| /* |
| * Copyright(c) 2015, 2016 Intel Corporation. |
| * |
| * This file is provided under a dual BSD/GPLv2 license. When using or |
| * redistributing this file, you may do so under either license. |
| * |
| * GPL LICENSE SUMMARY |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of version 2 of the GNU General Public License as |
| * published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, but |
| * WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * General Public License for more details. |
| * |
| * BSD LICENSE |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * - Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * - Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in |
| * the documentation and/or other materials provided with the |
| * distribution. |
| * - Neither the name of Intel Corporation nor the names of its |
| * contributors may be used to endorse or promote products derived |
| * from this software without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| * |
| */ |
| |
| #include <linux/firmware.h> |
| #include <linux/mutex.h> |
| #include <linux/module.h> |
| #include <linux/delay.h> |
| #include <linux/crc32.h> |
| |
| #include "hfi.h" |
| #include "trace.h" |
| |
| /* |
| * Make it easy to toggle firmware file name and if it gets loaded by |
| * editing the following. This may be something we do while in development |
| * but not necessarily something a user would ever need to use. |
| */ |
| #define DEFAULT_FW_8051_NAME_FPGA "hfi_dc8051.bin" |
| #define DEFAULT_FW_8051_NAME_ASIC "hfi1_dc8051.fw" |
| #define DEFAULT_FW_FABRIC_NAME "hfi1_fabric.fw" |
| #define DEFAULT_FW_SBUS_NAME "hfi1_sbus.fw" |
| #define DEFAULT_FW_PCIE_NAME "hfi1_pcie.fw" |
| #define DEFAULT_PLATFORM_CONFIG_NAME "hfi1_platform.dat" |
| #define ALT_FW_8051_NAME_ASIC "hfi1_dc8051_d.fw" |
| #define ALT_FW_FABRIC_NAME "hfi1_fabric_d.fw" |
| #define ALT_FW_SBUS_NAME "hfi1_sbus_d.fw" |
| #define ALT_FW_PCIE_NAME "hfi1_pcie_d.fw" |
| |
| static uint fw_8051_load = 1; |
| static uint fw_fabric_serdes_load = 1; |
| static uint fw_pcie_serdes_load = 1; |
| static uint fw_sbus_load = 1; |
| |
| /* |
| * Access required in platform.c |
| * Maintains state of whether the platform config was fetched via the |
| * fallback option |
| */ |
| uint platform_config_load; |
| |
| /* Firmware file names get set in hfi1_firmware_init() based on the above */ |
| static char *fw_8051_name; |
| static char *fw_fabric_serdes_name; |
| static char *fw_sbus_name; |
| static char *fw_pcie_serdes_name; |
| static char *platform_config_name; |
| |
| #define SBUS_MAX_POLL_COUNT 100 |
| #define SBUS_COUNTER(reg, name) \ |
| (((reg) >> ASIC_STS_SBUS_COUNTERS_##name##_CNT_SHIFT) & \ |
| ASIC_STS_SBUS_COUNTERS_##name##_CNT_MASK) |
| |
| /* |
| * Firmware security header. |
| */ |
| struct css_header { |
| u32 module_type; |
| u32 header_len; |
| u32 header_version; |
| u32 module_id; |
| u32 module_vendor; |
| u32 date; /* BCD yyyymmdd */ |
| u32 size; /* in DWORDs */ |
| u32 key_size; /* in DWORDs */ |
| u32 modulus_size; /* in DWORDs */ |
| u32 exponent_size; /* in DWORDs */ |
| u32 reserved[22]; |
| }; |
| |
| /* expected field values */ |
| #define CSS_MODULE_TYPE 0x00000006 |
| #define CSS_HEADER_LEN 0x000000a1 |
| #define CSS_HEADER_VERSION 0x00010000 |
| #define CSS_MODULE_VENDOR 0x00008086 |
| |
| #define KEY_SIZE 256 |
| #define MU_SIZE 8 |
| #define EXPONENT_SIZE 4 |
| |
| /* the file itself */ |
| struct firmware_file { |
| struct css_header css_header; |
| u8 modulus[KEY_SIZE]; |
| u8 exponent[EXPONENT_SIZE]; |
| u8 signature[KEY_SIZE]; |
| u8 firmware[]; |
| }; |
| |
| struct augmented_firmware_file { |
| struct css_header css_header; |
| u8 modulus[KEY_SIZE]; |
| u8 exponent[EXPONENT_SIZE]; |
| u8 signature[KEY_SIZE]; |
