| /* ----------------------------------------------------------------------- |
| * |
| * Copyright 2011 Intel Corporation; author Matt Fleming |
| * |
| * This file is part of the Linux kernel, and is made available under |
| * the terms of the GNU General Public License version 2. |
| * |
| * ----------------------------------------------------------------------- */ |
| |
| #include <linux/efi.h> |
| #include <linux/pci.h> |
| #include <asm/efi.h> |
| #include <asm/setup.h> |
| #include <asm/desc.h> |
| |
| #undef memcpy /* Use memcpy from misc.c */ |
| |
| #include "eboot.h" |
| |
| static efi_system_table_t *sys_table; |
| |
| static void efi_char16_printk(efi_char16_t *str) |
| { |
| struct efi_simple_text_output_protocol *out; |
| |
| out = (struct efi_simple_text_output_protocol *)sys_table->con_out; |
| efi_call_phys2(out->output_string, out, str); |
| } |
| |
| static void efi_printk(char *str) |
| { |
| char *s8; |
| |
| for (s8 = str; *s8; s8++) { |
| efi_char16_t ch[2] = { 0 }; |
| |
| ch[0] = *s8; |
| if (*s8 == '\n') { |
| efi_char16_t nl[2] = { '\r', 0 }; |
| efi_char16_printk(nl); |
| } |
| |
| efi_char16_printk(ch); |
| } |
| } |
| |
| static efi_status_t __get_map(efi_memory_desc_t **map, unsigned long *map_size, |
| unsigned long *desc_size) |
| { |
| efi_memory_desc_t *m = NULL; |
| efi_status_t status; |
| unsigned long key; |
| u32 desc_version; |
| |
| *map_size = sizeof(*m) * 32; |
| again: |
| /* |
| * Add an additional efi_memory_desc_t because we're doing an |
| * allocation which may be in a new descriptor region. |
| */ |
| *map_size += sizeof(*m); |
| status = efi_call_phys3(sys_table->boottime->allocate_pool, |
| EFI_LOADER_DATA, *map_size, (void **)&m); |
| if (status != EFI_SUCCESS) |
| goto fail; |
| |
| status = efi_call_phys5(sys_table->boottime->get_memory_map, map_size, |
| m, &key, desc_size, &desc_version); |
| if (status == EFI_BUFFER_TOO_SMALL) { |
| efi_call_phys1(sys_table->boottime->free_pool, m); |
| goto again; |
| } |
| |
| if (status != EFI_SUCCESS) |
| efi_call_phys1(sys_table->boottime->free_pool, m); |
| |
| fail: |
| *map = m; |
| return status; |
| } |
| |
| /* |
| * Allocate at the highest possible address that is not above 'max'. |
| */ |
| static efi_status_t high_alloc(unsigned long size, unsigned long align, |
| unsigned long *addr, unsigned long max) |
| { |
| unsigned long map_size, desc_size; |
| efi_memory_desc_t *map; |
| efi_status_t status; |
| unsigned long nr_pages; |
| u64 max_addr = 0; |
| int i; |
| |
| status = __get_map(&map, &map_size, &desc_size); |
| if (status != EFI_SUCCESS) |
| goto fail; |
| |
| nr_pages = round_up(size, EFI_PAGE_SIZE) / EFI_PAGE_SIZE; |
| again: |
| for (i = 0; i < map_size / desc_size; i++) { |
| efi_memory_desc_t *desc; |
| unsigned long m = (unsigned long)map; |
| u64 start, end; |
| |
| desc = (efi_memory_desc_t *)(m + (i * desc_size)); |
| if (desc->type != EFI_CONVENTIONAL_MEMORY) |
| continue; |
| |
| if (desc->num_pages < nr_pages) |
| continue; |
| |
| start = desc->phys_addr; |
| end = start + desc->num_pages * (1UL << EFI_PAGE_SHIFT); |
| |
| if ((start + size) > end || (start + size) > max) |
| continue; |
| |
| if (end - size > max) |
| end = max; |
| |
| if (round_down(end - size, align) < start) |
| continue; |
| |
| start = round_down(end - size, align); |
| |
| /* |
| * Don't allocate at 0x0. It will confuse code that |
| * checks pointers against NULL. |
| */ |
| if (start == 0x0) |
| continue; |
| |
| if (start > max_addr) |
| max_addr = start; |
| } |
| |
| if (!max_addr) |
| status = EFI_NOT_FOUND; |
| else { |
| status = efi_call_phys4(sys_table->boottime->allocate_pages, |
| EFI_ALLOCATE_ADDRESS, EFI_LOADER_DATA, |
| nr_pages, &max_addr); |
| if (status != EFI_SUCCESS) { |
| max = max_addr; |
| max_addr = 0; |
| goto again; |
| } |
| |
| *addr = max_addr; |
| } |
| |
| free_pool: |
| efi_call_phys1(sys_table->boottime->free_pool, map); |
| |
| fail: |
| return status; |
| } |
| |
| /* |
| * Allocate at the lowest possible address. |
| */ |
| static efi_status_t low_alloc(unsigned long size, unsigned long align, |
| unsigned long *addr) |
| { |
| unsigned long map_size, desc_size; |
| efi_memory_desc_t *map; |
| efi_status_t status; |
