| #include <linux/gfp.h> |
| #include <linux/initrd.h> |
| #include <linux/ioport.h> |
| #include <linux/swap.h> |
| #include <linux/memblock.h> |
| #include <linux/bootmem.h> /* for max_low_pfn */ |
| |
| #include <asm/cacheflush.h> |
| #include <asm/e820.h> |
| #include <asm/init.h> |
| #include <asm/page.h> |
| #include <asm/page_types.h> |
| #include <asm/sections.h> |
| #include <asm/setup.h> |
| #include <asm/tlbflush.h> |
| #include <asm/tlb.h> |
| #include <asm/proto.h> |
| #include <asm/dma.h> /* for MAX_DMA_PFN */ |
| |
| #include "mm_internal.h" |
| |
| unsigned long __initdata pgt_buf_start; |
| unsigned long __meminitdata pgt_buf_end; |
| unsigned long __meminitdata pgt_buf_top; |
| |
| static unsigned long min_pfn_mapped; |
| |
| __ref void *alloc_low_pages(unsigned int num) |
| { |
| unsigned long pfn; |
| int i; |
| |
| #ifdef CONFIG_X86_64 |
| if (after_bootmem) { |
| unsigned int order; |
| |
| order = get_order((unsigned long)num << PAGE_SHIFT); |
| return (void *)__get_free_pages(GFP_ATOMIC | __GFP_NOTRACK | |
| __GFP_ZERO, order); |
| } |
| #endif |
| |
| if ((pgt_buf_end + num) >= pgt_buf_top) { |
| unsigned long ret; |
| if (min_pfn_mapped >= max_pfn_mapped) |
| panic("alloc_low_page: ran out of memory"); |
| ret = memblock_find_in_range(min_pfn_mapped << PAGE_SHIFT, |
| max_pfn_mapped << PAGE_SHIFT, |
| PAGE_SIZE * num , PAGE_SIZE); |
| if (!ret) |
| panic("alloc_low_page: can not alloc memory"); |
| memblock_reserve(ret, PAGE_SIZE * num); |
| pfn = ret >> PAGE_SHIFT; |
| } else { |
| pfn = pgt_buf_end; |
| pgt_buf_end += num; |
| } |
| |
| for (i = 0; i < num; i++) { |
| void *adr; |
| |
| adr = __va((pfn + i) << PAGE_SHIFT); |
| clear_page(adr); |
| } |
| |
| return __va(pfn << PAGE_SHIFT); |
| } |
| |
| /* need 4 4k for initial PMD_SIZE, 4k for 0-ISA_END_ADDRESS */ |
| #define INIT_PGT_BUF_SIZE (5 * PAGE_SIZE) |
| RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE); |
| void __init early_alloc_pgt_buf(void) |
| { |
| unsigned long tables = INIT_PGT_BUF_SIZE; |
| phys_addr_t base; |
| |
| base = __pa(extend_brk(tables, PAGE_SIZE)); |
| |
| pgt_buf_start = base >> PAGE_SHIFT; |
| pgt_buf_end = pgt_buf_start; |
| pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT); |
| } |
| |
| int after_bootmem; |
| |
| int direct_gbpages |
| #ifdef CONFIG_DIRECT_GBPAGES |
| = 1 |
| #endif |
| ; |
| |
| struct map_range { |
| unsigned long start; |
| unsigned long end; |
| unsigned page_size_mask; |
| }; |
| |
| static int page_size_mask; |
| |
| static void __init probe_page_size_mask(void) |
| { |
| #if !defined(CONFIG_DEBUG_PAGEALLOC) && !defined(CONFIG_KMEMCHECK) |
| /* |
| * For CONFIG_DEBUG_PAGEALLOC, identity mapping will use small pages. |
| * This will simplify cpa(), which otherwise needs to support splitting |
| * large pages into small in interrupt context, etc. |
| */ |
| if (direct_gbpages) |
| page_size_mask |= 1 << PG_LEVEL_1G; |
| if (cpu_has_pse) |
| page_size_mask |= 1 << PG_LEVEL_2M; |
| #endif |
| |
| /* Enable PSE if available */ |
| if (cpu_has_pse) |
| set_in_cr4(X86_CR4_PSE); |
| |
| /* Enable PGE if available */ |
| if (cpu_has_pge) { |
| set_in_cr4(X86_CR4_PGE); |
| __supported_pte_mask |= _PAGE_GLOBAL; |
| } |
| } |