| u8 r2[KEY_SIZE]; |
| u8 mu[MU_SIZE]; |
| u8 firmware[]; |
| }; |
| |
| /* augmented file size difference */ |
| #define AUGMENT_SIZE (sizeof(struct augmented_firmware_file) - \ |
| sizeof(struct firmware_file)) |
| |
| struct firmware_details { |
| /* Linux core piece */ |
| const struct firmware *fw; |
| |
| struct css_header *css_header; |
| u8 *firmware_ptr; /* pointer to binary data */ |
| u32 firmware_len; /* length in bytes */ |
| u8 *modulus; /* pointer to the modulus */ |
| u8 *exponent; /* pointer to the exponent */ |
| u8 *signature; /* pointer to the signature */ |
| u8 *r2; /* pointer to r2 */ |
| u8 *mu; /* pointer to mu */ |
| struct augmented_firmware_file dummy_header; |
| }; |
| |
| /* |
| * The mutex protects fw_state, fw_err, and all of the firmware_details |
| * variables. |
| */ |
| static DEFINE_MUTEX(fw_mutex); |
| enum fw_state { |
| FW_EMPTY, |
| FW_TRY, |
| FW_FINAL, |
| FW_ERR |
| }; |
| |
| static enum fw_state fw_state = FW_EMPTY; |
| static int fw_err; |
| static struct firmware_details fw_8051; |
| static struct firmware_details fw_fabric; |
| static struct firmware_details fw_pcie; |
| static struct firmware_details fw_sbus; |
| static const struct firmware *platform_config; |
| |
| /* flags for turn_off_spicos() */ |
| #define SPICO_SBUS 0x1 |
| #define SPICO_FABRIC 0x2 |
| #define ENABLE_SPICO_SMASK 0x1 |
| |
| /* security block commands */ |
| #define RSA_CMD_INIT 0x1 |
| #define RSA_CMD_START 0x2 |
| |
| /* security block status */ |
| #define RSA_STATUS_IDLE 0x0 |
| #define RSA_STATUS_ACTIVE 0x1 |
| #define RSA_STATUS_DONE 0x2 |
| #define RSA_STATUS_FAILED 0x3 |
| |
| /* RSA engine timeout, in ms */ |
| #define RSA_ENGINE_TIMEOUT 100 /* ms */ |
| |
| /* hardware mutex timeout, in ms */ |
| #define HM_TIMEOUT 10 /* ms */ |
| |
| /* 8051 memory access timeout, in us */ |
| #define DC8051_ACCESS_TIMEOUT 100 /* us */ |
| |
| /* the number of fabric SerDes on the SBus */ |
| #define NUM_FABRIC_SERDES 4 |
| |
| /* ASIC_STS_SBUS_RESULT.RESULT_CODE value */ |
| #define SBUS_READ_COMPLETE 0x4 |
| |
| /* SBus fabric SerDes addresses, one set per HFI */ |
| static const u8 fabric_serdes_addrs[2][NUM_FABRIC_SERDES] = { |
| { 0x01, 0x02, 0x03, 0x04 }, |
| { 0x28, 0x29, 0x2a, 0x2b } |
| }; |
| |
| /* SBus PCIe SerDes addresses, one set per HFI */ |
| static const u8 pcie_serdes_addrs[2][NUM_PCIE_SERDES] = { |
| { 0x08, 0x0a, 0x0c, 0x0e, 0x10, 0x12, 0x14, 0x16, |
| 0x18, 0x1a, 0x1c, 0x1e, 0x20, 0x22, 0x24, 0x26 }, |
| { 0x2f, 0x31, 0x33, 0x35, 0x37, 0x39, 0x3b, 0x3d, |
| 0x3f, 0x41, 0x43, 0x45, 0x47, 0x49, 0x4b, 0x4d } |
| }; |
| |
| /* SBus PCIe PCS addresses, one set per HFI */ |
| const u8 pcie_pcs_addrs[2][NUM_PCIE_SERDES] = { |
| { 0x09, 0x0b, 0x0d, 0x0f, 0x11, 0x13, 0x15, 0x17, |
| 0x19, 0x1b, 0x1d, 0x1f, 0x21, 0x23, 0x25, 0x27 }, |
| { 0x30, 0x32, 0x34, 0x36, 0x38, 0x3a, 0x3c, 0x3e, |
| 0x40, 0x42, 0x44, 0x46, 0x48, 0x4a, 0x4c, 0x4e } |
| }; |
| |
| /* SBus fabric SerDes broadcast addresses, one per HFI */ |
| static const u8 fabric_serdes_broadcast[2] = { 0xe4, 0xe5 }; |
| static const u8 all_fabric_serdes_broadcast = 0xe1; |
| |
| /* SBus PCIe SerDes broadcast addresses, one per HFI */ |
| const u8 pcie_serdes_broadcast[2] = { 0xe2, 0xe3 }; |
| static const u8 all_pcie_serdes_broadcast = 0xe0; |
| |
| /* forwards */ |
| static void dispose_one_firmware(struct firmware_details *fdet); |
| static int load_fabric_serdes_firmware(struct hfi1_devdata *dd, |
| struct firmware_details *fdet); |
| static void dump_fw_version(struct hfi1_devdata *dd); |
| |
| /* |
| * Read a single 64-bit value from 8051 data memory. |
| * |
| * Expects: |
| * o caller to have already set up data read, no auto increment |
| * o caller to turn off read enable when finished |
| * |
| * The address argument is a byte offset. Bits 0:2 in the address are |
