |
| gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) | |
| MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING)); |
| break; |
| case 10: |
| gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | |
| MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) | |
| PIPE_CONFIG(ADDR_SURF_P2) | |
| SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); |
| break; |
| case 11: |
| gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) | |
| MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) | |
| PIPE_CONFIG(ADDR_SURF_P2) | |
| SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); |
| break; |
| case 12: |
| gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) | |
| MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) | |
| PIPE_CONFIG(ADDR_SURF_P2) | |
| SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); |
| break; |
| case 13: |
| gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) | |
| MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING)); |
| break; |
| case 14: |
| gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | |
| MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) | |
| PIPE_CONFIG(ADDR_SURF_P2) | |
| SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); |
| break; |
| case 16: |
| gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) | |
| MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) | |
| PIPE_CONFIG(ADDR_SURF_P2) | |
| SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); |
| break; |
| case 17: |
| gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) | |
| MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) | |
| PIPE_CONFIG(ADDR_SURF_P2) | |
| SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); |
| break; |
| case 27: |
| gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) | |
| MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING)); |
| break; |
| case 28: |
| gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) | |
| MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) | |
| PIPE_CONFIG(ADDR_SURF_P2) | |
| SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); |
| break; |
| case 29: |
| gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) | |
| MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) | |
| PIPE_CONFIG(ADDR_SURF_P2) | |
| SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); |
| break; |
| case 30: |
| gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) | |
| MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) | |
| PIPE_CONFIG(ADDR_SURF_P2) | |
| SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); |
| break; |
| default: |
| gb_tile_moden = 0; |
| break; |
| } |
| WREG32(GB_TILE_MODE0 + (reg_offset * 4), gb_tile_moden); |
| } |
| for (reg_offset = 0; reg_offset < num_secondary_tile_mode_states; reg_offset++) { |
| switch (reg_offset) { |
| case 0: |
| gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_2) | |
| BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) | |
| MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) | |
| NUM_BANKS(ADDR_SURF_16_BANK)); |
| break; |
| case 1: |
| gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_2) | |
| BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) | |
| MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) | |
| NUM_BANKS(ADDR_SURF_16_BANK)); |
| break; |
| case 2: |
| gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | |
| BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) | |
| MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) | |
| NUM_BANKS(ADDR_SURF_16_BANK)); |
| break; |
| case 3: |
| gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | |
| BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | |
| MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) | |
| NUM_BANKS(ADDR_SURF_16_BANK)); |
| break; |
| case 4: |
| gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | |
| BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | |
| MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) | |
| NUM_BANKS(ADDR_SURF_16_BANK)); |
| break; |
| case 5: |
| gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | |
| BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | |
| MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) | |
| NUM_BANKS(ADDR_SURF_16_BANK)); |
| break; |
| case 6: |
| gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | |
| BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | |
| MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) | |
| NUM_BANKS(ADDR_SURF_8_BANK)); |
| break; |
| case 8: |
| gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_4) | |
| BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_8) | |
| MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) | |
| NUM_BANKS(ADDR_SURF_16_BANK)); |
| break; |
| case 9: |
| gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_4) | |
| BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) | |
| MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) | |
| NUM_BANKS(ADDR_SURF_16_BANK)); |
| break; |
| case 10: |
| gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_2) | |
| BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) | |
| MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) | |
| NUM_BANKS(ADDR_SURF_16_BANK)); |
| break; |
| case 11: |
| gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_2) | |
| BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) | |
| MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) | |
| NUM_BANKS(ADDR_SURF_16_BANK)); |
| break; |
| case 12: |
| gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | |
| BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) | |
| MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) | |
| NUM_BANKS(ADDR_SURF_16_BANK)); |
| break; |
| case 13: |
| gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | |
| BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | |
| MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) | |
| NUM_BANKS(ADDR_SURF_16_BANK)); |
| break; |
| case 14: |
| gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | |
| BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | |
| MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) | |
| NUM_BANKS(ADDR_SURF_8_BANK)); |
| break; |
| default: |
| gb_tile_moden = 0; |
| break; |
| } |
| WREG32(GB_MACROTILE_MODE0 + (reg_offset * 4), gb_tile_moden); |
| } |
| } else |
| DRM_ERROR("unknown num pipe config: 0x%x\n", num_pipe_configs); |
| } |
| |
| /** |
| * cik_select_se_sh - select which SE, SH to address |
| * |
| * @rdev: radeon_device pointer |
| * @se_num: shader engine to address |
| * @sh_num: sh block to address |
| * |
| * Select which SE, SH combinations to address. Certain |
| * registers are instanced per SE or SH. 0xffffffff means |
| * broadcast to all SEs or SHs (CIK). |
| */ |
| static void cik_select_se_sh(struct radeon_device *rdev, |
| u32 se_num, u32 sh_num) |
| { |
| u32 data = INSTANCE_BROADCAST_WRITES; |
| |
| if ((se_num == 0xffffffff) && (sh_num == 0xffffffff)) |
| data = SH_BROADCAST_WRITES | SE_BROADCAST_WRITES; |
| else if (se_num == 0xffffffff) |
| data |= SE_BROADCAST_WRITES | SH_INDEX(sh_num); |
| else if (sh_num == 0xffffffff) |
| data |= SH_BROADCAST_WRITES | SE_INDEX(se_num); |
| else |
| data |= SH_INDEX(sh_num) | SE_INDEX(se_num); |
| WREG32(GRBM_GFX_INDEX, data); |
| } |
| |
| /** |
| * cik_create_bitmask - create a bitmask |
| * |
| * @bit_width: length of the mask |
| * |
| * create a variable length bit mask (CIK). |
| * Returns the bitmask. |
| */ |
| static u32 cik_create_bitmask(u32 bit_width) |
| { |
| u32 i, mask = 0; |
| |
| for (i = 0; i < bit_width; i++) { |
| mask <<= 1; |
| mask |= 1; |
| } |
| return mask; |
| } |
| |
| /** |
| * cik_select_se_sh - select which SE, SH to address |
| * |
| * @rdev: radeon_device pointer |
| * @max_rb_num: max RBs (render backends) for the asic |
| * @se_num: number of SEs (shader engines) for the asic |
| * @sh_per_se: number of SH blocks per SE for the asic |
| * |
| * Calculates the bitmask of disabled RBs (CIK). |
| * Returns the disabled RB bitmask. |
| */ |
| static u32 cik_get_rb_disabled(struct radeon_device *rdev, |
| u32 max_rb_num, u32 se_num, |
| u32 sh_per_se) |
| { |
| u32 data, mask; |
| |
| data = RREG32(CC_RB_BACKEND_DISABLE); |
| if (data & 1) |
| data &= BACKEND_DISABLE_MASK; |
| else |
| data = 0; |
| data |= RREG32(GC_USER_RB_BACKEND_DISABLE); |
| |
| data >>= BACKEND_DISABLE_SHIFT; |
| |
| mask = cik_create_bitmask(max_rb_num / se_num / sh_per_se); |
| |
| return data & mask; |
| } |
| |
| /** |
| * cik_setup_rb - setup the RBs on the asic |
| * |
| * @rdev: radeon_device pointer |
| * @se_num: number of SEs (shader engines) for the asic |
| * @sh_per_se: number of SH blocks per SE for the asic |
| * @max_rb_num: max RBs (render backends) for the asic |
| * |
| * Configures per-SE/SH RB registers (CIK). |
| */ |
| static void cik_setup_rb(struct radeon_device *rdev, |
| u32 se_num, u32 sh_per_se, |
| u32 max_rb_num) |
| { |
| int i, j; |
| u32 data, mask; |
| u32 disabled_rbs = 0; |
| u32 enabled_rbs = 0; |
| |
| for (i = 0; i < se_num; i++) { |
| for (j = 0; j < sh_per_se; j++) { |
| cik_select_se_sh(rdev, i, j); |
| data = cik_get_rb_disabled(rdev, max_rb_num, se_num, sh_per_se); |
| disabled_rbs |= data << ((i * sh_per_se + j) * CIK_RB_BITMAP_WIDTH_PER_SH); |
| } |
| } |
| cik_select_se_sh(rdev, 0xffffffff, 0xffffffff); |
| |
| mask = 1; |
| for (i = 0; i < max_rb_num; i++) { |
| if (!(disabled_rbs & mask)) |
| enabled_rbs |= mask; |
| mask <<= 1; |
| } |
| |
| for (i = 0; i < se_num; i++) { |
| cik_select_se_sh(rdev, i, 0xffffffff); |
| data = 0; |
| for (j = 0; j < sh_per_se; j++) { |
| switch (enabled_rbs & 3) { |
| case 1: |
| data |= (RASTER_CONFIG_RB_MAP_0 << (i * sh_per_se + j) * 2); |
| break; |
| case 2: |
| data |= (RASTER_CONFIG_RB_MAP_3 << (i * sh_per_se + j) * 2); |
| break; |
| case 3: |
| default: |
| data |= (RASTER_CONFIG_RB_MAP_2 << (i * sh_per_se + j) * 2); |
| break; |
| } |
| enabled_rbs >>= 2; |
| } |
| WREG32(PA_SC_RASTER_CONFIG, data); |
| } |
| cik_select_se_sh(rdev, 0xffffffff, 0xffffffff); |
| } |
| |
| /** |
| * cik_gpu_init - setup the 3D engine |
| * |
| * @rdev: radeon_device pointer |
| * |
| * Configures the 3D engine and tiling configuration |
| * registers so that the 3D engine is usable. |
| */ |
| static void cik_gpu_init(struct radeon_device *rdev) |
| { |
| u32 gb_addr_config = RREG32(GB_ADDR_CONFIG); |
| u32 mc_shared_chmap, mc_arb_ramcfg; |
| u32 hdp_host_path_cntl; |
| u32 tmp; |
| int i, j; |
| |
| switch (rdev->family) { |
| case CHIP_BONAIRE: |
| rdev->config.cik.max_shader_engines = 2; |
| rdev->config.cik.max_tile_pipes = 4; |
| rdev->config.cik.max_cu_per_sh = 7; |
| rdev->config.cik.max_sh_per_se = 1; |
| rdev->config.cik.max_backends_per_se = 2; |
| rdev->config.cik.max_texture_channel_caches = 4; |
| rdev->config.cik.max_gprs = 256; |
| rdev->config.cik.max_gs_threads = 32; |
| rdev->config.cik.max_hw_contexts = 8; |
| |
| rdev->config.cik.sc_prim_fifo_size_frontend = 0x20; |
| rdev->config.cik.sc_prim_fifo_size_backend = 0x100; |
| rdev->config.cik.sc_hiz_tile_fifo_size = 0x30; |
| rdev->config.cik.sc_earlyz_tile_fifo_size = 0x130; |
| gb_addr_config = BONAIRE_GB_ADDR_CONFIG_GOLDEN; |
| break; |
| case CHIP_KAVERI: |
| /* TODO */ |
| break; |
| case CHIP_KABINI: |
| default: |
| rdev->config.cik.max_shader_engines = 1; |
| rdev->config.cik.max_tile_pipes = 2; |
| rdev->config.cik.max_cu_per_sh = 2; |
| rdev->config.cik.max_sh_per_se = 1; |
| rdev->config.cik.max_backends_per_se = 1; |
| rdev->config.cik.max_texture_channel_caches = 2; |
| rdev->config.cik.max_gprs = 256; |
| rdev->config.cik.max_gs_threads = 16; |
| rdev->config.cik.max_hw_contexts = 8; |
| |
| rdev->config.cik.sc_prim_fifo_size_frontend = 0x20; |
| rdev->config.cik.sc_prim_fifo_size_backend = 0x100; |
| rdev->config.cik.sc_hiz_tile_fifo_size = 0x30; |
| rdev->config.cik.sc_earlyz_tile_fifo_size = 0x130; |
| gb_addr_config = BONAIRE_GB_ADDR_CONFIG_GOLDEN; |
| break; |
| } |
| |
| /* Initialize HDP */ |
| for (i = 0, j = 0; i < 32; i++, j += 0x18) { |
| WREG32((0x2c14 + j), 0x00000000); |
| WREG32((0x2c18 + j), 0x00000000); |
| WREG32((0x2c1c + j), 0x00000000); |
| WREG32((0x2c20 + j), 0x00000000); |
| WREG32((0x2c24 + j), 0x00000000); |
| } |
| |
| WREG32(GRBM_CNTL, GRBM_READ_TIMEOUT(0xff)); |
| |
| WREG32(BIF_FB_EN, FB_READ_EN | FB_WRITE_EN); |
| |
| mc_shared_chmap = RREG32(MC_SHARED_CHMAP); |
| mc_arb_ramcfg = RREG32(MC_ARB_RAMCFG); |
| |
| rdev->config.cik.num_tile_pipes = rdev->config.cik.max_tile_pipes; |
| rdev->config.cik.mem_max_burst_length_bytes = 256; |
| tmp = (mc_arb_ramcfg & NOOFCOLS_MASK) >> NOOFCOLS_SHIFT; |
| rdev->config.cik.mem_row_size_in_kb = (4 * (1 << (8 + tmp))) / 1024; |
| if (rdev->config.cik.mem_row_size_in_kb > 4) |
| rdev->config.cik.mem_row_size_in_kb = 4; |
| /* XXX use MC settings? */ |
| rdev->config.cik.shader_engine_tile_size = 32; |
| rdev->config.cik.num_gpus = 1; |
| rdev->config.cik.multi_gpu_tile_size = 64; |
| |
| /* fix up row size */ |
| gb_addr_config &= ~ROW_SIZE_MASK; |
| switch (rdev->config.cik.mem_row_size_in_kb) { |
| case 1: |
| default: |
| gb_addr_config |= ROW_SIZE(0); |
| break; |
| case 2: |
| gb_addr_config |= ROW_SIZE(1); |
| break; |
| case 4: |
| gb_addr_config |= ROW_SIZE(2); |
| break; |
| } |
| |
| /* setup tiling info dword. gb_addr_config is not adequate since it does |
| * not have bank info, so create a custom tiling dword. |
| * bits 3:0 num_pipes |
| * bits 7:4 num_banks |