| unsigned long nr_pages; |
| int i; |
| |
| status = __get_map(&map, &map_size, &desc_size); |
| if (status != EFI_SUCCESS) |
| goto fail; |
| |
| nr_pages = round_up(size, EFI_PAGE_SIZE) / EFI_PAGE_SIZE; |
| for (i = 0; i < map_size / desc_size; i++) { |
| efi_memory_desc_t *desc; |
| unsigned long m = (unsigned long)map; |
| u64 start, end; |
| |
| desc = (efi_memory_desc_t *)(m + (i * desc_size)); |
| |
| if (desc->type != EFI_CONVENTIONAL_MEMORY) |
| continue; |
| |
| if (desc->num_pages < nr_pages) |
| continue; |
| |
| start = desc->phys_addr; |
| end = start + desc->num_pages * (1UL << EFI_PAGE_SHIFT); |
| |
| /* |
| * Don't allocate at 0x0. It will confuse code that |
| * checks pointers against NULL. Skip the first 8 |
| * bytes so we start at a nice even number. |
| */ |
| if (start == 0x0) |
| start += 8; |
| |
| start = round_up(start, align); |
| if ((start + size) > end) |
| continue; |
| |
| status = efi_call_phys4(sys_table->boottime->allocate_pages, |
| EFI_ALLOCATE_ADDRESS, EFI_LOADER_DATA, |
| nr_pages, &start); |
| if (status == EFI_SUCCESS) { |
| *addr = start; |
| break; |
| } |
| } |
| |
| if (i == map_size / desc_size) |
| status = EFI_NOT_FOUND; |
| |
| free_pool: |
| efi_call_phys1(sys_table->boottime->free_pool, map); |
| fail: |
| return status; |
| } |
| |
| static void low_free(unsigned long size, unsigned long addr) |
| { |
| unsigned long nr_pages; |
| |
| nr_pages = round_up(size, EFI_PAGE_SIZE) / EFI_PAGE_SIZE; |
| efi_call_phys2(sys_table->boottime->free_pages, addr, size); |
| } |
| |
| static void find_bits(unsigned long mask, u8 *pos, u8 *size) |
| { |
| u8 first, len; |
| |
| first = 0; |
| len = 0; |
| |
| if (mask) { |
| while (!(mask & 0x1)) { |
| mask = mask >> 1; |
| first++; |
| } |
| |
| while (mask & 0x1) { |
| mask = mask >> 1; |
| len++; |
| } |
| } |
| |
| *pos = first; |
| *size = len; |
| } |
| |
| static efi_status_t setup_efi_vars(struct boot_params *params) |
| { |
| struct setup_data *data; |
| struct efi_var_bootdata *efidata; |
| u64 store_size, remaining_size, var_size; |
| efi_status_t status; |
| |
| if (!sys_table->runtime->query_variable_info) |
| return EFI_UNSUPPORTED; |
| |
| data = (struct setup_data *)(unsigned long)params->hdr.setup_data; |
| |
| while (data && data->next) |
| data = (struct setup_data *)(unsigned long)data->next; |
| |
| status = efi_call_phys4(sys_table->runtime->query_variable_info, |
| EFI_VARIABLE_NON_VOLATILE | |
| EFI_VARIABLE_BOOTSERVICE_ACCESS | |
| EFI_VARIABLE_RUNTIME_ACCESS, &store_size, |
| &remaining_size, &var_size); |
| |
| if (status != EFI_SUCCESS) |
| return status; |
| |
| status = efi_call_phys3(sys_table->boottime->allocate_pool, |
| EFI_LOADER_DATA, sizeof(*efidata), &efidata); |
| |
| if (status != EFI_SUCCESS) |
| return status; |
| |
| efidata->data.type = SETUP_EFI_VARS; |
| efidata->data.len = sizeof(struct efi_var_bootdata) - |
| sizeof(struct setup_data); |
| efidata->data.next = 0; |
| efidata->store_size = store_size; |
| efidata->remaining_size = remaining_size; |
| efidata->max_var_size = var_size; |
| |
| if (data) |
| data->next = (unsigned long)efidata; |
| else |
| params->hdr.setup_data = (unsigned long)efidata; |
| |
| } |
| |
| static efi_status_t setup_efi_pci(struct boot_params *params) |
| { |
| efi_pci_io_protocol *pci; |
| efi_status_t status; |
| void **pci_handle; |
| efi_guid_t pci_proto = EFI_PCI_IO_PROTOCOL_GUID; |
| unsigned long nr_pci, size = 0; |
| int i; |
| struct setup_data *data; |
| |
| data = (struct setup_data *)(unsigned long)params->hdr.setup_data; |
| |
| while (data && data->next) |
| data = (struct setup_data *)(unsigned long)data->next; |
| |
| status = efi_call_phys5(sys_table->boottime->locate_handle, |
| EFI_LOCATE_BY_PROTOCOL, &pci_proto, |
| NULL, &size, pci_handle); |
| |
| if (status == EFI_BUFFER_TOO_SMALL) { |
| status = efi_call_phys3(sys_table->boottime->allocate_pool, |
| EFI_LOADER_DATA, size, &pci_handle); |
| |
| if (status != EFI_SUCCESS) |
| return status; |
| |
| status = efi_call_phys5(sys_table->boottime->locate_handle, |
| EFI_LOCATE_BY_PROTOCOL, &pci_proto, |
| NULL, &size, pci_handle); |
| } |
| |
| if (status != EFI_SUCCESS) |
| goto free_handle; |
| |