| * ignored - i.e. the hardware will always do aligned 8-byte reads as if |
| * the lower bits are zero. |
| * |
| * Return 0 on success, -ENXIO on a read error (timeout). |
| */ |
| static int __read_8051_data(struct hfi1_devdata *dd, u32 addr, u64 *result) |
| { |
| u64 reg; |
| int count; |
| |
| /* start the read at the given address */ |
| reg = ((addr & DC_DC8051_CFG_RAM_ACCESS_CTRL_ADDRESS_MASK) |
| << DC_DC8051_CFG_RAM_ACCESS_CTRL_ADDRESS_SHIFT) |
| | DC_DC8051_CFG_RAM_ACCESS_CTRL_READ_ENA_SMASK; |
| write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_CTRL, reg); |
| |
| /* wait until ACCESS_COMPLETED is set */ |
| count = 0; |
| while ((read_csr(dd, DC_DC8051_CFG_RAM_ACCESS_STATUS) |
| & DC_DC8051_CFG_RAM_ACCESS_STATUS_ACCESS_COMPLETED_SMASK) |
| == 0) { |
| count++; |
| if (count > DC8051_ACCESS_TIMEOUT) { |
| dd_dev_err(dd, "timeout reading 8051 data\n"); |
| return -ENXIO; |
| } |
| ndelay(10); |
| } |
| |
| /* gather the data */ |
| *result = read_csr(dd, DC_DC8051_CFG_RAM_ACCESS_RD_DATA); |
| |
| return 0; |
| } |
| |
| /* |
| * Read 8051 data starting at addr, for len bytes. Will read in 8-byte chunks. |
| * Return 0 on success, -errno on error. |
| */ |
| int read_8051_data(struct hfi1_devdata *dd, u32 addr, u32 len, u64 *result) |
| { |
| unsigned long flags; |
| u32 done; |
| int ret = 0; |
| |
| spin_lock_irqsave(&dd->dc8051_memlock, flags); |
| |
| /* data read set-up, no auto-increment */ |
| write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_SETUP, 0); |
| |
| for (done = 0; done < len; addr += 8, done += 8, result++) { |
| ret = __read_8051_data(dd, addr, result); |
| if (ret) |
| break; |
| } |
| |
| /* turn off read enable */ |
| write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_CTRL, 0); |
| |
| spin_unlock_irqrestore(&dd->dc8051_memlock, flags); |
| |
| return ret; |
| } |
| |
| /* |
| * Write data or code to the 8051 code or data RAM. |
| */ |
| static int write_8051(struct hfi1_devdata *dd, int code, u32 start, |
| const u8 *data, u32 len) |
| { |
| u64 reg; |
| u32 offset; |
| int aligned, count; |
| |
| /* check alignment */ |
| aligned = ((unsigned long)data & 0x7) == 0; |
| |
| /* write set-up */ |
| reg = (code ? DC_DC8051_CFG_RAM_ACCESS_SETUP_RAM_SEL_SMASK : 0ull) |
| | DC_DC8051_CFG_RAM_ACCESS_SETUP_AUTO_INCR_ADDR_SMASK; |
| write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_SETUP, reg); |
| |
| reg = ((start & DC_DC8051_CFG_RAM_ACCESS_CTRL_ADDRESS_MASK) |
| << DC_DC8051_CFG_RAM_ACCESS_CTRL_ADDRESS_SHIFT) |
| | DC_DC8051_CFG_RAM_ACCESS_CTRL_WRITE_ENA_SMASK; |
| write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_CTRL, reg); |
| |
| /* write */ |
| for (offset = 0; offset < len; offset += 8) { |
| int bytes = len - offset; |
| |
| if (bytes < 8) { |
| reg = 0; |
| memcpy(®, &data[offset], bytes); |
| } else if (aligned) { |
| reg = *(u64 *)&data[offset]; |
| } else { |
| memcpy(®, &data[offset], 8); |
| } |
| write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_WR_DATA, reg); |
| |
| /* wait until ACCESS_COMPLETED is set */ |
| count = 0; |
| while ((read_csr(dd, DC_DC8051_CFG_RAM_ACCESS_STATUS) |
| & DC_DC8051_CFG_RAM_ACCESS_STATUS_ACCESS_COMPLETED_SMASK) |
| == 0) { |
| count++; |
| if (count > DC8051_ACCESS_TIMEOUT) { |
| dd_dev_err(dd, "timeout writing 8051 data\n"); |
| return -ENXIO; |
| } |
| udelay(1); |
| } |
| } |
| |
| /* turn off write access, auto increment (also sets to data access) */ |
| write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_CTRL, 0); |
| write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_SETUP, 0); |
| |
| return 0; |
| } |
| |
| /* return 0 if values match, non-zero and complain otherwise */ |
| static int invalid_header(struct hfi1_devdata *dd, const char *what, |