| * bits 11:8 group_size |
| * bits 15:12 row_size |
| */ |
| rdev->config.cik.tile_config = 0; |
| switch (rdev->config.cik.num_tile_pipes) { |
| case 1: |
| rdev->config.cik.tile_config |= (0 << 0); |
| break; |
| case 2: |
| rdev->config.cik.tile_config |= (1 << 0); |
| break; |
| case 4: |
| rdev->config.cik.tile_config |= (2 << 0); |
| break; |
| case 8: |
| default: |
| /* XXX what about 12? */ |
| rdev->config.cik.tile_config |= (3 << 0); |
| break; |
| } |
| if ((mc_arb_ramcfg & NOOFBANK_MASK) >> NOOFBANK_SHIFT) |
| rdev->config.cik.tile_config |= 1 << 4; |
| else |
| rdev->config.cik.tile_config |= 0 << 4; |
| rdev->config.cik.tile_config |= |
| ((gb_addr_config & PIPE_INTERLEAVE_SIZE_MASK) >> PIPE_INTERLEAVE_SIZE_SHIFT) << 8; |
| rdev->config.cik.tile_config |= |
| ((gb_addr_config & ROW_SIZE_MASK) >> ROW_SIZE_SHIFT) << 12; |
| |
| WREG32(GB_ADDR_CONFIG, gb_addr_config); |
| WREG32(HDP_ADDR_CONFIG, gb_addr_config); |
| WREG32(DMIF_ADDR_CALC, gb_addr_config); |
| WREG32(SDMA0_TILING_CONFIG + SDMA0_REGISTER_OFFSET, gb_addr_config & 0x70); |
| WREG32(SDMA0_TILING_CONFIG + SDMA1_REGISTER_OFFSET, gb_addr_config & 0x70); |
| |
| cik_tiling_mode_table_init(rdev); |
| |
| cik_setup_rb(rdev, rdev->config.cik.max_shader_engines, |
| rdev->config.cik.max_sh_per_se, |
| rdev->config.cik.max_backends_per_se); |
| |
| /* set HW defaults for 3D engine */ |
| WREG32(CP_MEQ_THRESHOLDS, MEQ1_START(0x30) | MEQ2_START(0x60)); |
| |
| WREG32(SX_DEBUG_1, 0x20); |
| |
| WREG32(TA_CNTL_AUX, 0x00010000); |
| |
| tmp = RREG32(SPI_CONFIG_CNTL); |
| tmp |= 0x03000000; |
| WREG32(SPI_CONFIG_CNTL, tmp); |
| |
| WREG32(SQ_CONFIG, 1); |
| |
| WREG32(DB_DEBUG, 0); |
| |
| tmp = RREG32(DB_DEBUG2) & ~0xf00fffff; |
| tmp |= 0x00000400; |
| WREG32(DB_DEBUG2, tmp); |
| |
| tmp = RREG32(DB_DEBUG3) & ~0x0002021c; |
| tmp |= 0x00020200; |
| WREG32(DB_DEBUG3, tmp); |
| |
| tmp = RREG32(CB_HW_CONTROL) & ~0x00010000; |
| tmp |= 0x00018208; |
| WREG32(CB_HW_CONTROL, tmp); |
| |
| WREG32(SPI_CONFIG_CNTL_1, VTX_DONE_DELAY(4)); |
| |
| WREG32(PA_SC_FIFO_SIZE, (SC_FRONTEND_PRIM_FIFO_SIZE(rdev->config.cik.sc_prim_fifo_size_frontend) | |
| SC_BACKEND_PRIM_FIFO_SIZE(rdev->config.cik.sc_prim_fifo_size_backend) | |
| SC_HIZ_TILE_FIFO_SIZE(rdev->config.cik.sc_hiz_tile_fifo_size) | |
| SC_EARLYZ_TILE_FIFO_SIZE(rdev->config.cik.sc_earlyz_tile_fifo_size))); |
| |
| WREG32(VGT_NUM_INSTANCES, 1); |
| |
| WREG32(CP_PERFMON_CNTL, 0); |
| |
| WREG32(SQ_CONFIG, 0); |
| |
| WREG32(PA_SC_FORCE_EOV_MAX_CNTS, (FORCE_EOV_MAX_CLK_CNT(4095) | |
| FORCE_EOV_MAX_REZ_CNT(255))); |
| |
| WREG32(VGT_CACHE_INVALIDATION, CACHE_INVALIDATION(VC_AND_TC) | |
| AUTO_INVLD_EN(ES_AND_GS_AUTO)); |
| |
| WREG32(VGT_GS_VERTEX_REUSE, 16); |
| WREG32(PA_SC_LINE_STIPPLE_STATE, 0); |
| |
| tmp = RREG32(HDP_MISC_CNTL); |
| tmp |= HDP_FLUSH_INVALIDATE_CACHE; |
| WREG32(HDP_MISC_CNTL, tmp); |
| |
| hdp_host_path_cntl = RREG32(HDP_HOST_PATH_CNTL); |
| WREG32(HDP_HOST_PATH_CNTL, hdp_host_path_cntl); |
| |
| WREG32(PA_CL_ENHANCE, CLIP_VTX_REORDER_ENA | NUM_CLIP_SEQ(3)); |
| WREG32(PA_SC_ENHANCE, ENABLE_PA_SC_OUT_OF_ORDER); |
| |
| udelay(50); |
| } |
| |
| /* |
| * GPU scratch registers helpers function. |
| */ |
| /** |
| * cik_scratch_init - setup driver info for CP scratch regs |
| * |
| * @rdev: radeon_device pointer |
| * |
| * Set up the number and offset of the CP scratch registers. |
| * NOTE: use of CP scratch registers is a legacy inferface and |
| * is not used by default on newer asics (r6xx+). On newer asics, |
| * memory buffers are used for fences rather than scratch regs. |
| */ |
| static void cik_scratch_init(struct radeon_device *rdev) |
| { |
| int i; |
| |
| rdev->scratch.num_reg = 7; |
| rdev->scratch.reg_base = SCRATCH_REG0; |
| for (i = 0; i < rdev->scratch.num_reg; i++) { |
| rdev->scratch.free[i] = true; |
| rdev->scratch.reg[i] = rdev->scratch.reg_base + (i * 4); |
| } |
| } |
| |
| /** |
| * cik_ring_test - basic gfx ring test |
| * |
| * @rdev: radeon_device pointer |
| * @ring: radeon_ring structure holding ring information |
| * |
| * Allocate a scratch register and write to it using the gfx ring (CIK). |
| * Provides a basic gfx ring test to verify that the ring is working. |
| * Used by cik_cp_gfx_resume(); |
| * Returns 0 on success, error on failure. |
| */ |
| int cik_ring_test(struct radeon_device *rdev, struct radeon_ring *ring) |
| { |
| uint32_t scratch; |
| uint32_t tmp = 0; |
| unsigned i; |
| int r; |
| |
| r = radeon_scratch_get(rdev, &scratch); |
| if (r) { |
| DRM_ERROR("radeon: cp failed to get scratch reg (%d).\n", r); |
| return r; |
| } |
| WREG32(scratch, 0xCAFEDEAD); |
| r = radeon_ring_lock(rdev, ring, 3); |
| if (r) { |
| DRM_ERROR("radeon: cp failed to lock ring %d (%d).\n", ring->idx, r); |
| radeon_scratch_free(rdev, scratch); |
| return r; |
| } |
| radeon_ring_write(ring, PACKET3(PACKET3_SET_UCONFIG_REG, 1)); |
| radeon_ring_write(ring, ((scratch - PACKET3_SET_UCONFIG_REG_START) >> 2)); |
| radeon_ring_write(ring, 0xDEADBEEF); |
| radeon_ring_unlock_commit(rdev, ring); |
| for (i = 0; i < rdev->usec_timeout; i++) { |
| tmp = RREG32(scratch); |
| if (tmp == 0xDEADBEEF) |
| break; |
| DRM_UDELAY(1); |
| } |
| if (i < rdev->usec_timeout) { |
| DRM_INFO("ring test on %d succeeded in %d usecs\n", ring->idx, i); |
| } else { |
| DRM_ERROR("radeon: ring %d test failed (scratch(0x%04X)=0x%08X)\n", |
| ring->idx, scratch, tmp); |
| r = -EINVAL; |
| } |
| radeon_scratch_free(rdev, scratch); |
| return r; |
| } |
| |
| /** |
| * cik_fence_ring_emit - emit a fence on the gfx ring |
| * |
| * @rdev: radeon_device pointer |
| * @fence: radeon fence object |
| * |
| * Emits a fence sequnce number on the gfx ring and flushes |
| * GPU caches. |
| */ |
| void cik_fence_ring_emit(struct radeon_device *rdev, |
| struct radeon_fence *fence) |
| { |
| struct radeon_ring *ring = &rdev->ring[fence->ring]; |
| u64 addr = rdev->fence_drv[fence->ring].gpu_addr; |
| |
| /* EVENT_WRITE_EOP - flush caches, send int */ |
| radeon_ring_write(ring, PACKET3(PACKET3_EVENT_WRITE_EOP, 4)); |
| radeon_ring_write(ring, (EOP_TCL1_ACTION_EN | |
| EOP_TC_ACTION_EN | |
| EVENT_TYPE(CACHE_FLUSH_AND_INV_TS_EVENT) | |
| EVENT_INDEX(5))); |
| radeon_ring_write(ring, addr & 0xfffffffc); |
| radeon_ring_write(ring, (upper_32_bits(addr) & 0xffff) | DATA_SEL(1) | INT_SEL(2)); |
| radeon_ring_write(ring, fence->seq); |
| radeon_ring_write(ring, 0); |
| /* HDP flush */ |
| /* We should be using the new WAIT_REG_MEM special op packet here |
| * but it causes the CP to hang |
| */ |
| radeon_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, 3)); |
| radeon_ring_write(ring, (WRITE_DATA_ENGINE_SEL(0) | |
| WRITE_DATA_DST_SEL(0))); |
| radeon_ring_write(ring, HDP_MEM_COHERENCY_FLUSH_CNTL >> 2); |
| radeon_ring_write(ring, 0); |
| radeon_ring_write(ring, 0); |
| } |
| |
| void cik_semaphore_ring_emit(struct radeon_device *rdev, |
| struct radeon_ring *ring, |
| struct radeon_semaphore *semaphore, |
| bool emit_wait) |
| { |
| uint64_t addr = semaphore->gpu_addr; |
| unsigned sel = emit_wait ? PACKET3_SEM_SEL_WAIT : PACKET3_SEM_SEL_SIGNAL; |
| |
| radeon_ring_write(ring, PACKET3(PACKET3_MEM_SEMAPHORE, 1)); |
| radeon_ring_write(ring, addr & 0xffffffff); |
| radeon_ring_write(ring, (upper_32_bits(addr) & 0xffff) | sel); |
| } |
| |
| /* |
| * IB stuff |
| */ |
| /** |
| * cik_ring_ib_execute - emit an IB (Indirect Buffer) on the gfx ring |
| * |
| * @rdev: radeon_device pointer |
| * @ib: radeon indirect buffer object |
| * |
| * Emits an DE (drawing engine) or CE (constant engine) IB |
| * on the gfx ring. IBs are usually generated by userspace |
| * acceleration drivers and submitted to the kernel for |
| * sheduling on the ring. This function schedules the IB |
| * on the gfx ring for execution by the GPU. |
| */ |
| void cik_ring_ib_execute(struct radeon_device *rdev, struct radeon_ib *ib) |
| { |
| struct radeon_ring *ring = &rdev->ring[ib->ring]; |
| u32 header, control = INDIRECT_BUFFER_VALID; |
| |
| if (ib->is_const_ib) { |
| /* set switch buffer packet before const IB */ |
| radeon_ring_write(ring, PACKET3(PACKET3_SWITCH_BUFFER, 0)); |
| radeon_ring_write(ring, 0); |
| |
| header = PACKET3(PACKET3_INDIRECT_BUFFER_CONST, 2); |
| } else { |
| u32 next_rptr; |
| if (ring->rptr_save_reg) { |
| next_rptr = ring->wptr + 3 + 4; |
| radeon_ring_write(ring, PACKET3(PACKET3_SET_UCONFIG_REG, 1)); |
| radeon_ring_write(ring, ((ring->rptr_save_reg - |
| PACKET3_SET_UCONFIG_REG_START) >> 2)); |
| radeon_ring_write(ring, next_rptr); |
| } else if (rdev->wb.enabled) { |
| next_rptr = ring->wptr + 5 + 4; |
| radeon_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, 3)); |
| radeon_ring_write(ring, WRITE_DATA_DST_SEL(1)); |
| radeon_ring_write(ring, ring->next_rptr_gpu_addr & 0xfffffffc); |
| radeon_ring_write(ring, upper_32_bits(ring->next_rptr_gpu_addr) & 0xffffffff); |
| radeon_ring_write(ring, next_rptr); |
| } |
| |
| header = PACKET3(PACKET3_INDIRECT_BUFFER, 2); |
| } |
| |
| control |= ib->length_dw | |
| (ib->vm ? (ib->vm->id << 24) : 0); |
| |
| radeon_ring_write(ring, header); |
| radeon_ring_write(ring, |
| #ifdef __BIG_ENDIAN |
| (2 << 0) | |
| #endif |
| (ib->gpu_addr & 0xFFFFFFFC)); |
| radeon_ring_write(ring, upper_32_bits(ib->gpu_addr) & 0xFFFF); |
| radeon_ring_write(ring, control); |
| } |
| |
| /** |
| * cik_ib_test - basic gfx ring IB test |
| * |
| * @rdev: radeon_device pointer |
| * @ring: radeon_ring structure holding ring information |
| * |
| * Allocate an IB and execute it on the gfx ring (CIK). |
| * Provides a basic gfx ring test to verify that IBs are working. |
| * Returns 0 on success, error on failure. |
| */ |
| int cik_ib_test(struct radeon_device *rdev, struct radeon_ring *ring) |
| { |
| struct radeon_ib ib; |
| uint32_t scratch; |
| uint32_t tmp = 0; |
| unsigned i; |
| int r; |
| |
| r = radeon_scratch_get(rdev, &scratch); |
| if (r) { |
| DRM_ERROR("radeon: failed to get scratch reg (%d).\n", r); |
| return r; |
| } |
| WREG32(scratch, 0xCAFEDEAD); |
| r = radeon_ib_get(rdev, ring->idx, &ib, NULL, 256); |
| if (r) { |
| DRM_ERROR("radeon: failed to get ib (%d).\n", r); |
| return r; |
| } |
| ib.ptr[0] = PACKET3(PACKET3_SET_UCONFIG_REG, 1); |
| ib.ptr[1] = ((scratch - PACKET3_SET_UCONFIG_REG_START) >> 2); |
| ib.ptr[2] = 0xDEADBEEF; |
| ib.length_dw = 3; |
| r = radeon_ib_schedule(rdev, &ib, NULL); |
| if (r) { |
| radeon_scratch_free(rdev, scratch); |
| radeon_ib_free(rdev, &ib); |
| DRM_ERROR("radeon: failed to schedule ib (%d).\n", r); |
| return r; |
| } |
| r = radeon_fence_wait(ib.fence, false); |
| if (r) { |
| DRM_ERROR("radeon: fence wait failed (%d).\n", r); |
| return r; |
| } |
| for (i = 0; i < rdev->usec_timeout; i++) { |
| tmp = RREG32(scratch); |
| if (tmp == 0xDEADBEEF) |
| break; |
| DRM_UDELAY(1); |
| } |
| if (i < rdev->usec_timeout) { |
| DRM_INFO("ib test on ring %d succeeded in %u usecs\n", ib.fence->ring, i); |
| } else { |
| DRM_ERROR("radeon: ib test failed (scratch(0x%04X)=0x%08X)\n", |
| scratch, tmp); |
| r = -EINVAL; |
| } |
| radeon_scratch_free(rdev, scratch); |
| radeon_ib_free(rdev, &ib); |
| return r; |
| } |
| |
| /* |
| * CP. |
| * On CIK, gfx and compute now have independant command processors. |
| * |
| * GFX |
| * Gfx consists of a single ring and can process both gfx jobs and |
| * compute jobs. The gfx CP consists of three microengines (ME): |
| * PFP - Pre-Fetch Parser |
| * ME - Micro Engine |
| * CE - Constant Engine |
| * The PFP and ME make up what is considered the Drawing Engine (DE). |
| * The CE is an asynchronous engine used for updating buffer desciptors |
| * used by the DE so that they can be loaded into cache in parallel |
| * while the DE is processing state update packets. |
| * |
| * Compute |
| * The compute CP consists of two microengines (ME): |
| * MEC1 - Compute MicroEngine 1 |
| * MEC2 - Compute MicroEngine 2 |
| * Each MEC supports 4 compute pipes and each pipe supports 8 queues. |
| * The queues are exposed to userspace and are programmed directly |
| * by the compute runtime. |
| */ |
| /** |
| * cik_cp_gfx_enable - enable/disable the gfx CP MEs |
| * |
| * @rdev: radeon_device pointer |
| * @enable: enable or disable the MEs |
| * |
| * Halts or unhalts the gfx MEs. |
| */ |
| static void cik_cp_gfx_enable(struct radeon_device *rdev, bool enable) |
| { |
| if (enable) |
| WREG32(CP_ME_CNTL, 0); |
| else { |
| WREG32(CP_ME_CNTL, (CP_ME_HALT | CP_PFP_HALT | CP_CE_HALT)); |
| rdev->ring[RADEON_RING_TYPE_GFX_INDEX].ready = false; |
| } |
| udelay(50); |
| } |
| |
| /** |
| * cik_cp_gfx_load_microcode - load the gfx CP ME ucode |
| * |
| * @rdev: radeon_device pointer |
| * |
| * Loads the gfx PFP, ME, and CE ucode. |
| * Returns 0 for success, -EINVAL if the ucode is not available. |
| */ |
| static int cik_cp_gfx_load_microcode(struct radeon_device *rdev) |
| { |
| const __be32 *fw_data; |
| int i; |
| |
| if (!rdev->me_fw || !rdev->pfp_fw || !rdev->ce_fw) |
| return -EINVAL; |
| |
| cik_cp_gfx_enable(rdev, false); |
| |
| /* PFP */ |
| fw_data = (const __be32 *)rdev->pfp_fw->data; |
| WREG32(CP_PFP_UCODE_ADDR, 0); |
| for (i = 0; i < CIK_PFP_UCODE_SIZE; i++) |
| WREG32(CP_PFP_UCODE_DATA, be32_to_cpup(fw_data++)); |
| WREG32(CP_PFP_UCODE_ADDR, 0); |
| |
| /* CE */ |
| fw_data = (const __be32 *)rdev->ce_fw->data; |
| WREG32(CP_CE_UCODE_ADDR, 0); |
| for (i = 0; i < CIK_CE_UCODE_SIZE; i++) |
| WREG32(CP_CE_UCODE_DATA, be32_to_cpup(fw_data++)); |
| WREG32(CP_CE_UCODE_ADDR, 0); |
| |
| /* ME */ |
| fw_data = (const __be32 *)rdev->me_fw->data; |