| nr_pci = size / sizeof(void *); |
| for (i = 0; i < nr_pci; i++) { |
| void *h = pci_handle[i]; |
| uint64_t attributes; |
| struct pci_setup_rom *rom; |
| |
| status = efi_call_phys3(sys_table->boottime->handle_protocol, |
| h, &pci_proto, &pci); |
| |
| if (status != EFI_SUCCESS) |
| continue; |
| |
| if (!pci) |
| continue; |
| |
| #ifdef CONFIG_X86_64 |
| status = efi_call_phys4(pci->attributes, pci, |
| EfiPciIoAttributeOperationGet, 0, |
| &attributes); |
| #else |
| status = efi_call_phys5(pci->attributes, pci, |
| EfiPciIoAttributeOperationGet, 0, 0, |
| &attributes); |
| #endif |
| if (status != EFI_SUCCESS) |
| continue; |
| |
| if (!pci->romimage || !pci->romsize) |
| continue; |
| |
| size = pci->romsize + sizeof(*rom); |
| |
| status = efi_call_phys3(sys_table->boottime->allocate_pool, |
| EFI_LOADER_DATA, size, &rom); |
| |
| if (status != EFI_SUCCESS) |
| continue; |
| |
| rom->data.type = SETUP_PCI; |
| rom->data.len = size - sizeof(struct setup_data); |
| rom->data.next = 0; |
| rom->pcilen = pci->romsize; |
| |
| status = efi_call_phys5(pci->pci.read, pci, |
| EfiPciIoWidthUint16, PCI_VENDOR_ID, |
| 1, &(rom->vendor)); |
| |
| if (status != EFI_SUCCESS) |
| goto free_struct; |
| |
| status = efi_call_phys5(pci->pci.read, pci, |
| EfiPciIoWidthUint16, PCI_DEVICE_ID, |
| 1, &(rom->devid)); |
| |
| if (status != EFI_SUCCESS) |
| goto free_struct; |
| |
| status = efi_call_phys5(pci->get_location, pci, |
| &(rom->segment), &(rom->bus), |
| &(rom->device), &(rom->function)); |
| |
| if (status != EFI_SUCCESS) |
| goto free_struct; |
| |
| memcpy(rom->romdata, pci->romimage, pci->romsize); |
| |
| if (data) |
| data->next = (unsigned long)rom; |
| else |
| params->hdr.setup_data = (unsigned long)rom; |
| |
| data = (struct setup_data *)rom; |
| |
| continue; |
| free_struct: |
| efi_call_phys1(sys_table->boottime->free_pool, rom); |
| } |
| |
| free_handle: |
| efi_call_phys1(sys_table->boottime->free_pool, pci_handle); |
| return status; |
| } |
| |
| /* |
| * See if we have Graphics Output Protocol |
| */ |
| static efi_status_t setup_gop(struct screen_info *si, efi_guid_t *proto, |
| unsigned long size) |
| { |
| struct efi_graphics_output_protocol *gop, *first_gop; |
| struct efi_pixel_bitmask pixel_info; |
| unsigned long nr_gops; |
| efi_status_t status; |
| void **gop_handle; |
| u16 width, height; |
| u32 fb_base, fb_size; |
| u32 pixels_per_scan_line; |
| int pixel_format; |
| int i; |
| |
| status = efi_call_phys3(sys_table->boottime->allocate_pool, |
| EFI_LOADER_DATA, size, &gop_handle); |
| if (status != EFI_SUCCESS) |
| return status; |
| |
| status = efi_call_phys5(sys_table->boottime->locate_handle, |
| EFI_LOCATE_BY_PROTOCOL, proto, |
| NULL, &size, gop_handle); |
| if (status != EFI_SUCCESS) |
| goto free_handle; |
| |
| first_gop = NULL; |
| |
| nr_gops = size / sizeof(void *); |
| for (i = 0; i < nr_gops; i++) { |
| struct efi_graphics_output_mode_info *info; |
| efi_guid_t conout_proto = EFI_CONSOLE_OUT_DEVICE_GUID; |
| bool conout_found = false; |
| void *dummy; |
| void *h = gop_handle[i]; |
| |
| status = efi_call_phys3(sys_table->boottime->handle_protocol, |
| h, proto, &gop); |
| if (status != EFI_SUCCESS) |
| continue; |
| |
| status = efi_call_phys3(sys_table->boottime->handle_protocol, |
| h, &conout_proto, &dummy); |
| |
| if (status == EFI_SUCCESS) |
| conout_found = true; |
| |
| status = efi_call_phys4(gop->query_mode, gop, |
| gop->mode->mode, &size, &info); |
| if (status == EFI_SUCCESS && (!first_gop || conout_found)) { |
| /* |
| * Systems that use the UEFI Console Splitter may |
| * provide multiple GOP devices, not all of which are |
| * backed by real hardware. The workaround is to search |
| * for a GOP implementing the ConOut protocol, and if |
| * one isn't found, to just fall back to the first GOP. |
| */ |
| width = info->horizontal_resolution; |
| height = info->vertical_resolution; |
| fb_base = gop->mode->frame_buffer_base; |
| fb_size = gop->mode->frame_buffer_size; |
| pixel_format = info->pixel_format; |
| pixel_info = info->pixel_information; |
| pixels_per_scan_line = info->pixels_per_scan_line; |
| |
| /* |
| * Once we've found a GOP supporting ConOut, |
| * don't bother looking any further. |