| u32 actual, u32 expected) |
| { |
| if (actual == expected) |
| return 0; |
| |
| dd_dev_err(dd, |
| "invalid firmware header field %s: expected 0x%x, actual 0x%x\n", |
| what, expected, actual); |
| return 1; |
| } |
| |
| /* |
| * Verify that the static fields in the CSS header match. |
| */ |
| static int verify_css_header(struct hfi1_devdata *dd, struct css_header *css) |
| { |
| /* verify CSS header fields (most sizes are in DW, so add /4) */ |
| if (invalid_header(dd, "module_type", css->module_type, |
| CSS_MODULE_TYPE) || |
| invalid_header(dd, "header_len", css->header_len, |
| (sizeof(struct firmware_file) / 4)) || |
| invalid_header(dd, "header_version", css->header_version, |
| CSS_HEADER_VERSION) || |
| invalid_header(dd, "module_vendor", css->module_vendor, |
| CSS_MODULE_VENDOR) || |
| invalid_header(dd, "key_size", css->key_size, KEY_SIZE / 4) || |
| invalid_header(dd, "modulus_size", css->modulus_size, |
| KEY_SIZE / 4) || |
| invalid_header(dd, "exponent_size", css->exponent_size, |
| EXPONENT_SIZE / 4)) { |
| return -EINVAL; |
| } |
| return 0; |
| } |
| |
| /* |
| * Make sure there are at least some bytes after the prefix. |
| */ |
| static int payload_check(struct hfi1_devdata *dd, const char *name, |
| long file_size, long prefix_size) |
| { |
| /* make sure we have some payload */ |
| if (prefix_size >= file_size) { |
| dd_dev_err(dd, |
| "firmware \"%s\", size %ld, must be larger than %ld bytes\n", |
| name, file_size, prefix_size); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Request the firmware from the system. Extract the pieces and fill in |
| * fdet. If successful, the caller will need to call dispose_one_firmware(). |
| * Returns 0 on success, -ERRNO on error. |
| */ |
| static int obtain_one_firmware(struct hfi1_devdata *dd, const char *name, |
| struct firmware_details *fdet) |
| { |
| struct css_header *css; |
| int ret; |
| |
| memset(fdet, 0, sizeof(*fdet)); |
| |
| ret = request_firmware(&fdet->fw, name, &dd->pcidev->dev); |
| if (ret) { |
| dd_dev_warn(dd, "cannot find firmware \"%s\", err %d\n", |
| name, ret); |
| return ret; |
| } |
| |
| /* verify the firmware */ |
| if (fdet->fw->size < sizeof(struct css_header)) { |
| dd_dev_err(dd, "firmware \"%s\" is too small\n", name); |
| ret = -EINVAL; |
| goto done; |
| } |
| css = (struct css_header *)fdet->fw->data; |
| |
| hfi1_cdbg(FIRMWARE, "Firmware %s details:", name); |
| hfi1_cdbg(FIRMWARE, "file size: 0x%lx bytes", fdet->fw->size); |
| hfi1_cdbg(FIRMWARE, "CSS structure:"); |
| hfi1_cdbg(FIRMWARE, " module_type 0x%x", css->module_type); |
| hfi1_cdbg(FIRMWARE, " header_len 0x%03x (0x%03x bytes)", |
| css->header_len, 4 * css->header_len); |
| hfi1_cdbg(FIRMWARE, " header_version 0x%x", css->header_version); |
| hfi1_cdbg(FIRMWARE, " module_id 0x%x", css->module_id); |
| hfi1_cdbg(FIRMWARE, " module_vendor 0x%x", css->module_vendor); |
| hfi1_cdbg(FIRMWARE, " date 0x%x", css->date); |
| hfi1_cdbg(FIRMWARE, " size 0x%03x (0x%03x bytes)", |
| css->size, 4 * css->size); |
| hfi1_cdbg(FIRMWARE, " key_size 0x%03x (0x%03x bytes)", |
| css->key_size, 4 * css->key_size); |
| hfi1_cdbg(FIRMWARE, " modulus_size 0x%03x (0x%03x bytes)", |
| css->modulus_size, 4 * css->modulus_size); |
| hfi1_cdbg(FIRMWARE, " exponent_size 0x%03x (0x%03x bytes)", |
| css->exponent_size, 4 * css->exponent_size); |
| hfi1_cdbg(FIRMWARE, "firmware size: 0x%lx bytes", |
| fdet->fw->size - sizeof(struct firmware_file)); |
| |
| /* |
| * If the file does not have a valid CSS header, fail. |
| * Otherwise, check the CSS size field for an expected size. |
| * The augmented file has r2 and mu inserted after the header |
| * was generated, so there will be a known difference between |
| * the CSS header size and the actual file size. Use this |
| * difference to identify an augmented file. |
