| /* |
| * Resizable virtual memory filesystem for Linux. |
| * |
| * Copyright (C) 2000 Linus Torvalds. |
| * 2000 Transmeta Corp. |
| * 2000-2001 Christoph Rohland |
| * 2000-2001 SAP AG |
| * 2002 Red Hat Inc. |
| * Copyright (C) 2002-2005 Hugh Dickins. |
| * Copyright (C) 2002-2005 VERITAS Software Corporation. |
| * Copyright (C) 2004 Andi Kleen, SuSE Labs |
| * |
| * Extended attribute support for tmpfs: |
| * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net> |
| * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> |
| * |
| * tiny-shmem: |
| * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com> |
| * |
| * This file is released under the GPL. |
| */ |
| |
| #include <linux/fs.h> |
| #include <linux/init.h> |
| #include <linux/vfs.h> |
| #include <linux/mount.h> |
| #include <linux/pagemap.h> |
| #include <linux/file.h> |
| #include <linux/mm.h> |
| #include <linux/module.h> |
| #include <linux/percpu_counter.h> |
| #include <linux/swap.h> |
| |
| static struct vfsmount *shm_mnt; |
| |
| #ifdef CONFIG_SHMEM |
| /* |
| * This virtual memory filesystem is heavily based on the ramfs. It |
| * extends ramfs by the ability to use swap and honor resource limits |
| * which makes it a completely usable filesystem. |
| */ |
| |
| #include <linux/xattr.h> |
| #include <linux/exportfs.h> |
| #include <linux/posix_acl.h> |
| #include <linux/generic_acl.h> |
| #include <linux/mman.h> |
| #include <linux/string.h> |
| #include <linux/slab.h> |
| #include <linux/backing-dev.h> |
| #include <linux/shmem_fs.h> |
| #include <linux/writeback.h> |
| #include <linux/blkdev.h> |
| #include <linux/security.h> |
| #include <linux/swapops.h> |
| #include <linux/mempolicy.h> |
| #include <linux/namei.h> |
| #include <linux/ctype.h> |
| #include <linux/migrate.h> |
| #include <linux/highmem.h> |
| #include <linux/seq_file.h> |
| #include <linux/magic.h> |
| |
| #include <asm/uaccess.h> |
| #include <asm/div64.h> |
| #include <asm/pgtable.h> |
| |
| /* |
| * The maximum size of a shmem/tmpfs file is limited by the maximum size of |
| * its triple-indirect swap vector - see illustration at shmem_swp_entry(). |
| * |
| * With 4kB page size, maximum file size is just over 2TB on a 32-bit kernel, |
| * but one eighth of that on a 64-bit kernel. With 8kB page size, maximum |
| * file size is just over 4TB on a 64-bit kernel, but 16TB on a 32-bit kernel, |
| * MAX_LFS_FILESIZE being then more restrictive than swap vector layout. |
| * |
| * We use / and * instead of shifts in the definitions below, so that the swap |
| * vector can be tested with small even values (e.g. 20) for ENTRIES_PER_PAGE. |
| */ |
| #define ENTRIES_PER_PAGE (PAGE_CACHE_SIZE/sizeof(unsigned long)) |
| #define ENTRIES_PER_PAGEPAGE ((unsigned long long)ENTRIES_PER_PAGE*ENTRIES_PER_PAGE) |
| |
| #define SHMSWP_MAX_INDEX (SHMEM_NR_DIRECT + (ENTRIES_PER_PAGEPAGE/2) * (ENTRIES_PER_PAGE+1)) |
| #define SHMSWP_MAX_BYTES (SHMSWP_MAX_INDEX << PAGE_CACHE_SHIFT) |
| |
| #define SHMEM_MAX_BYTES min_t(unsigned long long, SHMSWP_MAX_BYTES, MAX_LFS_FILESIZE) |
| #define SHMEM_MAX_INDEX ((unsigned long)((SHMEM_MAX_BYTES+1) >> PAGE_CACHE_SHIFT)) |
| |
| #define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512) |
| #define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT) |
| |
| /* info->flags needs VM_flags to handle pagein/truncate races efficiently */ |
| #define SHMEM_PAGEIN VM_READ |
| #define SHMEM_TRUNCATE VM_WRITE |
| |
| /* Definition to limit shmem_truncate's steps between cond_rescheds */ |
| #define LATENCY_LIMIT 64 |
| |
| /* Pretend that each entry is of this size in directory's i_size */ |
| #define BOGO_DIRENT_SIZE 20 |
| |
| /* Flag allocation requirements to shmem_getpage and shmem_swp_alloc */ |
| enum sgp_type { |
| SGP_READ, /* don't exceed i_size, don't allocate page */ |
| SGP_CACHE, /* don't exceed i_size, may allocate page */ |
| SGP_DIRTY, /* like SGP_CACHE, but set new page dirty */ |
| SGP_WRITE, /* may exceed i_size, may allocate page */ |
| }; |
| |
| #ifdef CONFIG_TMPFS |
| static unsigned long shmem_default_max_blocks(void) |
| { |
| return totalram_pages / 2; |
| } |
| |
| static unsigned long shmem_default_max_inodes(void) |
| { |
| return min(totalram_pages - totalhigh_pages, totalram_pages / 2); |
| } |
| #endif |
| |
| static int shmem_getpage(struct inode *inode, unsigned long idx, |
| struct page **pagep, enum sgp_type sgp, int *type); |
| |
| static inline struct page *shmem_dir_alloc(gfp_t gfp_mask) |
| { |
| /* |
| * The above definition of ENTRIES_PER_PAGE, and the use of |
| * BLOCKS_PER_PAGE on indirect pages, assume PAGE_CACHE_SIZE: |
| * might be reconsidered if it ever diverges from PAGE_SIZE. |
| * |
| * Mobility flags are masked out as swap vectors cannot move |
| */ |
| return alloc_pages((gfp_mask & ~GFP_MOVABLE_MASK) | __GFP_ZERO, |
| PAGE_CACHE_SHIFT-PAGE_SHIFT); |
| } |
| |
| static inline void shmem_dir_free(struct page *page) |
| { |
| __free_pages(page, PAGE_CACHE_SHIFT-PAGE_SHIFT); |
| } |
| |
| static struct page **shmem_dir_map(struct page *page) |
| { |
| return (struct page **)kmap_atomic(page, KM_USER0); |
| } |
| |
| static inline void shmem_dir_unmap(struct page **dir) |
| { |
| kunmap_atomic(dir, KM_USER0); |
| } |
| |
| static swp_entry_t *shmem_swp_map(struct page *page) |
| { |
| return (swp_entry_t *)kmap_atomic(page, KM_USER1); |
| } |
| |
| static inline void shmem_swp_balance_unmap(void) |
| { |
| /* |
| * When passing a pointer to an i_direct entry, to code which |
| * also handles indirect entries and so will shmem_swp_unmap, |
| * we must arrange for the preempt count to remain in balance. |
| * What kmap_atomic of a lowmem page does depends on config |
| * and architecture, so pretend to kmap_atomic some lowmem page. |
| */ |
| (void) kmap_atomic(ZERO_PAGE(0), KM_USER1); |
| } |
| |
| static inline void shmem_swp_unmap(swp_entry_t *entry) |
| { |
| kunmap_atomic(entry, KM_USER1); |
| } |
| |
| static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb) |
| { |
| return sb->s_fs_info; |
| } |
| |
| /* |
| * shmem_file_setup pre-accounts the whole fixed size of a VM object, |
| * for shared memory and for shared anonymous (/dev/zero) mappings |
| * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1), |
| * consistent with the pre-accounting of private mappings ... |
| */ |
| static inline int shmem_acct_size(unsigned long flags, loff_t size) |
| { |
| return (flags & VM_NORESERVE) ? |
| 0 : security_vm_enough_memory_kern(VM_ACCT(size)); |
| } |
| |
| static inline void shmem_unacct_size(unsigned long flags, loff_t size) |
| { |
| if (!(flags & VM_NORESERVE)) |
| vm_unacct_memory(VM_ACCT(size)); |
| } |
| |
| /* |
| * ... whereas tmpfs objects are accounted incrementally as |
| * pages are allocated, in order to allow huge sparse files. |
| * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM, |
| * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM. |
| */ |
| static inline int shmem_acct_block(unsigned long flags) |
| { |
| return (flags & VM_NORESERVE) ? |
| security_vm_enough_memory_kern(VM_ACCT(PAGE_CACHE_SIZE)) : 0; |
| } |
| |
| static inline void shmem_unacct_blocks(unsigned long flags, long pages) |
| { |
| if (flags & VM_NORESERVE) |
| vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE)); |
| } |
| |
| static const struct super_operations shmem_ops; |
| static const struct address_space_operations shmem_aops; |
| static const struct file_operations shmem_file_operations; |
| static const struct inode_operations shmem_inode_operations; |
| static const struct inode_operations shmem_dir_inode_operations; |
| static const struct inode_operations shmem_special_inode_operations; |
| static const struct vm_operations_struct shmem_vm_ops; |
| |
| static struct backing_dev_info shmem_backing_dev_info __read_mostly = { |
| .ra_pages = 0, /* No readahead */ |
| .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED, |
| .unplug_io_fn = default_unplug_io_fn, |
| }; |
| |
| static LIST_HEAD(shmem_swaplist); |
| static DEFINE_MUTEX(shmem_swaplist_mutex); |
| |
| static void shmem_free_blocks(struct inode *inode, long pages) |
| { |
| struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); |
| if (sbinfo->max_blocks) { |
| percpu_counter_add(&sbinfo->used_blocks, -pages); |
| spin_lock(&inode->i_lock); |
| inode->i_blocks -= pages*BLOCKS_PER_PAGE; |
| spin_unlock(&inode->i_lock); |
| } |
| } |
| |
| static int shmem_reserve_inode(struct super_block *sb) |
| { |
| struct shmem_sb_info *sbinfo = SHMEM_SB(sb); |
| if (sbinfo->max_inodes) { |
| spin_lock(&sbinfo->stat_lock); |
| if (!sbinfo->free_inodes) { |
| spin_unlock(&sbinfo->stat_lock); |
| return -ENOSPC; |
| } |
| sbinfo->free_inodes--; |
| spin_unlock(&sbinfo->stat_lock); |
| } |
| return 0; |
| } |
| |
| static void shmem_free_inode(struct super_block *sb) |
| { |
| struct shmem_sb_info *sbinfo = SHMEM_SB(sb); |
| if (sbinfo->max_inodes) { |
| spin_lock(&sbinfo->stat_lock); |
| sbinfo->free_inodes++; |
| spin_unlock(&sbinfo->stat_lock); |
| } |
| } |
| |
| /** |
| * shmem_recalc_inode - recalculate the size of an inode |
| * @inode: inode to recalc |
| * |
| * We have to calculate the free blocks since the mm can drop |
| * undirtied hole pages behind our back. |
| * |
| * But normally info->alloced == inode->i_mapping->nrpages + info->swapped |
| * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped) |
| * |
| * It has to be called with the spinlock held. |
| */ |
| static void shmem_recalc_inode(struct inode *inode) |
| { |
| struct shmem_inode_info *info = SHMEM_I(inode); |
| long freed; |
| |
| freed = info->alloced - info->swapped - inode->i_mapping->nrpages; |
| if (freed > 0) { |
| info->alloced -= freed; |
| shmem_unacct_blocks(info->flags, freed); |
| shmem_free_blocks(inode, freed); |
| } |
| } |
| |
| /** |
| * shmem_swp_entry - find the swap vector position in the info structure |