| */ |
| first_gop = gop; |
| if (conout_found) |
| break; |
| } |
| } |
| |
| /* Did we find any GOPs? */ |
| if (!first_gop) |
| goto free_handle; |
| |
| /* EFI framebuffer */ |
| si->orig_video_isVGA = VIDEO_TYPE_EFI; |
| |
| si->lfb_width = width; |
| si->lfb_height = height; |
| si->lfb_base = fb_base; |
| si->pages = 1; |
| |
| if (pixel_format == PIXEL_RGB_RESERVED_8BIT_PER_COLOR) { |
| si->lfb_depth = 32; |
| si->lfb_linelength = pixels_per_scan_line * 4; |
| si->red_size = 8; |
| si->red_pos = 0; |
| si->green_size = 8; |
| si->green_pos = 8; |
| si->blue_size = 8; |
| si->blue_pos = 16; |
| si->rsvd_size = 8; |
| si->rsvd_pos = 24; |
| } else if (pixel_format == PIXEL_BGR_RESERVED_8BIT_PER_COLOR) { |
| si->lfb_depth = 32; |
| si->lfb_linelength = pixels_per_scan_line * 4; |
| si->red_size = 8; |
| si->red_pos = 16; |
| si->green_size = 8; |
| si->green_pos = 8; |
| si->blue_size = 8; |
| si->blue_pos = 0; |
| si->rsvd_size = 8; |
| si->rsvd_pos = 24; |
| } else if (pixel_format == PIXEL_BIT_MASK) { |
| find_bits(pixel_info.red_mask, &si->red_pos, &si->red_size); |
| find_bits(pixel_info.green_mask, &si->green_pos, |
| &si->green_size); |
| find_bits(pixel_info.blue_mask, &si->blue_pos, &si->blue_size); |
| find_bits(pixel_info.reserved_mask, &si->rsvd_pos, |
| &si->rsvd_size); |
| si->lfb_depth = si->red_size + si->green_size + |
| si->blue_size + si->rsvd_size; |
| si->lfb_linelength = (pixels_per_scan_line * si->lfb_depth) / 8; |
| } else { |
| si->lfb_depth = 4; |
| si->lfb_linelength = si->lfb_width / 2; |
| si->red_size = 0; |
| si->red_pos = 0; |
| si->green_size = 0; |
| si->green_pos = 0; |
| si->blue_size = 0; |
| si->blue_pos = 0; |
| si->rsvd_size = 0; |
| si->rsvd_pos = 0; |
| } |
| |
| si->lfb_size = si->lfb_linelength * si->lfb_height; |
| |
| si->capabilities |= VIDEO_CAPABILITY_SKIP_QUIRKS; |
| |
| free_handle: |
| efi_call_phys1(sys_table->boottime->free_pool, gop_handle); |
| return status; |
| } |
| |
| /* |
| * See if we have Universal Graphics Adapter (UGA) protocol |
| */ |
| static efi_status_t setup_uga(struct screen_info *si, efi_guid_t *uga_proto, |
| unsigned long size) |
| { |
| struct efi_uga_draw_protocol *uga, *first_uga; |
| unsigned long nr_ugas; |
| efi_status_t status; |
| u32 width, height; |
| void **uga_handle = NULL; |
| int i; |
| |
| status = efi_call_phys3(sys_table->boottime->allocate_pool, |
| EFI_LOADER_DATA, size, &uga_handle); |
| if (status != EFI_SUCCESS) |
| return status; |
| |
| status = efi_call_phys5(sys_table->boottime->locate_handle, |
| EFI_LOCATE_BY_PROTOCOL, uga_proto, |
| NULL, &size, uga_handle); |
| if (status != EFI_SUCCESS) |
| goto free_handle; |
| |
| first_uga = NULL; |
| |
| nr_ugas = size / sizeof(void *); |
| for (i = 0; i < nr_ugas; i++) { |
| efi_guid_t pciio_proto = EFI_PCI_IO_PROTOCOL_GUID; |
| void *handle = uga_handle[i]; |
| u32 w, h, depth, refresh; |
| void *pciio; |
| |
| status = efi_call_phys3(sys_table->boottime->handle_protocol, |
| handle, uga_proto, &uga); |
| if (status != EFI_SUCCESS) |
| continue; |
| |
| efi_call_phys3(sys_table->boottime->handle_protocol, |
| handle, &pciio_proto, &pciio); |
| |
| status = efi_call_phys5(uga->get_mode, uga, &w, &h, |
| &depth, &refresh); |
| if (status == EFI_SUCCESS && (!first_uga || pciio)) { |
| width = w; |
| height = h; |
| |
| /* |
| * Once we've found a UGA supporting PCIIO, |
| * don't bother looking any further. |
| */ |
| if (pciio) |
| break; |
| |
| first_uga = uga; |
| } |
| } |
| |
| if (!first_uga) |
| goto free_handle; |
| |
| /* EFI framebuffer */ |
| si->orig_video_isVGA = VIDEO_TYPE_EFI; |
| |
| si->lfb_depth = 32; |
| si->lfb_width = width; |
| si->lfb_height = height; |
| |
| si->red_size = 8; |
| si->red_pos = 16; |
| si->green_size = 8; |
| si->green_pos = 8; |
| si->blue_size = 8; |
| si->blue_pos = 0; |
| si->rsvd_size = 8; |
| si->rsvd_pos = 24; |
| |
| |
| free_handle: |
| efi_call_phys1(sys_table->boottime->free_pool, uga_handle); |
| return status; |
| } |
| |
| void setup_graphics(struct boot_params *boot_params) |
| { |
| efi_guid_t graphics_proto = EFI_GRAPHICS_OUTPUT_PROTOCOL_GUID; |
| struct screen_info *si; |
| efi_guid_t uga_proto = EFI_UGA_PROTOCOL_GUID; |
| efi_status_t status; |