| |
| #ifdef CONFIG_X86_32 |
| #define NR_RANGE_MR 3 |
| #else /* CONFIG_X86_64 */ |
| #define NR_RANGE_MR 5 |
| #endif |
| |
| static int __meminit save_mr(struct map_range *mr, int nr_range, |
| unsigned long start_pfn, unsigned long end_pfn, |
| unsigned long page_size_mask) |
| { |
| if (start_pfn < end_pfn) { |
| if (nr_range >= NR_RANGE_MR) |
| panic("run out of range for init_memory_mapping\n"); |
| mr[nr_range].start = start_pfn<<PAGE_SHIFT; |
| mr[nr_range].end = end_pfn<<PAGE_SHIFT; |
| mr[nr_range].page_size_mask = page_size_mask; |
| nr_range++; |
| } |
| |
| return nr_range; |
| } |
| |
| /* |
| * adjust the page_size_mask for small range to go with |
| * big page size instead small one if nearby are ram too. |
| */ |
| static void __init_refok adjust_range_page_size_mask(struct map_range *mr, |
| int nr_range) |
| { |
| int i; |
| |
| for (i = 0; i < nr_range; i++) { |
| if ((page_size_mask & (1<<PG_LEVEL_2M)) && |
| !(mr[i].page_size_mask & (1<<PG_LEVEL_2M))) { |
| unsigned long start = round_down(mr[i].start, PMD_SIZE); |
| unsigned long end = round_up(mr[i].end, PMD_SIZE); |
| |
| #ifdef CONFIG_X86_32 |
| if ((end >> PAGE_SHIFT) > max_low_pfn) |
| continue; |
| #endif |
| |
| if (memblock_is_region_memory(start, end - start)) |
| mr[i].page_size_mask |= 1<<PG_LEVEL_2M; |
| } |
| if ((page_size_mask & (1<<PG_LEVEL_1G)) && |
| !(mr[i].page_size_mask & (1<<PG_LEVEL_1G))) { |
| unsigned long start = round_down(mr[i].start, PUD_SIZE); |
| unsigned long end = round_up(mr[i].end, PUD_SIZE); |
| |
| if (memblock_is_region_memory(start, end - start)) |
| mr[i].page_size_mask |= 1<<PG_LEVEL_1G; |
| } |
| } |
| } |
| |
| static int __meminit split_mem_range(struct map_range *mr, int nr_range, |
| unsigned long start, |
| unsigned long end) |
| { |
| unsigned long start_pfn, end_pfn; |
| unsigned long pos; |
| int i; |
| |
| /* head if not big page alignment ? */ |
| start_pfn = start >> PAGE_SHIFT; |
| pos = start_pfn << PAGE_SHIFT; |
| #ifdef CONFIG_X86_32 |
| /* |
| * Don't use a large page for the first 2/4MB of memory |
| * because there are often fixed size MTRRs in there |
| * and overlapping MTRRs into large pages can cause |
| * slowdowns. |
| */ |
| if (pos == 0) |
| end_pfn = 1<<(PMD_SHIFT - PAGE_SHIFT); |
| else |
| end_pfn = ((pos + (PMD_SIZE - 1))>>PMD_SHIFT) |
| << (PMD_SHIFT - PAGE_SHIFT); |
| #else /* CONFIG_X86_64 */ |
| end_pfn = ((pos + (PMD_SIZE - 1)) >> PMD_SHIFT) |
| << (PMD_SHIFT - PAGE_SHIFT); |
| #endif |
| if (end_pfn > (end >> PAGE_SHIFT)) |
| end_pfn = end >> PAGE_SHIFT; |
| if (start_pfn < end_pfn) { |
| nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0); |
| pos = end_pfn << PAGE_SHIFT; |
| } |
| |
| /* big page (2M) range */ |
| start_pfn = ((pos + (PMD_SIZE - 1))>>PMD_SHIFT) |
| << (PMD_SHIFT - PAGE_SHIFT); |
| #ifdef CONFIG_X86_32 |
| end_pfn = (end>>PMD_SHIFT) << (PMD_SHIFT - PAGE_SHIFT); |
| #else /* CONFIG_X86_64 */ |
| end_pfn = ((pos + (PUD_SIZE - 1))>>PUD_SHIFT) |
| << (PUD_SHIFT - PAGE_SHIFT); |
| if (end_pfn > ((end>>PMD_SHIFT)<<(PMD_SHIFT - PAGE_SHIFT))) |
| end_pfn = ((end>>PMD_SHIFT)<<(PMD_SHIFT - PAGE_SHIFT)); |
| #endif |
| |
| if (start_pfn < end_pfn) { |
| nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, |