| * @info: info structure for the inode |
| * @index: index of the page to find |
| * @page: optional page to add to the structure. Has to be preset to |
| * all zeros |
| * |
| * If there is no space allocated yet it will return NULL when |
| * page is NULL, else it will use the page for the needed block, |
| * setting it to NULL on return to indicate that it has been used. |
| * |
| * The swap vector is organized the following way: |
| * |
| * There are SHMEM_NR_DIRECT entries directly stored in the |
| * shmem_inode_info structure. So small files do not need an addional |
| * allocation. |
| * |
| * For pages with index > SHMEM_NR_DIRECT there is the pointer |
| * i_indirect which points to a page which holds in the first half |
| * doubly indirect blocks, in the second half triple indirect blocks: |
| * |
| * For an artificial ENTRIES_PER_PAGE = 4 this would lead to the |
| * following layout (for SHMEM_NR_DIRECT == 16): |
| * |
| * i_indirect -> dir --> 16-19 |
| * | +-> 20-23 |
| * | |
| * +-->dir2 --> 24-27 |
| * | +-> 28-31 |
| * | +-> 32-35 |
| * | +-> 36-39 |
| * | |
| * +-->dir3 --> 40-43 |
| * +-> 44-47 |
| * +-> 48-51 |
| * +-> 52-55 |
| */ |
| static swp_entry_t *shmem_swp_entry(struct shmem_inode_info *info, unsigned long index, struct page **page) |
| { |
| unsigned long offset; |
| struct page **dir; |
| struct page *subdir; |
| |
| if (index < SHMEM_NR_DIRECT) { |
| shmem_swp_balance_unmap(); |
| return info->i_direct+index; |
| } |
| if (!info->i_indirect) { |
| if (page) { |
| info->i_indirect = *page; |
| *page = NULL; |
| } |
| return NULL; /* need another page */ |
| } |
| |
| index -= SHMEM_NR_DIRECT; |
| offset = index % ENTRIES_PER_PAGE; |
| index /= ENTRIES_PER_PAGE; |
| dir = shmem_dir_map(info->i_indirect); |
| |
| if (index >= ENTRIES_PER_PAGE/2) { |
| index -= ENTRIES_PER_PAGE/2; |
| dir += ENTRIES_PER_PAGE/2 + index/ENTRIES_PER_PAGE; |
| index %= ENTRIES_PER_PAGE; |
| subdir = *dir; |
| if (!subdir) { |
| if (page) { |
| *dir = *page; |
| *page = NULL; |
| } |
| shmem_dir_unmap(dir); |
| return NULL; /* need another page */ |
| } |
| shmem_dir_unmap(dir); |
| dir = shmem_dir_map(subdir); |
| } |
| |
| dir += index; |
| subdir = *dir; |
| if (!subdir) { |
| if (!page || !(subdir = *page)) { |
| shmem_dir_unmap(dir); |
| return NULL; /* need a page */ |
| } |
| *dir = subdir; |
| *page = NULL; |
| } |
| shmem_dir_unmap(dir); |
| return shmem_swp_map(subdir) + offset; |
| } |
| |
| static void shmem_swp_set(struct shmem_inode_info *info, swp_entry_t *entry, unsigned long value) |
| { |
| long incdec = value? 1: -1; |
| |
| entry->val = value; |
| info->swapped += incdec; |
| if ((unsigned long)(entry - info->i_direct) >= SHMEM_NR_DIRECT) { |
| struct page *page = kmap_atomic_to_page(entry); |
| set_page_private(page, page_private(page) + incdec); |
| } |
| } |
| |
| /** |
| * shmem_swp_alloc - get the position of the swap entry for the page. |
| * @info: info structure for the inode |
| * @index: index of the page to find |
| * @sgp: check and recheck i_size? skip allocation? |
| * |
| * If the entry does not exist, allocate it. |
| */ |
| static swp_entry_t *shmem_swp_alloc(struct shmem_inode_info *info, unsigned long index, enum sgp_type sgp) |
| { |
| struct inode *inode = &info->vfs_inode; |
| struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); |
| struct page *page = NULL; |
| swp_entry_t *entry; |
| |
| if (sgp != SGP_WRITE && |
| ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) |
| return ERR_PTR(-EINVAL); |
| |
| while (!(entry = shmem_swp_entry(info, index, &page))) { |
| if (sgp == SGP_READ) |
| return shmem_swp_map(ZERO_PAGE(0)); |
| /* |
| * Test used_blocks against 1 less max_blocks, since we have 1 data |
| * page (and perhaps indirect index pages) yet to allocate: |
| * a waste to allocate index if we cannot allocate data. |
| */ |
| if (sbinfo->max_blocks) { |
| if (percpu_counter_compare(&sbinfo->used_blocks, (sbinfo->max_blocks - 1)) > 0) |
| return ERR_PTR(-ENOSPC); |
| percpu_counter_inc(&sbinfo->used_blocks); |
| spin_lock(&inode->i_lock); |
| inode->i_blocks += BLOCKS_PER_PAGE; |
| spin_unlock(&inode->i_lock); |
| } |
| |
| spin_unlock(&info->lock); |
| page = shmem_dir_alloc(mapping_gfp_mask(inode->i_mapping)); |
| spin_lock(&info->lock); |
| |
| if (!page) { |
| shmem_free_blocks(inode, 1); |
| return ERR_PTR(-ENOMEM); |
| } |
| if (sgp != SGP_WRITE && |
| ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) { |
| entry = ERR_PTR(-EINVAL); |
| break; |
| } |
| if (info->next_index <= index) |
| info->next_index = index + 1; |
| } |
| if (page) { |
| /* another task gave its page, or truncated the file */ |
| shmem_free_blocks(inode, 1); |
| shmem_dir_free(page); |
| } |
| if (info->next_index <= index && !IS_ERR(entry)) |
| info->next_index = index + 1; |
| return entry; |
| } |
| |
| /** |
| * shmem_free_swp - free some swap entries in a directory |
| * @dir: pointer to the directory |
| * @edir: pointer after last entry of the directory |
| * @punch_lock: pointer to spinlock when needed for the holepunch case |
| */ |
| static int shmem_free_swp(swp_entry_t *dir, swp_entry_t *edir, |
| spinlock_t *punch_lock) |
| { |
| spinlock_t *punch_unlock = NULL; |
| swp_entry_t *ptr; |
| int freed = 0; |
| |
| for (ptr = dir; ptr < edir; ptr++) { |
| if (ptr->val) { |
| if (unlikely(punch_lock)) { |
| punch_unlock = punch_lock; |
| punch_lock = NULL; |
| spin_lock(punch_unlock); |
| if (!ptr->val) |
| continue; |
| } |
| free_swap_and_cache(*ptr); |
| *ptr = (swp_entry_t){0}; |
| freed++; |
| } |
| } |
| if (punch_unlock) |
| spin_unlock(punch_unlock); |
| return freed; |
| } |
| |
| static int shmem_map_and_free_swp(struct page *subdir, int offset, |
| int limit, struct page ***dir, spinlock_t *punch_lock) |
| { |
| swp_entry_t *ptr; |
| int freed = 0; |
| |
| ptr = shmem_swp_map(subdir); |
| for (; offset < limit; offset += LATENCY_LIMIT) { |
| int size = limit - offset; |
| if (size > LATENCY_LIMIT) |
| size = LATENCY_LIMIT; |
| freed += shmem_free_swp(ptr+offset, ptr+offset+size, |
| punch_lock); |
| if (need_resched()) { |
| shmem_swp_unmap(ptr); |
| if (*dir) { |
| shmem_dir_unmap(*dir); |
| *dir = NULL; |
| } |
| cond_resched(); |
| ptr = shmem_swp_map(subdir); |
| } |
| } |
| shmem_swp_unmap(ptr); |
| return freed; |
| } |
| |
| static void shmem_free_pages(struct list_head *next) |
| { |
| struct page *page; |
| int freed = 0; |
| |
| do { |
| page = container_of(next, struct page, lru); |
| next = next->next; |
| shmem_dir_free(page); |
| freed++; |
| if (freed >= LATENCY_LIMIT) { |
| cond_resched(); |
| freed = 0; |
| } |
| } while (next); |
| } |
| |
| static void shmem_truncate_range(struct inode *inode, loff_t start, loff_t end) |
| { |
| struct shmem_inode_info *info = SHMEM_I(inode); |
| unsigned long idx; |
| unsigned long size; |
| unsigned long limit; |
| unsigned long stage; |
| unsigned long diroff; |
| struct page **dir; |
| struct page *topdir; |
| struct page *middir; |
| struct page *subdir; |
| swp_entry_t *ptr; |
| LIST_HEAD(pages_to_free); |
| long nr_pages_to_free = 0; |
| long nr_swaps_freed = 0; |
| int offset; |
| int freed; |
| int punch_hole; |
| spinlock_t *needs_lock; |
| spinlock_t *punch_lock; |
| unsigned long upper_limit; |
| |
| inode->i_ctime = inode->i_mtime = CURRENT_TIME; |
| idx = (start + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; |
| if (idx >= info->next_index) |
| return; |
| |
| spin_lock(&info->lock); |
| info->flags |= SHMEM_TRUNCATE; |
| if (likely(end == (loff_t) -1)) { |
| limit = info->next_index; |
| upper_limit = SHMEM_MAX_INDEX; |
| info->next_index = idx; |
| needs_lock = NULL; |
| punch_hole = 0; |
| } else { |
| if (end + 1 >= inode->i_size) { /* we may free a little more */ |
| limit = (inode->i_size + PAGE_CACHE_SIZE - 1) >> |
| PAGE_CACHE_SHIFT; |
| upper_limit = SHMEM_MAX_INDEX; |
| } else { |
| limit = (end + 1) >> PAGE_CACHE_SHIFT; |
| upper_limit = limit; |
| } |
| needs_lock = &info->lock; |
| punch_hole = 1; |
| } |
| |
| topdir = info->i_indirect; |
| if (topdir && idx <= SHMEM_NR_DIRECT && !punch_hole) { |
| info->i_indirect = NULL; |
| nr_pages_to_free++; |
| list_add(&topdir->lru, &pages_to_free); |
| } |
| spin_unlock(&info->lock); |
| |
| if (info->swapped && idx < SHMEM_NR_DIRECT) { |
| ptr = info->i_direct; |
| size = limit; |
| if (size > SHMEM_NR_DIRECT) |
| size = SHMEM_NR_DIRECT; |
| nr_swaps_freed = shmem_free_swp(ptr+idx, ptr+size, needs_lock); |
| } |
| |
| /* |
| * If there are no indirect blocks or we are punching a hole |
| * below indirect blocks, nothing to be done. |
| */ |
| if (!topdir || limit <= SHMEM_NR_DIRECT) |
| goto done2; |
| |
| /* |
| * The truncation case has already dropped info->lock, and we're safe |
| * because i_size and next_index have already been lowered, preventing |
| * access beyond. But in the punch_hole case, we still need to take |
| * the lock when updating the swap directory, because there might be |
| * racing accesses by shmem_getpage(SGP_CACHE), shmem_unuse_inode or |
| * shmem_writepage. However, whenever we find we can remove a whole |
| * directory page (not at the misaligned start or end of the range), |
| * we first NULLify its pointer in the level above, and then have no |
| * need to take the lock when updating its contents: needs_lock and |
| * punch_lock (either pointing to info->lock or NULL) manage this. |
| */ |
| |
| upper_limit -= SHMEM_NR_DIRECT; |
| limit -= SHMEM_NR_DIRECT; |
| idx = (idx > SHMEM_NR_DIRECT)? (idx - SHMEM_NR_DIRECT): 0; |
| offset = idx % ENTRIES_PER_PAGE; |
| idx -= offset; |
| |
| dir = shmem_dir_map(topdir); |
| stage = ENTRIES_PER_PAGEPAGE/2; |
| if (idx < ENTRIES_PER_PAGEPAGE/2) { |
| middir = topdir; |
| diroff = idx/ENTRIES_PER_PAGE; |
| } else { |
| dir += ENTRIES_PER_PAGE/2; |
| dir += (idx - ENTRIES_PER_PAGEPAGE/2)/ENTRIES_PER_PAGEPAGE; |
| while (stage <= idx) |
| stage += ENTRIES_PER_PAGEPAGE; |