| * |
| * Note: css->size is in DWORDs, multiply by 4 to get bytes. |
| */ |
| ret = verify_css_header(dd, css); |
| if (ret) { |
| dd_dev_info(dd, "Invalid CSS header for \"%s\"\n", name); |
| } else if ((css->size * 4) == fdet->fw->size) { |
| /* non-augmented firmware file */ |
| struct firmware_file *ff = (struct firmware_file *) |
| fdet->fw->data; |
| |
| /* make sure there are bytes in the payload */ |
| ret = payload_check(dd, name, fdet->fw->size, |
| sizeof(struct firmware_file)); |
| if (ret == 0) { |
| fdet->css_header = css; |
| fdet->modulus = ff->modulus; |
| fdet->exponent = ff->exponent; |
| fdet->signature = ff->signature; |
| fdet->r2 = fdet->dummy_header.r2; /* use dummy space */ |
| fdet->mu = fdet->dummy_header.mu; /* use dummy space */ |
| fdet->firmware_ptr = ff->firmware; |
| fdet->firmware_len = fdet->fw->size - |
| sizeof(struct firmware_file); |
| /* |
| * Header does not include r2 and mu - generate here. |
| * For now, fail. |
| */ |
| dd_dev_err(dd, "driver is unable to validate firmware without r2 and mu (not in firmware file)\n"); |
| ret = -EINVAL; |
| } |
| } else if ((css->size * 4) + AUGMENT_SIZE == fdet->fw->size) { |
| /* augmented firmware file */ |
| struct augmented_firmware_file *aff = |
| (struct augmented_firmware_file *)fdet->fw->data; |
| |
| /* make sure there are bytes in the payload */ |
| ret = payload_check(dd, name, fdet->fw->size, |
| sizeof(struct augmented_firmware_file)); |
| if (ret == 0) { |
| fdet->css_header = css; |
| fdet->modulus = aff->modulus; |
| fdet->exponent = aff->exponent; |
| fdet->signature = aff->signature; |
| fdet->r2 = aff->r2; |
| fdet->mu = aff->mu; |
| fdet->firmware_ptr = aff->firmware; |
| fdet->firmware_len = fdet->fw->size - |
| sizeof(struct augmented_firmware_file); |
| } |
| } else { |
| /* css->size check failed */ |
| dd_dev_err(dd, |
| "invalid firmware header field size: expected 0x%lx or 0x%lx, actual 0x%x\n", |
| fdet->fw->size / 4, |
| (fdet->fw->size - AUGMENT_SIZE) / 4, |
| css->size); |
| |
| ret = -EINVAL; |
| } |
| |
| done: |
| /* if returning an error, clean up after ourselves */ |
| if (ret) |
| dispose_one_firmware(fdet); |
| return ret; |
| } |
| |
| static void dispose_one_firmware(struct firmware_details *fdet) |
| { |
| release_firmware(fdet->fw); |
| /* erase all previous information */ |
| memset(fdet, 0, sizeof(*fdet)); |
| } |
| |
| /* |
| * Obtain the 4 firmwares from the OS. All must be obtained at once or not |
| * at all. If called with the firmware state in FW_TRY, use alternate names. |
| * On exit, this routine will have set the firmware state to one of FW_TRY, |
| * FW_FINAL, or FW_ERR. |
| * |
| * Must be holding fw_mutex. |
| */ |
| static void __obtain_firmware(struct hfi1_devdata *dd) |
| { |
| int err = 0; |
| |
| if (fw_state == FW_FINAL) /* nothing more to obtain */ |
| return; |
| if (fw_state == FW_ERR) /* already in error */ |
| return; |
| |
| /* fw_state is FW_EMPTY or FW_TRY */ |
| retry: |
| if (fw_state == FW_TRY) { |
| /* |
| * We tried the original and it failed. Move to the |
| * alternate. |
| */ |
| dd_dev_warn(dd, "using alternate firmware names\n"); |
| /* |
| * Let others run. Some systems, when missing firmware, does |
| * something that holds for 30 seconds. If we do that twice |
| * in a row it triggers task blocked warning. |
| */ |
| cond_resched(); |
| if (fw_8051_load) |
| dispose_one_firmware(&fw_8051); |
| if (fw_fabric_serdes_load) |
| dispose_one_firmware(&fw_fabric); |
| if (fw_sbus_load) |
| dispose_one_firmware(&fw_sbus); |
| if (fw_pcie_serdes_load) |
| dispose_one_firmware(&fw_pcie); |
| fw_8051_name = ALT_FW_8051_NAME_ASIC; |
| fw_fabric_serdes_name = ALT_FW_FABRIC_NAME; |
| fw_sbus_name = ALT_FW_SBUS_NAME; |
| fw_pcie_serdes_name = ALT_FW_PCIE_NAME; |