| WREG32(CP_ME_RAM_WADDR, 0); |
| for (i = 0; i < CIK_ME_UCODE_SIZE; i++) |
| WREG32(CP_ME_RAM_DATA, be32_to_cpup(fw_data++)); |
| WREG32(CP_ME_RAM_WADDR, 0); |
| |
| WREG32(CP_PFP_UCODE_ADDR, 0); |
| WREG32(CP_CE_UCODE_ADDR, 0); |
| WREG32(CP_ME_RAM_WADDR, 0); |
| WREG32(CP_ME_RAM_RADDR, 0); |
| return 0; |
| } |
| |
| /** |
| * cik_cp_gfx_start - start the gfx ring |
| * |
| * @rdev: radeon_device pointer |
| * |
| * Enables the ring and loads the clear state context and other |
| * packets required to init the ring. |
| * Returns 0 for success, error for failure. |
| */ |
| static int cik_cp_gfx_start(struct radeon_device *rdev) |
| { |
| struct radeon_ring *ring = &rdev->ring[RADEON_RING_TYPE_GFX_INDEX]; |
| int r, i; |
| |
| /* init the CP */ |
| WREG32(CP_MAX_CONTEXT, rdev->config.cik.max_hw_contexts - 1); |
| WREG32(CP_ENDIAN_SWAP, 0); |
| WREG32(CP_DEVICE_ID, 1); |
| |
| cik_cp_gfx_enable(rdev, true); |
| |
| r = radeon_ring_lock(rdev, ring, cik_default_size + 17); |
| if (r) { |
| DRM_ERROR("radeon: cp failed to lock ring (%d).\n", r); |
| return r; |
| } |
| |
| /* init the CE partitions. CE only used for gfx on CIK */ |
| radeon_ring_write(ring, PACKET3(PACKET3_SET_BASE, 2)); |
| radeon_ring_write(ring, PACKET3_BASE_INDEX(CE_PARTITION_BASE)); |
| radeon_ring_write(ring, 0xc000); |
| radeon_ring_write(ring, 0xc000); |
| |
| /* setup clear context state */ |
| radeon_ring_write(ring, PACKET3(PACKET3_PREAMBLE_CNTL, 0)); |
| radeon_ring_write(ring, PACKET3_PREAMBLE_BEGIN_CLEAR_STATE); |
| |
| radeon_ring_write(ring, PACKET3(PACKET3_CONTEXT_CONTROL, 1)); |
| radeon_ring_write(ring, 0x80000000); |
| radeon_ring_write(ring, 0x80000000); |
| |
| for (i = 0; i < cik_default_size; i++) |
| radeon_ring_write(ring, cik_default_state[i]); |
| |
| radeon_ring_write(ring, PACKET3(PACKET3_PREAMBLE_CNTL, 0)); |
| radeon_ring_write(ring, PACKET3_PREAMBLE_END_CLEAR_STATE); |
| |
| /* set clear context state */ |
| radeon_ring_write(ring, PACKET3(PACKET3_CLEAR_STATE, 0)); |
| radeon_ring_write(ring, 0); |
| |
| radeon_ring_write(ring, PACKET3(PACKET3_SET_CONTEXT_REG, 2)); |
| radeon_ring_write(ring, 0x00000316); |
| radeon_ring_write(ring, 0x0000000e); /* VGT_VERTEX_REUSE_BLOCK_CNTL */ |
| radeon_ring_write(ring, 0x00000010); /* VGT_OUT_DEALLOC_CNTL */ |
| |
| radeon_ring_unlock_commit(rdev, ring); |
| |
| return 0; |
| } |
| |
| /** |
| * cik_cp_gfx_fini - stop the gfx ring |
| * |
| * @rdev: radeon_device pointer |
| * |
| * Stop the gfx ring and tear down the driver ring |
| * info. |
| */ |
| static void cik_cp_gfx_fini(struct radeon_device *rdev) |
| { |
| cik_cp_gfx_enable(rdev, false); |
| radeon_ring_fini(rdev, &rdev->ring[RADEON_RING_TYPE_GFX_INDEX]); |
| } |
| |
| /** |
| * cik_cp_gfx_resume - setup the gfx ring buffer registers |
| * |
| * @rdev: radeon_device pointer |
| * |
| * Program the location and size of the gfx ring buffer |
| * and test it to make sure it's working. |
| * Returns 0 for success, error for failure. |
| */ |
| static int cik_cp_gfx_resume(struct radeon_device *rdev) |
| { |
| struct radeon_ring *ring; |
| u32 tmp; |
| u32 rb_bufsz; |
| u64 rb_addr; |
| int r; |
| |
| WREG32(CP_SEM_WAIT_TIMER, 0x0); |
| WREG32(CP_SEM_INCOMPLETE_TIMER_CNTL, 0x0); |
| |
| /* Set the write pointer delay */ |
| WREG32(CP_RB_WPTR_DELAY, 0); |
| |
| /* set the RB to use vmid 0 */ |
| WREG32(CP_RB_VMID, 0); |
| |
| WREG32(SCRATCH_ADDR, ((rdev->wb.gpu_addr + RADEON_WB_SCRATCH_OFFSET) >> 8) & 0xFFFFFFFF); |
| |
| /* ring 0 - compute and gfx */ |
| /* Set ring buffer size */ |
| ring = &rdev->ring[RADEON_RING_TYPE_GFX_INDEX]; |
| rb_bufsz = drm_order(ring->ring_size / 8); |
| tmp = (drm_order(RADEON_GPU_PAGE_SIZE/8) << 8) | rb_bufsz; |
| #ifdef __BIG_ENDIAN |
| tmp |= BUF_SWAP_32BIT; |
| #endif |
| WREG32(CP_RB0_CNTL, tmp); |
| |
| /* Initialize the ring buffer's read and write pointers */ |
| WREG32(CP_RB0_CNTL, tmp | RB_RPTR_WR_ENA); |
| ring->wptr = 0; |
| WREG32(CP_RB0_WPTR, ring->wptr); |
| |
| /* set the wb address wether it's enabled or not */ |
| WREG32(CP_RB0_RPTR_ADDR, (rdev->wb.gpu_addr + RADEON_WB_CP_RPTR_OFFSET) & 0xFFFFFFFC); |
| WREG32(CP_RB0_RPTR_ADDR_HI, upper_32_bits(rdev->wb.gpu_addr + RADEON_WB_CP_RPTR_OFFSET) & 0xFF); |
| |
| /* scratch register shadowing is no longer supported */ |
| WREG32(SCRATCH_UMSK, 0); |
| |
| if (!rdev->wb.enabled) |
| tmp |= RB_NO_UPDATE; |
| |
| mdelay(1); |
| WREG32(CP_RB0_CNTL, tmp); |
| |
| rb_addr = ring->gpu_addr >> 8; |
| WREG32(CP_RB0_BASE, rb_addr); |
| WREG32(CP_RB0_BASE_HI, upper_32_bits(rb_addr)); |
| |
| ring->rptr = RREG32(CP_RB0_RPTR); |
| |
| /* start the ring */ |
| cik_cp_gfx_start(rdev); |
| rdev->ring[RADEON_RING_TYPE_GFX_INDEX].ready = true; |
| r = radeon_ring_test(rdev, RADEON_RING_TYPE_GFX_INDEX, &rdev->ring[RADEON_RING_TYPE_GFX_INDEX]); |
| if (r) { |
| rdev->ring[RADEON_RING_TYPE_GFX_INDEX].ready = false; |
| return r; |
| } |
| return 0; |
| } |
| |
| /** |
| * cik_cp_compute_enable - enable/disable the compute CP MEs |
| * |
| * @rdev: radeon_device pointer |
| * @enable: enable or disable the MEs |
| * |
| * Halts or unhalts the compute MEs. |
| */ |
| static void cik_cp_compute_enable(struct radeon_device *rdev, bool enable) |
| { |
| if (enable) |
| WREG32(CP_MEC_CNTL, 0); |
| else |
| WREG32(CP_MEC_CNTL, (MEC_ME1_HALT | MEC_ME2_HALT)); |
| udelay(50); |
| } |
| |
| /** |
| * cik_cp_compute_load_microcode - load the compute CP ME ucode |
| * |
| * @rdev: radeon_device pointer |
| * |
| * Loads the compute MEC1&2 ucode. |
| * Returns 0 for success, -EINVAL if the ucode is not available. |
| */ |
| static int cik_cp_compute_load_microcode(struct radeon_device *rdev) |
| { |
| const __be32 *fw_data; |
| int i; |
| |
| if (!rdev->mec_fw) |
| return -EINVAL; |
| |
| cik_cp_compute_enable(rdev, false); |
| |
| /* MEC1 */ |
| fw_data = (const __be32 *)rdev->mec_fw->data; |
| WREG32(CP_MEC_ME1_UCODE_ADDR, 0); |
| for (i = 0; i < CIK_MEC_UCODE_SIZE; i++) |
| WREG32(CP_MEC_ME1_UCODE_DATA, be32_to_cpup(fw_data++)); |
| WREG32(CP_MEC_ME1_UCODE_ADDR, 0); |
| |
| if (rdev->family == CHIP_KAVERI) { |
| /* MEC2 */ |
| fw_data = (const __be32 *)rdev->mec_fw->data; |
| WREG32(CP_MEC_ME2_UCODE_ADDR, 0); |
| for (i = 0; i < CIK_MEC_UCODE_SIZE; i++) |
| WREG32(CP_MEC_ME2_UCODE_DATA, be32_to_cpup(fw_data++)); |
| WREG32(CP_MEC_ME2_UCODE_ADDR, 0); |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * cik_cp_compute_start - start the compute queues |
| * |
| * @rdev: radeon_device pointer |
| * |
| * Enable the compute queues. |
| * Returns 0 for success, error for failure. |
| */ |
| static int cik_cp_compute_start(struct radeon_device *rdev) |
| { |
| //todo |
| return 0; |
| } |
| |
| /** |
| * cik_cp_compute_fini - stop the compute queues |
| * |
| * @rdev: radeon_device pointer |
| * |
| * Stop the compute queues and tear down the driver queue |
| * info. |
| */ |
| static void cik_cp_compute_fini(struct radeon_device *rdev) |
| { |
| cik_cp_compute_enable(rdev, false); |
| //todo |
| } |
| |
| /** |
| * cik_cp_compute_resume - setup the compute queue registers |
| * |
| * @rdev: radeon_device pointer |
| * |
| * Program the compute queues and test them to make sure they |
| * are working. |
| * Returns 0 for success, error for failure. |
| */ |
| static int cik_cp_compute_resume(struct radeon_device *rdev) |
| { |
| int r; |
| |
| //todo |
| r = cik_cp_compute_start(rdev); |
| if (r) |
| return r; |
| return 0; |
| } |
| |
| /* XXX temporary wrappers to handle both compute and gfx */ |
| /* XXX */ |
| static void cik_cp_enable(struct radeon_device *rdev, bool enable) |
| { |
| cik_cp_gfx_enable(rdev, enable); |
| cik_cp_compute_enable(rdev, enable); |
| } |
| |
| /* XXX */ |
| static int cik_cp_load_microcode(struct radeon_device *rdev) |
| { |
| int r; |
| |
| r = cik_cp_gfx_load_microcode(rdev); |
| if (r) |
| return r; |
| r = cik_cp_compute_load_microcode(rdev); |
| if (r) |
| return r; |
| |
| return 0; |
| } |
| |
| /* XXX */ |
| static void cik_cp_fini(struct radeon_device *rdev) |
| { |
| cik_cp_gfx_fini(rdev); |
| cik_cp_compute_fini(rdev); |
| } |
| |
| /* XXX */ |
| static int cik_cp_resume(struct radeon_device *rdev) |
| { |
| int r; |
| |
| /* Reset all cp blocks */ |
| WREG32(GRBM_SOFT_RESET, SOFT_RESET_CP); |
| RREG32(GRBM_SOFT_RESET); |
| mdelay(15); |
| WREG32(GRBM_SOFT_RESET, 0); |
| RREG32(GRBM_SOFT_RESET); |
| |
| r = cik_cp_load_microcode(rdev); |
| if (r) |
| return r; |
| |
| r = cik_cp_gfx_resume(rdev); |
| if (r) |
| return r; |
| r = cik_cp_compute_resume(rdev); |
| if (r) |
| return r; |
| |
| return 0; |
| } |
| |
| /* |
| * sDMA - System DMA |
| * Starting with CIK, the GPU has new asynchronous |
| * DMA engines. These engines are used for compute |
| * and gfx. There are two DMA engines (SDMA0, SDMA1) |
| * and each one supports 1 ring buffer used for gfx |
| * and 2 queues used for compute. |
| * |
| * The programming model is very similar to the CP |
| * (ring buffer, IBs, etc.), but sDMA has it's own |
| * packet format that is different from the PM4 format |
| * used by the CP. sDMA supports copying data, writing |
| * embedded data, solid fills, and a number of other |
| * things. It also has support for tiling/detiling of |
| * buffers. |
| */ |
| /** |
| * cik_sdma_ring_ib_execute - Schedule an IB on the DMA engine |
| * |
| * @rdev: radeon_device pointer |
| * @ib: IB object to schedule |
| * |
| * Schedule an IB in the DMA ring (CIK). |
| */ |
| void cik_sdma_ring_ib_execute(struct radeon_device *rdev, |
| struct radeon_ib *ib) |
| { |
| struct radeon_ring *ring = &rdev->ring[ib->ring]; |
| u32 extra_bits = (ib->vm ? ib->vm->id : 0) & 0xf; |
| |
| if (rdev->wb.enabled) { |
| u32 next_rptr = ring->wptr + 5; |
| while ((next_rptr & 7) != 4) |
| next_rptr++; |
| next_rptr += 4; |
| radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_WRITE, SDMA_WRITE_SUB_OPCODE_LINEAR, 0)); |
| radeon_ring_write(ring, ring->next_rptr_gpu_addr & 0xfffffffc); |
| radeon_ring_write(ring, upper_32_bits(ring->next_rptr_gpu_addr) & 0xffffffff); |
| radeon_ring_write(ring, 1); /* number of DWs to follow */ |
| radeon_ring_write(ring, next_rptr); |
| } |
| |
| /* IB packet must end on a 8 DW boundary */ |
| while ((ring->wptr & 7) != 4) |
| radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_NOP, 0, 0)); |
| radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_INDIRECT_BUFFER, 0, extra_bits)); |
| radeon_ring_write(ring, ib->gpu_addr & 0xffffffe0); /* base must be 32 byte aligned */ |
| radeon_ring_write(ring, upper_32_bits(ib->gpu_addr) & 0xffffffff); |
| radeon_ring_write(ring, ib->length_dw); |
| |
| } |
| |
| /** |
| * cik_sdma_fence_ring_emit - emit a fence on the DMA ring |
| * |
| * @rdev: radeon_device pointer |
| * @fence: radeon fence object |
| * |
| * Add a DMA fence packet to the ring to write |
| * the fence seq number and DMA trap packet to generate |
| * an interrupt if needed (CIK). |
| */ |
| void cik_sdma_fence_ring_emit(struct radeon_device *rdev, |
| struct radeon_fence *fence) |
| { |
| struct radeon_ring *ring = &rdev->ring[fence->ring]; |
| u64 addr = rdev->fence_drv[fence->ring].gpu_addr; |
| u32 extra_bits = (SDMA_POLL_REG_MEM_EXTRA_OP(1) | |
| SDMA_POLL_REG_MEM_EXTRA_FUNC(3)); /* == */ |
| u32 ref_and_mask; |
| |
| if (fence->ring == R600_RING_TYPE_DMA_INDEX) |
| ref_and_mask = SDMA0; |
| else |
| ref_and_mask = SDMA1; |
| |
| /* write the fence */ |
| radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_FENCE, 0, 0)); |
| radeon_ring_write(ring, addr & 0xffffffff); |
| radeon_ring_write(ring, upper_32_bits(addr) & 0xffffffff); |
| radeon_ring_write(ring, fence->seq); |
| /* generate an interrupt */ |
| radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_TRAP, 0, 0)); |
| /* flush HDP */ |
| radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_POLL_REG_MEM, 0, extra_bits)); |
| radeon_ring_write(ring, GPU_HDP_FLUSH_DONE); |
| radeon_ring_write(ring, GPU_HDP_FLUSH_REQ); |
| radeon_ring_write(ring, ref_and_mask); /* REFERENCE */ |
| radeon_ring_write(ring, ref_and_mask); /* MASK */ |
| radeon_ring_write(ring, (4 << 16) | 10); /* RETRY_COUNT, POLL_INTERVAL */ |
| } |
| |
| /** |
| * cik_sdma_semaphore_ring_emit - emit a semaphore on the dma ring |
| * |
| * @rdev: radeon_device pointer |
| * @ring: radeon_ring structure holding ring information |
| * @semaphore: radeon semaphore object |
| * @emit_wait: wait or signal semaphore |
| * |
| * Add a DMA semaphore packet to the ring wait on or signal |
| * other rings (CIK). |
| */ |
| void cik_sdma_semaphore_ring_emit(struct radeon_device *rdev, |
| struct radeon_ring *ring, |
| struct radeon_semaphore *semaphore, |
| bool emit_wait) |
| { |
| u64 addr = semaphore->gpu_addr; |
| u32 extra_bits = emit_wait ? 0 : SDMA_SEMAPHORE_EXTRA_S; |
| |
| radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_SEMAPHORE, 0, extra_bits)); |
| radeon_ring_write(ring, addr & 0xfffffff8); |
| radeon_ring_write(ring, upper_32_bits(addr) & 0xffffffff); |
| } |
| |
| /** |
| * cik_sdma_gfx_stop - stop the gfx async dma engines |
| * |
| * @rdev: radeon_device pointer |
| * |
| * Stop the gfx async dma ring buffers (CIK). |
| */ |
| static void cik_sdma_gfx_stop(struct radeon_device *rdev) |
| { |
| u32 rb_cntl, reg_offset; |
| int i; |
| |
| radeon_ttm_set_active_vram_size(rdev, rdev->mc.visible_vram_size); |
| |
| for (i = 0; i < 2; i++) { |
| if (i == 0) |
| reg_offset = SDMA0_REGISTER_OFFSET; |
| else |
| reg_offset = SDMA1_REGISTER_OFFSET; |
| rb_cntl = RREG32(SDMA0_GFX_RB_CNTL + reg_offset); |