| middir = *dir; |
| if (*dir) { |
| diroff = ((idx - ENTRIES_PER_PAGEPAGE/2) % |
| ENTRIES_PER_PAGEPAGE) / ENTRIES_PER_PAGE; |
| if (!diroff && !offset && upper_limit >= stage) { |
| if (needs_lock) { |
| spin_lock(needs_lock); |
| *dir = NULL; |
| spin_unlock(needs_lock); |
| needs_lock = NULL; |
| } else |
| *dir = NULL; |
| nr_pages_to_free++; |
| list_add(&middir->lru, &pages_to_free); |
| } |
| shmem_dir_unmap(dir); |
| dir = shmem_dir_map(middir); |
| } else { |
| diroff = 0; |
| offset = 0; |
| idx = stage; |
| } |
| } |
| |
| for (; idx < limit; idx += ENTRIES_PER_PAGE, diroff++) { |
| if (unlikely(idx == stage)) { |
| shmem_dir_unmap(dir); |
| dir = shmem_dir_map(topdir) + |
| ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE; |
| while (!*dir) { |
| dir++; |
| idx += ENTRIES_PER_PAGEPAGE; |
| if (idx >= limit) |
| goto done1; |
| } |
| stage = idx + ENTRIES_PER_PAGEPAGE; |
| middir = *dir; |
| if (punch_hole) |
| needs_lock = &info->lock; |
| if (upper_limit >= stage) { |
| if (needs_lock) { |
| spin_lock(needs_lock); |
| *dir = NULL; |
| spin_unlock(needs_lock); |
| needs_lock = NULL; |
| } else |
| *dir = NULL; |
| nr_pages_to_free++; |
| list_add(&middir->lru, &pages_to_free); |
| } |
| shmem_dir_unmap(dir); |
| cond_resched(); |
| dir = shmem_dir_map(middir); |
| diroff = 0; |
| } |
| punch_lock = needs_lock; |
| subdir = dir[diroff]; |
| if (subdir && !offset && upper_limit-idx >= ENTRIES_PER_PAGE) { |
| if (needs_lock) { |
| spin_lock(needs_lock); |
| dir[diroff] = NULL; |
| spin_unlock(needs_lock); |
| punch_lock = NULL; |
| } else |
| dir[diroff] = NULL; |
| nr_pages_to_free++; |
| list_add(&subdir->lru, &pages_to_free); |
| } |
| if (subdir && page_private(subdir) /* has swap entries */) { |
| size = limit - idx; |
| if (size > ENTRIES_PER_PAGE) |
| size = ENTRIES_PER_PAGE; |
| freed = shmem_map_and_free_swp(subdir, |
| offset, size, &dir, punch_lock); |
| if (!dir) |
| dir = shmem_dir_map(middir); |
| nr_swaps_freed += freed; |
| if (offset || punch_lock) { |
| spin_lock(&info->lock); |
| set_page_private(subdir, |
| page_private(subdir) - freed); |
| spin_unlock(&info->lock); |
| } else |
| BUG_ON(page_private(subdir) != freed); |
| } |
| offset = 0; |
| } |
| done1: |
| shmem_dir_unmap(dir); |
| done2: |
| if (inode->i_mapping->nrpages && (info->flags & SHMEM_PAGEIN)) { |
| /* |
| * Call truncate_inode_pages again: racing shmem_unuse_inode |
| * may have swizzled a page in from swap since |
| * truncate_pagecache or generic_delete_inode did it, before we |
| * lowered next_index. Also, though shmem_getpage checks |
| * i_size before adding to cache, no recheck after: so fix the |
| * narrow window there too. |
| * |
| * Recalling truncate_inode_pages_range and unmap_mapping_range |
| * every time for punch_hole (which never got a chance to clear |
| * SHMEM_PAGEIN at the start of vmtruncate_range) is expensive, |
| * yet hardly ever necessary: try to optimize them out later. |
| */ |
| truncate_inode_pages_range(inode->i_mapping, start, end); |
| if (punch_hole) |
| unmap_mapping_range(inode->i_mapping, start, |
| end - start, 1); |
| } |
| |
| spin_lock(&info->lock); |
| info->flags &= ~SHMEM_TRUNCATE; |
| info->swapped -= nr_swaps_freed; |
| if (nr_pages_to_free) |
| shmem_free_blocks(inode, nr_pages_to_free); |
| shmem_recalc_inode(inode); |
| spin_unlock(&info->lock); |
| |
| /* |
| * Empty swap vector directory pages to be freed? |
| */ |
| if (!list_empty(&pages_to_free)) { |
| pages_to_free.prev->next = NULL; |
| shmem_free_pages(pages_to_free.next); |
| } |
| } |
| |
| static int shmem_notify_change(struct dentry *dentry, struct iattr *attr) |
| { |
| struct inode *inode = dentry->d_inode; |
| loff_t newsize = attr->ia_size; |
| int error; |
| |
| if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE) |
| && newsize != inode->i_size) { |
| struct page *page = NULL; |
| |
| if (newsize < inode->i_size) { |
| /* |
| * If truncating down to a partial page, then |
| * if that page is already allocated, hold it |
| * in memory until the truncation is over, so |
| * truncate_partial_page cannnot miss it were |
| * it assigned to swap. |
| */ |
| if (newsize & (PAGE_CACHE_SIZE-1)) { |
| (void) shmem_getpage(inode, |
| newsize >> PAGE_CACHE_SHIFT, |
| &page, SGP_READ, NULL); |
| if (page) |
| unlock_page(page); |
| } |
| /* |
| * Reset SHMEM_PAGEIN flag so that shmem_truncate can |
| * detect if any pages might have been added to cache |
| * after truncate_inode_pages. But we needn't bother |
| * if it's being fully truncated to zero-length: the |
| * nrpages check is efficient enough in that case. |
| */ |
| if (newsize) { |
| struct shmem_inode_info *info = SHMEM_I(inode); |
| spin_lock(&info->lock); |
| info->flags &= ~SHMEM_PAGEIN; |
| spin_unlock(&info->lock); |
| } |
| } |
| |
| error = simple_setsize(inode, newsize); |
| if (page) |
| page_cache_release(page); |
| if (error) |
| return error; |
| shmem_truncate_range(inode, newsize, (loff_t)-1); |
| } |
| |
| error = inode_change_ok(inode, attr); |
| if (!error) |
| generic_setattr(inode, attr); |
| #ifdef CONFIG_TMPFS_POSIX_ACL |
| if (!error && (attr->ia_valid & ATTR_MODE)) |
| error = generic_acl_chmod(inode); |
| #endif |
| return error; |
| } |
| |
| static void shmem_delete_inode(struct inode *inode) |
| { |
| struct shmem_inode_info *info = SHMEM_I(inode); |
| |
| if (inode->i_mapping->a_ops == &shmem_aops) { |
| truncate_inode_pages(inode->i_mapping, 0); |
| shmem_unacct_size(info->flags, inode->i_size); |
| inode->i_size = 0; |
| shmem_truncate_range(inode, 0, (loff_t)-1); |
| if (!list_empty(&info->swaplist)) { |
| mutex_lock(&shmem_swaplist_mutex); |
| list_del_init(&info->swaplist); |
| mutex_unlock(&shmem_swaplist_mutex); |
| } |
| } |
| BUG_ON(inode->i_blocks); |
| shmem_free_inode(inode->i_sb); |
| clear_inode(inode); |
| } |
| |
| static inline int shmem_find_swp(swp_entry_t entry, swp_entry_t *dir, swp_entry_t *edir) |
| { |
| swp_entry_t *ptr; |
| |
| for (ptr = dir; ptr < edir; ptr++) { |
| if (ptr->val == entry.val) |
| return ptr - dir; |
| } |
| return -1; |
| } |
| |
| static int shmem_unuse_inode(struct shmem_inode_info *info, swp_entry_t entry, struct page *page) |
| { |
| struct inode *inode; |
| unsigned long idx; |
| unsigned long size; |
| unsigned long limit; |
| unsigned long stage; |
| struct page **dir; |
| struct page *subdir; |
| swp_entry_t *ptr; |
| int offset; |
| int error; |
| |
| idx = 0; |
| ptr = info->i_direct; |
| spin_lock(&info->lock); |
| if (!info->swapped) { |
| list_del_init(&info->swaplist); |
| goto lost2; |
| } |
| limit = info->next_index; |
| size = limit; |
| if (size > SHMEM_NR_DIRECT) |
| size = SHMEM_NR_DIRECT; |
| offset = shmem_find_swp(entry, ptr, ptr+size); |
| if (offset >= 0) |
| goto found; |
| if (!info->i_indirect) |
| goto lost2; |
| |
| dir = shmem_dir_map(info->i_indirect); |
| stage = SHMEM_NR_DIRECT + ENTRIES_PER_PAGEPAGE/2; |
| |
| for (idx = SHMEM_NR_DIRECT; idx < limit; idx += ENTRIES_PER_PAGE, dir++) { |
| if (unlikely(idx == stage)) { |
| shmem_dir_unmap(dir-1); |
| if (cond_resched_lock(&info->lock)) { |
| /* check it has not been truncated */ |
| if (limit > info->next_index) { |
| limit = info->next_index; |
| if (idx >= limit) |
| goto lost2; |
| } |
| } |
| dir = shmem_dir_map(info->i_indirect) + |
| ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE; |
| while (!*dir) { |
| dir++; |
| idx += ENTRIES_PER_PAGEPAGE; |
| if (idx >= limit) |
| goto lost1; |
| } |
| stage = idx + ENTRIES_PER_PAGEPAGE; |
| subdir = *dir; |
| shmem_dir_unmap(dir); |
| dir = shmem_dir_map(subdir); |
| } |
| subdir = *dir; |
| if (subdir && page_private(subdir)) { |
| ptr = shmem_swp_map(subdir); |
| size = limit - idx; |
| if (size > ENTRIES_PER_PAGE) |
| size = ENTRIES_PER_PAGE; |
| offset = shmem_find_swp(entry, ptr, ptr+size); |
| shmem_swp_unmap(ptr); |
| if (offset >= 0) { |
| shmem_dir_unmap(dir); |
| goto found; |
| } |
| } |
| } |
| lost1: |
| shmem_dir_unmap(dir-1); |
| lost2: |
| spin_unlock(&info->lock); |
| return 0; |
| found: |
| idx += offset; |
| inode = igrab(&info->vfs_inode); |
| spin_unlock(&info->lock); |
| |
| /* |
| * Move _head_ to start search for next from here. |
| * But be careful: shmem_delete_inode checks list_empty without taking |
| * mutex, and there's an instant in list_move_tail when info->swaplist |
| * would appear empty, if it were the only one on shmem_swaplist. We |
| * could avoid doing it if inode NULL; or use this minor optimization. |
| */ |
| if (shmem_swaplist.next != &info->swaplist) |
| list_move_tail(&shmem_swaplist, &info->swaplist); |
| mutex_unlock(&shmem_swaplist_mutex); |
| |
| error = 1; |
| if (!inode) |
| goto out; |
| /* |
| * Charge page using GFP_KERNEL while we can wait. |
| * Charged back to the user(not to caller) when swap account is used. |
| * add_to_page_cache() will be called with GFP_NOWAIT. |
| */ |
| error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL); |
| if (error) |
| goto out; |
| error = radix_tree_preload(GFP_KERNEL); |
| if (error) { |
| mem_cgroup_uncharge_cache_page(page); |
| goto out; |
| } |
| error = 1; |
| |
| spin_lock(&info->lock); |
| ptr = shmem_swp_entry(info, idx, NULL); |
| if (ptr && ptr->val == entry.val) { |
| error = add_to_page_cache_locked(page, inode->i_mapping, |
| idx, GFP_NOWAIT); |
| /* does mem_cgroup_uncharge_cache_page on error */ |
| } else /* we must compensate for our precharge above */ |
| mem_cgroup_uncharge_cache_page(page); |
| |
| if (error == -EEXIST) { |
| struct page *filepage = find_get_page(inode->i_mapping, idx); |
| error = 1; |
| if (filepage) { |
| /* |
| * There might be a more uptodate page coming down |
| * from a stacked writepage: forget our swappage if so. |
| */ |
| if (PageUptodate(filepage)) |
| error = 0; |
| page_cache_release(filepage); |
| } |
| } |
| if (!error) { |
| delete_from_swap_cache(page); |
| set_page_dirty(page); |
