| /* |
| * The file intends to implement PE based on the information from |
| * platforms. Basically, there have 3 types of PEs: PHB/Bus/Device. |
| * All the PEs should be organized as hierarchy tree. The first level |
| * of the tree will be associated to existing PHBs since the particular |
| * PE is only meaningful in one PHB domain. |
| * |
| * Copyright Benjamin Herrenschmidt & Gavin Shan, IBM Corporation 2012. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
| */ |
| |
| #include <linux/export.h> |
| #include <linux/gfp.h> |
| #include <linux/init.h> |
| #include <linux/kernel.h> |
| #include <linux/pci.h> |
| #include <linux/string.h> |
| |
| #include <asm/pci-bridge.h> |
| #include <asm/ppc-pci.h> |
| |
| static LIST_HEAD(eeh_phb_pe); |
| |
| /** |
| * eeh_pe_alloc - Allocate PE |
| * @phb: PCI controller |
| * @type: PE type |
| * |
| * Allocate PE instance dynamically. |
| */ |
| static struct eeh_pe *eeh_pe_alloc(struct pci_controller *phb, int type) |
| { |
| struct eeh_pe *pe; |
| |
| /* Allocate PHB PE */ |
| pe = kzalloc(sizeof(struct eeh_pe), GFP_KERNEL); |
| if (!pe) return NULL; |
| |
| /* Initialize PHB PE */ |
| pe->type = type; |
| pe->phb = phb; |
| INIT_LIST_HEAD(&pe->child_list); |
| INIT_LIST_HEAD(&pe->child); |
| INIT_LIST_HEAD(&pe->edevs); |
| |
| return pe; |
| } |
| |
| /** |
| * eeh_phb_pe_create - Create PHB PE |
| * @phb: PCI controller |
| * |
| * The function should be called while the PHB is detected during |
| * system boot or PCI hotplug in order to create PHB PE. |
| */ |
| int __devinit eeh_phb_pe_create(struct pci_controller *phb) |
| { |
| struct eeh_pe *pe; |
| |
| /* Allocate PHB PE */ |
| pe = eeh_pe_alloc(phb, EEH_PE_PHB); |
| if (!pe) { |
| pr_err("%s: out of memory!\n", __func__); |
| return -ENOMEM; |
| } |
| |
| /* Put it into the list */ |
| eeh_lock(); |
| list_add_tail(&pe->child, &eeh_phb_pe); |
| eeh_unlock(); |
| |
| pr_debug("EEH: Add PE for PHB#%d\n", phb->global_number); |
| |
| return 0; |
| } |
| |
| /** |
| * eeh_phb_pe_get - Retrieve PHB PE based on the given PHB |
| * @phb: PCI controller |
| * |
| * The overall PEs form hierarchy tree. The first layer of the |
| * hierarchy tree is composed of PHB PEs. The function is used |
| * to retrieve the corresponding PHB PE according to the given PHB. |
| */ |
| static struct eeh_pe *eeh_phb_pe_get(struct pci_controller *phb) |
| { |
| struct eeh_pe *pe; |
| |
| eeh_lock(); |
| |
| list_for_each_entry(pe, &eeh_phb_pe, child) { |
| /* |
| * Actually, we needn't check the type since |
| * the PE for PHB has been determined when that |
| * was created. |
| */ |
| if (pe->type == EEH_PE_PHB && |
| pe->phb == phb) { |
| eeh_unlock(); |
| return pe; |
| } |
| } |
| |
| eeh_unlock(); |
| |
| return NULL; |
| } |
| |
| /** |
| * eeh_pe_next - Retrieve the next PE in the tree |
| * @pe: current PE |
| * @root: root PE |
| * |
| * The function is used to retrieve the next PE in the |
| * hierarchy PE tree. |
| */ |
| static struct eeh_pe *eeh_pe_next(struct eeh_pe *pe, |
| struct eeh_pe *root) |
| { |
| struct list_head *next = pe->child_list.next; |
| |
| if (next == &pe->child_list) { |
| while (1) { |
| if (pe == root) |
| return NULL; |
| next = pe->child.next; |
| if (next != &pe->parent->child_list) |