| unsigned long size; |
| void **gop_handle = NULL; |
| void **uga_handle = NULL; |
| |
| si = &boot_params->screen_info; |
| memset(si, 0, sizeof(*si)); |
| |
| size = 0; |
| status = efi_call_phys5(sys_table->boottime->locate_handle, |
| EFI_LOCATE_BY_PROTOCOL, &graphics_proto, |
| NULL, &size, gop_handle); |
| if (status == EFI_BUFFER_TOO_SMALL) |
| status = setup_gop(si, &graphics_proto, size); |
| |
| if (status != EFI_SUCCESS) { |
| size = 0; |
| status = efi_call_phys5(sys_table->boottime->locate_handle, |
| EFI_LOCATE_BY_PROTOCOL, &uga_proto, |
| NULL, &size, uga_handle); |
| if (status == EFI_BUFFER_TOO_SMALL) |
| setup_uga(si, &uga_proto, size); |
| } |
| } |
| |
| struct initrd { |
| efi_file_handle_t *handle; |
| u64 size; |
| }; |
| |
| /* |
| * Check the cmdline for a LILO-style initrd= arguments. |
| * |
| * We only support loading an initrd from the same filesystem as the |
| * kernel image. |
| */ |
| static efi_status_t handle_ramdisks(efi_loaded_image_t *image, |
| struct setup_header *hdr) |
| { |
| struct initrd *initrds; |
| unsigned long initrd_addr; |
| efi_guid_t fs_proto = EFI_FILE_SYSTEM_GUID; |
| u64 initrd_total; |
| efi_file_io_interface_t *io; |
| efi_file_handle_t *fh; |
| efi_status_t status; |
| int nr_initrds; |
| char *str; |
| int i, j, k; |
| |
| initrd_addr = 0; |
| initrd_total = 0; |
| |
| str = (char *)(unsigned long)hdr->cmd_line_ptr; |
| |
| j = 0; /* See close_handles */ |
| |
| if (!str || !*str) |
| return EFI_SUCCESS; |
| |
| for (nr_initrds = 0; *str; nr_initrds++) { |
| str = strstr(str, "initrd="); |
| if (!str) |
| break; |
| |
| str += 7; |
| |
| /* Skip any leading slashes */ |
| while (*str == '/' || *str == '\\') |
| str++; |
| |
| while (*str && *str != ' ' && *str != '\n') |
| str++; |
| } |
| |
| if (!nr_initrds) |
| return EFI_SUCCESS; |
| |
| status = efi_call_phys3(sys_table->boottime->allocate_pool, |
| EFI_LOADER_DATA, |
| nr_initrds * sizeof(*initrds), |
| &initrds); |
| if (status != EFI_SUCCESS) { |
| efi_printk("Failed to alloc mem for initrds\n"); |
| goto fail; |
| } |
| |
| str = (char *)(unsigned long)hdr->cmd_line_ptr; |
| for (i = 0; i < nr_initrds; i++) { |
| struct initrd *initrd; |
| efi_file_handle_t *h; |
| efi_file_info_t *info; |
| efi_char16_t filename_16[256]; |
| unsigned long info_sz; |
| efi_guid_t info_guid = EFI_FILE_INFO_ID; |
| efi_char16_t *p; |
| u64 file_sz; |
| |
| str = strstr(str, "initrd="); |
| if (!str) |
| break; |
| |
| str += 7; |
| |
| initrd = &initrds[i]; |
| p = filename_16; |
| |
| /* Skip any leading slashes */ |
| while (*str == '/' || *str == '\\') |
| str++; |
| |
| while (*str && *str != ' ' && *str != '\n') { |
| if ((u8 *)p >= (u8 *)filename_16 + sizeof(filename_16)) |
| break; |
| |
| if (*str == '/') { |
| *p++ = '\\'; |
| *str++; |
| } else { |
| *p++ = *str++; |
| } |
| } |
| |
| *p = '\0'; |
| |
| /* Only open the volume once. */ |
| if (!i) { |
| efi_boot_services_t *boottime; |
| |
| boottime = sys_table->boottime; |
| |
| status = efi_call_phys3(boottime->handle_protocol, |
| image->device_handle, &fs_proto, &io); |
| if (status != EFI_SUCCESS) { |
| efi_printk("Failed to handle fs_proto\n"); |
| goto free_initrds; |
| } |
| |
| status = efi_call_phys2(io->open_volume, io, &fh); |
| if (status != EFI_SUCCESS) { |
| efi_printk("Failed to open volume\n"); |
| goto free_initrds; |
| } |
| } |
| |
| status = efi_call_phys5(fh->open, fh, &h, filename_16, |
| EFI_FILE_MODE_READ, (u64)0); |
| if (status != EFI_SUCCESS) { |
| efi_printk("Failed to open initrd file: "); |
| efi_char16_printk(filename_16); |
| efi_printk("\n"); |
| goto close_handles; |
| } |
| |
| initrd->handle = h; |
| |
| info_sz = 0; |
| status = efi_call_phys4(h->get_info, h, &info_guid, |
| &info_sz, NULL); |
| if (status != EFI_BUFFER_TOO_SMALL) { |
| efi_printk("Failed to get initrd info size\n"); |
| goto close_handles; |
| } |
| |
| grow: |
| status = efi_call_phys3(sys_table->boottime->allocate_pool, |
| EFI_LOADER_DATA, info_sz, &info); |
| if (status != EFI_SUCCESS) { |
| efi_printk("Failed to alloc mem for initrd info\n"); |
| goto close_handles; |
| } |
| |
| status = efi_call_phys4(h->get_info, h, &info_guid, |
| &info_sz, info); |
| if (status == EFI_BUFFER_TOO_SMALL) { |