| info->flags |= SHMEM_PAGEIN; |
| shmem_swp_set(info, ptr, 0); |
| swap_free(entry); |
| error = 1; /* not an error, but entry was found */ |
| } |
| if (ptr) |
| shmem_swp_unmap(ptr); |
| spin_unlock(&info->lock); |
| radix_tree_preload_end(); |
| out: |
| unlock_page(page); |
| page_cache_release(page); |
| iput(inode); /* allows for NULL */ |
| return error; |
| } |
| |
| /* |
| * shmem_unuse() search for an eventually swapped out shmem page. |
| */ |
| int shmem_unuse(swp_entry_t entry, struct page *page) |
| { |
| struct list_head *p, *next; |
| struct shmem_inode_info *info; |
| int found = 0; |
| |
| mutex_lock(&shmem_swaplist_mutex); |
| list_for_each_safe(p, next, &shmem_swaplist) { |
| info = list_entry(p, struct shmem_inode_info, swaplist); |
| found = shmem_unuse_inode(info, entry, page); |
| cond_resched(); |
| if (found) |
| goto out; |
| } |
| mutex_unlock(&shmem_swaplist_mutex); |
| /* |
| * Can some race bring us here? We've been holding page lock, |
| * so I think not; but would rather try again later than BUG() |
| */ |
| unlock_page(page); |
| page_cache_release(page); |
| out: |
| return (found < 0) ? found : 0; |
| } |
| |
| /* |
| * Move the page from the page cache to the swap cache. |
| */ |
| static int shmem_writepage(struct page *page, struct writeback_control *wbc) |
| { |
| struct shmem_inode_info *info; |
| swp_entry_t *entry, swap; |
| struct address_space *mapping; |
| unsigned long index; |
| struct inode *inode; |
| |
| BUG_ON(!PageLocked(page)); |
| mapping = page->mapping; |
| index = page->index; |
| inode = mapping->host; |
| info = SHMEM_I(inode); |
| if (info->flags & VM_LOCKED) |
| goto redirty; |
| if (!total_swap_pages) |
| goto redirty; |
| |
| /* |
| * shmem_backing_dev_info's capabilities prevent regular writeback or |
| * sync from ever calling shmem_writepage; but a stacking filesystem |
| * may use the ->writepage of its underlying filesystem, in which case |
| * tmpfs should write out to swap only in response to memory pressure, |
| * and not for the writeback threads or sync. However, in those cases, |
| * we do still want to check if there's a redundant swappage to be |
| * discarded. |
| */ |
| if (wbc->for_reclaim) |
| swap = get_swap_page(); |
| else |
| swap.val = 0; |
| |
| spin_lock(&info->lock); |
| if (index >= info->next_index) { |
| BUG_ON(!(info->flags & SHMEM_TRUNCATE)); |
| goto unlock; |
| } |
| entry = shmem_swp_entry(info, index, NULL); |
| if (entry->val) { |
| /* |
| * The more uptodate page coming down from a stacked |
| * writepage should replace our old swappage. |
| */ |
| free_swap_and_cache(*entry); |
| shmem_swp_set(info, entry, 0); |
| } |
| shmem_recalc_inode(inode); |
| |
| if (swap.val && add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) { |
| remove_from_page_cache(page); |
| shmem_swp_set(info, entry, swap.val); |
| shmem_swp_unmap(entry); |
| if (list_empty(&info->swaplist)) |
| inode = igrab(inode); |
| else |
| inode = NULL; |
| spin_unlock(&info->lock); |
| swap_shmem_alloc(swap); |
| BUG_ON(page_mapped(page)); |
| page_cache_release(page); /* pagecache ref */ |
| swap_writepage(page, wbc); |
| if (inode) { |
| mutex_lock(&shmem_swaplist_mutex); |
| /* move instead of add in case we're racing */ |
| list_move_tail(&info->swaplist, &shmem_swaplist); |
| mutex_unlock(&shmem_swaplist_mutex); |
| iput(inode); |
| } |
| return 0; |
| } |
| |
| shmem_swp_unmap(entry); |
| unlock: |
| spin_unlock(&info->lock); |
| /* |
| * add_to_swap_cache() doesn't return -EEXIST, so we can safely |
| * clear SWAP_HAS_CACHE flag. |
| */ |
| swapcache_free(swap, NULL); |
| redirty: |
| set_page_dirty(page); |
| if (wbc->for_reclaim) |
| return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */ |
| unlock_page(page); |
| return 0; |
| } |
| |
| #ifdef CONFIG_NUMA |
| #ifdef CONFIG_TMPFS |
| static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) |
| { |
| char buffer[64]; |
| |
| if (!mpol || mpol->mode == MPOL_DEFAULT) |
| return; /* show nothing */ |
| |
| mpol_to_str(buffer, sizeof(buffer), mpol, 1); |
| |
| seq_printf(seq, ",mpol=%s", buffer); |
| } |
| |
| static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) |
| { |
| struct mempolicy *mpol = NULL; |
| if (sbinfo->mpol) { |
| spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */ |
| mpol = sbinfo->mpol; |
| mpol_get(mpol); |
| spin_unlock(&sbinfo->stat_lock); |
| } |
| return mpol; |
| } |
| #endif /* CONFIG_TMPFS */ |
| |
| static struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp, |
| struct shmem_inode_info *info, unsigned long idx) |
| { |
| struct mempolicy mpol, *spol; |
| struct vm_area_struct pvma; |
| struct page *page; |
| |
| spol = mpol_cond_copy(&mpol, |
| mpol_shared_policy_lookup(&info->policy, idx)); |
| |
| /* Create a pseudo vma that just contains the policy */ |
| pvma.vm_start = 0; |
| pvma.vm_pgoff = idx; |
| pvma.vm_ops = NULL; |
| pvma.vm_policy = spol; |
| page = swapin_readahead(entry, gfp, &pvma, 0); |
| return page; |
| } |
| |
| static struct page *shmem_alloc_page(gfp_t gfp, |
| struct shmem_inode_info *info, unsigned long idx) |
| { |
| struct vm_area_struct pvma; |
| |
| /* Create a pseudo vma that just contains the policy */ |
| pvma.vm_start = 0; |
| pvma.vm_pgoff = idx; |
| pvma.vm_ops = NULL; |
| pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, idx); |
| |
| /* |
| * alloc_page_vma() will drop the shared policy reference |
| */ |
| return alloc_page_vma(gfp, &pvma, 0); |
| } |
| #else /* !CONFIG_NUMA */ |
| #ifdef CONFIG_TMPFS |
| static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *p) |
| { |
| } |
| #endif /* CONFIG_TMPFS */ |
| |
| static inline struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp, |
| struct shmem_inode_info *info, unsigned long idx) |
| { |
| return swapin_readahead(entry, gfp, NULL, 0); |
| } |
| |
| static inline struct page *shmem_alloc_page(gfp_t gfp, |
| struct shmem_inode_info *info, unsigned long idx) |
| { |
| return alloc_page(gfp); |
| } |
| #endif /* CONFIG_NUMA */ |
| |
| #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS) |
| static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) |
| { |
| return NULL; |
| } |
| #endif |
| |
| /* |
| * shmem_getpage - either get the page from swap or allocate a new one |
| * |
| * If we allocate a new one we do not mark it dirty. That's up to the |
| * vm. If we swap it in we mark it dirty since we also free the swap |
| * entry since a page cannot live in both the swap and page cache |
| */ |
| static int shmem_getpage(struct inode *inode, unsigned long idx, |
| struct page **pagep, enum sgp_type sgp, int *type) |
| { |
| struct address_space *mapping = inode->i_mapping; |
| struct shmem_inode_info *info = SHMEM_I(inode); |
| struct shmem_sb_info *sbinfo; |
| struct page *filepage = *pagep; |
| struct page *swappage; |
| struct page *prealloc_page = NULL; |
| swp_entry_t *entry; |
| swp_entry_t swap; |
| gfp_t gfp; |
| int error; |
| |
| if (idx >= SHMEM_MAX_INDEX) |
| return -EFBIG; |
| |
| if (type) |
| *type = 0; |
| |
| /* |
| * Normally, filepage is NULL on entry, and either found |
| * uptodate immediately, or allocated and zeroed, or read |
| * in under swappage, which is then assigned to filepage. |
| * But shmem_readpage (required for splice) passes in a locked |
| * filepage, which may be found not uptodate by other callers |
| * too, and may need to be copied from the swappage read in. |
| */ |
| repeat: |
| if (!filepage) |
| filepage = find_lock_page(mapping, idx); |
| if (filepage && PageUptodate(filepage)) |
| goto done; |
| gfp = mapping_gfp_mask(mapping); |
| if (!filepage) { |
| /* |
| * Try to preload while we can wait, to not make a habit of |
| * draining atomic reserves; but don't latch on to this cpu. |
| */ |
| error = radix_tree_preload(gfp & ~__GFP_HIGHMEM); |
| if (error) |
| goto failed; |
| radix_tree_preload_end(); |
| if (sgp != SGP_READ && !prealloc_page) { |
| /* We don't care if this fails */ |
| prealloc_page = shmem_alloc_page(gfp, info, idx); |
| if (prealloc_page) { |
| if (mem_cgroup_cache_charge(prealloc_page, |
| current->mm, GFP_KERNEL)) { |
| page_cache_release(prealloc_page); |
| prealloc_page = NULL; |
| } |
| } |
| } |
| } |
| error = 0; |
| |
| spin_lock(&info->lock); |
| shmem_recalc_inode(inode); |
| entry = shmem_swp_alloc(info, idx, sgp); |
| if (IS_ERR(entry)) { |
| spin_unlock(&info->lock); |
| error = PTR_ERR(entry); |
| goto failed; |
| } |
| swap = *entry; |
| |
| if (swap.val) { |
| /* Look it up and read it in.. */ |
| swappage = lookup_swap_cache(swap); |
| if (!swappage) { |
| shmem_swp_unmap(entry); |
| /* here we actually do the io */ |
| if (type && !(*type & VM_FAULT_MAJOR)) { |
| __count_vm_event(PGMAJFAULT); |
| *type |= VM_FAULT_MAJOR; |
| } |
| spin_unlock(&info->lock); |
| swappage = shmem_swapin(swap, gfp, info, idx); |
| if (!swappage) { |
| spin_lock(&info->lock); |
| entry = shmem_swp_alloc(info, idx, sgp); |
| if (IS_ERR(entry)) |
| error = PTR_ERR(entry); |
| else { |
| if (entry->val == swap.val) |
| error = -ENOMEM; |
| shmem_swp_unmap(entry); |
| } |
| spin_unlock(&info->lock); |
| if (error) |
| goto failed; |
| goto repeat; |
| } |
| wait_on_page_locked(swappage); |
| page_cache_release(swappage); |
| goto repeat; |
| } |
| |
| /* We have to do this with page locked to prevent races */ |
| if (!trylock_page(swappage)) { |
| shmem_swp_unmap(entry); |
| spin_unlock(&info->lock); |
| wait_on_page_locked(swappage); |
| page_cache_release(swappage); |
| goto repeat; |
| } |
| if (PageWriteback(swappage)) { |
| shmem_swp_unmap(entry); |
| spin_unlock(&info->lock); |
| wait_on_page_writeback(swappage); |
| unlock_page(swappage); |
| page_cache_release(swappage); |
| goto repeat; |
| } |
| if (!PageUptodate(swappage)) { |
| shmem_swp_unmap(entry); |
| spin_unlock(&info->lock); |
| unlock_page(swappage); |
| page_cache_release(swappage); |
| error = -EIO; |
| goto failed; |