| } |
| |
| if (fw_sbus_load) { |
| err = obtain_one_firmware(dd, fw_sbus_name, &fw_sbus); |
| if (err) |
| goto done; |
| } |
| |
| if (fw_pcie_serdes_load) { |
| err = obtain_one_firmware(dd, fw_pcie_serdes_name, &fw_pcie); |
| if (err) |
| goto done; |
| } |
| |
| if (fw_fabric_serdes_load) { |
| err = obtain_one_firmware(dd, fw_fabric_serdes_name, |
| &fw_fabric); |
| if (err) |
| goto done; |
| } |
| |
| if (fw_8051_load) { |
| err = obtain_one_firmware(dd, fw_8051_name, &fw_8051); |
| if (err) |
| goto done; |
| } |
| |
| done: |
| if (err) { |
| /* oops, had problems obtaining a firmware */ |
| if (fw_state == FW_EMPTY && dd->icode == ICODE_RTL_SILICON) { |
| /* retry with alternate (RTL only) */ |
| fw_state = FW_TRY; |
| goto retry; |
| } |
| dd_dev_err(dd, "unable to obtain working firmware\n"); |
| fw_state = FW_ERR; |
| fw_err = -ENOENT; |
| } else { |
| /* success */ |
| if (fw_state == FW_EMPTY && |
| dd->icode != ICODE_FUNCTIONAL_SIMULATOR) |
| fw_state = FW_TRY; /* may retry later */ |
| else |
| fw_state = FW_FINAL; /* cannot try again */ |
| } |
| } |
| |
| /* |
| * Called by all HFIs when loading their firmware - i.e. device probe time. |
| * The first one will do the actual firmware load. Use a mutex to resolve |
| * any possible race condition. |
| * |
| * The call to this routine cannot be moved to driver load because the kernel |
| * call request_firmware() requires a device which is only available after |
| * the first device probe. |
| */ |
| static int obtain_firmware(struct hfi1_devdata *dd) |
| { |
| unsigned long timeout; |
| int err = 0; |
| |
| mutex_lock(&fw_mutex); |
| |
| /* 40s delay due to long delay on missing firmware on some systems */ |
| timeout = jiffies + msecs_to_jiffies(40000); |
| while (fw_state == FW_TRY) { |
| /* |
| * Another device is trying the firmware. Wait until it |
| * decides what works (or not). |
| */ |
| if (time_after(jiffies, timeout)) { |
| /* waited too long */ |
| dd_dev_err(dd, "Timeout waiting for firmware try"); |
| fw_state = FW_ERR; |
| fw_err = -ETIMEDOUT; |
| break; |
| } |
| mutex_unlock(&fw_mutex); |
| msleep(20); /* arbitrary delay */ |
| mutex_lock(&fw_mutex); |
| } |
| /* not in FW_TRY state */ |
| |
| if (fw_state == FW_FINAL) { |
| if (platform_config) { |
| dd->platform_config.data = platform_config->data; |
| dd->platform_config.size = platform_config->size; |
| } |
| goto done; /* already acquired */ |
| } else if (fw_state == FW_ERR) { |
| goto done; /* already tried and failed */ |
| } |
| /* fw_state is FW_EMPTY */ |
| |
| /* set fw_state to FW_TRY, FW_FINAL, or FW_ERR, and fw_err */ |
| __obtain_firmware(dd); |
| |
| if (platform_config_load) { |
| platform_config = NULL; |
| err = request_firmware(&platform_config, platform_config_name, |
| &dd->pcidev->dev); |
| if (err) { |
| platform_config = NULL; |
| goto done; |
| } |
| dd->platform_config.data = platform_config->data; |
| dd->platform_config.size = platform_config->size; |
| } |
| |
| done: |
| mutex_unlock(&fw_mutex); |
| |
| return fw_err; |
| } |
| |
| /* |
| * Called when the driver unloads. The timing is asymmetric with its |
| * counterpart, obtain_firmware(). If called at device remove time, |
| * then it is conceivable that another device could probe while the |
| * firmware is being disposed. The mutexes can be moved to do that |
| * safely, but then the firmware would be requested from the OS multiple |
| * times. |
| * |
| * No mutex is needed as the driver is unloading and there cannot be any |
| * other callers. |
| */ |
| void dispose_firmware(void) |
| { |
| dispose_one_firmware(&fw_8051); |
| dispose_one_firmware(&fw_fabric); |
| dispose_one_firmware(&fw_pcie); |
| dispose_one_firmware(&fw_sbus); |
| |
| release_firmware(platform_config); |
| platform_config = NULL; |