| page_size_mask & (1<<PG_LEVEL_2M)); |
| pos = end_pfn << PAGE_SHIFT; |
| } |
| |
| #ifdef CONFIG_X86_64 |
| /* big page (1G) range */ |
| start_pfn = ((pos + (PUD_SIZE - 1))>>PUD_SHIFT) |
| << (PUD_SHIFT - PAGE_SHIFT); |
| end_pfn = (end >> PUD_SHIFT) << (PUD_SHIFT - PAGE_SHIFT); |
| if (start_pfn < end_pfn) { |
| nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, |
| page_size_mask & |
| ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G))); |
| pos = end_pfn << PAGE_SHIFT; |
| } |
| |
| /* tail is not big page (1G) alignment */ |
| start_pfn = ((pos + (PMD_SIZE - 1))>>PMD_SHIFT) |
| << (PMD_SHIFT - PAGE_SHIFT); |
| end_pfn = (end >> PMD_SHIFT) << (PMD_SHIFT - PAGE_SHIFT); |
| if (start_pfn < end_pfn) { |
| nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, |
| page_size_mask & (1<<PG_LEVEL_2M)); |
| pos = end_pfn << PAGE_SHIFT; |
| } |
| #endif |
| |
| /* tail is not big page (2M) alignment */ |
| start_pfn = pos>>PAGE_SHIFT; |
| end_pfn = end>>PAGE_SHIFT; |
| nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0); |
| |
| /* try to merge same page size and continuous */ |
| for (i = 0; nr_range > 1 && i < nr_range - 1; i++) { |
| unsigned long old_start; |
| if (mr[i].end != mr[i+1].start || |
| mr[i].page_size_mask != mr[i+1].page_size_mask) |
| continue; |
| /* move it */ |
| old_start = mr[i].start; |
| memmove(&mr[i], &mr[i+1], |
| (nr_range - 1 - i) * sizeof(struct map_range)); |
| mr[i--].start = old_start; |
| nr_range--; |
| } |
| |
| if (!after_bootmem) |
| adjust_range_page_size_mask(mr, nr_range); |
| |
| for (i = 0; i < nr_range; i++) |
| printk(KERN_DEBUG " [mem %#010lx-%#010lx] page %s\n", |
| mr[i].start, mr[i].end - 1, |
| (mr[i].page_size_mask & (1<<PG_LEVEL_1G))?"1G":( |
| (mr[i].page_size_mask & (1<<PG_LEVEL_2M))?"2M":"4k")); |
| |
| return nr_range; |
| } |
| |
| static struct range pfn_mapped[E820_X_MAX]; |
| static int nr_pfn_mapped; |
| |
| static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn) |
| { |
| nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_X_MAX, |
| nr_pfn_mapped, start_pfn, end_pfn); |
| nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_X_MAX); |
| |
| max_pfn_mapped = max(max_pfn_mapped, end_pfn); |
| |
| if (start_pfn < (1UL<<(32-PAGE_SHIFT))) |
| max_low_pfn_mapped = max(max_low_pfn_mapped, |
| min(end_pfn, 1UL<<(32-PAGE_SHIFT))); |
| } |
| |
| bool pfn_range_is_mapped(unsigned long start_pfn, unsigned long end_pfn) |
| { |
| int i; |
| |
| for (i = 0; i < nr_pfn_mapped; i++) |
| if ((start_pfn >= pfn_mapped[i].start) && |
| (end_pfn <= pfn_mapped[i].end)) |
| return true; |
| |
| return false; |
| } |
| |
| /* |
| * Setup the direct mapping of the physical memory at PAGE_OFFSET. |
| * This runs before bootmem is initialized and gets pages directly from |
| * the physical memory. To access them they are temporarily mapped. |
| */ |
| unsigned long __init_refok init_memory_mapping(unsigned long start, |
| unsigned long end) |
| { |
| struct map_range mr[NR_RANGE_MR]; |
| unsigned long ret = 0; |
| int nr_range, i; |
| |
| pr_info("init_memory_mapping: [mem %#010lx-%#010lx]\n", |
| start, end - 1); |
| |
| memset(mr, 0, sizeof(mr)); |
| nr_range = split_mem_range(mr, 0, start, end); |