| } |
| |
| if (filepage) { |
| shmem_swp_set(info, entry, 0); |
| shmem_swp_unmap(entry); |
| delete_from_swap_cache(swappage); |
| spin_unlock(&info->lock); |
| copy_highpage(filepage, swappage); |
| unlock_page(swappage); |
| page_cache_release(swappage); |
| flush_dcache_page(filepage); |
| SetPageUptodate(filepage); |
| set_page_dirty(filepage); |
| swap_free(swap); |
| } else if (!(error = add_to_page_cache_locked(swappage, mapping, |
| idx, GFP_NOWAIT))) { |
| info->flags |= SHMEM_PAGEIN; |
| shmem_swp_set(info, entry, 0); |
| shmem_swp_unmap(entry); |
| delete_from_swap_cache(swappage); |
| spin_unlock(&info->lock); |
| filepage = swappage; |
| set_page_dirty(filepage); |
| swap_free(swap); |
| } else { |
| shmem_swp_unmap(entry); |
| spin_unlock(&info->lock); |
| if (error == -ENOMEM) { |
| /* |
| * reclaim from proper memory cgroup and |
| * call memcg's OOM if needed. |
| */ |
| error = mem_cgroup_shmem_charge_fallback( |
| swappage, |
| current->mm, |
| gfp); |
| if (error) { |
| unlock_page(swappage); |
| page_cache_release(swappage); |
| goto failed; |
| } |
| } |
| unlock_page(swappage); |
| page_cache_release(swappage); |
| goto repeat; |
| } |
| } else if (sgp == SGP_READ && !filepage) { |
| shmem_swp_unmap(entry); |
| filepage = find_get_page(mapping, idx); |
| if (filepage && |
| (!PageUptodate(filepage) || !trylock_page(filepage))) { |
| spin_unlock(&info->lock); |
| wait_on_page_locked(filepage); |
| page_cache_release(filepage); |
| filepage = NULL; |
| goto repeat; |
| } |
| spin_unlock(&info->lock); |
| } else { |
| shmem_swp_unmap(entry); |
| sbinfo = SHMEM_SB(inode->i_sb); |
| if (sbinfo->max_blocks) { |
| if ((percpu_counter_compare(&sbinfo->used_blocks, sbinfo->max_blocks) > 0) || |
| shmem_acct_block(info->flags)) { |
| spin_unlock(&info->lock); |
| error = -ENOSPC; |
| goto failed; |
| } |
| percpu_counter_inc(&sbinfo->used_blocks); |
| spin_lock(&inode->i_lock); |
| inode->i_blocks += BLOCKS_PER_PAGE; |
| spin_unlock(&inode->i_lock); |
| } else if (shmem_acct_block(info->flags)) { |
| spin_unlock(&info->lock); |
| error = -ENOSPC; |
| goto failed; |
| } |
| |
| if (!filepage) { |
| int ret; |
| |
| if (!prealloc_page) { |
| spin_unlock(&info->lock); |
| filepage = shmem_alloc_page(gfp, info, idx); |
| if (!filepage) { |
| shmem_unacct_blocks(info->flags, 1); |
| shmem_free_blocks(inode, 1); |
| error = -ENOMEM; |
| goto failed; |
| } |
| SetPageSwapBacked(filepage); |
| |
| /* |
| * Precharge page while we can wait, compensate |
| * after |
| */ |
| error = mem_cgroup_cache_charge(filepage, |
| current->mm, GFP_KERNEL); |
| if (error) { |
| page_cache_release(filepage); |
| shmem_unacct_blocks(info->flags, 1); |
| shmem_free_blocks(inode, 1); |
| filepage = NULL; |
| goto failed; |
| } |
| |
| spin_lock(&info->lock); |
| } else { |
| filepage = prealloc_page; |
| prealloc_page = NULL; |
| SetPageSwapBacked(filepage); |
| } |
| |
| entry = shmem_swp_alloc(info, idx, sgp); |
| if (IS_ERR(entry)) |
| error = PTR_ERR(entry); |
| else { |
| swap = *entry; |
| shmem_swp_unmap(entry); |
| } |
| ret = error || swap.val; |
| if (ret) |
| mem_cgroup_uncharge_cache_page(filepage); |
| else |
| ret = add_to_page_cache_lru(filepage, mapping, |
| idx, GFP_NOWAIT); |
| /* |
| * At add_to_page_cache_lru() failure, uncharge will |
| * be done automatically. |
| */ |
| if (ret) { |
| spin_unlock(&info->lock); |
| page_cache_release(filepage); |
| shmem_unacct_blocks(info->flags, 1); |
| shmem_free_blocks(inode, 1); |
| filepage = NULL; |
| if (error) |
| goto failed; |
| goto repeat; |
| } |
| info->flags |= SHMEM_PAGEIN; |
| } |
| |
| info->alloced++; |
| spin_unlock(&info->lock); |
| clear_highpage(filepage); |
| flush_dcache_page(filepage); |
| SetPageUptodate(filepage); |
| if (sgp == SGP_DIRTY) |
| set_page_dirty(filepage); |
| } |
| done: |
| *pagep = filepage; |
| error = 0; |
| goto out; |
| |
| failed: |
| if (*pagep != filepage) { |
| unlock_page(filepage); |
| page_cache_release(filepage); |
| } |
| out: |
| if (prealloc_page) { |
| mem_cgroup_uncharge_cache_page(prealloc_page); |
| page_cache_release(prealloc_page); |
| } |
| return error; |
| } |
| |
| static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf) |
| { |
| struct inode *inode = vma->vm_file->f_path.dentry->d_inode; |
| int error; |
| int ret; |
| |
| if (((loff_t)vmf->pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode)) |
| return VM_FAULT_SIGBUS; |
| |
| error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret); |
| if (error) |
| return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS); |
| |
| return ret | VM_FAULT_LOCKED; |
| } |
| |
| #ifdef CONFIG_NUMA |
| static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new) |
| { |
| struct inode *i = vma->vm_file->f_path.dentry->d_inode; |
| return mpol_set_shared_policy(&SHMEM_I(i)->policy, vma, new); |
| } |
| |
| static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, |
| unsigned long addr) |
| { |
| struct inode *i = vma->vm_file->f_path.dentry->d_inode; |
| unsigned long idx; |
| |
| idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; |
| return mpol_shared_policy_lookup(&SHMEM_I(i)->policy, idx); |
| } |
| #endif |
| |
| int shmem_lock(struct file *file, int lock, struct user_struct *user) |
| { |
| struct inode *inode = file->f_path.dentry->d_inode; |
| struct shmem_inode_info *info = SHMEM_I(inode); |
| int retval = -ENOMEM; |
| |
| spin_lock(&info->lock); |
| if (lock && !(info->flags & VM_LOCKED)) { |
| if (!user_shm_lock(inode->i_size, user)) |
| goto out_nomem; |
| info->flags |= VM_LOCKED; |
| mapping_set_unevictable(file->f_mapping); |
| } |
| if (!lock && (info->flags & VM_LOCKED) && user) { |
| user_shm_unlock(inode->i_size, user); |
| info->flags &= ~VM_LOCKED; |
| mapping_clear_unevictable(file->f_mapping); |
| scan_mapping_unevictable_pages(file->f_mapping); |
| } |
| retval = 0; |
| |
| out_nomem: |
| spin_unlock(&info->lock); |
| return retval; |
| } |
| |
| static int shmem_mmap(struct file *file, struct vm_area_struct *vma) |
| { |
| file_accessed(file); |
| vma->vm_ops = &shmem_vm_ops; |
| vma->vm_flags |= VM_CAN_NONLINEAR; |
| return 0; |
| } |
| |
| static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir, |
| int mode, dev_t dev, unsigned long flags) |
| { |
| struct inode *inode; |
| struct shmem_inode_info *info; |
| struct shmem_sb_info *sbinfo = SHMEM_SB(sb); |
| |
| if (shmem_reserve_inode(sb)) |
| return NULL; |
| |
| inode = new_inode(sb); |
| if (inode) { |
| inode_init_owner(inode, dir, mode); |
| inode->i_blocks = 0; |
| inode->i_mapping->backing_dev_info = &shmem_backing_dev_info; |
| inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME; |
| inode->i_generation = get_seconds(); |
| info = SHMEM_I(inode); |
| memset(info, 0, (char *)inode - (char *)info); |
| spin_lock_init(&info->lock); |
| info->flags = flags & VM_NORESERVE; |
| INIT_LIST_HEAD(&info->swaplist); |
| cache_no_acl(inode); |
| |
| switch (mode & S_IFMT) { |
| default: |
| inode->i_op = &shmem_special_inode_operations; |
| init_special_inode(inode, mode, dev); |
| break; |
| case S_IFREG: |
| inode->i_mapping->a_ops = &shmem_aops; |
| inode->i_op = &shmem_inode_operations; |
| inode->i_fop = &shmem_file_operations; |
| mpol_shared_policy_init(&info->policy, |
| shmem_get_sbmpol(sbinfo)); |
| break; |
| case S_IFDIR: |
| inc_nlink(inode); |
| /* Some things misbehave if size == 0 on a directory */ |
| inode->i_size = 2 * BOGO_DIRENT_SIZE; |
| inode->i_op = &shmem_dir_inode_operations; |
| inode->i_fop = &simple_dir_operations; |
| break; |
| case S_IFLNK: |
| /* |
| * Must not load anything in the rbtree, |
| * mpol_free_shared_policy will not be called. |
| */ |
| mpol_shared_policy_init(&info->policy, NULL); |
| break; |
| } |
| } else |
| shmem_free_inode(sb); |
| return inode; |
| } |
| |
| #ifdef CONFIG_TMPFS |
| static const struct inode_operations shmem_symlink_inode_operations; |
| static const struct inode_operations shmem_symlink_inline_operations; |
| |
| /* |
| * Normally tmpfs avoids the use of shmem_readpage and shmem_write_begin; |
| * but providing them allows a tmpfs file to be used for splice, sendfile, and |
| * below the loop driver, in the generic fashion that many filesystems support. |
| */ |
| static int shmem_readpage(struct file *file, struct page *page) |
| { |
| struct inode *inode = page->mapping->host; |
| int error = shmem_getpage(inode, page->index, &page, SGP_CACHE, NULL); |
| unlock_page(page); |
| return error; |
| } |
| |
| static int |
| shmem_write_begin(struct file *file, struct address_space *mapping, |
| loff_t pos, unsigned len, unsigned flags, |
| struct page **pagep, void **fsdata) |
| { |
| struct inode *inode = mapping->host; |
| pgoff_t index = pos >> PAGE_CACHE_SHIFT; |
| *pagep = NULL; |
| return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL); |
| } |
| |
| static int |
| shmem_write_end(struct file *file, struct address_space *mapping, |
| loff_t pos, unsigned len, unsigned copied, |
| struct page *page, void *fsdata) |
| { |
| struct inode *inode = mapping->host; |
| |
| if (pos + copied > inode->i_size) |
| i_size_write(inode, pos + copied); |
| |
| set_page_dirty(page); |
| unlock_page(page); |
| page_cache_release(page); |
| |
| return copied; |
| } |
| |
| static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor) |
| { |
| struct inode *inode = filp->f_path.dentry->d_inode; |
| struct address_space *mapping = inode->i_mapping; |
| unsigned long index, offset; |
| enum sgp_type sgp = SGP_READ; |
| |
| /* |
| * Might this read be for a stacking filesystem? Then when reading |
| * holes of a sparse file, we actually need to allocate those pages, |
| * and even mark them dirty, so it cannot exceed the max_blocks limit. |
| */ |
| if (segment_eq(get_fs(), KERNEL_DS)) |
| sgp = SGP_DIRTY; |
| |
| index = *ppos >> PAGE_CACHE_SHIFT; |
| offset = *ppos & ~PAGE_CACHE_MASK; |