| |
| /* retain the error state, otherwise revert to empty */ |
| if (fw_state != FW_ERR) |
| fw_state = FW_EMPTY; |
| } |
| |
| /* |
| * Called with the result of a firmware download. |
| * |
| * Return 1 to retry loading the firmware, 0 to stop. |
| */ |
| static int retry_firmware(struct hfi1_devdata *dd, int load_result) |
| { |
| int retry; |
| |
| mutex_lock(&fw_mutex); |
| |
| if (load_result == 0) { |
| /* |
| * The load succeeded, so expect all others to do the same. |
| * Do not retry again. |
| */ |
| if (fw_state == FW_TRY) |
| fw_state = FW_FINAL; |
| retry = 0; /* do NOT retry */ |
| } else if (fw_state == FW_TRY) { |
| /* load failed, obtain alternate firmware */ |
| __obtain_firmware(dd); |
| retry = (fw_state == FW_FINAL); |
| } else { |
| /* else in FW_FINAL or FW_ERR, no retry in either case */ |
| retry = 0; |
| } |
| |
| mutex_unlock(&fw_mutex); |
| return retry; |
| } |
| |
| /* |
| * Write a block of data to a given array CSR. All calls will be in |
| * multiples of 8 bytes. |
| */ |
| static void write_rsa_data(struct hfi1_devdata *dd, int what, |
| const u8 *data, int nbytes) |
| { |
| int qw_size = nbytes / 8; |
| int i; |
| |
| if (((unsigned long)data & 0x7) == 0) { |
| /* aligned */ |
| u64 *ptr = (u64 *)data; |
| |
| for (i = 0; i < qw_size; i++, ptr++) |
| write_csr(dd, what + (8 * i), *ptr); |
| } else { |
| /* not aligned */ |
| for (i = 0; i < qw_size; i++, data += 8) { |
| u64 value; |
| |
| memcpy(&value, data, 8); |
| write_csr(dd, what + (8 * i), value); |
| } |
| } |
| } |
| |
| /* |
| * Write a block of data to a given CSR as a stream of writes. All calls will |
| * be in multiples of 8 bytes. |
| */ |
| static void write_streamed_rsa_data(struct hfi1_devdata *dd, int what, |
| const u8 *data, int nbytes) |
| { |
| u64 *ptr = (u64 *)data; |
| int qw_size = nbytes / 8; |
| |
| for (; qw_size > 0; qw_size--, ptr++) |
| write_csr(dd, what, *ptr); |
| } |
| |
| /* |
| * Download the signature and start the RSA mechanism. Wait for |
| * RSA_ENGINE_TIMEOUT before giving up. |
| */ |
| static int run_rsa(struct hfi1_devdata *dd, const char *who, |
| const u8 *signature) |
| { |
| unsigned long timeout; |
| u64 reg; |
| u32 status; |
| int ret = 0; |
| |
| /* write the signature */ |
| write_rsa_data(dd, MISC_CFG_RSA_SIGNATURE, signature, KEY_SIZE); |
| |
| /* initialize RSA */ |
| write_csr(dd, MISC_CFG_RSA_CMD, RSA_CMD_INIT); |
| |
| /* |
| * Make sure the engine is idle and insert a delay between the two |
| * writes to MISC_CFG_RSA_CMD. |
| */ |
| status = (read_csr(dd, MISC_CFG_FW_CTRL) |
| & MISC_CFG_FW_CTRL_RSA_STATUS_SMASK) |
| >> MISC_CFG_FW_CTRL_RSA_STATUS_SHIFT; |
| if (status != RSA_STATUS_IDLE) { |
| dd_dev_err(dd, "%s security engine not idle - giving up\n", |
| who); |
| return -EBUSY; |
| } |
| |
| /* start RSA */ |
| write_csr(dd, MISC_CFG_RSA_CMD, RSA_CMD_START); |
| |
| /* |
| * Look for the result. |
| * |
| * The RSA engine is hooked up to two MISC errors. The driver |
| * masks these errors as they do not respond to the standard |
| * error "clear down" mechanism. Look for these errors here and |
| * clear them when possible. This routine will exit with the |
| * errors of the current run still set. |
| * |
| * MISC_FW_AUTH_FAILED_ERR |
| * Firmware authorization failed. This can be cleared by |
| * re-initializing the RSA engine, then clearing the status bit. |
| * Do not re-init the RSA angine immediately after a successful |
| * run - this will reset the current authorization. |
| * |
| * MISC_KEY_MISMATCH_ERR |
| * Key does not match. The only way to clear this is to load |
| * a matching key then clear the status bit. If this error |
| * is raised, it will persist outside of this routine until a |
| * matching key is loaded. |
| */ |