| |
| for (i = 0; i < nr_range; i++) |
| ret = kernel_physical_mapping_init(mr[i].start, mr[i].end, |
| mr[i].page_size_mask); |
| |
| #ifdef CONFIG_X86_32 |
| early_ioremap_page_table_range_init(); |
| |
| load_cr3(swapper_pg_dir); |
| #endif |
| |
| __flush_tlb_all(); |
| |
| add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT); |
| |
| return ret >> PAGE_SHIFT; |
| } |
| |
| /* |
| * would have hole in the middle or ends, and only ram parts will be mapped. |
| */ |
| static unsigned long __init init_range_memory_mapping( |
| unsigned long range_start, |
| unsigned long range_end) |
| { |
| unsigned long start_pfn, end_pfn; |
| unsigned long mapped_ram_size = 0; |
| int i; |
| |
| for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) { |
| u64 start = (u64)start_pfn << PAGE_SHIFT; |
| u64 end = (u64)end_pfn << PAGE_SHIFT; |
| |
| if (end <= range_start) |
| continue; |
| |
| if (start < range_start) |
| start = range_start; |
| |
| if (start >= range_end) |
| continue; |
| |
| if (end > range_end) |
| end = range_end; |
| |
| init_memory_mapping(start, end); |
| |
| mapped_ram_size += end - start; |
| } |
| |
| return mapped_ram_size; |
| } |
| |
| /* (PUD_SHIFT-PMD_SHIFT)/2 */ |
| #define STEP_SIZE_SHIFT 5 |
| void __init init_mem_mapping(void) |
| { |
| unsigned long end, real_end, start, last_start; |
| unsigned long step_size; |
| unsigned long addr; |
| unsigned long mapped_ram_size = 0; |
| unsigned long new_mapped_ram_size; |
| |
| probe_page_size_mask(); |
| |
| #ifdef CONFIG_X86_64 |
| end = max_pfn << PAGE_SHIFT; |
| #else |
| end = max_low_pfn << PAGE_SHIFT; |
| #endif |
| |
| /* the ISA range is always mapped regardless of memory holes */ |
| init_memory_mapping(0, ISA_END_ADDRESS); |
| |
| /* xen has big range in reserved near end of ram, skip it at first */ |
| addr = memblock_find_in_range(ISA_END_ADDRESS, end, PMD_SIZE, |
| PAGE_SIZE); |
| real_end = addr + PMD_SIZE; |
| |
| /* step_size need to be small so pgt_buf from BRK could cover it */ |
| step_size = PMD_SIZE; |
| max_pfn_mapped = 0; /* will get exact value next */ |
| min_pfn_mapped = real_end >> PAGE_SHIFT; |
| last_start = start = real_end; |
| while (last_start > ISA_END_ADDRESS) { |
| if (last_start > step_size) { |
| start = round_down(last_start - 1, step_size); |
| if (start < ISA_END_ADDRESS) |
| start = ISA_END_ADDRESS; |
| } else |
| start = ISA_END_ADDRESS; |
| new_mapped_ram_size = init_range_memory_mapping(start, |
| last_start); |
| last_start = start; |
| min_pfn_mapped = last_start >> PAGE_SHIFT; |
| /* only increase step_size after big range get mapped */ |
| if (new_mapped_ram_size > mapped_ram_size) |
| step_size <<= STEP_SIZE_SHIFT; |
| mapped_ram_size += new_mapped_ram_size; |
| } |
| |
| if (real_end < end) |
| init_range_memory_mapping(real_end, end); |
| |
| #ifdef CONFIG_X86_64 |
| if (max_pfn > max_low_pfn) { |
| /* can we preseve max_low_pfn ?*/ |
| max_low_pfn = max_pfn; |
| } |
| #endif |
| early_memtest(0, max_pfn_mapped << PAGE_SHIFT); |
| } |
| |
| /* |
| * devmem_is_allowed() checks to see if /dev/mem access to a certain address |
| * is valid. The argument is a physical page number. |
| * |
| * |