| |
| for (;;) { |
| struct page *page = NULL; |
| unsigned long end_index, nr, ret; |
| loff_t i_size = i_size_read(inode); |
| |
| end_index = i_size >> PAGE_CACHE_SHIFT; |
| if (index > end_index) |
| break; |
| if (index == end_index) { |
| nr = i_size & ~PAGE_CACHE_MASK; |
| if (nr <= offset) |
| break; |
| } |
| |
| desc->error = shmem_getpage(inode, index, &page, sgp, NULL); |
| if (desc->error) { |
| if (desc->error == -EINVAL) |
| desc->error = 0; |
| break; |
| } |
| if (page) |
| unlock_page(page); |
| |
| /* |
| * We must evaluate after, since reads (unlike writes) |
| * are called without i_mutex protection against truncate |
| */ |
| nr = PAGE_CACHE_SIZE; |
| i_size = i_size_read(inode); |
| end_index = i_size >> PAGE_CACHE_SHIFT; |
| if (index == end_index) { |
| nr = i_size & ~PAGE_CACHE_MASK; |
| if (nr <= offset) { |
| if (page) |
| page_cache_release(page); |
| break; |
| } |
| } |
| nr -= offset; |
| |
| if (page) { |
| /* |
| * If users can be writing to this page using arbitrary |
| * virtual addresses, take care about potential aliasing |
| * before reading the page on the kernel side. |
| */ |
| if (mapping_writably_mapped(mapping)) |
| flush_dcache_page(page); |
| /* |
| * Mark the page accessed if we read the beginning. |
| */ |
| if (!offset) |
| mark_page_accessed(page); |
| } else { |
| page = ZERO_PAGE(0); |
| page_cache_get(page); |
| } |
| |
| /* |
| * Ok, we have the page, and it's up-to-date, so |
| * now we can copy it to user space... |
| * |
| * The actor routine returns how many bytes were actually used.. |
| * NOTE! This may not be the same as how much of a user buffer |
| * we filled up (we may be padding etc), so we can only update |
| * "pos" here (the actor routine has to update the user buffer |
| * pointers and the remaining count). |
| */ |
| ret = actor(desc, page, offset, nr); |
| offset += ret; |
| index += offset >> PAGE_CACHE_SHIFT; |
| offset &= ~PAGE_CACHE_MASK; |
| |
| page_cache_release(page); |
| if (ret != nr || !desc->count) |
| break; |
| |
| cond_resched(); |
| } |
| |
| *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset; |
| file_accessed(filp); |
| } |
| |
| static ssize_t shmem_file_aio_read(struct kiocb *iocb, |
| const struct iovec *iov, unsigned long nr_segs, loff_t pos) |
| { |
| struct file *filp = iocb->ki_filp; |
| ssize_t retval; |
| unsigned long seg; |
| size_t count; |
| loff_t *ppos = &iocb->ki_pos; |
| |
| retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE); |
| if (retval) |
| return retval; |
| |
| for (seg = 0; seg < nr_segs; seg++) { |
| read_descriptor_t desc; |
| |
| desc.written = 0; |
| desc.arg.buf = iov[seg].iov_base; |
| desc.count = iov[seg].iov_len; |
| if (desc.count == 0) |
| continue; |
| desc.error = 0; |
| do_shmem_file_read(filp, ppos, &desc, file_read_actor); |
| retval += desc.written; |
| if (desc.error) { |
| retval = retval ?: desc.error; |
| break; |
| } |
| if (desc.count > 0) |
| break; |
| } |
| return retval; |
| } |
| |
| static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf) |
| { |
| struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb); |
| |
| buf->f_type = TMPFS_MAGIC; |
| buf->f_bsize = PAGE_CACHE_SIZE; |
| buf->f_namelen = NAME_MAX; |
| if (sbinfo->max_blocks) { |
| buf->f_blocks = sbinfo->max_blocks; |
| buf->f_bavail = buf->f_bfree = |
| sbinfo->max_blocks - percpu_counter_sum(&sbinfo->used_blocks); |
| } |
| if (sbinfo->max_inodes) { |
| buf->f_files = sbinfo->max_inodes; |
| buf->f_ffree = sbinfo->free_inodes; |
| } |
| /* else leave those fields 0 like simple_statfs */ |
| return 0; |
| } |
| |
| /* |
| * File creation. Allocate an inode, and we're done.. |
| */ |
| static int |
| shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev) |
| { |
| struct inode *inode; |
| int error = -ENOSPC; |
| |
| inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE); |
| if (inode) { |
| error = security_inode_init_security(inode, dir, NULL, NULL, |
| NULL); |
| if (error) { |
| if (error != -EOPNOTSUPP) { |
| iput(inode); |
| return error; |
| } |
| } |
| #ifdef CONFIG_TMPFS_POSIX_ACL |
| error = generic_acl_init(inode, dir); |
| if (error) { |
| iput(inode); |
| return error; |
| } |
| #else |
| error = 0; |
| #endif |
| dir->i_size += BOGO_DIRENT_SIZE; |
| dir->i_ctime = dir->i_mtime = CURRENT_TIME; |
| d_instantiate(dentry, inode); |
| dget(dentry); /* Extra count - pin the dentry in core */ |
| } |
| return error; |
| } |
| |
| static int shmem_mkdir(struct inode *dir, struct dentry *dentry, int mode) |
| { |
| int error; |
| |
| if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0))) |
| return error; |
| inc_nlink(dir); |
| return 0; |
| } |
| |
| static int shmem_create(struct inode *dir, struct dentry *dentry, int mode, |
| struct nameidata *nd) |
| { |
| return shmem_mknod(dir, dentry, mode | S_IFREG, 0); |
| } |
| |
| /* |
| * Link a file.. |
| */ |
| static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) |
| { |
| struct inode *inode = old_dentry->d_inode; |
| int ret; |
| |
| /* |
| * No ordinary (disk based) filesystem counts links as inodes; |
| * but each new link needs a new dentry, pinning lowmem, and |
| * tmpfs dentries cannot be pruned until they are unlinked. |
| */ |
| ret = shmem_reserve_inode(inode->i_sb); |
| if (ret) |
| goto out; |
| |
| dir->i_size += BOGO_DIRENT_SIZE; |
| inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME; |
| inc_nlink(inode); |
| atomic_inc(&inode->i_count); /* New dentry reference */ |
| dget(dentry); /* Extra pinning count for the created dentry */ |
| d_instantiate(dentry, inode); |
| out: |
| return ret; |
| } |
| |
| static int shmem_unlink(struct inode *dir, struct dentry *dentry) |
| { |
| struct inode *inode = dentry->d_inode; |
| |
| if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) |
| shmem_free_inode(inode->i_sb); |
| |
| dir->i_size -= BOGO_DIRENT_SIZE; |
| inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME; |
| drop_nlink(inode); |
| dput(dentry); /* Undo the count from "create" - this does all the work */ |
| return 0; |
| } |
| |
| static int shmem_rmdir(struct inode *dir, struct dentry *dentry) |
| { |
| if (!simple_empty(dentry)) |
| return -ENOTEMPTY; |
| |
| drop_nlink(dentry->d_inode); |
| drop_nlink(dir); |
| return shmem_unlink(dir, dentry); |
| } |
| |
| /* |
| * The VFS layer already does all the dentry stuff for rename, |
| * we just have to decrement the usage count for the target if |
| * it exists so that the VFS layer correctly free's it when it |
| * gets overwritten. |
| */ |
| static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry) |
| { |
| struct inode *inode = old_dentry->d_inode; |
| int they_are_dirs = S_ISDIR(inode->i_mode); |
| |
| if (!simple_empty(new_dentry)) |
| return -ENOTEMPTY; |
| |
| if (new_dentry->d_inode) { |
| (void) shmem_unlink(new_dir, new_dentry); |
| if (they_are_dirs) |
| drop_nlink(old_dir); |
| } else if (they_are_dirs) { |
| drop_nlink(old_dir); |
| inc_nlink(new_dir); |
| } |
| |
| old_dir->i_size -= BOGO_DIRENT_SIZE; |
| new_dir->i_size += BOGO_DIRENT_SIZE; |
| old_dir->i_ctime = old_dir->i_mtime = |
| new_dir->i_ctime = new_dir->i_mtime = |
| inode->i_ctime = CURRENT_TIME; |
| return 0; |
| } |
| |
| static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname) |
| { |
| int error; |
| int len; |
| struct inode *inode; |
| struct page *page = NULL; |
| char *kaddr; |
| struct shmem_inode_info *info; |
| |
| len = strlen(symname) + 1; |
| if (len > PAGE_CACHE_SIZE) |
| return -ENAMETOOLONG; |
| |
| inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE); |
| if (!inode) |
| return -ENOSPC; |
| |
| error = security_inode_init_security(inode, dir, NULL, NULL, |
| NULL); |
| if (error) { |
| if (error != -EOPNOTSUPP) { |
| iput(inode); |
| return error; |
| } |
| error = 0; |
| } |
| |
| info = SHMEM_I(inode); |
| inode->i_size = len-1; |
| if (len <= (char *)inode - (char *)info) { |
| /* do it inline */ |
| memcpy(info, symname, len); |
| inode->i_op = &shmem_symlink_inline_operations; |
| } else { |
| error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL); |
| if (error) { |
| iput(inode); |
| return error; |
| } |
| inode->i_mapping->a_ops = &shmem_aops; |
| inode->i_op = &shmem_symlink_inode_operations; |
| kaddr = kmap_atomic(page, KM_USER0); |
| memcpy(kaddr, symname, len); |
| kunmap_atomic(kaddr, KM_USER0); |
| set_page_dirty(page); |
| unlock_page(page); |
| page_cache_release(page); |
| } |
| dir->i_size += BOGO_DIRENT_SIZE; |
| dir->i_ctime = dir->i_mtime = CURRENT_TIME; |
| d_instantiate(dentry, inode); |
| dget(dentry); |
| return 0; |
| } |
| |
| static void *shmem_follow_link_inline(struct dentry *dentry, struct nameidata *nd) |
| { |
| nd_set_link(nd, (char *)SHMEM_I(dentry->d_inode)); |
| return NULL; |
| } |
| |
| static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd) |
| { |
| struct page *page = NULL; |
| int res = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL); |
| nd_set_link(nd, res ? ERR_PTR(res) : kmap(page)); |
| if (page) |
| unlock_page(page); |
| return page; |
| } |
| |
| static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie) |
| { |
| if (!IS_ERR(nd_get_link(nd))) { |
| struct page *page = cookie; |
| kunmap(page); |
| mark_page_accessed(page); |
| page_cache_release(page); |
| } |
| } |
| |
| static const struct inode_operations shmem_symlink_inline_operations = { |
| .readlink = generic_readlink, |
| .follow_link = shmem_follow_link_inline, |
| }; |
| |
| static const struct inode_operations shmem_symlink_inode_operations = { |
| .readlink = generic_readlink, |
| .follow_link = shmem_follow_link, |
| .put_link = shmem_put_link, |
| }; |
| |
| #ifdef CONFIG_TMPFS_POSIX_ACL |
| /* |
| * Superblocks without xattr inode operations will get security.* xattr |
| * support from the VFS "for free". As soon as we have any other xattrs |
| * like ACLs, we also need to implement the security.* handlers at |