| efi_call_phys1(sys_table->boottime->free_pool, info); |
| goto grow; |
| } |
| |
| file_sz = info->file_size; |
| efi_call_phys1(sys_table->boottime->free_pool, info); |
| |
| if (status != EFI_SUCCESS) { |
| efi_printk("Failed to get initrd info\n"); |
| goto close_handles; |
| } |
| |
| initrd->size = file_sz; |
| initrd_total += file_sz; |
| } |
| |
| if (initrd_total) { |
| unsigned long addr; |
| |
| /* |
| * Multiple initrd's need to be at consecutive |
| * addresses in memory, so allocate enough memory for |
| * all the initrd's. |
| */ |
| status = high_alloc(initrd_total, 0x1000, |
| &initrd_addr, hdr->initrd_addr_max); |
| if (status != EFI_SUCCESS) { |
| efi_printk("Failed to alloc highmem for initrds\n"); |
| goto close_handles; |
| } |
| |
| /* We've run out of free low memory. */ |
| if (initrd_addr > hdr->initrd_addr_max) { |
| efi_printk("We've run out of free low memory\n"); |
| status = EFI_INVALID_PARAMETER; |
| goto free_initrd_total; |
| } |
| |
| addr = initrd_addr; |
| for (j = 0; j < nr_initrds; j++) { |
| u64 size; |
| |
| size = initrds[j].size; |
| while (size) { |
| u64 chunksize; |
| if (size > EFI_READ_CHUNK_SIZE) |
| chunksize = EFI_READ_CHUNK_SIZE; |
| else |
| chunksize = size; |
| status = efi_call_phys3(fh->read, |
| initrds[j].handle, |
| &chunksize, addr); |
| if (status != EFI_SUCCESS) { |
| efi_printk("Failed to read initrd\n"); |
| goto free_initrd_total; |
| } |
| addr += chunksize; |
| size -= chunksize; |
| } |
| |
| efi_call_phys1(fh->close, initrds[j].handle); |
| } |
| |
| } |
| |
| efi_call_phys1(sys_table->boottime->free_pool, initrds); |
| |
| hdr->ramdisk_image = initrd_addr; |
| hdr->ramdisk_size = initrd_total; |
| |
| return status; |
| |
| free_initrd_total: |
| low_free(initrd_total, initrd_addr); |
| |
| close_handles: |
| for (k = j; k < i; k++) |
| efi_call_phys1(fh->close, initrds[k].handle); |
| free_initrds: |
| efi_call_phys1(sys_table->boottime->free_pool, initrds); |
| fail: |
| hdr->ramdisk_image = 0; |
| hdr->ramdisk_size = 0; |
| |
| return status; |
| } |
| |
| /* |
| * Because the x86 boot code expects to be passed a boot_params we |
| * need to create one ourselves (usually the bootloader would create |
| * one for us). |
| */ |
| struct boot_params *make_boot_params(void *handle, efi_system_table_t *_table) |
| { |
| struct boot_params *boot_params; |
| struct sys_desc_table *sdt; |
| struct apm_bios_info *bi; |
| struct setup_header *hdr; |
| struct efi_info *efi; |
| efi_loaded_image_t *image; |
| void *options; |
| u32 load_options_size; |
| efi_guid_t proto = LOADED_IMAGE_PROTOCOL_GUID; |
| int options_size = 0; |
| efi_status_t status; |
| unsigned long cmdline; |
| u16 *s2; |
| u8 *s1; |
| int i; |
| |
| sys_table = _table; |
| |
| /* Check if we were booted by the EFI firmware */ |
| if (sys_table->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE) |
| return NULL; |
| |
| status = efi_call_phys3(sys_table->boottime->handle_protocol, |
| handle, &proto, (void *)&image); |
| if (status != EFI_SUCCESS) { |
| efi_printk("Failed to get handle for LOADED_IMAGE_PROTOCOL\n"); |
| return NULL; |
| } |
| |
| status = low_alloc(0x4000, 1, (unsigned long *)&boot_params); |
| if (status != EFI_SUCCESS) { |
| efi_printk("Failed to alloc lowmem for boot params\n"); |
| return NULL; |
| } |
| |
| memset(boot_params, 0x0, 0x4000); |
| |
| hdr = &boot_params->hdr; |
| efi = &boot_params->efi_info; |
| bi = &boot_params->apm_bios_info; |
| sdt = &boot_params->sys_desc_table; |
| |
| /* Copy the second sector to boot_params */ |
| memcpy(&hdr->jump, image->image_base + 512, 512); |
| |
| /* |
| * Fill out some of the header fields ourselves because the |
| * EFI firmware loader doesn't load the first sector. |
| */ |
| hdr->root_flags = 1; |
| hdr->vid_mode = 0xffff; |
| hdr->boot_flag = 0xAA55; |
| |
| hdr->code32_start = (__u64)(unsigned long)image->image_base; |
| |
| hdr->type_of_loader = 0x21; |
| |
| /* Convert unicode cmdline to ascii */ |
| options = image->load_options; |
| load_options_size = image->load_options_size / 2; /* ASCII */ |
| cmdline = 0; |
| s2 = (u16 *)options; |
| |
| if (s2) { |
| while (*s2 && *s2 != '\n' && options_size < load_options_size) { |