| rb_cntl &= ~SDMA_RB_ENABLE; |
| WREG32(SDMA0_GFX_RB_CNTL + reg_offset, rb_cntl); |
| WREG32(SDMA0_GFX_IB_CNTL + reg_offset, 0); |
| } |
| } |
| |
| /** |
| * cik_sdma_rlc_stop - stop the compute async dma engines |
| * |
| * @rdev: radeon_device pointer |
| * |
| * Stop the compute async dma queues (CIK). |
| */ |
| static void cik_sdma_rlc_stop(struct radeon_device *rdev) |
| { |
| /* XXX todo */ |
| } |
| |
| /** |
| * cik_sdma_enable - stop the async dma engines |
| * |
| * @rdev: radeon_device pointer |
| * @enable: enable/disable the DMA MEs. |
| * |
| * Halt or unhalt the async dma engines (CIK). |
| */ |
| static void cik_sdma_enable(struct radeon_device *rdev, bool enable) |
| { |
| u32 me_cntl, reg_offset; |
| int i; |
| |
| for (i = 0; i < 2; i++) { |
| if (i == 0) |
| reg_offset = SDMA0_REGISTER_OFFSET; |
| else |
| reg_offset = SDMA1_REGISTER_OFFSET; |
| me_cntl = RREG32(SDMA0_ME_CNTL + reg_offset); |
| if (enable) |
| me_cntl &= ~SDMA_HALT; |
| else |
| me_cntl |= SDMA_HALT; |
| WREG32(SDMA0_ME_CNTL + reg_offset, me_cntl); |
| } |
| } |
| |
| /** |
| * cik_sdma_gfx_resume - setup and start the async dma engines |
| * |
| * @rdev: radeon_device pointer |
| * |
| * Set up the gfx DMA ring buffers and enable them (CIK). |
| * Returns 0 for success, error for failure. |
| */ |
| static int cik_sdma_gfx_resume(struct radeon_device *rdev) |
| { |
| struct radeon_ring *ring; |
| u32 rb_cntl, ib_cntl; |
| u32 rb_bufsz; |
| u32 reg_offset, wb_offset; |
| int i, r; |
| |
| for (i = 0; i < 2; i++) { |
| if (i == 0) { |
| ring = &rdev->ring[R600_RING_TYPE_DMA_INDEX]; |
| reg_offset = SDMA0_REGISTER_OFFSET; |
| wb_offset = R600_WB_DMA_RPTR_OFFSET; |
| } else { |
| ring = &rdev->ring[CAYMAN_RING_TYPE_DMA1_INDEX]; |
| reg_offset = SDMA1_REGISTER_OFFSET; |
| wb_offset = CAYMAN_WB_DMA1_RPTR_OFFSET; |
| } |
| |
| WREG32(SDMA0_SEM_INCOMPLETE_TIMER_CNTL + reg_offset, 0); |
| WREG32(SDMA0_SEM_WAIT_FAIL_TIMER_CNTL + reg_offset, 0); |
| |
| /* Set ring buffer size in dwords */ |
| rb_bufsz = drm_order(ring->ring_size / 4); |
| rb_cntl = rb_bufsz << 1; |
| #ifdef __BIG_ENDIAN |
| rb_cntl |= SDMA_RB_SWAP_ENABLE | SDMA_RPTR_WRITEBACK_SWAP_ENABLE; |
| #endif |
| WREG32(SDMA0_GFX_RB_CNTL + reg_offset, rb_cntl); |
| |
| /* Initialize the ring buffer's read and write pointers */ |
| WREG32(SDMA0_GFX_RB_RPTR + reg_offset, 0); |
| WREG32(SDMA0_GFX_RB_WPTR + reg_offset, 0); |
| |
| /* set the wb address whether it's enabled or not */ |
| WREG32(SDMA0_GFX_RB_RPTR_ADDR_HI + reg_offset, |
| upper_32_bits(rdev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF); |
| WREG32(SDMA0_GFX_RB_RPTR_ADDR_LO + reg_offset, |
| ((rdev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC)); |
| |
| if (rdev->wb.enabled) |
| rb_cntl |= SDMA_RPTR_WRITEBACK_ENABLE; |
| |
| WREG32(SDMA0_GFX_RB_BASE + reg_offset, ring->gpu_addr >> 8); |
| WREG32(SDMA0_GFX_RB_BASE_HI + reg_offset, ring->gpu_addr >> 40); |
| |
| ring->wptr = 0; |
| WREG32(SDMA0_GFX_RB_WPTR + reg_offset, ring->wptr << 2); |
| |
| ring->rptr = RREG32(SDMA0_GFX_RB_RPTR + reg_offset) >> 2; |
| |
| /* enable DMA RB */ |
| WREG32(SDMA0_GFX_RB_CNTL + reg_offset, rb_cntl | SDMA_RB_ENABLE); |
| |
| ib_cntl = SDMA_IB_ENABLE; |
| #ifdef __BIG_ENDIAN |
| ib_cntl |= SDMA_IB_SWAP_ENABLE; |
| #endif |
| /* enable DMA IBs */ |
| WREG32(SDMA0_GFX_IB_CNTL + reg_offset, ib_cntl); |
| |
| ring->ready = true; |
| |
| r = radeon_ring_test(rdev, ring->idx, ring); |
| if (r) { |
| ring->ready = false; |
| return r; |
| } |
| } |
| |
| radeon_ttm_set_active_vram_size(rdev, rdev->mc.real_vram_size); |
| |
| return 0; |
| } |
| |
| /** |
| * cik_sdma_rlc_resume - setup and start the async dma engines |
| * |
| * @rdev: radeon_device pointer |
| * |
| * Set up the compute DMA queues and enable them (CIK). |
| * Returns 0 for success, error for failure. |
| */ |
| static int cik_sdma_rlc_resume(struct radeon_device *rdev) |
| { |
| /* XXX todo */ |
| return 0; |
| } |
| |
| /** |
| * cik_sdma_load_microcode - load the sDMA ME ucode |
| * |
| * @rdev: radeon_device pointer |
| * |
| * Loads the sDMA0/1 ucode. |
| * Returns 0 for success, -EINVAL if the ucode is not available. |
| */ |
| static int cik_sdma_load_microcode(struct radeon_device *rdev) |
| { |
| const __be32 *fw_data; |
| int i; |
| |
| if (!rdev->sdma_fw) |
| return -EINVAL; |
| |
| /* stop the gfx rings and rlc compute queues */ |
| cik_sdma_gfx_stop(rdev); |
| cik_sdma_rlc_stop(rdev); |
| |
| /* halt the MEs */ |
| cik_sdma_enable(rdev, false); |
| |
| /* sdma0 */ |
| fw_data = (const __be32 *)rdev->sdma_fw->data; |
| WREG32(SDMA0_UCODE_ADDR + SDMA0_REGISTER_OFFSET, 0); |
| for (i = 0; i < CIK_SDMA_UCODE_SIZE; i++) |
| WREG32(SDMA0_UCODE_DATA + SDMA0_REGISTER_OFFSET, be32_to_cpup(fw_data++)); |
| WREG32(SDMA0_UCODE_DATA + SDMA0_REGISTER_OFFSET, CIK_SDMA_UCODE_VERSION); |
| |
| /* sdma1 */ |
| fw_data = (const __be32 *)rdev->sdma_fw->data; |
| WREG32(SDMA0_UCODE_ADDR + SDMA1_REGISTER_OFFSET, 0); |
| for (i = 0; i < CIK_SDMA_UCODE_SIZE; i++) |
| WREG32(SDMA0_UCODE_DATA + SDMA1_REGISTER_OFFSET, be32_to_cpup(fw_data++)); |
| WREG32(SDMA0_UCODE_DATA + SDMA1_REGISTER_OFFSET, CIK_SDMA_UCODE_VERSION); |
| |
| WREG32(SDMA0_UCODE_ADDR + SDMA0_REGISTER_OFFSET, 0); |
| WREG32(SDMA0_UCODE_ADDR + SDMA1_REGISTER_OFFSET, 0); |
| return 0; |
| } |
| |
| /** |
| * cik_sdma_resume - setup and start the async dma engines |
| * |
| * @rdev: radeon_device pointer |
| * |
| * Set up the DMA engines and enable them (CIK). |
| * Returns 0 for success, error for failure. |
| */ |
| static int cik_sdma_resume(struct radeon_device *rdev) |
| { |
| int r; |
| |
| /* Reset dma */ |
| WREG32(SRBM_SOFT_RESET, SOFT_RESET_SDMA | SOFT_RESET_SDMA1); |
| RREG32(SRBM_SOFT_RESET); |
| udelay(50); |
| WREG32(SRBM_SOFT_RESET, 0); |
| RREG32(SRBM_SOFT_RESET); |
| |
| r = cik_sdma_load_microcode(rdev); |
| if (r) |
| return r; |
| |
| /* unhalt the MEs */ |
| cik_sdma_enable(rdev, true); |
| |
| /* start the gfx rings and rlc compute queues */ |
| r = cik_sdma_gfx_resume(rdev); |
| if (r) |
| return r; |
| r = cik_sdma_rlc_resume(rdev); |
| if (r) |
| return r; |
| |
| return 0; |
| } |
| |
| /** |
| * cik_sdma_fini - tear down the async dma engines |
| * |
| * @rdev: radeon_device pointer |
| * |
| * Stop the async dma engines and free the rings (CIK). |
| */ |
| static void cik_sdma_fini(struct radeon_device *rdev) |
| { |
| /* stop the gfx rings and rlc compute queues */ |
| cik_sdma_gfx_stop(rdev); |
| cik_sdma_rlc_stop(rdev); |
| /* halt the MEs */ |
| cik_sdma_enable(rdev, false); |
| radeon_ring_fini(rdev, &rdev->ring[R600_RING_TYPE_DMA_INDEX]); |
| radeon_ring_fini(rdev, &rdev->ring[CAYMAN_RING_TYPE_DMA1_INDEX]); |
| /* XXX - compute dma queue tear down */ |
| } |
| |
| /** |
| * cik_copy_dma - copy pages using the DMA engine |
| * |
| * @rdev: radeon_device pointer |
| * @src_offset: src GPU address |
| * @dst_offset: dst GPU address |
| * @num_gpu_pages: number of GPU pages to xfer |
| * @fence: radeon fence object |
| * |
| * Copy GPU paging using the DMA engine (CIK). |
| * Used by the radeon ttm implementation to move pages if |
| * registered as the asic copy callback. |
| */ |
| int cik_copy_dma(struct radeon_device *rdev, |
| uint64_t src_offset, uint64_t dst_offset, |
| unsigned num_gpu_pages, |
| struct radeon_fence **fence) |
| { |
| struct radeon_semaphore *sem = NULL; |
| int ring_index = rdev->asic->copy.dma_ring_index; |
| struct radeon_ring *ring = &rdev->ring[ring_index]; |
| u32 size_in_bytes, cur_size_in_bytes; |
| int i, num_loops; |
| int r = 0; |
| |
| r = radeon_semaphore_create(rdev, &sem); |
| if (r) { |
| DRM_ERROR("radeon: moving bo (%d).\n", r); |
| return r; |
| } |
| |
| size_in_bytes = (num_gpu_pages << RADEON_GPU_PAGE_SHIFT); |
| num_loops = DIV_ROUND_UP(size_in_bytes, 0x1fffff); |
| r = radeon_ring_lock(rdev, ring, num_loops * 7 + 14); |
| if (r) { |
| DRM_ERROR("radeon: moving bo (%d).\n", r); |
| radeon_semaphore_free(rdev, &sem, NULL); |
| return r; |
| } |
| |
| if (radeon_fence_need_sync(*fence, ring->idx)) { |
| radeon_semaphore_sync_rings(rdev, sem, (*fence)->ring, |
| ring->idx); |
| radeon_fence_note_sync(*fence, ring->idx); |
| } else { |
| radeon_semaphore_free(rdev, &sem, NULL); |
| } |
| |
| for (i = 0; i < num_loops; i++) { |
| cur_size_in_bytes = size_in_bytes; |
| if (cur_size_in_bytes > 0x1fffff) |
| cur_size_in_bytes = 0x1fffff; |
| size_in_bytes -= cur_size_in_bytes; |
| radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_COPY, SDMA_COPY_SUB_OPCODE_LINEAR, 0)); |
| radeon_ring_write(ring, cur_size_in_bytes); |
| radeon_ring_write(ring, 0); /* src/dst endian swap */ |
| radeon_ring_write(ring, src_offset & 0xffffffff); |
| radeon_ring_write(ring, upper_32_bits(src_offset) & 0xffffffff); |
| radeon_ring_write(ring, dst_offset & 0xfffffffc); |
| radeon_ring_write(ring, upper_32_bits(dst_offset) & 0xffffffff); |
| src_offset += cur_size_in_bytes; |
| dst_offset += cur_size_in_bytes; |
| } |
| |
| r = radeon_fence_emit(rdev, fence, ring->idx); |
| if (r) { |
| radeon_ring_unlock_undo(rdev, ring); |
| return r; |
| } |
| |
| radeon_ring_unlock_commit(rdev, ring); |
| radeon_semaphore_free(rdev, &sem, *fence); |
| |
| return r; |
| } |
| |
| /** |
| * cik_sdma_ring_test - simple async dma engine test |
| * |
| * @rdev: radeon_device pointer |
| * @ring: radeon_ring structure holding ring information |
| * |
| * Test the DMA engine by writing using it to write an |
| * value to memory. (CIK). |
| * Returns 0 for success, error for failure. |
| */ |
| int cik_sdma_ring_test(struct radeon_device *rdev, |
| struct radeon_ring *ring) |
| { |
| unsigned i; |
| int r; |
| void __iomem *ptr = (void *)rdev->vram_scratch.ptr; |
| u32 tmp; |
| |
| if (!ptr) { |
| DRM_ERROR("invalid vram scratch pointer\n"); |
| return -EINVAL; |
| } |
| |
| tmp = 0xCAFEDEAD; |
| writel(tmp, ptr); |
| |
| r = radeon_ring_lock(rdev, ring, 4); |
| if (r) { |
| DRM_ERROR("radeon: dma failed to lock ring %d (%d).\n", ring->idx, r); |
| return r; |
| } |
| radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_WRITE, SDMA_WRITE_SUB_OPCODE_LINEAR, 0)); |
| radeon_ring_write(ring, rdev->vram_scratch.gpu_addr & 0xfffffffc); |
| radeon_ring_write(ring, upper_32_bits(rdev->vram_scratch.gpu_addr) & 0xffffffff); |
| radeon_ring_write(ring, 1); /* number of DWs to follow */ |
| radeon_ring_write(ring, 0xDEADBEEF); |
| radeon_ring_unlock_commit(rdev, ring); |
| |
| for (i = 0; i < rdev->usec_timeout; i++) { |
| tmp = readl(ptr); |
| if (tmp == 0xDEADBEEF) |
| break; |
| DRM_UDELAY(1); |
| } |
| |
| if (i < rdev->usec_timeout) { |
| DRM_INFO("ring test on %d succeeded in %d usecs\n", ring->idx, i); |
| } else { |
| DRM_ERROR("radeon: ring %d test failed (0x%08X)\n", |
| ring->idx, tmp); |
| r = -EINVAL; |
| } |
| return r; |
| } |
| |
| /** |
| * cik_sdma_ib_test - test an IB on the DMA engine |
| * |
| * @rdev: radeon_device pointer |
| * @ring: radeon_ring structure holding ring information |
| * |
| * Test a simple IB in the DMA ring (CIK). |
| * Returns 0 on success, error on failure. |
| */ |
| int cik_sdma_ib_test(struct radeon_device *rdev, struct radeon_ring *ring) |
| { |
| struct radeon_ib ib; |
| unsigned i; |
| int r; |
| void __iomem *ptr = (void *)rdev->vram_scratch.ptr; |
| u32 tmp = 0; |
| |
| if (!ptr) { |
| DRM_ERROR("invalid vram scratch pointer\n"); |
| return -EINVAL; |
| } |
| |
| tmp = 0xCAFEDEAD; |
| writel(tmp, ptr); |
| |
| r = radeon_ib_get(rdev, ring->idx, &ib, NULL, 256); |
| if (r) { |
| DRM_ERROR("radeon: failed to get ib (%d).\n", r); |
| return r; |
| } |
| |
| ib.ptr[0] = SDMA_PACKET(SDMA_OPCODE_WRITE, SDMA_WRITE_SUB_OPCODE_LINEAR, 0); |
| ib.ptr[1] = rdev->vram_scratch.gpu_addr & 0xfffffffc; |
| ib.ptr[2] = upper_32_bits(rdev->vram_scratch.gpu_addr) & 0xffffffff; |
| ib.ptr[3] = 1; |
| ib.ptr[4] = 0xDEADBEEF; |
| ib.length_dw = 5; |
| |
| r = radeon_ib_schedule(rdev, &ib, NULL); |
| if (r) { |
| radeon_ib_free(rdev, &ib); |
| DRM_ERROR("radeon: failed to schedule ib (%d).\n", r); |
| return r; |
| } |
| r = radeon_fence_wait(ib.fence, false); |
| if (r) { |
| DRM_ERROR("radeon: fence wait failed (%d).\n", r); |
| return r; |
| } |
| for (i = 0; i < rdev->usec_timeout; i++) { |
| tmp = readl(ptr); |
| if (tmp == 0xDEADBEEF) |
| break; |
| DRM_UDELAY(1); |
| } |
| if (i < rdev->usec_timeout) { |
| DRM_INFO("ib test on ring %d succeeded in %u usecs\n", ib.fence->ring, i); |
| } else { |
| DRM_ERROR("radeon: ib test failed (0x%08X)\n", tmp); |
| r = -EINVAL; |
| } |
| radeon_ib_free(rdev, &ib); |
| return r; |
| } |
| |
| /** |
| * cik_gpu_is_lockup - check if the 3D engine is locked up |
| * |
| * @rdev: radeon_device pointer |
| * @ring: radeon_ring structure holding ring information |
| * |
| * Check if the 3D engine is locked up (CIK). |
| * Returns true if the engine is locked, false if not. |
| */ |
| bool cik_gpu_is_lockup(struct radeon_device *rdev, struct radeon_ring *ring) |
| { |
| u32 srbm_status, srbm_status2; |
| u32 grbm_status, grbm_status2; |
| u32 grbm_status_se0, grbm_status_se1, grbm_status_se2, grbm_status_se3; |
| |
| srbm_status = RREG32(SRBM_STATUS); |
| srbm_status2 = RREG32(SRBM_STATUS2); |
| grbm_status = RREG32(GRBM_STATUS); |
| grbm_status2 = RREG32(GRBM_STATUS2); |
| grbm_status_se0 = RREG32(GRBM_STATUS_SE0); |
| grbm_status_se1 = RREG32(GRBM_STATUS_SE1); |
| grbm_status_se2 = RREG32(GRBM_STATUS_SE2); |
| grbm_status_se3 = RREG32(GRBM_STATUS_SE3); |
| if (!(grbm_status & GUI_ACTIVE)) { |
| radeon_ring_lockup_update(ring); |
| return false; |