| * On x86, access has to be given to the first megabyte of ram because that area |
| * contains bios code and data regions used by X and dosemu and similar apps. |
| * Access has to be given to non-kernel-ram areas as well, these contain the PCI |
| * mmio resources as well as potential bios/acpi data regions. |
| */ |
| int devmem_is_allowed(unsigned long pagenr) |
| { |
| if (pagenr < 256) |
| return 1; |
| if (iomem_is_exclusive(pagenr << PAGE_SHIFT)) |
| return 0; |
| if (!page_is_ram(pagenr)) |
| return 1; |
| return 0; |
| } |
| |
| void free_init_pages(char *what, unsigned long begin, unsigned long end) |
| { |
| unsigned long addr; |
| unsigned long begin_aligned, end_aligned; |
| |
| /* Make sure boundaries are page aligned */ |
| begin_aligned = PAGE_ALIGN(begin); |
| end_aligned = end & PAGE_MASK; |
| |
| if (WARN_ON(begin_aligned != begin || end_aligned != end)) { |
| begin = begin_aligned; |
| end = end_aligned; |
| } |
| |
| if (begin >= end) |
| return; |
| |
| addr = begin; |
| |
| /* |
| * If debugging page accesses then do not free this memory but |
| * mark them not present - any buggy init-section access will |
| * create a kernel page fault: |
| */ |
| #ifdef CONFIG_DEBUG_PAGEALLOC |
| printk(KERN_INFO "debug: unmapping init [mem %#010lx-%#010lx]\n", |
| begin, end - 1); |
| set_memory_np(begin, (end - begin) >> PAGE_SHIFT); |
| #else |
| /* |
| * We just marked the kernel text read only above, now that |
| * we are going to free part of that, we need to make that |
| * writeable and non-executable first. |
| */ |
| set_memory_nx(begin, (end - begin) >> PAGE_SHIFT); |
| set_memory_rw(begin, (end - begin) >> PAGE_SHIFT); |
| |
| printk(KERN_INFO "Freeing %s: %luk freed\n", what, (end - begin) >> 10); |
| |
| for (; addr < end; addr += PAGE_SIZE) { |
| ClearPageReserved(virt_to_page(addr)); |
| init_page_count(virt_to_page(addr)); |
| memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE); |
| free_page(addr); |
| totalram_pages++; |
| } |
| #endif |
| } |
| |
| void free_initmem(void) |
| { |
| free_init_pages("unused kernel memory", |
| (unsigned long)(&__init_begin), |
| (unsigned long)(&__init_end)); |
| } |
| |
| #ifdef CONFIG_BLK_DEV_INITRD |
| void __init free_initrd_mem(unsigned long start, unsigned long end) |
| { |
| /* |
| * end could be not aligned, and We can not align that, |
| * decompresser could be confused by aligned initrd_end |
| * We already reserve the end partial page before in |
| * - i386_start_kernel() |
| * - x86_64_start_kernel() |
| * - relocate_initrd() |
| * So here We can do PAGE_ALIGN() safely to get partial page to be freed |
| */ |
| free_init_pages("initrd memory", start, PAGE_ALIGN(end)); |
| } |
| #endif |
| |
| void __init zone_sizes_init(void) |
| { |
| unsigned long max_zone_pfns[MAX_NR_ZONES]; |
| |
| memset(max_zone_pfns, 0, sizeof(max_zone_pfns)); |
| |
| #ifdef CONFIG_ZONE_DMA |
| max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN; |
| #endif |
| #ifdef CONFIG_ZONE_DMA32 |
| max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN; |
| #endif |
| max_zone_pfns[ZONE_NORMAL] = max_low_pfn; |
| #ifdef CONFIG_HIGHMEM |
| max_zone_pfns[ZONE_HIGHMEM] = max_pfn; |
| #endif |
| |
| free_area_init_nodes(max_zone_pfns); |
| } |
| |