| break; |
| pe = pe->parent; |
| } |
| } |
| |
| return list_entry(next, struct eeh_pe, child); |
| } |
| |
| /** |
| * eeh_pe_traverse - Traverse PEs in the specified PHB |
| * @root: root PE |
| * @fn: callback |
| * @flag: extra parameter to callback |
| * |
| * The function is used to traverse the specified PE and its |
| * child PEs. The traversing is to be terminated once the |
| * callback returns something other than NULL, or no more PEs |
| * to be traversed. |
| */ |
| static void *eeh_pe_traverse(struct eeh_pe *root, |
| eeh_traverse_func fn, void *flag) |
| { |
| struct eeh_pe *pe; |
| void *ret; |
| |
| for (pe = root; pe; pe = eeh_pe_next(pe, root)) { |
| ret = fn(pe, flag); |
| if (ret) return ret; |
| } |
| |
| return NULL; |
| } |
| |
| /** |
| * __eeh_pe_get - Check the PE address |
| * @data: EEH PE |
| * @flag: EEH device |
| * |
| * For one particular PE, it can be identified by PE address |
| * or tranditional BDF address. BDF address is composed of |
| * Bus/Device/Function number. The extra data referred by flag |
| * indicates which type of address should be used. |
| */ |
| static void *__eeh_pe_get(void *data, void *flag) |
| { |
| struct eeh_pe *pe = (struct eeh_pe *)data; |
| struct eeh_dev *edev = (struct eeh_dev *)flag; |
| |
| /* Unexpected PHB PE */ |
| if (pe->type == EEH_PE_PHB) |
| return NULL; |
| |
| /* We prefer PE address */ |
| if (edev->pe_config_addr && |
| (edev->pe_config_addr == pe->addr)) |
| return pe; |
| |
| /* Try BDF address */ |
| if (edev->pe_config_addr && |
| (edev->config_addr == pe->config_addr)) |
| return pe; |
| |
| return NULL; |
| } |
| |
| /** |
| * eeh_pe_get - Search PE based on the given address |
| * @edev: EEH device |
| * |
| * Search the corresponding PE based on the specified address which |
| * is included in the eeh device. The function is used to check if |
| * the associated PE has been created against the PE address. It's |
| * notable that the PE address has 2 format: traditional PE address |
| * which is composed of PCI bus/device/function number, or unified |
| * PE address. |
| */ |
| static struct eeh_pe *eeh_pe_get(struct eeh_dev *edev) |
| { |
| struct eeh_pe *root = eeh_phb_pe_get(edev->phb); |
| struct eeh_pe *pe; |
| |
| eeh_lock(); |
| pe = eeh_pe_traverse(root, __eeh_pe_get, edev); |
| eeh_unlock(); |
| |
| return pe; |
| } |
| |
| /** |
| * eeh_pe_get_parent - Retrieve the parent PE |
| * @edev: EEH device |
| * |
| * The whole PEs existing in the system are organized as hierarchy |
| * tree. The function is used to retrieve the parent PE according |
| * to the parent EEH device. |
| */ |
| static struct eeh_pe *eeh_pe_get_parent(struct eeh_dev *edev) |
| { |
| struct device_node *dn; |
| struct eeh_dev *parent; |
| |
| /* |
| * It might have the case for the indirect parent |
| * EEH device already having associated PE, but |
| * the direct parent EEH device doesn't have yet. |
| */ |
| dn = edev->dn->parent; |
| while (dn) { |
| /* We're poking out of PCI territory */ |
| if (!PCI_DN(dn)) return NULL; |
| |
| parent = of_node_to_eeh_dev(dn); |
| /* We're poking out of PCI territory */ |
| if (!parent) return NULL; |
| |
| if (parent->pe) |
| return parent->pe; |
| |
| dn = dn->parent; |
| } |
| |
| return NULL; |
| } |