| } |
| /* force CP activities */ |
| radeon_ring_force_activity(rdev, ring); |
| return radeon_ring_test_lockup(rdev, ring); |
| } |
| |
| /** |
| * cik_gfx_gpu_soft_reset - soft reset the 3D engine and CPG |
| * |
| * @rdev: radeon_device pointer |
| * |
| * Soft reset the GFX engine and CPG blocks (CIK). |
| * XXX: deal with reseting RLC and CPF |
| * Returns 0 for success. |
| */ |
| static int cik_gfx_gpu_soft_reset(struct radeon_device *rdev) |
| { |
| struct evergreen_mc_save save; |
| u32 grbm_reset = 0; |
| |
| if (!(RREG32(GRBM_STATUS) & GUI_ACTIVE)) |
| return 0; |
| |
| dev_info(rdev->dev, "GPU GFX softreset \n"); |
| dev_info(rdev->dev, " GRBM_STATUS=0x%08X\n", |
| RREG32(GRBM_STATUS)); |
| dev_info(rdev->dev, " GRBM_STATUS2=0x%08X\n", |
| RREG32(GRBM_STATUS2)); |
| dev_info(rdev->dev, " GRBM_STATUS_SE0=0x%08X\n", |
| RREG32(GRBM_STATUS_SE0)); |
| dev_info(rdev->dev, " GRBM_STATUS_SE1=0x%08X\n", |
| RREG32(GRBM_STATUS_SE1)); |
| dev_info(rdev->dev, " GRBM_STATUS_SE2=0x%08X\n", |
| RREG32(GRBM_STATUS_SE2)); |
| dev_info(rdev->dev, " GRBM_STATUS_SE3=0x%08X\n", |
| RREG32(GRBM_STATUS_SE3)); |
| dev_info(rdev->dev, " SRBM_STATUS=0x%08X\n", |
| RREG32(SRBM_STATUS)); |
| dev_info(rdev->dev, " SRBM_STATUS2=0x%08X\n", |
| RREG32(SRBM_STATUS2)); |
| evergreen_mc_stop(rdev, &save); |
| if (radeon_mc_wait_for_idle(rdev)) { |
| dev_warn(rdev->dev, "Wait for MC idle timedout !\n"); |
| } |
| /* Disable CP parsing/prefetching */ |
| WREG32(CP_ME_CNTL, CP_ME_HALT | CP_PFP_HALT | CP_CE_HALT); |
| |
| /* reset all the gfx block and all CPG blocks */ |
| grbm_reset = SOFT_RESET_CPG | SOFT_RESET_GFX; |
| |
| dev_info(rdev->dev, " GRBM_SOFT_RESET=0x%08X\n", grbm_reset); |
| WREG32(GRBM_SOFT_RESET, grbm_reset); |
| (void)RREG32(GRBM_SOFT_RESET); |
| udelay(50); |
| WREG32(GRBM_SOFT_RESET, 0); |
| (void)RREG32(GRBM_SOFT_RESET); |
| /* Wait a little for things to settle down */ |
| udelay(50); |
| dev_info(rdev->dev, " GRBM_STATUS=0x%08X\n", |
| RREG32(GRBM_STATUS)); |
| dev_info(rdev->dev, " GRBM_STATUS2=0x%08X\n", |
| RREG32(GRBM_STATUS2)); |
| dev_info(rdev->dev, " GRBM_STATUS_SE0=0x%08X\n", |
| RREG32(GRBM_STATUS_SE0)); |
| dev_info(rdev->dev, " GRBM_STATUS_SE1=0x%08X\n", |
| RREG32(GRBM_STATUS_SE1)); |
| dev_info(rdev->dev, " GRBM_STATUS_SE2=0x%08X\n", |
| RREG32(GRBM_STATUS_SE2)); |
| dev_info(rdev->dev, " GRBM_STATUS_SE3=0x%08X\n", |
| RREG32(GRBM_STATUS_SE3)); |
| dev_info(rdev->dev, " SRBM_STATUS=0x%08X\n", |
| RREG32(SRBM_STATUS)); |
| dev_info(rdev->dev, " SRBM_STATUS2=0x%08X\n", |
| RREG32(SRBM_STATUS2)); |
| evergreen_mc_resume(rdev, &save); |
| return 0; |
| } |
| |
| /** |
| * cik_compute_gpu_soft_reset - soft reset CPC |
| * |
| * @rdev: radeon_device pointer |
| * |
| * Soft reset the CPC blocks (CIK). |
| * XXX: deal with reseting RLC and CPF |
| * Returns 0 for success. |
| */ |
| static int cik_compute_gpu_soft_reset(struct radeon_device *rdev) |
| { |
| struct evergreen_mc_save save; |
| u32 grbm_reset = 0; |
| |
| dev_info(rdev->dev, "GPU compute softreset \n"); |
| dev_info(rdev->dev, " GRBM_STATUS=0x%08X\n", |
| RREG32(GRBM_STATUS)); |
| dev_info(rdev->dev, " GRBM_STATUS2=0x%08X\n", |
| RREG32(GRBM_STATUS2)); |
| dev_info(rdev->dev, " GRBM_STATUS_SE0=0x%08X\n", |
| RREG32(GRBM_STATUS_SE0)); |
| dev_info(rdev->dev, " GRBM_STATUS_SE1=0x%08X\n", |
| RREG32(GRBM_STATUS_SE1)); |
| dev_info(rdev->dev, " GRBM_STATUS_SE2=0x%08X\n", |
| RREG32(GRBM_STATUS_SE2)); |
| dev_info(rdev->dev, " GRBM_STATUS_SE3=0x%08X\n", |
| RREG32(GRBM_STATUS_SE3)); |
| dev_info(rdev->dev, " SRBM_STATUS=0x%08X\n", |
| RREG32(SRBM_STATUS)); |
| dev_info(rdev->dev, " SRBM_STATUS2=0x%08X\n", |
| RREG32(SRBM_STATUS2)); |
| evergreen_mc_stop(rdev, &save); |
| if (radeon_mc_wait_for_idle(rdev)) { |
| dev_warn(rdev->dev, "Wait for MC idle timedout !\n"); |
| } |
| /* Disable CP parsing/prefetching */ |
| WREG32(CP_MEC_CNTL, MEC_ME1_HALT | MEC_ME2_HALT); |
| |
| /* reset all the CPC blocks */ |
| grbm_reset = SOFT_RESET_CPG; |
| |
| dev_info(rdev->dev, " GRBM_SOFT_RESET=0x%08X\n", grbm_reset); |
| WREG32(GRBM_SOFT_RESET, grbm_reset); |
| (void)RREG32(GRBM_SOFT_RESET); |
| udelay(50); |
| WREG32(GRBM_SOFT_RESET, 0); |
| (void)RREG32(GRBM_SOFT_RESET); |
| /* Wait a little for things to settle down */ |
| udelay(50); |
| dev_info(rdev->dev, " GRBM_STATUS=0x%08X\n", |
| RREG32(GRBM_STATUS)); |
| dev_info(rdev->dev, " GRBM_STATUS2=0x%08X\n", |
| RREG32(GRBM_STATUS2)); |
| dev_info(rdev->dev, " GRBM_STATUS_SE0=0x%08X\n", |
| RREG32(GRBM_STATUS_SE0)); |
| dev_info(rdev->dev, " GRBM_STATUS_SE1=0x%08X\n", |
| RREG32(GRBM_STATUS_SE1)); |
| dev_info(rdev->dev, " GRBM_STATUS_SE2=0x%08X\n", |
| RREG32(GRBM_STATUS_SE2)); |
| dev_info(rdev->dev, " GRBM_STATUS_SE3=0x%08X\n", |
| RREG32(GRBM_STATUS_SE3)); |
| dev_info(rdev->dev, " SRBM_STATUS=0x%08X\n", |
| RREG32(SRBM_STATUS)); |
| dev_info(rdev->dev, " SRBM_STATUS2=0x%08X\n", |
| RREG32(SRBM_STATUS2)); |
| evergreen_mc_resume(rdev, &save); |
| return 0; |
| } |
| |
| /** |
| * cik_asic_reset - soft reset compute and gfx |
| * |
| * @rdev: radeon_device pointer |
| * |
| * Soft reset the CPC blocks (CIK). |
| * XXX: make this more fine grained and only reset |
| * what is necessary. |
| * Returns 0 for success. |
| */ |
| int cik_asic_reset(struct radeon_device *rdev) |
| { |
| int r; |
| |
| r = cik_compute_gpu_soft_reset(rdev); |
| if (r) |
| dev_info(rdev->dev, "Compute reset failed!\n"); |
| |
| return cik_gfx_gpu_soft_reset(rdev); |
| } |
| |
| /** |
| * cik_sdma_is_lockup - Check if the DMA engine is locked up |
| * |
| * @rdev: radeon_device pointer |
| * @ring: radeon_ring structure holding ring information |
| * |
| * Check if the async DMA engine is locked up (CIK). |
| * Returns true if the engine appears to be locked up, false if not. |
| */ |
| bool cik_sdma_is_lockup(struct radeon_device *rdev, struct radeon_ring *ring) |
| { |
| u32 dma_status_reg; |
| |
| if (ring->idx == R600_RING_TYPE_DMA_INDEX) |
| dma_status_reg = RREG32(SDMA0_STATUS_REG + SDMA0_REGISTER_OFFSET); |
| else |
| dma_status_reg = RREG32(SDMA0_STATUS_REG + SDMA1_REGISTER_OFFSET); |
| if (dma_status_reg & SDMA_IDLE) { |
| radeon_ring_lockup_update(ring); |
| return false; |
| } |
| /* force ring activities */ |
| radeon_ring_force_activity(rdev, ring); |
| return radeon_ring_test_lockup(rdev, ring); |
| } |
| |
| /* MC */ |
| /** |
| * cik_mc_program - program the GPU memory controller |
| * |
| * @rdev: radeon_device pointer |
| * |
| * Set the location of vram, gart, and AGP in the GPU's |
| * physical address space (CIK). |
| */ |
| static void cik_mc_program(struct radeon_device *rdev) |
| { |
| struct evergreen_mc_save save; |
| u32 tmp; |
| int i, j; |
| |
| /* Initialize HDP */ |
| for (i = 0, j = 0; i < 32; i++, j += 0x18) { |
| WREG32((0x2c14 + j), 0x00000000); |
| WREG32((0x2c18 + j), 0x00000000); |
| WREG32((0x2c1c + j), 0x00000000); |
| WREG32((0x2c20 + j), 0x00000000); |
| WREG32((0x2c24 + j), 0x00000000); |
| } |
| WREG32(HDP_REG_COHERENCY_FLUSH_CNTL, 0); |
| |
| evergreen_mc_stop(rdev, &save); |
| if (radeon_mc_wait_for_idle(rdev)) { |
| dev_warn(rdev->dev, "Wait for MC idle timedout !\n"); |
| } |
| /* Lockout access through VGA aperture*/ |
| WREG32(VGA_HDP_CONTROL, VGA_MEMORY_DISABLE); |
| /* Update configuration */ |
| WREG32(MC_VM_SYSTEM_APERTURE_LOW_ADDR, |
| rdev->mc.vram_start >> 12); |
| WREG32(MC_VM_SYSTEM_APERTURE_HIGH_ADDR, |
| rdev->mc.vram_end >> 12); |
| WREG32(MC_VM_SYSTEM_APERTURE_DEFAULT_ADDR, |
| rdev->vram_scratch.gpu_addr >> 12); |
| tmp = ((rdev->mc.vram_end >> 24) & 0xFFFF) << 16; |
| tmp |= ((rdev->mc.vram_start >> 24) & 0xFFFF); |
| WREG32(MC_VM_FB_LOCATION, tmp); |
| /* XXX double check these! */ |
| WREG32(HDP_NONSURFACE_BASE, (rdev->mc.vram_start >> 8)); |
| WREG32(HDP_NONSURFACE_INFO, (2 << 7) | (1 << 30)); |
| WREG32(HDP_NONSURFACE_SIZE, 0x3FFFFFFF); |
| WREG32(MC_VM_AGP_BASE, 0); |
| WREG32(MC_VM_AGP_TOP, 0x0FFFFFFF); |
| WREG32(MC_VM_AGP_BOT, 0x0FFFFFFF); |
| if (radeon_mc_wait_for_idle(rdev)) { |
| dev_warn(rdev->dev, "Wait for MC idle timedout !\n"); |
| } |
| evergreen_mc_resume(rdev, &save); |
| /* we need to own VRAM, so turn off the VGA renderer here |
| * to stop it overwriting our objects */ |
| rv515_vga_render_disable(rdev); |
| } |
| |
| /** |
| * cik_mc_init - initialize the memory controller driver params |
| * |
| * @rdev: radeon_device pointer |
| * |
| * Look up the amount of vram, vram width, and decide how to place |
| * vram and gart within the GPU's physical address space (CIK). |
| * Returns 0 for success. |
| */ |
| static int cik_mc_init(struct radeon_device *rdev) |
| { |
| u32 tmp; |
| int chansize, numchan; |
| |
| /* Get VRAM informations */ |
| rdev->mc.vram_is_ddr = true; |
| tmp = RREG32(MC_ARB_RAMCFG); |
| if (tmp & CHANSIZE_MASK) { |
| chansize = 64; |
| } else { |
| chansize = 32; |
| } |
| tmp = RREG32(MC_SHARED_CHMAP); |
| switch ((tmp & NOOFCHAN_MASK) >> NOOFCHAN_SHIFT) { |
| case 0: |
| default: |
| numchan = 1; |
| break; |
| case 1: |
| numchan = 2; |
| break; |
| case 2: |
| numchan = 4; |
| break; |
| case 3: |
| numchan = 8; |
| break; |
| case 4: |
| numchan = 3; |
| break; |
| case 5: |
| numchan = 6; |
| break; |
| case 6: |
| numchan = 10; |
| break; |
| case 7: |
| numchan = 12; |
| break; |
| case 8: |
| numchan = 16; |
| break; |
| } |
| rdev->mc.vram_width = numchan * chansize; |
| /* Could aper size report 0 ? */ |
| rdev->mc.aper_base = pci_resource_start(rdev->pdev, 0); |
| rdev->mc.aper_size = pci_resource_len(rdev->pdev, 0); |
| /* size in MB on si */ |
| rdev->mc.mc_vram_size = RREG32(CONFIG_MEMSIZE) * 1024 * 1024; |
| rdev->mc.real_vram_size = RREG32(CONFIG_MEMSIZE) * 1024 * 1024; |
| rdev->mc.visible_vram_size = rdev->mc.aper_size; |
| si_vram_gtt_location(rdev, &rdev->mc); |
| radeon_update_bandwidth_info(rdev); |
| |
| return 0; |
| } |
| |
| /* |
| * GART |
| * VMID 0 is the physical GPU addresses as used by the kernel. |
| * VMIDs 1-15 are used for userspace clients and are handled |
| * by the radeon vm/hsa code. |
| */ |
| /** |
| * cik_pcie_gart_tlb_flush - gart tlb flush callback |
| * |
| * @rdev: radeon_device pointer |
| * |
| * Flush the TLB for the VMID 0 page table (CIK). |
| */ |
| void cik_pcie_gart_tlb_flush(struct radeon_device *rdev) |
| { |
| /* flush hdp cache */ |
| WREG32(HDP_MEM_COHERENCY_FLUSH_CNTL, 0); |
| |
| /* bits 0-15 are the VM contexts0-15 */ |
| WREG32(VM_INVALIDATE_REQUEST, 0x1); |
| } |
| |
| /** |
| * cik_pcie_gart_enable - gart enable |
| * |
| * @rdev: radeon_device pointer |
| * |
| * This sets up the TLBs, programs the page tables for VMID0, |
| * sets up the hw for VMIDs 1-15 which are allocated on |
| * demand, and sets up the global locations for the LDS, GDS, |
| * and GPUVM for FSA64 clients (CIK). |
| * Returns 0 for success, errors for failure. |
| */ |
| static int cik_pcie_gart_enable(struct radeon_device *rdev) |
| { |
| int r, i; |
| |
| if (rdev->gart.robj == NULL) { |
| dev_err(rdev->dev, "No VRAM object for PCIE GART.\n"); |
| return -EINVAL; |
| } |
| r = radeon_gart_table_vram_pin(rdev); |
| if (r) |
| return r; |
| radeon_gart_restore(rdev); |
| /* Setup TLB control */ |
| WREG32(MC_VM_MX_L1_TLB_CNTL, |
| (0xA << 7) | |
| ENABLE_L1_TLB | |
| SYSTEM_ACCESS_MODE_NOT_IN_SYS | |
| ENABLE_ADVANCED_DRIVER_MODEL | |
| SYSTEM_APERTURE_UNMAPPED_ACCESS_PASS_THRU); |
| /* Setup L2 cache */ |
| WREG32(VM_L2_CNTL, ENABLE_L2_CACHE | |
| ENABLE_L2_FRAGMENT_PROCESSING | |
| ENABLE_L2_PTE_CACHE_LRU_UPDATE_BY_WRITE | |
| ENABLE_L2_PDE0_CACHE_LRU_UPDATE_BY_WRITE | |
| EFFECTIVE_L2_QUEUE_SIZE(7) | |
| CONTEXT1_IDENTITY_ACCESS_MODE(1)); |
| WREG32(VM_L2_CNTL2, INVALIDATE_ALL_L1_TLBS | INVALIDATE_L2_CACHE); |
| WREG32(VM_L2_CNTL3, L2_CACHE_BIGK_ASSOCIATIVITY | |
| L2_CACHE_BIGK_FRAGMENT_SIZE(6)); |
| /* setup context0 */ |
| WREG32(VM_CONTEXT0_PAGE_TABLE_START_ADDR, rdev->mc.gtt_start >> 12); |
| WREG32(VM_CONTEXT0_PAGE_TABLE_END_ADDR, rdev->mc.gtt_end >> 12); |
| WREG32(VM_CONTEXT0_PAGE_TABLE_BASE_ADDR, rdev->gart.table_addr >> 12); |
| WREG32(VM_CONTEXT0_PROTECTION_FAULT_DEFAULT_ADDR, |
| (u32)(rdev->dummy_page.addr >> 12)); |
| WREG32(VM_CONTEXT0_CNTL2, 0); |
| WREG32(VM_CONTEXT0_CNTL, (ENABLE_CONTEXT | PAGE_TABLE_DEPTH(0) | |
| RANGE_PROTECTION_FAULT_ENABLE_DEFAULT)); |
| |
| WREG32(0x15D4, 0); |
| WREG32(0x15D8, 0); |
| WREG32(0x15DC, 0); |
| |
| /* empty context1-15 */ |
| /* FIXME start with 4G, once using 2 level pt switch to full |
| * vm size space |
| */ |
| /* set vm size, must be a multiple of 4 */ |
| WREG32(VM_CONTEXT1_PAGE_TABLE_START_ADDR, 0); |
| WREG32(VM_CONTEXT1_PAGE_TABLE_END_ADDR, rdev->vm_manager.max_pfn); |
| for (i = 1; i < 16; i++) { |
| if (i < 8) |
| WREG32(VM_CONTEXT0_PAGE_TABLE_BASE_ADDR + (i << 2), |
| rdev->gart.table_addr >> 12); |
| else |
| WREG32(VM_CONTEXT8_PAGE_TABLE_BASE_ADDR + ((i - 8) << 2), |
| rdev->gart.table_addr >> 12); |
| } |
| |
| /* enable context1-15 */ |
| WREG32(VM_CONTEXT1_PROTECTION_FAULT_DEFAULT_ADDR, |
| (u32)(rdev->dummy_page.addr >> 12)); |
| WREG32(VM_CONTEXT1_CNTL2, 4); |
| WREG32(VM_CONTEXT1_CNTL, ENABLE_CONTEXT | PAGE_TABLE_DEPTH(1) | |
| RANGE_PROTECTION_FAULT_ENABLE_INTERRUPT | |
| RANGE_PROTECTION_FAULT_ENABLE_DEFAULT | |
| DUMMY_PAGE_PROTECTION_FAULT_ENABLE_INTERRUPT | |
| DUMMY_PAGE_PROTECTION_FAULT_ENABLE_DEFAULT | |
| PDE0_PROTECTION_FAULT_ENABLE_INTERRUPT | |
| PDE0_PROTECTION_FAULT_ENABLE_DEFAULT | |
| VALID_PROTECTION_FAULT_ENABLE_INTERRUPT | |
| VALID_PROTECTION_FAULT_ENABLE_DEFAULT | |
| READ_PROTECTION_FAULT_ENABLE_INTERRUPT | |