| * filesystem level, though. |
| */ |
| |
| static size_t shmem_xattr_security_list(struct dentry *dentry, char *list, |
| size_t list_len, const char *name, |
| size_t name_len, int handler_flags) |
| { |
| return security_inode_listsecurity(dentry->d_inode, list, list_len); |
| } |
| |
| static int shmem_xattr_security_get(struct dentry *dentry, const char *name, |
| void *buffer, size_t size, int handler_flags) |
| { |
| if (strcmp(name, "") == 0) |
| return -EINVAL; |
| return xattr_getsecurity(dentry->d_inode, name, buffer, size); |
| } |
| |
| static int shmem_xattr_security_set(struct dentry *dentry, const char *name, |
| const void *value, size_t size, int flags, int handler_flags) |
| { |
| if (strcmp(name, "") == 0) |
| return -EINVAL; |
| return security_inode_setsecurity(dentry->d_inode, name, value, |
| size, flags); |
| } |
| |
| static const struct xattr_handler shmem_xattr_security_handler = { |
| .prefix = XATTR_SECURITY_PREFIX, |
| .list = shmem_xattr_security_list, |
| .get = shmem_xattr_security_get, |
| .set = shmem_xattr_security_set, |
| }; |
| |
| static const struct xattr_handler *shmem_xattr_handlers[] = { |
| &generic_acl_access_handler, |
| &generic_acl_default_handler, |
| &shmem_xattr_security_handler, |
| NULL |
| }; |
| #endif |
| |
| static struct dentry *shmem_get_parent(struct dentry *child) |
| { |
| return ERR_PTR(-ESTALE); |
| } |
| |
| static int shmem_match(struct inode *ino, void *vfh) |
| { |
| __u32 *fh = vfh; |
| __u64 inum = fh[2]; |
| inum = (inum << 32) | fh[1]; |
| return ino->i_ino == inum && fh[0] == ino->i_generation; |
| } |
| |
| static struct dentry *shmem_fh_to_dentry(struct super_block *sb, |
| struct fid *fid, int fh_len, int fh_type) |
| { |
| struct inode *inode; |
| struct dentry *dentry = NULL; |
| u64 inum = fid->raw[2]; |
| inum = (inum << 32) | fid->raw[1]; |
| |
| if (fh_len < 3) |
| return NULL; |
| |
| inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]), |
| shmem_match, fid->raw); |
| if (inode) { |
| dentry = d_find_alias(inode); |
| iput(inode); |
| } |
| |
| return dentry; |
| } |
| |
| static int shmem_encode_fh(struct dentry *dentry, __u32 *fh, int *len, |
| int connectable) |
| { |
| struct inode *inode = dentry->d_inode; |
| |
| if (*len < 3) |
| return 255; |
| |
| if (hlist_unhashed(&inode->i_hash)) { |
| /* Unfortunately insert_inode_hash is not idempotent, |
| * so as we hash inodes here rather than at creation |
| * time, we need a lock to ensure we only try |
| * to do it once |
| */ |
| static DEFINE_SPINLOCK(lock); |
| spin_lock(&lock); |
| if (hlist_unhashed(&inode->i_hash)) |
| __insert_inode_hash(inode, |
| inode->i_ino + inode->i_generation); |
| spin_unlock(&lock); |
| } |
| |
| fh[0] = inode->i_generation; |
| fh[1] = inode->i_ino; |
| fh[2] = ((__u64)inode->i_ino) >> 32; |
| |
| *len = 3; |
| return 1; |
| } |
| |
| static const struct export_operations shmem_export_ops = { |
| .get_parent = shmem_get_parent, |
| .encode_fh = shmem_encode_fh, |
| .fh_to_dentry = shmem_fh_to_dentry, |
| }; |
| |
| static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo, |
| bool remount) |
| { |
| char *this_char, *value, *rest; |
| |
| while (options != NULL) { |
| this_char = options; |
| for (;;) { |
| /* |
| * NUL-terminate this option: unfortunately, |
| * mount options form a comma-separated list, |
| * but mpol's nodelist may also contain commas. |
| */ |
| options = strchr(options, ','); |
| if (options == NULL) |
| break; |
| options++; |
| if (!isdigit(*options)) { |
| options[-1] = '\0'; |
| break; |
| } |
| } |
| if (!*this_char) |
| continue; |
| if ((value = strchr(this_char,'=')) != NULL) { |
| *value++ = 0; |
| } else { |
| printk(KERN_ERR |
| "tmpfs: No value for mount option '%s'\n", |
| this_char); |
| return 1; |
| } |
| |
| if (!strcmp(this_char,"size")) { |
| unsigned long long size; |
| size = memparse(value,&rest); |
| if (*rest == '%') { |
| size <<= PAGE_SHIFT; |
| size *= totalram_pages; |
| do_div(size, 100); |
| rest++; |
| } |
| if (*rest) |
| goto bad_val; |
| sbinfo->max_blocks = |
| DIV_ROUND_UP(size, PAGE_CACHE_SIZE); |
| } else if (!strcmp(this_char,"nr_blocks")) { |
| sbinfo->max_blocks = memparse(value, &rest); |
| if (*rest) |
| goto bad_val; |
| } else if (!strcmp(this_char,"nr_inodes")) { |
| sbinfo->max_inodes = memparse(value, &rest); |
| if (*rest) |
| goto bad_val; |
| } else if (!strcmp(this_char,"mode")) { |
| if (remount) |
| continue; |
| sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777; |
| if (*rest) |
| goto bad_val; |
| } else if (!strcmp(this_char,"uid")) { |
| if (remount) |
| continue; |
| sbinfo->uid = simple_strtoul(value, &rest, 0); |
| if (*rest) |
| goto bad_val; |
| } else if (!strcmp(this_char,"gid")) { |
| if (remount) |
| continue; |
| sbinfo->gid = simple_strtoul(value, &rest, 0); |
| if (*rest) |
| goto bad_val; |
| } else if (!strcmp(this_char,"mpol")) { |
| if (mpol_parse_str(value, &sbinfo->mpol, 1)) |
| goto bad_val; |
| } else { |
| printk(KERN_ERR "tmpfs: Bad mount option %s\n", |
| this_char); |
| return 1; |
| } |
| } |
| return 0; |
| |
| bad_val: |
| printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n", |
| value, this_char); |
| return 1; |
| |
| } |
| |
| static int shmem_remount_fs(struct super_block *sb, int *flags, char *data) |
| { |
| struct shmem_sb_info *sbinfo = SHMEM_SB(sb); |
| struct shmem_sb_info config = *sbinfo; |
| unsigned long inodes; |
| int error = -EINVAL; |
| |
| if (shmem_parse_options(data, &config, true)) |
| return error; |
| |
| spin_lock(&sbinfo->stat_lock); |
| inodes = sbinfo->max_inodes - sbinfo->free_inodes; |
| if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0) |
| goto out; |
| if (config.max_inodes < inodes) |
| goto out; |
| /* |
| * Those tests also disallow limited->unlimited while any are in |
| * use, so i_blocks will always be zero when max_blocks is zero; |
| * but we must separately disallow unlimited->limited, because |
| * in that case we have no record of how much is already in use. |
| */ |
| if (config.max_blocks && !sbinfo->max_blocks) |
| goto out; |
| if (config.max_inodes && !sbinfo->max_inodes) |
| goto out; |
| |
| error = 0; |
| sbinfo->max_blocks = config.max_blocks; |
| sbinfo->max_inodes = config.max_inodes; |
| sbinfo->free_inodes = config.max_inodes - inodes; |
| |
| mpol_put(sbinfo->mpol); |
| sbinfo->mpol = config.mpol; /* transfers initial ref */ |
| out: |
| spin_unlock(&sbinfo->stat_lock); |
| return error; |
| } |
| |
| static int shmem_show_options(struct seq_file *seq, struct vfsmount *vfs) |
| { |
| struct shmem_sb_info *sbinfo = SHMEM_SB(vfs->mnt_sb); |
| |
| if (sbinfo->max_blocks != shmem_default_max_blocks()) |
| seq_printf(seq, ",size=%luk", |
| sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10)); |
| if (sbinfo->max_inodes != shmem_default_max_inodes()) |
| seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes); |
| if (sbinfo->mode != (S_IRWXUGO | S_ISVTX)) |
| seq_printf(seq, ",mode=%03o", sbinfo->mode); |
| if (sbinfo->uid != 0) |
| seq_printf(seq, ",uid=%u", sbinfo->uid); |
| if (sbinfo->gid != 0) |
| seq_printf(seq, ",gid=%u", sbinfo->gid); |
| shmem_show_mpol(seq, sbinfo->mpol); |
| return 0; |
| } |
| #endif /* CONFIG_TMPFS */ |
| |
| static void shmem_put_super(struct super_block *sb) |
| { |
| kfree(sb->s_fs_info); |
| sb->s_fs_info = NULL; |
| } |
| |
| int shmem_fill_super(struct super_block *sb, void *data, int silent) |
| { |
| struct inode *inode; |
| struct dentry *root; |
| struct shmem_sb_info *sbinfo; |
| int err = -ENOMEM; |
| |
| /* Round up to L1_CACHE_BYTES to resist false sharing */ |
| sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info), |
| L1_CACHE_BYTES), GFP_KERNEL); |
| if (!sbinfo) |
| return -ENOMEM; |
| |
| sbinfo->mode = S_IRWXUGO | S_ISVTX; |
| sbinfo->uid = current_fsuid(); |
| sbinfo->gid = current_fsgid(); |
| sb->s_fs_info = sbinfo; |
| |
| #ifdef CONFIG_TMPFS |
| /* |
| * Per default we only allow half of the physical ram per |
| * tmpfs instance, limiting inodes to one per page of lowmem; |
| * but the internal instance is left unlimited. |
| */ |
| if (!(sb->s_flags & MS_NOUSER)) { |
| sbinfo->max_blocks = shmem_default_max_blocks(); |
| sbinfo->max_inodes = shmem_default_max_inodes(); |
| if (shmem_parse_options(data, sbinfo, false)) { |
| err = -EINVAL; |
| goto failed; |
| } |
| } |
| sb->s_export_op = &shmem_export_ops; |
| #else |
| sb->s_flags |= MS_NOUSER; |
| #endif |
| |
| spin_lock_init(&sbinfo->stat_lock); |
| percpu_counter_init(&sbinfo->used_blocks, 0); |
| sbinfo->free_inodes = sbinfo->max_inodes; |
| |
| sb->s_maxbytes = SHMEM_MAX_BYTES; |
| sb->s_blocksize = PAGE_CACHE_SIZE; |
| sb->s_blocksize_bits = PAGE_CACHE_SHIFT; |
| sb->s_magic = TMPFS_MAGIC; |
| sb->s_op = &shmem_ops; |
| sb->s_time_gran = 1; |
| #ifdef CONFIG_TMPFS_POSIX_ACL |
| sb->s_xattr = shmem_xattr_handlers; |
| sb->s_flags |= MS_POSIXACL; |
| #endif |
| |
| inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE); |
| if (!inode) |
| goto failed; |
| inode->i_uid = sbinfo->uid; |
| inode->i_gid = sbinfo->gid; |
| root = d_alloc_root(inode); |
| if (!root) |
| goto failed_iput; |
| sb->s_root = root; |
| return 0; |
| |
| failed_iput: |
| iput(inode); |
| failed: |
| shmem_put_super(sb); |
| return err; |
| } |
| |
| static struct kmem_cache *shmem_inode_cachep; |
| |
| static struct inode *shmem_alloc_inode(struct super_block *sb) |
| { |
| struct shmem_inode_info *p; |
| p = (struct shmem_inode_info *)kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL); |
| if (!p) |
| return NULL; |
| return &p->vfs_inode; |
| } |
| |
| static void shmem_destroy_inode(struct inode *inode) |
| { |
| if ((inode->i_mode & S_IFMT) == S_IFREG) { |
| /* only struct inode is valid if it's an inline symlink */ |
| mpol_free_shared_policy(&SHMEM_I(inode)->policy); |
| } |
| kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode)); |