| s2++; |
| options_size++; |
| } |
| |
| if (options_size) { |
| if (options_size > hdr->cmdline_size) |
| options_size = hdr->cmdline_size; |
| |
| options_size++; /* NUL termination */ |
| |
| status = low_alloc(options_size, 1, &cmdline); |
| if (status != EFI_SUCCESS) { |
| efi_printk("Failed to alloc mem for cmdline\n"); |
| goto fail; |
| } |
| |
| s1 = (u8 *)(unsigned long)cmdline; |
| s2 = (u16 *)options; |
| |
| for (i = 0; i < options_size - 1; i++) |
| *s1++ = *s2++; |
| |
| *s1 = '\0'; |
| } |
| } |
| |
| hdr->cmd_line_ptr = cmdline; |
| |
| hdr->ramdisk_image = 0; |
| hdr->ramdisk_size = 0; |
| |
| /* Clear APM BIOS info */ |
| memset(bi, 0, sizeof(*bi)); |
| |
| memset(sdt, 0, sizeof(*sdt)); |
| |
| status = handle_ramdisks(image, hdr); |
| if (status != EFI_SUCCESS) |
| goto fail2; |
| |
| return boot_params; |
| fail2: |
| if (options_size) |
| low_free(options_size, hdr->cmd_line_ptr); |
| fail: |
| low_free(0x4000, (unsigned long)boot_params); |
| return NULL; |
| } |
| |
| static efi_status_t exit_boot(struct boot_params *boot_params, |
| void *handle) |
| { |
| struct efi_info *efi = &boot_params->efi_info; |
| struct e820entry *e820_map = &boot_params->e820_map[0]; |
| struct e820entry *prev = NULL; |
| unsigned long size, key, desc_size, _size; |
| efi_memory_desc_t *mem_map; |
| efi_status_t status; |
| __u32 desc_version; |
| u8 nr_entries; |
| int i; |
| |
| size = sizeof(*mem_map) * 32; |
| |
| again: |
| size += sizeof(*mem_map); |
| _size = size; |
| status = low_alloc(size, 1, (unsigned long *)&mem_map); |
| if (status != EFI_SUCCESS) |
| return status; |
| |
| status = efi_call_phys5(sys_table->boottime->get_memory_map, &size, |
| mem_map, &key, &desc_size, &desc_version); |
| if (status == EFI_BUFFER_TOO_SMALL) { |
| low_free(_size, (unsigned long)mem_map); |
| goto again; |
| } |
| |
| if (status != EFI_SUCCESS) |
| goto free_mem_map; |
| |
| memcpy(&efi->efi_loader_signature, EFI_LOADER_SIGNATURE, sizeof(__u32)); |
| efi->efi_systab = (unsigned long)sys_table; |
| efi->efi_memdesc_size = desc_size; |
| efi->efi_memdesc_version = desc_version; |
| efi->efi_memmap = (unsigned long)mem_map; |
| efi->efi_memmap_size = size; |
| |
| #ifdef CONFIG_X86_64 |
| efi->efi_systab_hi = (unsigned long)sys_table >> 32; |
| efi->efi_memmap_hi = (unsigned long)mem_map >> 32; |
| #endif |
| |
| /* Might as well exit boot services now */ |
| status = efi_call_phys2(sys_table->boottime->exit_boot_services, |
| handle, key); |
| if (status != EFI_SUCCESS) |
| goto free_mem_map; |
| |
| /* Historic? */ |
| boot_params->alt_mem_k = 32 * 1024; |
| |
| /* |
| * Convert the EFI memory map to E820. |
| */ |
| nr_entries = 0; |
| for (i = 0; i < size / desc_size; i++) { |
| efi_memory_desc_t *d; |
| unsigned int e820_type = 0; |
| unsigned long m = (unsigned long)mem_map; |
| |
| d = (efi_memory_desc_t *)(m + (i * desc_size)); |
| switch (d->type) { |
| case EFI_RESERVED_TYPE: |
| case EFI_RUNTIME_SERVICES_CODE: |
| case EFI_RUNTIME_SERVICES_DATA: |
| case EFI_MEMORY_MAPPED_IO: |
| case EFI_MEMORY_MAPPED_IO_PORT_SPACE: |
| case EFI_PAL_CODE: |
| e820_type = E820_RESERVED; |
| break; |
| |
| case EFI_UNUSABLE_MEMORY: |
| e820_type = E820_UNUSABLE; |
| break; |
| |
| case EFI_ACPI_RECLAIM_MEMORY: |
| e820_type = E820_ACPI; |
| break; |
| |
| case EFI_LOADER_CODE: |
| case EFI_LOADER_DATA: |
| case EFI_BOOT_SERVICES_CODE: |
| case EFI_BOOT_SERVICES_DATA: |
| case EFI_CONVENTIONAL_MEMORY: |
| e820_type = E820_RAM; |
| break; |
| |
| case EFI_ACPI_MEMORY_NVS: |
| e820_type = E820_NVS; |
| break; |
| |
| default: |
| continue; |
| } |
| |
| /* Merge adjacent mappings */ |
| if (prev && prev->type == e820_type && |
| (prev->addr + prev->size) == d->phys_addr) |
| prev->size += d->num_pages << 12; |
| else { |
| e820_map->addr = d->phys_addr; |
| e820_map->size = d->num_pages << 12; |
| e820_map->type = e820_type; |
| prev = e820_map++; |
| nr_entries++; |
| } |
| } |
| |
| boot_params->e820_entries = nr_entries; |
| |
| return EFI_SUCCESS; |
| |
| free_mem_map: |
| low_free(_size, (unsigned long)mem_map); |
| return status; |
| } |
| |
| static efi_status_t relocate_kernel(struct setup_header *hdr) |
| { |
| unsigned long start, nr_pages; |