| READ_PROTECTION_FAULT_ENABLE_DEFAULT | |
| WRITE_PROTECTION_FAULT_ENABLE_INTERRUPT | |
| WRITE_PROTECTION_FAULT_ENABLE_DEFAULT); |
| |
| /* TC cache setup ??? */ |
| WREG32(TC_CFG_L1_LOAD_POLICY0, 0); |
| WREG32(TC_CFG_L1_LOAD_POLICY1, 0); |
| WREG32(TC_CFG_L1_STORE_POLICY, 0); |
| |
| WREG32(TC_CFG_L2_LOAD_POLICY0, 0); |
| WREG32(TC_CFG_L2_LOAD_POLICY1, 0); |
| WREG32(TC_CFG_L2_STORE_POLICY0, 0); |
| WREG32(TC_CFG_L2_STORE_POLICY1, 0); |
| WREG32(TC_CFG_L2_ATOMIC_POLICY, 0); |
| |
| WREG32(TC_CFG_L1_VOLATILE, 0); |
| WREG32(TC_CFG_L2_VOLATILE, 0); |
| |
| if (rdev->family == CHIP_KAVERI) { |
| u32 tmp = RREG32(CHUB_CONTROL); |
| tmp &= ~BYPASS_VM; |
| WREG32(CHUB_CONTROL, tmp); |
| } |
| |
| /* XXX SH_MEM regs */ |
| /* where to put LDS, scratch, GPUVM in FSA64 space */ |
| for (i = 0; i < 16; i++) { |
| WREG32(SRBM_GFX_CNTL, VMID(i)); |
| /* CP and shaders */ |
| WREG32(SH_MEM_CONFIG, 0); |
| WREG32(SH_MEM_APE1_BASE, 1); |
| WREG32(SH_MEM_APE1_LIMIT, 0); |
| WREG32(SH_MEM_BASES, 0); |
| /* SDMA GFX */ |
| WREG32(SDMA0_GFX_VIRTUAL_ADDR + SDMA0_REGISTER_OFFSET, 0); |
| WREG32(SDMA0_GFX_APE1_CNTL + SDMA0_REGISTER_OFFSET, 0); |
| WREG32(SDMA0_GFX_VIRTUAL_ADDR + SDMA1_REGISTER_OFFSET, 0); |
| WREG32(SDMA0_GFX_APE1_CNTL + SDMA1_REGISTER_OFFSET, 0); |
| /* XXX SDMA RLC - todo */ |
| } |
| WREG32(SRBM_GFX_CNTL, 0); |
| |
| cik_pcie_gart_tlb_flush(rdev); |
| DRM_INFO("PCIE GART of %uM enabled (table at 0x%016llX).\n", |
| (unsigned)(rdev->mc.gtt_size >> 20), |
| (unsigned long long)rdev->gart.table_addr); |
| rdev->gart.ready = true; |
| return 0; |
| } |
| |
| /** |
| * cik_pcie_gart_disable - gart disable |
| * |
| * @rdev: radeon_device pointer |
| * |
| * This disables all VM page table (CIK). |
| */ |
| static void cik_pcie_gart_disable(struct radeon_device *rdev) |
| { |
| /* Disable all tables */ |
| WREG32(VM_CONTEXT0_CNTL, 0); |
| WREG32(VM_CONTEXT1_CNTL, 0); |
| /* Setup TLB control */ |
| WREG32(MC_VM_MX_L1_TLB_CNTL, SYSTEM_ACCESS_MODE_NOT_IN_SYS | |
| SYSTEM_APERTURE_UNMAPPED_ACCESS_PASS_THRU); |
| /* Setup L2 cache */ |
| WREG32(VM_L2_CNTL, |
| ENABLE_L2_FRAGMENT_PROCESSING | |
| ENABLE_L2_PTE_CACHE_LRU_UPDATE_BY_WRITE | |
| ENABLE_L2_PDE0_CACHE_LRU_UPDATE_BY_WRITE | |
| EFFECTIVE_L2_QUEUE_SIZE(7) | |
| CONTEXT1_IDENTITY_ACCESS_MODE(1)); |
| WREG32(VM_L2_CNTL2, 0); |
| WREG32(VM_L2_CNTL3, L2_CACHE_BIGK_ASSOCIATIVITY | |
| L2_CACHE_BIGK_FRAGMENT_SIZE(6)); |
| radeon_gart_table_vram_unpin(rdev); |
| } |
| |
| /** |
| * cik_pcie_gart_fini - vm fini callback |
| * |
| * @rdev: radeon_device pointer |
| * |
| * Tears down the driver GART/VM setup (CIK). |
| */ |
| static void cik_pcie_gart_fini(struct radeon_device *rdev) |
| { |
| cik_pcie_gart_disable(rdev); |
| radeon_gart_table_vram_free(rdev); |
| radeon_gart_fini(rdev); |
| } |
| |
| /* vm parser */ |
| /** |
| * cik_ib_parse - vm ib_parse callback |
| * |
| * @rdev: radeon_device pointer |
| * @ib: indirect buffer pointer |
| * |
| * CIK uses hw IB checking so this is a nop (CIK). |
| */ |
| int cik_ib_parse(struct radeon_device *rdev, struct radeon_ib *ib) |
| { |
| return 0; |
| } |
| |
| /* |
| * vm |
| * VMID 0 is the physical GPU addresses as used by the kernel. |
| * VMIDs 1-15 are used for userspace clients and are handled |
| * by the radeon vm/hsa code. |
| */ |
| /** |
| * cik_vm_init - cik vm init callback |
| * |
| * @rdev: radeon_device pointer |
| * |
| * Inits cik specific vm parameters (number of VMs, base of vram for |
| * VMIDs 1-15) (CIK). |
| * Returns 0 for success. |
| */ |
| int cik_vm_init(struct radeon_device *rdev) |
| { |
| /* number of VMs */ |
| rdev->vm_manager.nvm = 16; |
| /* base offset of vram pages */ |
| if (rdev->flags & RADEON_IS_IGP) { |
| u64 tmp = RREG32(MC_VM_FB_OFFSET); |
| tmp <<= 22; |
| rdev->vm_manager.vram_base_offset = tmp; |
| } else |
| rdev->vm_manager.vram_base_offset = 0; |
| |
| return 0; |
| } |
| |
| /** |
| * cik_vm_fini - cik vm fini callback |
| * |
| * @rdev: radeon_device pointer |
| * |
| * Tear down any asic specific VM setup (CIK). |
| */ |
| void cik_vm_fini(struct radeon_device *rdev) |
| { |
| } |
| |
| /** |
| * cik_vm_flush - cik vm flush using the CP |
| * |
| * @rdev: radeon_device pointer |
| * |
| * Update the page table base and flush the VM TLB |
| * using the CP (CIK). |
| */ |
| void cik_vm_flush(struct radeon_device *rdev, int ridx, struct radeon_vm *vm) |
| { |
| struct radeon_ring *ring = &rdev->ring[ridx]; |
| |
| if (vm == NULL) |
| return; |
| |
| radeon_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, 3)); |
| radeon_ring_write(ring, (WRITE_DATA_ENGINE_SEL(0) | |
| WRITE_DATA_DST_SEL(0))); |
| if (vm->id < 8) { |
| radeon_ring_write(ring, |
| (VM_CONTEXT0_PAGE_TABLE_BASE_ADDR + (vm->id << 2)) >> 2); |
| } else { |
| radeon_ring_write(ring, |
| (VM_CONTEXT8_PAGE_TABLE_BASE_ADDR + ((vm->id - 8) << 2)) >> 2); |
| } |
| radeon_ring_write(ring, 0); |
| radeon_ring_write(ring, vm->pd_gpu_addr >> 12); |
| |
| /* update SH_MEM_* regs */ |
| radeon_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, 3)); |
| radeon_ring_write(ring, (WRITE_DATA_ENGINE_SEL(0) | |
| WRITE_DATA_DST_SEL(0))); |
| radeon_ring_write(ring, SRBM_GFX_CNTL >> 2); |
| radeon_ring_write(ring, 0); |
| radeon_ring_write(ring, VMID(vm->id)); |
| |
| radeon_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, 6)); |
| radeon_ring_write(ring, (WRITE_DATA_ENGINE_SEL(0) | |
| WRITE_DATA_DST_SEL(0))); |
| radeon_ring_write(ring, SH_MEM_BASES >> 2); |
| radeon_ring_write(ring, 0); |
| |
| radeon_ring_write(ring, 0); /* SH_MEM_BASES */ |
| radeon_ring_write(ring, 0); /* SH_MEM_CONFIG */ |
| radeon_ring_write(ring, 1); /* SH_MEM_APE1_BASE */ |
| radeon_ring_write(ring, 0); /* SH_MEM_APE1_LIMIT */ |
| |
| radeon_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, 3)); |
| radeon_ring_write(ring, (WRITE_DATA_ENGINE_SEL(0) | |
| WRITE_DATA_DST_SEL(0))); |
| radeon_ring_write(ring, SRBM_GFX_CNTL >> 2); |
| radeon_ring_write(ring, 0); |
| radeon_ring_write(ring, VMID(0)); |
| |
| /* HDP flush */ |
| /* We should be using the WAIT_REG_MEM packet here like in |
| * cik_fence_ring_emit(), but it causes the CP to hang in this |
| * context... |
| */ |
| radeon_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, 3)); |
| radeon_ring_write(ring, (WRITE_DATA_ENGINE_SEL(0) | |
| WRITE_DATA_DST_SEL(0))); |
| radeon_ring_write(ring, HDP_MEM_COHERENCY_FLUSH_CNTL >> 2); |
| radeon_ring_write(ring, 0); |
| radeon_ring_write(ring, 0); |
| |
| /* bits 0-15 are the VM contexts0-15 */ |
| radeon_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, 3)); |
| radeon_ring_write(ring, (WRITE_DATA_ENGINE_SEL(0) | |
| WRITE_DATA_DST_SEL(0))); |
| radeon_ring_write(ring, VM_INVALIDATE_REQUEST >> 2); |
| radeon_ring_write(ring, 0); |
| radeon_ring_write(ring, 1 << vm->id); |
| |
| /* sync PFP to ME, otherwise we might get invalid PFP reads */ |
| radeon_ring_write(ring, PACKET3(PACKET3_PFP_SYNC_ME, 0)); |
| radeon_ring_write(ring, 0x0); |
| } |
| |
| /* |
| * RLC |
| * The RLC is a multi-purpose microengine that handles a |
| * variety of functions, the most important of which is |
| * the interrupt controller. |
| */ |
| /** |
| * cik_rlc_stop - stop the RLC ME |
| * |
| * @rdev: radeon_device pointer |
| * |
| * Halt the RLC ME (MicroEngine) (CIK). |
| */ |
| static void cik_rlc_stop(struct radeon_device *rdev) |
| { |
| int i, j, k; |
| u32 mask, tmp; |
| |
| tmp = RREG32(CP_INT_CNTL_RING0); |
| tmp &= ~(CNTX_BUSY_INT_ENABLE | CNTX_EMPTY_INT_ENABLE); |
| WREG32(CP_INT_CNTL_RING0, tmp); |
| |
| RREG32(CB_CGTT_SCLK_CTRL); |
| RREG32(CB_CGTT_SCLK_CTRL); |
| RREG32(CB_CGTT_SCLK_CTRL); |
| RREG32(CB_CGTT_SCLK_CTRL); |
| |
| tmp = RREG32(RLC_CGCG_CGLS_CTRL) & 0xfffffffc; |
| WREG32(RLC_CGCG_CGLS_CTRL, tmp); |
| |
| WREG32(RLC_CNTL, 0); |
| |
| for (i = 0; i < rdev->config.cik.max_shader_engines; i++) { |
| for (j = 0; j < rdev->config.cik.max_sh_per_se; j++) { |
| cik_select_se_sh(rdev, i, j); |
| for (k = 0; k < rdev->usec_timeout; k++) { |
| if (RREG32(RLC_SERDES_CU_MASTER_BUSY) == 0) |
| break; |
| udelay(1); |
| } |
| } |
| } |
| cik_select_se_sh(rdev, 0xffffffff, 0xffffffff); |
| |
| mask = SE_MASTER_BUSY_MASK | GC_MASTER_BUSY | TC0_MASTER_BUSY | TC1_MASTER_BUSY; |
| for (k = 0; k < rdev->usec_timeout; k++) { |
| if ((RREG32(RLC_SERDES_NONCU_MASTER_BUSY) & mask) == 0) |
| break; |
| udelay(1); |
| } |
| } |
| |
| /** |
| * cik_rlc_start - start the RLC ME |
| * |
| * @rdev: radeon_device pointer |
| * |
| * Unhalt the RLC ME (MicroEngine) (CIK). |
| */ |
| static void cik_rlc_start(struct radeon_device *rdev) |
| { |
| u32 tmp; |
| |
| WREG32(RLC_CNTL, RLC_ENABLE); |
| |
| tmp = RREG32(CP_INT_CNTL_RING0); |
| tmp |= (CNTX_BUSY_INT_ENABLE | CNTX_EMPTY_INT_ENABLE); |
| WREG32(CP_INT_CNTL_RING0, tmp); |
| |
| udelay(50); |
| } |
| |
| /** |
| * cik_rlc_resume - setup the RLC hw |
| * |
| * @rdev: radeon_device pointer |
| * |
| * Initialize the RLC registers, load the ucode, |
| * and start the RLC (CIK). |
| * Returns 0 for success, -EINVAL if the ucode is not available. |
| */ |
| static int cik_rlc_resume(struct radeon_device *rdev) |
| { |
| u32 i, size; |
| u32 clear_state_info[3]; |
| const __be32 *fw_data; |
| |
| if (!rdev->rlc_fw) |
| return -EINVAL; |
| |
| switch (rdev->family) { |
| case CHIP_BONAIRE: |
| default: |
| size = BONAIRE_RLC_UCODE_SIZE; |
| break; |
| case CHIP_KAVERI: |
| size = KV_RLC_UCODE_SIZE; |
| break; |
| case CHIP_KABINI: |
| size = KB_RLC_UCODE_SIZE; |
| break; |
| } |
| |
| cik_rlc_stop(rdev); |
| |
| WREG32(GRBM_SOFT_RESET, SOFT_RESET_RLC); |
| RREG32(GRBM_SOFT_RESET); |
| udelay(50); |
| WREG32(GRBM_SOFT_RESET, 0); |
| RREG32(GRBM_SOFT_RESET); |
| udelay(50); |
| |
| WREG32(RLC_LB_CNTR_INIT, 0); |
| WREG32(RLC_LB_CNTR_MAX, 0x00008000); |
| |
| cik_select_se_sh(rdev, 0xffffffff, 0xffffffff); |
| WREG32(RLC_LB_INIT_CU_MASK, 0xffffffff); |
| WREG32(RLC_LB_PARAMS, 0x00600408); |
| WREG32(RLC_LB_CNTL, 0x80000004); |
| |
| WREG32(RLC_MC_CNTL, 0); |
| WREG32(RLC_UCODE_CNTL, 0); |
| |
| fw_data = (const __be32 *)rdev->rlc_fw->data; |
| WREG32(RLC_GPM_UCODE_ADDR, 0); |
| for (i = 0; i < size; i++) |
| WREG32(RLC_GPM_UCODE_DATA, be32_to_cpup(fw_data++)); |
| WREG32(RLC_GPM_UCODE_ADDR, 0); |
| |
| /* XXX */ |
| clear_state_info[0] = 0;//upper_32_bits(rdev->rlc.save_restore_gpu_addr); |
| clear_state_info[1] = 0;//rdev->rlc.save_restore_gpu_addr; |
| clear_state_info[2] = 0;//cik_default_size; |
| WREG32(RLC_GPM_SCRATCH_ADDR, 0x3d); |
| for (i = 0; i < 3; i++) |
| WREG32(RLC_GPM_SCRATCH_DATA, clear_state_info[i]); |
| WREG32(RLC_DRIVER_DMA_STATUS, 0); |
| |
| cik_rlc_start(rdev); |
| |
| return 0; |
| } |
| |
| /* |
| * Interrupts |
| * Starting with r6xx, interrupts are handled via a ring buffer. |
| * Ring buffers are areas of GPU accessible memory that the GPU |
| * writes interrupt vectors into and the host reads vectors out of. |
| * There is a rptr (read pointer) that determines where the |
| * host is currently reading, and a wptr (write pointer) |
| * which determines where the GPU has written. When the |
| * pointers are equal, the ring is idle. When the GPU |
| * writes vectors to the ring buffer, it increments the |
| * wptr. When there is an interrupt, the host then starts |
| * fetching commands and processing them until the pointers are |
| * equal again at which point it updates the rptr. |
| */ |
| |
| /** |
| * cik_enable_interrupts - Enable the interrupt ring buffer |
| * |
| * @rdev: radeon_device pointer |
| * |
| * Enable the interrupt ring buffer (CIK). |
| */ |
| static void cik_enable_interrupts(struct radeon_device *rdev) |
| { |
| u32 ih_cntl = RREG32(IH_CNTL); |
| u32 ih_rb_cntl = RREG32(IH_RB_CNTL); |
| |
| ih_cntl |= ENABLE_INTR; |
| ih_rb_cntl |= IH_RB_ENABLE; |
| WREG32(IH_CNTL, ih_cntl); |
| WREG32(IH_RB_CNTL, ih_rb_cntl); |
| rdev->ih.enabled = true; |
| } |
| |
| /** |
| * cik_disable_interrupts - Disable the interrupt ring buffer |
| * |
| * @rdev: radeon_device pointer |
| * |
| * Disable the interrupt ring buffer (CIK). |
| */ |
| static void cik_disable_interrupts(struct radeon_device *rdev) |
| { |
| u32 ih_rb_cntl = RREG32(IH_RB_CNTL); |
| u32 ih_cntl = RREG32(IH_CNTL); |
| |
| ih_rb_cntl &= ~IH_RB_ENABLE; |
| ih_cntl &= ~ENABLE_INTR; |
| WREG32(IH_RB_CNTL, ih_rb_cntl); |
| WREG32(IH_CNTL, ih_cntl); |
| /* set rptr, wptr to 0 */ |
| WREG32(IH_RB_RPTR, 0); |
| WREG32(IH_RB_WPTR, 0); |
| rdev->ih.enabled = false; |
| rdev->ih.rptr = 0; |
| } |
| |
| /** |
| * cik_disable_interrupt_state - Disable all interrupt sources |
| * |
| * @rdev: radeon_device pointer |
| * |
| * Clear all interrupt enable bits used by the driver (CIK). |
| */ |
| static void cik_disable_interrupt_state(struct radeon_device *rdev) |
| { |
| u32 tmp; |
| |
| /* gfx ring */ |
| WREG32(CP_INT_CNTL_RING0, CNTX_BUSY_INT_ENABLE | CNTX_EMPTY_INT_ENABLE); |
| /* sdma */ |
| tmp = RREG32(SDMA0_CNTL + SDMA0_REGISTER_OFFSET) & ~TRAP_ENABLE; |
| WREG32(SDMA0_CNTL + SDMA0_REGISTER_OFFSET, tmp); |
| tmp = RREG32(SDMA0_CNTL + SDMA1_REGISTER_OFFSET) & ~TRAP_ENABLE; |
| WREG32(SDMA0_CNTL + SDMA1_REGISTER_OFFSET, tmp); |
| /* compute queues */ |
| WREG32(CP_ME1_PIPE0_INT_CNTL, 0); |
| WREG32(CP_ME1_PIPE1_INT_CNTL, 0); |
| WREG32(CP_ME1_PIPE2_INT_CNTL, 0); |
| WREG32(CP_ME1_PIPE3_INT_CNTL, 0); |
| WREG32(CP_ME2_PIPE0_INT_CNTL, 0); |
| WREG32(CP_ME2_PIPE1_INT_CNTL, 0); |
| WREG32(CP_ME2_PIPE2_INT_CNTL, 0); |
| WREG32(CP_ME2_PIPE3_INT_CNTL, 0); |
| /* grbm */ |
| WREG32(GRBM_INT_CNTL, 0); |
| /* vline/vblank, etc. */ |
| WREG32(LB_INTERRUPT_MASK + EVERGREEN_CRTC0_REGISTER_OFFSET, 0); |