| } |
| |
| static void init_once(void *foo) |
| { |
| struct shmem_inode_info *p = (struct shmem_inode_info *) foo; |
| |
| inode_init_once(&p->vfs_inode); |
| } |
| |
| static int init_inodecache(void) |
| { |
| shmem_inode_cachep = kmem_cache_create("shmem_inode_cache", |
| sizeof(struct shmem_inode_info), |
| 0, SLAB_PANIC, init_once); |
| return 0; |
| } |
| |
| static void destroy_inodecache(void) |
| { |
| kmem_cache_destroy(shmem_inode_cachep); |
| } |
| |
| static const struct address_space_operations shmem_aops = { |
| .writepage = shmem_writepage, |
| .set_page_dirty = __set_page_dirty_no_writeback, |
| #ifdef CONFIG_TMPFS |
| .readpage = shmem_readpage, |
| .write_begin = shmem_write_begin, |
| .write_end = shmem_write_end, |
| #endif |
| .migratepage = migrate_page, |
| .error_remove_page = generic_error_remove_page, |
| }; |
| |
| static const struct file_operations shmem_file_operations = { |
| .mmap = shmem_mmap, |
| #ifdef CONFIG_TMPFS |
| .llseek = generic_file_llseek, |
| .read = do_sync_read, |
| .write = do_sync_write, |
| .aio_read = shmem_file_aio_read, |
| .aio_write = generic_file_aio_write, |
| .fsync = noop_fsync, |
| .splice_read = generic_file_splice_read, |
| .splice_write = generic_file_splice_write, |
| #endif |
| }; |
| |
| static const struct inode_operations shmem_inode_operations = { |
| .setattr = shmem_notify_change, |
| .truncate_range = shmem_truncate_range, |
| #ifdef CONFIG_TMPFS_POSIX_ACL |
| .setxattr = generic_setxattr, |
| .getxattr = generic_getxattr, |
| .listxattr = generic_listxattr, |
| .removexattr = generic_removexattr, |
| .check_acl = generic_check_acl, |
| #endif |
| |
| }; |
| |
| static const struct inode_operations shmem_dir_inode_operations = { |
| #ifdef CONFIG_TMPFS |
| .create = shmem_create, |
| .lookup = simple_lookup, |
| .link = shmem_link, |
| .unlink = shmem_unlink, |
| .symlink = shmem_symlink, |
| .mkdir = shmem_mkdir, |
| .rmdir = shmem_rmdir, |
| .mknod = shmem_mknod, |
| .rename = shmem_rename, |
| #endif |
| #ifdef CONFIG_TMPFS_POSIX_ACL |
| .setattr = shmem_notify_change, |
| .setxattr = generic_setxattr, |
| .getxattr = generic_getxattr, |
| .listxattr = generic_listxattr, |
| .removexattr = generic_removexattr, |
| .check_acl = generic_check_acl, |
| #endif |
| }; |
| |
| static const struct inode_operations shmem_special_inode_operations = { |
| #ifdef CONFIG_TMPFS_POSIX_ACL |
| .setattr = shmem_notify_change, |
| .setxattr = generic_setxattr, |
| .getxattr = generic_getxattr, |
| .listxattr = generic_listxattr, |
| .removexattr = generic_removexattr, |
| .check_acl = generic_check_acl, |
| #endif |
| }; |
| |
| static const struct super_operations shmem_ops = { |
| .alloc_inode = shmem_alloc_inode, |
| .destroy_inode = shmem_destroy_inode, |
| #ifdef CONFIG_TMPFS |
| .statfs = shmem_statfs, |
| .remount_fs = shmem_remount_fs, |
| .show_options = shmem_show_options, |
| #endif |
| .delete_inode = shmem_delete_inode, |
| .drop_inode = generic_delete_inode, |
| .put_super = shmem_put_super, |
| }; |
| |
| static const struct vm_operations_struct shmem_vm_ops = { |
| .fault = shmem_fault, |
| #ifdef CONFIG_NUMA |
| .set_policy = shmem_set_policy, |
| .get_policy = shmem_get_policy, |
| #endif |
| }; |
| |
| |
| static int shmem_get_sb(struct file_system_type *fs_type, |
| int flags, const char *dev_name, void *data, struct vfsmount *mnt) |
| { |
| return get_sb_nodev(fs_type, flags, data, shmem_fill_super, mnt); |
| } |
| |
| static struct file_system_type tmpfs_fs_type = { |
| .owner = THIS_MODULE, |
| .name = "tmpfs", |
| .get_sb = shmem_get_sb, |
| .kill_sb = kill_litter_super, |
| }; |
| |
| int __init init_tmpfs(void) |
| { |
| int error; |
| |
| error = bdi_init(&shmem_backing_dev_info); |
| if (error) |
| goto out4; |
| |
| error = init_inodecache(); |
| if (error) |
| goto out3; |
| |
| error = register_filesystem(&tmpfs_fs_type); |
| if (error) { |
| printk(KERN_ERR "Could not register tmpfs\n"); |
| goto out2; |
| } |
| |
| shm_mnt = vfs_kern_mount(&tmpfs_fs_type, MS_NOUSER, |
| tmpfs_fs_type.name, NULL); |
| if (IS_ERR(shm_mnt)) { |
| error = PTR_ERR(shm_mnt); |
| printk(KERN_ERR "Could not kern_mount tmpfs\n"); |
| goto out1; |
| } |
| return 0; |
| |
| out1: |
| unregister_filesystem(&tmpfs_fs_type); |
| out2: |
| destroy_inodecache(); |
| out3: |
| bdi_destroy(&shmem_backing_dev_info); |
| out4: |
| shm_mnt = ERR_PTR(error); |
| return error; |
| } |
| |
| #ifdef CONFIG_CGROUP_MEM_RES_CTLR |
| /** |
| * mem_cgroup_get_shmem_target - find a page or entry assigned to the shmem file |
| * @inode: the inode to be searched |
| * @pgoff: the offset to be searched |
| * @pagep: the pointer for the found page to be stored |
| * @ent: the pointer for the found swap entry to be stored |
| * |
| * If a page is found, refcount of it is incremented. Callers should handle |
| * these refcount. |
| */ |
| void mem_cgroup_get_shmem_target(struct inode *inode, pgoff_t pgoff, |
| struct page **pagep, swp_entry_t *ent) |
| { |
| swp_entry_t entry = { .val = 0 }, *ptr; |
| struct page *page = NULL; |
| struct shmem_inode_info *info = SHMEM_I(inode); |
| |
| if ((pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode)) |
| goto out; |
| |
| spin_lock(&info->lock); |
| ptr = shmem_swp_entry(info, pgoff, NULL); |
| #ifdef CONFIG_SWAP |
| if (ptr && ptr->val) { |
| entry.val = ptr->val; |
| page = find_get_page(&swapper_space, entry.val); |
| } else |
| #endif |
| page = find_get_page(inode->i_mapping, pgoff); |
| if (ptr) |
| shmem_swp_unmap(ptr); |
| spin_unlock(&info->lock); |
| out: |
| *pagep = page; |
| *ent = entry; |
| } |
| #endif |
| |
| #else /* !CONFIG_SHMEM */ |
| |
| /* |
| * tiny-shmem: simple shmemfs and tmpfs using ramfs code |
| * |
| * This is intended for small system where the benefits of the full |
| * shmem code (swap-backed and resource-limited) are outweighed by |
| * their complexity. On systems without swap this code should be |
| * effectively equivalent, but much lighter weight. |
| */ |
| |
| #include <linux/ramfs.h> |
| |
| static struct file_system_type tmpfs_fs_type = { |
| .name = "tmpfs", |
| .get_sb = ramfs_get_sb, |
| .kill_sb = kill_litter_super, |
| }; |
| |
| int __init init_tmpfs(void) |
| { |
| BUG_ON(register_filesystem(&tmpfs_fs_type) != 0); |
| |
| shm_mnt = kern_mount(&tmpfs_fs_type); |
| BUG_ON(IS_ERR(shm_mnt)); |
| |
| return 0; |
| } |
| |
| int shmem_unuse(swp_entry_t entry, struct page *page) |
| { |
| return 0; |
| } |
| |
| int shmem_lock(struct file *file, int lock, struct user_struct *user) |
| { |
| return 0; |
| } |
| |
| #ifdef CONFIG_CGROUP_MEM_RES_CTLR |
| /** |
| * mem_cgroup_get_shmem_target - find a page or entry assigned to the shmem file |
| * @inode: the inode to be searched |
| * @pgoff: the offset to be searched |
| * @pagep: the pointer for the found page to be stored |
| * @ent: the pointer for the found swap entry to be stored |
| * |
| * If a page is found, refcount of it is incremented. Callers should handle |
| * these refcount. |
| */ |
| void mem_cgroup_get_shmem_target(struct inode *inode, pgoff_t pgoff, |
| struct page **pagep, swp_entry_t *ent) |
| { |
| struct page *page = NULL; |
| |
| if ((pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode)) |
| goto out; |
| page = find_get_page(inode->i_mapping, pgoff); |
| out: |
| *pagep = page; |
| *ent = (swp_entry_t){ .val = 0 }; |
| } |
| #endif |
| |
| #define shmem_vm_ops generic_file_vm_ops |
| #define shmem_file_operations ramfs_file_operations |
| #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev) |
| #define shmem_acct_size(flags, size) 0 |
| #define shmem_unacct_size(flags, size) do {} while (0) |
| #define SHMEM_MAX_BYTES MAX_LFS_FILESIZE |
| |
| #endif /* CONFIG_SHMEM */ |
| |
| /* common code */ |
| |
| /** |
| * shmem_file_setup - get an unlinked file living in tmpfs |
| * @name: name for dentry (to be seen in /proc/<pid>/maps |
| * @size: size to be set for the file |
| * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size |
| */ |
| struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags) |
| { |
| int error; |
| struct file *file; |
| struct inode *inode; |
| struct path path; |
| struct dentry *root; |
| struct qstr this; |
| |
| if (IS_ERR(shm_mnt)) |
| return (void *)shm_mnt; |
| |
| if (size < 0 || size > SHMEM_MAX_BYTES) |
| return ERR_PTR(-EINVAL); |
| |
| if (shmem_acct_size(flags, size)) |
| return ERR_PTR(-ENOMEM); |
| |
| error = -ENOMEM; |
| this.name = name; |
| this.len = strlen(name); |
| this.hash = 0; /* will go */ |
| root = shm_mnt->mnt_root; |
| path.dentry = d_alloc(root, &this); |
| if (!path.dentry) |
| goto put_memory; |
| path.mnt = mntget(shm_mnt); |
| |
| error = -ENOSPC; |
| inode = shmem_get_inode(root->d_sb, NULL, S_IFREG | S_IRWXUGO, 0, flags); |
| if (!inode) |
| goto put_dentry; |
| |
| d_instantiate(path.dentry, inode); |
| inode->i_size = size; |
| inode->i_nlink = 0; /* It is unlinked */ |
| #ifndef CONFIG_MMU |
| error = ramfs_nommu_expand_for_mapping(inode, size); |
| if (error) |
| goto put_dentry; |
| #endif |
| |
| error = -ENFILE; |
| file = alloc_file(&path, FMODE_WRITE | FMODE_READ, |
| &shmem_file_operations); |
| if (!file) |
| goto put_dentry; |
| |
| return file; |
| |
| put_dentry: |
| path_put(&path); |
| put_memory: |
| shmem_unacct_size(flags, size); |
| return ERR_PTR(error); |
| } |
| EXPORT_SYMBOL_GPL(shmem_file_setup); |
| |
| /** |
| * shmem_zero_setup - setup a shared anonymous mapping |
| * @vma: the vma to be mmapped is prepared by do_mmap_pgoff |
| */ |
| int shmem_zero_setup(struct vm_area_struct *vma) |
| { |
| struct file *file; |
| loff_t size = vma->vm_end - vma->vm_start; |
| |
| file = shmem_file_setup("dev/zero", size, vma->vm_flags); |
| if (IS_ERR(file)) |
| return PTR_ERR(file); |
| |
| if (vma->vm_file) |
| fput(vma->vm_file); |
| vma->vm_file = file; |
| vma->vm_ops = &shmem_vm_ops; |
| return 0; |
| } |