| efi_status_t status; |
| |
| /* |
| * The EFI firmware loader could have placed the kernel image |
| * anywhere in memory, but the kernel has various restrictions |
| * on the max physical address it can run at. Attempt to move |
| * the kernel to boot_params.pref_address, or as low as |
| * possible. |
| */ |
| start = hdr->pref_address; |
| nr_pages = round_up(hdr->init_size, EFI_PAGE_SIZE) / EFI_PAGE_SIZE; |
| |
| status = efi_call_phys4(sys_table->boottime->allocate_pages, |
| EFI_ALLOCATE_ADDRESS, EFI_LOADER_DATA, |
| nr_pages, &start); |
| if (status != EFI_SUCCESS) { |
| status = low_alloc(hdr->init_size, hdr->kernel_alignment, |
| &start); |
| if (status != EFI_SUCCESS) |
| efi_printk("Failed to alloc mem for kernel\n"); |
| } |
| |
| if (status == EFI_SUCCESS) |
| memcpy((void *)start, (void *)(unsigned long)hdr->code32_start, |
| hdr->init_size); |
| |
| hdr->pref_address = hdr->code32_start; |
| hdr->code32_start = (__u32)start; |
| |
| return status; |
| } |
| |
| /* |
| * On success we return a pointer to a boot_params structure, and NULL |
| * on failure. |
| */ |
| struct boot_params *efi_main(void *handle, efi_system_table_t *_table, |
| struct boot_params *boot_params) |
| { |
| struct desc_ptr *gdt, *idt; |
| efi_loaded_image_t *image; |
| struct setup_header *hdr = &boot_params->hdr; |
| efi_status_t status; |
| struct desc_struct *desc; |
| |
| sys_table = _table; |
| |
| /* Check if we were booted by the EFI firmware */ |
| if (sys_table->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE) |
| goto fail; |
| |
| setup_graphics(boot_params); |
| |
| setup_efi_vars(boot_params); |
| |
| setup_efi_pci(boot_params); |
| |
| status = efi_call_phys3(sys_table->boottime->allocate_pool, |
| EFI_LOADER_DATA, sizeof(*gdt), |
| (void **)&gdt); |
| if (status != EFI_SUCCESS) { |
| efi_printk("Failed to alloc mem for gdt structure\n"); |
| goto fail; |
| } |
| |
| gdt->size = 0x800; |
| status = low_alloc(gdt->size, 8, (unsigned long *)&gdt->address); |
| if (status != EFI_SUCCESS) { |
| efi_printk("Failed to alloc mem for gdt\n"); |
| goto fail; |
| } |
| |
| status = efi_call_phys3(sys_table->boottime->allocate_pool, |
| EFI_LOADER_DATA, sizeof(*idt), |
| (void **)&idt); |
| if (status != EFI_SUCCESS) { |
| efi_printk("Failed to alloc mem for idt structure\n"); |
| goto fail; |
| } |
| |
| idt->size = 0; |
| idt->address = 0; |
| |
| /* |
| * If the kernel isn't already loaded at the preferred load |
| * address, relocate it. |
| */ |
| if (hdr->pref_address != hdr->code32_start) { |
| status = relocate_kernel(hdr); |
| |
| if (status != EFI_SUCCESS) |
| goto fail; |
| } |
| |
| status = exit_boot(boot_params, handle); |
| if (status != EFI_SUCCESS) |
| goto fail; |
| |
| memset((char *)gdt->address, 0x0, gdt->size); |
| desc = (struct desc_struct *)gdt->address; |
| |
| /* The first GDT is a dummy and the second is unused. */ |
| desc += 2; |
| |
| desc->limit0 = 0xffff; |
| desc->base0 = 0x0000; |
| desc->base1 = 0x0000; |
| desc->type = SEG_TYPE_CODE | SEG_TYPE_EXEC_READ; |
| desc->s = DESC_TYPE_CODE_DATA; |
| desc->dpl = 0; |
| desc->p = 1; |
| desc->limit = 0xf; |
| desc->avl = 0; |
| desc->l = 0; |
| desc->d = SEG_OP_SIZE_32BIT; |
| desc->g = SEG_GRANULARITY_4KB; |
| desc->base2 = 0x00; |
| |
| desc++; |
| desc->limit0 = 0xffff; |
| desc->base0 = 0x0000; |
| desc->base1 = 0x0000; |
| desc->type = SEG_TYPE_DATA | SEG_TYPE_READ_WRITE; |
| desc->s = DESC_TYPE_CODE_DATA; |
| desc->dpl = 0; |
| desc->p = 1; |
| desc->limit = 0xf; |
| desc->avl = 0; |
| desc->l = 0; |
| desc->d = SEG_OP_SIZE_32BIT; |
| desc->g = SEG_GRANULARITY_4KB; |
| desc->base2 = 0x00; |
| |
| #ifdef CONFIG_X86_64 |
| /* Task segment value */ |
| desc++; |
| desc->limit0 = 0x0000; |
| desc->base0 = 0x0000; |
| desc->base1 = 0x0000; |
| desc->type = SEG_TYPE_TSS; |
| desc->s = 0; |
| desc->dpl = 0; |
| desc->p = 1; |
| desc->limit = 0x0; |
| desc->avl = 0; |
| desc->l = 0; |
| desc->d = 0; |
| desc->g = SEG_GRANULARITY_4KB; |
| desc->base2 = 0x00; |
| #endif /* CONFIG_X86_64 */ |
| |
| asm volatile ("lidt %0" : : "m" (*idt)); |
| asm volatile ("lgdt %0" : : "m" (*gdt)); |
| |
| asm volatile("cli"); |
| |
| return boot_params; |
| fail: |
| return NULL; |
| } |