| WREG32(LB_INTERRUPT_MASK + EVERGREEN_CRTC1_REGISTER_OFFSET, 0); |
| if (rdev->num_crtc >= 4) { |
| WREG32(LB_INTERRUPT_MASK + EVERGREEN_CRTC2_REGISTER_OFFSET, 0); |
| WREG32(LB_INTERRUPT_MASK + EVERGREEN_CRTC3_REGISTER_OFFSET, 0); |
| } |
| if (rdev->num_crtc >= 6) { |
| WREG32(LB_INTERRUPT_MASK + EVERGREEN_CRTC4_REGISTER_OFFSET, 0); |
| WREG32(LB_INTERRUPT_MASK + EVERGREEN_CRTC5_REGISTER_OFFSET, 0); |
| } |
| |
| /* dac hotplug */ |
| WREG32(DAC_AUTODETECT_INT_CONTROL, 0); |
| |
| /* digital hotplug */ |
| tmp = RREG32(DC_HPD1_INT_CONTROL) & DC_HPDx_INT_POLARITY; |
| WREG32(DC_HPD1_INT_CONTROL, tmp); |
| tmp = RREG32(DC_HPD2_INT_CONTROL) & DC_HPDx_INT_POLARITY; |
| WREG32(DC_HPD2_INT_CONTROL, tmp); |
| tmp = RREG32(DC_HPD3_INT_CONTROL) & DC_HPDx_INT_POLARITY; |
| WREG32(DC_HPD3_INT_CONTROL, tmp); |
| tmp = RREG32(DC_HPD4_INT_CONTROL) & DC_HPDx_INT_POLARITY; |
| WREG32(DC_HPD4_INT_CONTROL, tmp); |
| tmp = RREG32(DC_HPD5_INT_CONTROL) & DC_HPDx_INT_POLARITY; |
| WREG32(DC_HPD5_INT_CONTROL, tmp); |
| tmp = RREG32(DC_HPD6_INT_CONTROL) & DC_HPDx_INT_POLARITY; |
| WREG32(DC_HPD6_INT_CONTROL, tmp); |
| |
| } |
| |
| /** |
| * cik_irq_init - init and enable the interrupt ring |
| * |
| * @rdev: radeon_device pointer |
| * |
| * Allocate a ring buffer for the interrupt controller, |
| * enable the RLC, disable interrupts, enable the IH |
| * ring buffer and enable it (CIK). |
| * Called at device load and reume. |
| * Returns 0 for success, errors for failure. |
| */ |
| static int cik_irq_init(struct radeon_device *rdev) |
| { |
| int ret = 0; |
| int rb_bufsz; |
| u32 interrupt_cntl, ih_cntl, ih_rb_cntl; |
| |
| /* allocate ring */ |
| ret = r600_ih_ring_alloc(rdev); |
| if (ret) |
| return ret; |
| |
| /* disable irqs */ |
| cik_disable_interrupts(rdev); |
| |
| /* init rlc */ |
| ret = cik_rlc_resume(rdev); |
| if (ret) { |
| r600_ih_ring_fini(rdev); |
| return ret; |
| } |
| |
| /* setup interrupt control */ |
| /* XXX this should actually be a bus address, not an MC address. same on older asics */ |
| WREG32(INTERRUPT_CNTL2, rdev->ih.gpu_addr >> 8); |
| interrupt_cntl = RREG32(INTERRUPT_CNTL); |
| /* IH_DUMMY_RD_OVERRIDE=0 - dummy read disabled with msi, enabled without msi |
| * IH_DUMMY_RD_OVERRIDE=1 - dummy read controlled by IH_DUMMY_RD_EN |
| */ |
| interrupt_cntl &= ~IH_DUMMY_RD_OVERRIDE; |
| /* IH_REQ_NONSNOOP_EN=1 if ring is in non-cacheable memory, e.g., vram */ |
| interrupt_cntl &= ~IH_REQ_NONSNOOP_EN; |
| WREG32(INTERRUPT_CNTL, interrupt_cntl); |
| |
| WREG32(IH_RB_BASE, rdev->ih.gpu_addr >> 8); |
| rb_bufsz = drm_order(rdev->ih.ring_size / 4); |
| |
| ih_rb_cntl = (IH_WPTR_OVERFLOW_ENABLE | |
| IH_WPTR_OVERFLOW_CLEAR | |
| (rb_bufsz << 1)); |
| |
| if (rdev->wb.enabled) |
| ih_rb_cntl |= IH_WPTR_WRITEBACK_ENABLE; |
| |
| /* set the writeback address whether it's enabled or not */ |
| WREG32(IH_RB_WPTR_ADDR_LO, (rdev->wb.gpu_addr + R600_WB_IH_WPTR_OFFSET) & 0xFFFFFFFC); |
| WREG32(IH_RB_WPTR_ADDR_HI, upper_32_bits(rdev->wb.gpu_addr + R600_WB_IH_WPTR_OFFSET) & 0xFF); |
| |
| WREG32(IH_RB_CNTL, ih_rb_cntl); |
| |
| /* set rptr, wptr to 0 */ |
| WREG32(IH_RB_RPTR, 0); |
| WREG32(IH_RB_WPTR, 0); |
| |
| /* Default settings for IH_CNTL (disabled at first) */ |
| ih_cntl = MC_WRREQ_CREDIT(0x10) | MC_WR_CLEAN_CNT(0x10) | MC_VMID(0); |
| /* RPTR_REARM only works if msi's are enabled */ |
| if (rdev->msi_enabled) |
| ih_cntl |= RPTR_REARM; |
| WREG32(IH_CNTL, ih_cntl); |
| |
| /* force the active interrupt state to all disabled */ |
| cik_disable_interrupt_state(rdev); |
| |
| pci_set_master(rdev->pdev); |
| |
| /* enable irqs */ |
| cik_enable_interrupts(rdev); |
| |
| return ret; |
| } |
| |
| /** |
| * cik_irq_set - enable/disable interrupt sources |
| * |
| * @rdev: radeon_device pointer |
| * |
| * Enable interrupt sources on the GPU (vblanks, hpd, |
| * etc.) (CIK). |
| * Returns 0 for success, errors for failure. |
| */ |
| int cik_irq_set(struct radeon_device *rdev) |
| { |
| u32 cp_int_cntl = CNTX_BUSY_INT_ENABLE | CNTX_EMPTY_INT_ENABLE | |
| PRIV_INSTR_INT_ENABLE | PRIV_REG_INT_ENABLE; |
| u32 crtc1 = 0, crtc2 = 0, crtc3 = 0, crtc4 = 0, crtc5 = 0, crtc6 = 0; |
| u32 hpd1, hpd2, hpd3, hpd4, hpd5, hpd6; |
| u32 grbm_int_cntl = 0; |
| u32 dma_cntl, dma_cntl1; |
| |
| if (!rdev->irq.installed) { |
| WARN(1, "Can't enable IRQ/MSI because no handler is installed\n"); |
| return -EINVAL; |
| } |
| /* don't enable anything if the ih is disabled */ |
| if (!rdev->ih.enabled) { |
| cik_disable_interrupts(rdev); |
| /* force the active interrupt state to all disabled */ |
| cik_disable_interrupt_state(rdev); |
| return 0; |
| } |
| |
| hpd1 = RREG32(DC_HPD1_INT_CONTROL) & ~DC_HPDx_INT_EN; |
| hpd2 = RREG32(DC_HPD2_INT_CONTROL) & ~DC_HPDx_INT_EN; |
| hpd3 = RREG32(DC_HPD3_INT_CONTROL) & ~DC_HPDx_INT_EN; |
| hpd4 = RREG32(DC_HPD4_INT_CONTROL) & ~DC_HPDx_INT_EN; |
| hpd5 = RREG32(DC_HPD5_INT_CONTROL) & ~DC_HPDx_INT_EN; |
| hpd6 = RREG32(DC_HPD6_INT_CONTROL) & ~DC_HPDx_INT_EN; |
| |
| dma_cntl = RREG32(SDMA0_CNTL + SDMA0_REGISTER_OFFSET) & ~TRAP_ENABLE; |
| dma_cntl1 = RREG32(SDMA0_CNTL + SDMA1_REGISTER_OFFSET) & ~TRAP_ENABLE; |
| |
| /* enable CP interrupts on all rings */ |
| if (atomic_read(&rdev->irq.ring_int[RADEON_RING_TYPE_GFX_INDEX])) { |
| DRM_DEBUG("cik_irq_set: sw int gfx\n"); |
| cp_int_cntl |= TIME_STAMP_INT_ENABLE; |
| } |
| /* TODO: compute queues! */ |
| /* CP_ME[1-2]_PIPE[0-3]_INT_CNTL */ |
| |
| if (atomic_read(&rdev->irq.ring_int[R600_RING_TYPE_DMA_INDEX])) { |
| DRM_DEBUG("cik_irq_set: sw int dma\n"); |
| dma_cntl |= TRAP_ENABLE; |
| } |
| |
| if (atomic_read(&rdev->irq.ring_int[CAYMAN_RING_TYPE_DMA1_INDEX])) { |
| DRM_DEBUG("cik_irq_set: sw int dma1\n"); |
| dma_cntl1 |= TRAP_ENABLE; |
| } |
| |
| if (rdev->irq.crtc_vblank_int[0] || |
| atomic_read(&rdev->irq.pflip[0])) { |
| DRM_DEBUG("cik_irq_set: vblank 0\n"); |
| crtc1 |= VBLANK_INTERRUPT_MASK; |
| } |
| if (rdev->irq.crtc_vblank_int[1] || |
| atomic_read(&rdev->irq.pflip[1])) { |
| DRM_DEBUG("cik_irq_set: vblank 1\n"); |
| crtc2 |= VBLANK_INTERRUPT_MASK; |
| } |
| if (rdev->irq.crtc_vblank_int[2] || |
| atomic_read(&rdev->irq.pflip[2])) { |
| DRM_DEBUG("cik_irq_set: vblank 2\n"); |
| crtc3 |= VBLANK_INTERRUPT_MASK; |
| } |
| if (rdev->irq.crtc_vblank_int[3] || |
| atomic_read(&rdev->irq.pflip[3])) { |
| DRM_DEBUG("cik_irq_set: vblank 3\n"); |
| crtc4 |= VBLANK_INTERRUPT_MASK; |
| } |
| if (rdev->irq.crtc_vblank_int[4] || |
| atomic_read(&rdev->irq.pflip[4])) { |
| DRM_DEBUG("cik_irq_set: vblank 4\n"); |
| crtc5 |= VBLANK_INTERRUPT_MASK; |
| } |
| if (rdev->irq.crtc_vblank_int[5] || |
| atomic_read(&rdev->irq.pflip[5])) { |
| DRM_DEBUG("cik_irq_set: vblank 5\n"); |
| crtc6 |= VBLANK_INTERRUPT_MASK; |
| } |
| if (rdev->irq.hpd[0]) { |
| DRM_DEBUG("cik_irq_set: hpd 1\n"); |
| hpd1 |= DC_HPDx_INT_EN; |
| } |
| if (rdev->irq.hpd[1]) { |
| DRM_DEBUG("cik_irq_set: hpd 2\n"); |
| hpd2 |= DC_HPDx_INT_EN; |
| } |
| if (rdev->irq.hpd[2]) { |
| DRM_DEBUG("cik_irq_set: hpd 3\n"); |
| hpd3 |= DC_HPDx_INT_EN; |
| } |
| if (rdev->irq.hpd[3]) { |
| DRM_DEBUG("cik_irq_set: hpd 4\n"); |
| hpd4 |= DC_HPDx_INT_EN; |
| } |
| if (rdev->irq.hpd[4]) { |
| DRM_DEBUG("cik_irq_set: hpd 5\n"); |
| hpd5 |= DC_HPDx_INT_EN; |
| } |
| if (rdev->irq.hpd[5]) { |
| DRM_DEBUG("cik_irq_set: hpd 6\n"); |
| hpd6 |= DC_HPDx_INT_EN; |
| } |
| |
| WREG32(CP_INT_CNTL_RING0, cp_int_cntl); |
| |
| WREG32(SDMA0_CNTL + SDMA0_REGISTER_OFFSET, dma_cntl); |
| WREG32(SDMA0_CNTL + SDMA1_REGISTER_OFFSET, dma_cntl1); |
| |
| WREG32(GRBM_INT_CNTL, grbm_int_cntl); |
| |
| WREG32(LB_INTERRUPT_MASK + EVERGREEN_CRTC0_REGISTER_OFFSET, crtc1); |
| WREG32(LB_INTERRUPT_MASK + EVERGREEN_CRTC1_REGISTER_OFFSET, crtc2); |
| if (rdev->num_crtc >= 4) { |
| WREG32(LB_INTERRUPT_MASK + EVERGREEN_CRTC2_REGISTER_OFFSET, crtc3); |
| WREG32(LB_INTERRUPT_MASK + EVERGREEN_CRTC3_REGISTER_OFFSET, crtc4); |
| } |
| if (rdev->num_crtc >= 6) { |
| WREG32(LB_INTERRUPT_MASK + EVERGREEN_CRTC4_REGISTER_OFFSET, crtc5); |
| WREG32(LB_INTERRUPT_MASK + EVERGREEN_CRTC5_REGISTER_OFFSET, crtc6); |
| } |
| |
| WREG32(DC_HPD1_INT_CONTROL, hpd1); |
| WREG32(DC_HPD2_INT_CONTROL, hpd2); |
| WREG32(DC_HPD3_INT_CONTROL, hpd3); |
| WREG32(DC_HPD4_INT_CONTROL, hpd4); |
| WREG32(DC_HPD5_INT_CONTROL, hpd5); |
| WREG32(DC_HPD6_INT_CONTROL, hpd6); |
| |
| return 0; |
| } |
| |
| /** |
| * cik_irq_ack - ack interrupt sources |
| * |
| * @rdev: radeon_device pointer |
| * |
| * Ack interrupt sources on the GPU (vblanks, hpd, |
| * etc.) (CIK). Certain interrupts sources are sw |
| * generated and do not require an explicit ack. |
| */ |
| static inline void cik_irq_ack(struct radeon_device *rdev) |
| { |
| u32 tmp; |
| |
| rdev->irq.stat_regs.cik.disp_int = RREG32(DISP_INTERRUPT_STATUS); |
| rdev->irq.stat_regs.cik.disp_int_cont = RREG32(DISP_INTERRUPT_STATUS_CONTINUE); |
| rdev->irq.stat_regs.cik.disp_int_cont2 = RREG32(DISP_INTERRUPT_STATUS_CONTINUE2); |
| rdev->irq.stat_regs.cik.disp_int_cont3 = RREG32(DISP_INTERRUPT_STATUS_CONTINUE3); |
| rdev->irq.stat_regs.cik.disp_int_cont4 = RREG32(DISP_INTERRUPT_STATUS_CONTINUE4); |
| rdev->irq.stat_regs.cik.disp_int_cont5 = RREG32(DISP_INTERRUPT_STATUS_CONTINUE5); |
| rdev->irq.stat_regs.cik.disp_int_cont6 = RREG32(DISP_INTERRUPT_STATUS_CONTINUE6); |
| |
| if (rdev->irq.stat_regs.cik.disp_int & LB_D1_VBLANK_INTERRUPT) |
| WREG32(LB_VBLANK_STATUS + EVERGREEN_CRTC0_REGISTER_OFFSET, VBLANK_ACK); |
| if (rdev->irq.stat_regs.cik.disp_int & LB_D1_VLINE_INTERRUPT) |
| WREG32(LB_VLINE_STATUS + EVERGREEN_CRTC0_REGISTER_OFFSET, VLINE_ACK); |
| if (rdev->irq.stat_regs.cik.disp_int_cont & LB_D2_VBLANK_INTERRUPT) |
| WREG32(LB_VBLANK_STATUS + EVERGREEN_CRTC1_REGISTER_OFFSET, VBLANK_ACK); |
| if (rdev->irq.stat_regs.cik.disp_int_cont & LB_D2_VLINE_INTERRUPT) |
| WREG32(LB_VLINE_STATUS + EVERGREEN_CRTC1_REGISTER_OFFSET, VLINE_ACK); |
| |
| if (rdev->num_crtc >= 4) { |
| if (rdev->irq.stat_regs.cik.disp_int_cont2 & LB_D3_VBLANK_INTERRUPT) |
| WREG32(LB_VBLANK_STATUS + EVERGREEN_CRTC2_REGISTER_OFFSET, VBLANK_ACK); |
| if (rdev->irq.stat_regs.cik.disp_int_cont2 & LB_D3_VLINE_INTERRUPT) |
| WREG32(LB_VLINE_STATUS + EVERGREEN_CRTC2_REGISTER_OFFSET, VLINE_ACK); |
| if (rdev->irq.stat_regs.cik.disp_int_cont3 & LB_D4_VBLANK_INTERRUPT) |
| WREG32(LB_VBLANK_STATUS + EVERGREEN_CRTC3_REGISTER_OFFSET, VBLANK_ACK); |
| if (rdev->irq.stat_regs.cik.disp_int_cont3 & LB_D4_VLINE_INTERRUPT) |
| WREG32(LB_VLINE_STATUS + EVERGREEN_CRTC3_REGISTER_OFFSET, VLINE_ACK); |
| } |
| |
| if (rdev->num_crtc >= 6) { |
| if (rdev->irq.stat_regs.cik.disp_int_cont4 & LB_D5_VBLANK_INTERRUPT) |
| WREG32(LB_VBLANK_STATUS + EVERGREEN_CRTC4_REGISTER_OFFSET, VBLANK_ACK); |
| if (rdev->irq.stat_regs.cik.disp_int_cont4 & LB_D5_VLINE_INTERRUPT) |
| WREG32(LB_VLINE_STATUS + EVERGREEN_CRTC4_REGISTER_OFFSET, VLINE_ACK); |
| if (rdev->irq.stat_regs.cik.disp_int_cont5 & LB_D6_VBLANK_INTERRUPT) |
| WREG32(LB_VBLANK_STATUS + EVERGREEN_CRTC5_REGISTER_OFFSET, VBLANK_ACK); |
| if (rdev->irq.stat_regs.cik.disp_int_cont5 & LB_D6_VLINE_INTERRUPT) |
| WREG32(LB_VLINE_STATUS + EVERGREEN_CRTC5_REGISTER_OFFSET, VLINE_ACK); |
| } |
| |
| if (rdev->irq.stat_regs.cik.disp_int & DC_HPD1_INTERRUPT) { |
| tmp = RREG32(DC_HPD1_INT_CONTROL); |
| tmp |= DC_HPDx_INT_ACK; |
| WREG32(DC_HPD1_INT_CONTROL, tmp); |
| } |
| if (rdev->irq.stat_regs.cik.disp_int_cont & DC_HPD2_INTERRUPT) { |
| tmp = RREG32(DC_HPD2_INT_CONTROL); |
| tmp |= DC_HPDx_INT_ACK; |
| WREG32(DC_HPD2_INT_CONTROL, tmp); |
| } |
| if (rdev->irq.stat_regs.cik.disp_int_cont2 & DC_HPD3_INTERRUPT) { |
| tmp = RREG32(DC_HPD3_INT_CONTROL); |
| tmp |= DC_HPDx_INT_ACK; |
| WREG32(DC_HPD3_INT_CONTROL, tmp); |
| } |
| if (rdev->irq.stat_regs.cik.disp_int_cont3 & DC_HPD4_INTERRUPT) { |
| tmp = RREG32(DC_HPD4_INT_CONTROL); |
| tmp |= DC_HPDx_INT_ACK; |
| WREG32(DC_HPD4_INT_CONTROL, tmp); |
| } |
| if (rdev->irq.stat_regs.cik.disp_int_cont4 & DC_HPD5_INTERRUPT) { |
| tmp = RREG32(DC_HPD5_INT_CONTROL); |
| tmp |= DC_HPDx_INT_ACK; |
| WREG32(DC_HPD5_INT_CONTROL, tmp); |
| } |
| if (rdev->irq.stat_regs.cik.disp_int_cont5 & DC_HPD6_INTERRUPT) { |
| tmp = RREG32(DC_HPD5_INT_CONTROL); |
| tmp |= DC_HPDx_INT_ACK; |
| WREG32(DC_HPD6_INT_CONTROL, tmp); |
| } |
| } |
| |
| /** |
| * cik_irq_disable - disable interrupts |
| * |
| * @rdev: radeon_device pointer |
| * |
| * Disable interrupts on the hw (CIK). |
| */ |
| static void cik_irq_disable(struct radeon_device *rdev) |
| { |
| cik_disable_interrupts(rdev); |
| /* Wait and acknowledge irq */ |
| mdelay(1); |
| cik_irq_ack(rdev); |
| cik_disable_interrupt_state(rdev); |
| } |
| |
| /** |
| * cik_irq_disable - disable interrupts for suspend |
| * |
| * @rdev: radeon_device pointer |
| * |
| * Disable interrupts and stop the RLC (CIK). |
| * Used for suspend. |
| */ |
| static void cik_irq_suspend(struct radeon_device *rdev) |
| { |
| cik_irq_disable(rdev); |
| cik_rlc_stop(rdev); |
| } |
| |
| /** |
| * cik_irq_fini - tear down interrupt support |
| * |
| * @rdev: radeon_device pointer |
| * |
| * Disable interrupts on the hw and free the IH ring |
| * buffer (CIK). |
| * Used for driver unload. |
| */ |
| static void cik_irq_fini(struct radeon_device *rdev) |
| { |
| cik_irq_suspend(rdev); |
| r600_ih_ring_fini(rdev); |
| } |
| |
| /** |
| * cik_get_ih_wptr - get the IH ring buffer wptr |
| * |
| * @rdev: radeon_device pointer |
| * |
| * Get the IH ring buffer wptr from either the register |
| * or the writeback memory buffer (CIK). Also check for |
| * ring buffer overflow and deal with it. |
| * Used by cik_irq_process(). |
| * Returns the value of the wptr. |
| */ |
| static inline u32 cik_get_ih_wptr(struct radeon_device *rdev) |
| { |
| u32 wptr, tmp; |
| |
| if (rdev->wb.enabled) |
| wptr = le32_to_cpu(rdev->wb.wb[R600_WB_IH_WPTR_OFFSET/4]); |
| else |
| wptr = RREG32(IH_RB_WPTR); |
| |
| if (wptr & RB_OVERFLOW) { |
| /* When a ring buffer overflow happen start parsing interrupt |
| * from the last not overwritten vector (wptr + 16). Hopefully |
| * this should allow us to catchup. |
| */ |
| dev_warn(rdev->dev, "IH ring buffer overflow (0x%08X, %d, %d)\n", |
| wptr, rdev->ih.rptr, (wptr + 16) + rdev->ih.ptr_mask); |
| rdev->ih.rptr = (wptr + 16) & rdev->ih.ptr_mask; |
| tmp = RREG32(IH_RB_CNTL); |
| tmp |= IH_WPTR_OVERFLOW_CLEAR; |
| WREG32(IH_RB_CNTL, tmp); |
| } |
| return (wptr & rdev->ih.ptr_mask); |
| } |
| |
| /* CIK IV Ring |
| * Each IV ring entry is 128 bits: |
| * [7:0] - interrupt source id |
| * [31:8] - reserved |
| * [59:32] - interrupt source data |
| * [63:60] - reserved |
| * [71:64] - RINGID |
| * CP: |
| * ME_ID [1:0], PIPE_ID[1:0], QUEUE_ID[2:0] |
| * QUEUE_ID - for compute, which of the 8 queues owned by the dispatcher |
| * - for gfx, hw shader state (0=PS...5=LS, 6=CS) |
| * ME_ID - 0 = gfx, 1 = first 4 CS pipes, 2 = second 4 CS pipes |
| * PIPE_ID - ME0 0=3D |
| * - ME1&2 compute dispatcher (4 pipes each) |
| * SDMA: |
| * INSTANCE_ID [1:0], QUEUE_ID[1:0] |
| * INSTANCE_ID - 0 = sdma0, 1 = sdma1 |
| * QUEUE_ID - 0 = gfx, 1 = rlc0, 2 = rlc1 |
| * [79:72] - VMID |
| * [95:80] - PASID |
| * [127:96] - reserved |
| */ |
| /** |
| * cik_irq_process - interrupt handler |
| * |
| * @rdev: radeon_device pointer |
| * |
| * Interrupt hander (CIK). Walk the IH ring, |
| * ack interrupts and schedule work to handle |
| * interrupt events. |
| * Returns irq process return code. |
| */ |
| int cik_irq_process(struct radeon_device *rdev) |
| { |
| u32 wptr; |
| u32 rptr; |
| u32 src_id, src_data, ring_id; |
| u8 me_id, pipe_id, queue_id; |
| u32 ring_index; |
| bool queue_hotplug = false; |
| bool queue_reset = false; |
| |
| if (!rdev->ih.enabled || rdev->shutdown) |
| return IRQ_NONE; |
| |
| wptr = cik_get_ih_wptr(rdev); |
| |
| restart_ih: |
| /* is somebody else already processing irqs? */ |
| if (atomic_xchg(&rdev->ih.lock, 1)) |
| return IRQ_NONE; |
| |
| rptr = rdev->ih.rptr; |
| DRM_DEBUG("cik_irq_process start: rptr %d, wptr %d\n", rptr, wptr); |
| |
| /* Order reading of wptr vs. reading of IH ring data */ |
| rmb(); |
| |
| /* display interrupts */ |
| cik_irq_ack(rdev); |
| |
| while (rptr != wptr) { |
| /* wptr/rptr are in bytes! */ |
| ring_index = rptr / 4; |
| src_id = le32_to_cpu(rdev->ih.ring[ring_index]) & 0xff; |
| src_data = le32_to_cpu(rdev->ih.ring[ring_index + 1]) & 0xfffffff; |
| ring_id = le32_to_cpu(rdev->ih.ring[ring_index + 2]) & 0xff; |
| |
| switch (src_id) { |
| case 1: /* D1 vblank/vline */ |
| switch (src_data) { |
| case 0: /* D1 vblank */ |
| if (rdev->irq.stat_regs.cik.disp_int & LB_D1_VBLANK_INTERRUPT) { |
| if (rdev->irq.crtc_vblank_int[0]) { |
| drm_handle_vblank(rdev->ddev, 0); |
| rdev->pm.vblank_sync = true; |
| wake_up(&rdev->irq.vblank_queue); |
| } |
| if (atomic_read(&rdev->irq.pflip[0])) |
| radeon_crtc_handle_flip(rdev, 0); |
| rdev->irq.stat_regs.cik.disp_int &= ~LB_D1_VBLANK_INTERRUPT; |
| DRM_DEBUG("IH: D1 vblank\n"); |
| } |
| break; |
| case 1: /* D1 vline */ |
| if (rdev->irq.stat_regs.cik.disp_int & LB_D1_VLINE_INTERRUPT) { |
| rdev->irq.stat_regs.cik.disp_int &= ~LB_D1_VLINE_INTERRUPT; |
| DRM_DEBUG("IH: D1 vline\n"); |
| } |
| break; |
| default: |
| DRM_DEBUG("Unhandled interrupt: %d %d\n", src_id, src_data); |
| break; |
| } |
| break; |
| case 2: /* D2 vblank/vline */ |
| switch (src_data) { |
| case 0: /* D2 vblank */ |
| if (rdev->irq.stat_regs.cik.disp_int_cont & LB_D2_VBLANK_INTERRUPT) { |
| if (rdev->irq.crtc_vblank_int[1]) { |
| drm_handle_vblank(rdev->ddev, 1); |
| rdev->pm.vblank_sync = true; |
| wake_up(&rdev->irq.vblank_queue); |
| } |
| if (atomic_read(&rdev->irq.pflip[1])) |
| radeon_crtc_handle_flip(rdev, 1); |
| rdev->irq.stat_regs.cik.disp_int_cont &= ~LB_D2_VBLANK_INTERRUPT; |
| DRM_DEBUG("IH: D2 vblank\n"); |
| } |
| break; |
| case 1: /* D2 vline */ |
| if (rdev->irq.stat_regs.cik.disp_int_cont & LB_D2_VLINE_INTERRUPT) { |
| rdev->irq.stat_regs.cik.disp_int_cont &= ~LB_D2_VLINE_INTERRUPT; |
| DRM_DEBUG("IH: D2 vline\n"); |
| } |
| break; |
| default: |
| DRM_DEBUG("Unhandled interrupt: %d %d\n", src_id, src_data); |
| break; |
| } |
| break; |
| case 3: /* D3 vblank/vline */ |
| switch (src_data) { |
| case 0: /* D3 vblank */ |
| if (rdev->irq.stat_regs.cik.disp_int_cont2 & LB_D3_VBLANK_INTERRUPT) { |
| if (rdev->irq.crtc_vblank_int[2]) { |
| drm_handle_vblank(rdev->ddev, 2); |
| rdev->pm.vblank_sync = true; |
| wake_up(&rdev->irq.vblank_queue); |
| } |
| if (atomic_read(&rdev->irq.pflip[2])) |
| radeon_crtc_handle_flip(rdev, 2); |
| rdev->irq.stat_regs.cik.disp_int_cont2 &= ~LB_D3_VBLANK_INTERRUPT; |
| DRM_DEBUG("IH: D3 vblank\n"); |
| } |
| break; |
| case 1: /* D3 vline */ |
| if (rdev->irq.stat_regs.cik.disp_int_cont2 & LB_D3_VLINE_INTERRUPT) { |
| rdev->irq.stat_regs.cik.disp_int_cont2 &= ~LB_D3_VLINE_INTERRUPT; |
| DRM_DEBUG("IH: D3 vline\n"); |
| } |
| break; |
| default: |
| DRM_DEBUG("Unhandled interrupt: %d %d\n", src_id, src_data); |
| break; |
| } |
| break; |
| case 4: /* D4 vblank/vline */ |
| switch (src_data) { |
| case 0: /* D4 vblank */ |
| if (rdev->irq.stat_regs.cik.disp_int_cont3 & LB_D4_VBLANK_INTERRUPT) { |
| if (rdev->irq.crtc_vblank_int[3]) { |
| drm_handle_vblank(rdev->ddev, 3); |
| rdev->pm.vblank_sync = true; |
| wake_up(&rdev->irq.vblank_queue); |
| } |
| if (atomic_read(&rdev->irq.pflip[3])) |
| radeon_crtc_handle_flip(rdev, 3); |
| rdev->irq.stat_regs.cik.disp_int_cont3 &= ~LB_D4_VBLANK_INTERRUPT; |
| DRM_DEBUG("IH: D4 vblank\n"); |
| } |
| break; |
| case 1: /* D4 vline */ |
| if (rdev->irq.stat_regs.cik.disp_int_cont3 & LB_D4_VLINE_INTERRUPT) { |
| rdev->irq.stat_regs.cik.disp_int_cont3 &= ~LB_D4_VLINE_INTERRUPT; |
| DRM_DEBUG("IH: D4 vline\n"); |
| } |
| break; |
| default: |
| DRM_DEBUG("Unhandled interrupt: %d %d\n", src_id, src_data); |
| break; |
| } |
| break; |
| case 5: /* D5 vblank/vline */ |
| switch (src_data) { |
| case 0: /* D5 vblank */ |
| if (rdev->irq.stat_regs.cik.disp_int_cont4 & LB_D5_VBLANK_INTERRUPT) { |
| if (rdev->irq.crtc_vblank_int[4]) { |
| drm_handle_vblank(rdev->ddev, 4); |
| rdev->pm.vblank_sync = true; |
| wake_up(&rdev->irq.vblank_queue); |
| } |
| if (atomic_read(&rdev->irq.pflip[4])) |
| radeon_crtc_handle_flip(rdev, 4); |
| rdev->irq.stat_regs.cik.disp_int_cont4 &= ~LB_D5_VBLANK_INTERRUPT; |
| DRM_DEBUG("IH: D5 vblank\n"); |
| } |
| break; |
| case 1: /* D5 vline */ |
| if (rdev->irq.stat_regs.cik.disp_int_cont4 & LB_D5_VLINE_INTERRUPT) { |
| rdev->irq.stat_regs.cik.disp_int_cont4 &= ~LB_D5_VLINE_INTERRUPT; |
| DRM_DEBUG("IH: D5 vline\n"); |
| } |
| break; |
| default: |
| DRM_DEBUG("Unhandled interrupt: %d %d\n", src_id, src_data); |
| break; |
| } |
| break; |
| case 6: /* D6 vblank/vline */ |
| switch (src_data) { |
| case 0: /* D6 vblank */ |
| if (rdev->irq.stat_regs.cik.disp_int_cont5 & LB_D6_VBLANK_INTERRUPT) { |
| if (rdev->irq.crtc_vblank_int[5]) { |
| drm_handle_vblank(rdev->ddev, 5); |
| rdev->pm.vblank_sync = true; |
| wake_up(&rdev->irq.vblank_queue); |
| } |
| if (atomic_read(&rdev->irq.pflip[5])) |
| radeon_crtc_handle_flip(rdev, 5); |
| rdev->irq.stat_regs.cik.disp_int_cont5 &= ~LB_D6_VBLANK_INTERRUPT; |
| DRM_DEBUG("IH: D6 vblank\n"); |
| } |
| break; |
| case 1: /* D6 vline */ |
| if (rdev->irq.stat_regs.cik.disp_int_cont5 & LB_D6_VLINE_INTERRUPT) { |
| rdev->irq.stat_regs.cik.disp_int_cont5 &= ~LB_D6_VLINE_INTERRUPT; |
| DRM_DEBUG("IH: D6 vline\n"); |
| } |
| break; |
| default: |
| DRM_DEBUG("Unhandled interrupt: %d %d\n", src_id, src_data); |
| break; |
| } |
| break; |
| case 42: /* HPD hotplug */ |
| switch (src_data) { |
| case 0: |
| if (rdev->irq.stat_regs.cik.disp_int & DC_HPD1_INTERRUPT) { |
| rdev->irq.stat_regs.cik.disp_int &= ~DC_HPD1_INTERRUPT; |
| queue_hotplug = true; |
| DRM_DEBUG("IH: HPD1\n"); |
| } |
| break; |
| case 1: |
| if (rdev->irq.stat_regs.cik.disp_int_cont & DC_HPD2_INTERRUPT) { |
| rdev->irq.stat_regs.cik.disp_int_cont &= ~DC_HPD2_INTERRUPT; |
| queue_hotplug = true; |
| DRM_DEBUG("IH: HPD2\n"); |
| } |
| break; |
| case 2: |
| if (rdev->irq.stat_regs.cik.disp_int_cont2 & DC_HPD3_INTERRUPT) { |
| rdev->irq.stat_regs.cik.disp_int_cont2 &= ~DC_HPD3_INTERRUPT; |
| queue_hotplug = true; |
| DRM_DEBUG("IH: HPD3\n"); |
| } |
| break; |
| case 3: |
| if (rdev->irq.stat_regs.cik.disp_int_cont3 & DC_HPD4_INTERRUPT) { |
| rdev->irq.stat_regs.cik.disp_int_cont3 &= ~DC_HPD4_INTERRUPT; |
| queue_hotplug = true; |
| DRM_DEBUG("IH: HPD4\n"); |
| } |
| break; |
| case 4: |
| if (rdev->irq.stat_regs.cik.disp_int_cont4 & DC_HPD5_INTERRUPT) { |
| rdev->irq.stat_regs.cik.disp_int_cont4 &= ~DC_HPD5_INTERRUPT; |
| queue_hotplug = true; |
| DRM_DEBUG("IH: HPD5\n"); |
| } |
| break; |
| case 5: |
| if (rdev->irq.stat_regs.cik.disp_int_cont5 & DC_HPD6_INTERRUPT) { |
| rdev->irq.stat_regs.cik.disp_int_cont5 &= ~DC_HPD6_INTERRUPT; |
| queue_hotplug = true; |
| DRM_DEBUG("IH: HPD6\n"); |
| } |
| break; |
| default: |
| DRM_DEBUG("Unhandled interrupt: %d %d\n", src_id, src_data); |
| break; |
| } |
| break; |
| case 146: |
| case 147: |
| dev_err(rdev->dev, "GPU fault detected: %d 0x%08x\n", src_id, src_data); |
| dev_err(rdev->dev, " VM_CONTEXT1_PROTECTION_FAULT_ADDR 0x%08X\n", |
| RREG32(VM_CONTEXT1_PROTECTION_FAULT_ADDR)); |
| dev_err(rdev->dev, " VM_CONTEXT1_PROTECTION_FAULT_STATUS 0x%08X\n", |
| RREG32(VM_CONTEXT1_PROTECTION_FAULT_STATUS)); |
| /* reset addr and status */ |
| WREG32_P(VM_CONTEXT1_CNTL2, 1, ~1); |
| break; |
| case 176: /* GFX RB CP_INT */ |
| case 177: /* GFX IB CP_INT */ |
| radeon_fence_process(rdev, RADEON_RING_TYPE_GFX_INDEX); |
| break; |
| case 181: /* CP EOP event */ |
| DRM_DEBUG("IH: CP EOP\n"); |
| /* XXX check the bitfield order! */ |
| me_id = (ring_id & 0x60) >> 5; |
| pipe_id = (ring_id & 0x18) >> 3; |
| queue_id = (ring_id & 0x7) >> 0; |
| switch (me_id) { |
| case 0: |
| radeon_fence_process(rdev, RADEON_RING_TYPE_GFX_INDEX); |
| break; |
| case 1: |
| /* XXX compute */ |
| break; |
| case 2: |
| /* XXX compute */ |
| break; |
| } |
| break; |
| case 184: /* CP Privileged reg access */ |
| DRM_ERROR("Illegal register access in command stream\n"); |
| /* XXX check the bitfield order! */ |
| me_id = (ring_id & 0x60) >> 5; |
| pipe_id = (ring_id & 0x18) >> 3; |
| queue_id = (ring_id & 0x7) >> 0; |
| switch (me_id) { |
| case 0: |
| /* This results in a full GPU reset, but all we need to do is soft |
| * reset the CP for gfx |
| */ |
| queue_reset = true; |
| break; |
| case 1: |
| /* XXX compute */ |
| break; |
| case 2: |
| /* XXX compute */ |
| break; |
| } |
| break; |
| case 185: /* CP Privileged inst */ |
| DRM_ERROR("Illegal instruction in command stream\n"); |
| /* XXX check the bitfield order! */ |
| me_id = (ring_id & 0x60) >> 5; |
| pipe_id = (ring_id & 0x18) >> 3; |
| queue_id = (ring_id & 0x7) >> 0; |
| switch (me_id) { |
| case 0: |
| /* This results in a full GPU reset, but all we need to do is soft |
| * reset the CP for gfx |
| */ |
| queue_reset = true; |
| break; |
| case 1: |
| /* XXX compute */ |
| break; |
| case 2: |
| /* XXX compute */ |
| break; |
| } |
| break; |
| case 224: /* SDMA trap event */ |
| /* XXX check the bitfield order! */ |
| me_id = (ring_id & 0x3) >> 0; |
| queue_id = (ring_id & 0xc) >> 2; |
| DRM_DEBUG("IH: SDMA trap\n"); |
| switch (me_id) { |
| case 0: |
| switch (queue_id) { |
| case 0: |
| radeon_fence_process(rdev, R600_RING_TYPE_DMA_INDEX); |
| break; |
| case 1: |
| /* XXX compute */ |
| break; |
| case 2: |
| /* XXX compute */ |
| break; |
| } |
| break; |
| case 1: |
| switch (queue_id) { |
| case 0: |
| radeon_fence_process(rdev, CAYMAN_RING_TYPE_DMA1_INDEX); |
| break; |
| case 1: |
| /* XXX compute */ |
| break; |
| case 2: |
| /* XXX compute */ |
| break; |
| } |
| break; |
| } |
| break; |
| case 241: /* SDMA Privileged inst */ |
| case 247: /* SDMA Privileged inst */ |
| DRM_ERROR("Illegal instruction in SDMA command stream\n"); |
| /* XXX check the bitfield order! */ |
| me_id = (ring_id & 0x3) >> 0; |
| queue_id = (ring_id & 0xc) >> 2; |
| switch (me_id) { |
| case 0: |
| switch (queue_id) { |
| case 0: |
| queue_reset = true; |
| break; |
| case 1: |
| /* XXX compute */ |
| queue_reset = true; |
| break; |
| case 2: |
| /* XXX compute */ |
| queue_reset = true; |
| break; |
| } |
| break; |
| case 1: |
| switch (queue_id) { |
| case 0: |
| queue_reset = true; |
| break; |
| case 1: |
| /* XXX compute */ |
| queue_reset = true; |
| break; |
| case 2: |
| /* XXX compute */ |
| queue_reset = true; |
| break; |
| } |
| break; |
| } |
| break; |
| case 233: /* GUI IDLE */ |
| DRM_DEBUG("IH: GUI idle\n"); |
| break; |
| default: |
| DRM_DEBUG("Unhandled interrupt: %d %d\n", src_id, src_data); |
| break; |
| } |
| |
| /* wptr/rptr are in bytes! */ |
| rptr += 16; |
| rptr &= rdev->ih.ptr_mask; |
| } |
| if (queue_hotplug) |
| schedule_work(&rdev->hotplug_work); |
| if (queue_reset) |
| schedule_work(&rdev->reset_work); |
| rdev->ih.rptr = rptr; |
| WREG32(IH_RB_RPTR, rdev->ih.rptr); |
| atomic_set(&rdev->ih.lock, 0); |
| |
| /* make sure wptr hasn't changed while processing */ |
| wptr = cik_get_ih_wptr(rdev); |
| if (wptr != rptr) |
| goto restart_ih; |
| |
| return IRQ_HANDLED; |
| } |