| timeout = msecs_to_jiffies(RSA_ENGINE_TIMEOUT) + jiffies; |
| while (1) { |
| status = (read_csr(dd, MISC_CFG_FW_CTRL) |
| & MISC_CFG_FW_CTRL_RSA_STATUS_SMASK) |
| >> MISC_CFG_FW_CTRL_RSA_STATUS_SHIFT; |
| |
| if (status == RSA_STATUS_IDLE) { |
| /* should not happen */ |
| dd_dev_err(dd, "%s firmware security bad idle state\n", |
| who); |
| ret = -EINVAL; |
| break; |
| } else if (status == RSA_STATUS_DONE) { |
| /* finished successfully */ |
| break; |
| } else if (status == RSA_STATUS_FAILED) { |
| /* finished unsuccessfully */ |
| ret = -EINVAL; |
| break; |
| } |
| /* else still active */ |
| |
| if (time_after(jiffies, timeout)) { |
| /* |
| * Timed out while active. We can't reset the engine |
| * if it is stuck active, but run through the |
| * error code to see what error bits are set. |
| */ |
| dd_dev_err(dd, "%s firmware security time out\n", who); |
| ret = -ETIMEDOUT; |
| break; |
| } |
| |
| msleep(20); |
| } |
| |
| /* |
| * Arrive here on success or failure. Clear all RSA engine |
| * errors. All current errors will stick - the RSA logic is keeping |
| * error high. All previous errors will clear - the RSA logic |
| * is not keeping the error high. |
| */ |
| write_csr(dd, MISC_ERR_CLEAR, |
| MISC_ERR_STATUS_MISC_FW_AUTH_FAILED_ERR_SMASK | |
| MISC_ERR_STATUS_MISC_KEY_MISMATCH_ERR_SMASK); |
| /* |
| * All that is left are the current errors. Print warnings on |
| * authorization failure details, if any. Firmware authorization |
| * can be retried, so these are only warnings. |
| */ |
| reg = read_csr(dd, MISC_ERR_STATUS); |
| if (ret) { |
| if (reg & MISC_ERR_STATUS_MISC_FW_AUTH_FAILED_ERR_SMASK) |
| dd_dev_warn(dd, "%s firmware authorization failed\n", |
| who); |
| if (reg & MISC_ERR_STATUS_MISC_KEY_MISMATCH_ERR_SMASK) |
| dd_dev_warn(dd, "%s firmware key mismatch\n", who); |
| } |
| |
| return ret; |
| } |
| |
| static void load_security_variables(struct hfi1_devdata *dd, |
| struct firmware_details *fdet) |
| { |
| /* Security variables a. Write the modulus */ |
| write_rsa_data(dd, MISC_CFG_RSA_MODULUS, fdet->modulus, KEY_SIZE); |
| /* Security variables b. Write the r2 */ |
| write_rsa_data(dd, MISC_CFG_RSA_R2, fdet->r2, KEY_SIZE); |
| /* Security variables c. Write the mu */ |
| write_rsa_data(dd, MISC_CFG_RSA_MU, fdet->mu, MU_SIZE); |
| /* Security variables d. Write the header */ |
| write_streamed_rsa_data(dd, MISC_CFG_SHA_PRELOAD, |
| (u8 *)fdet->css_header, |
| sizeof(struct css_header)); |
| } |
| |
| /* return the 8051 firmware state */ |
| static inline u32 get_firmware_state(struct hfi1_devdata *dd) |
| { |
| u64 reg = read_csr(dd, DC_DC8051_STS_CUR_STATE); |
| |
| return (reg >> DC_DC8051_STS_CUR_STATE_FIRMWARE_SHIFT) |
| & DC_DC8051_STS_CUR_STATE_FIRMWARE_MASK; |
| } |
| |
| /* |
| * Wait until the firmware is up and ready to take host requests. |
| * Return 0 on success, -ETIMEDOUT on timeout. |
| */ |
| int wait_fm_ready(struct hfi1_devdata *dd, u32 mstimeout) |
| { |
| unsigned long timeout; |
| |
| /* in the simulator, the fake 8051 is always ready */ |
| if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR) |
| return 0; |
| |
| timeout = msecs_to_jiffies(mstimeout) + jiffies; |
| while (1) { |
| if (get_firmware_state(dd) == 0xa0) /* ready */ |
| return 0; |
| if (time_after(jiffies, timeout)) /* timed out */ |
| return -ETIMEDOUT; |
| usleep_range(1950, 2050); /* sleep 2ms-ish */ |
| } |
| } |
| |
| /* |
| * Load the 8051 firmware. |
| */ |
| static int load_8051_firmware(struct hfi1_devdata *dd, |
| struct firmware_details *fdet) |
| { |
| u64 reg; |
| int ret; |
| u8 ver_a, ver_b; |
| |
| /* |
| * DC Reset sequence |
| * Load DC 8051 firmware |
| */ |
| /* |
| * DC reset step 1: Reset DC8051 |
| */ |
| reg = DC_DC8051_CFG_RST_M8051W_SMASK |
| | DC_DC8051_CFG_RST_CRAM_SMASK |
| | DC_DC8051_CFG_RST_DRAM_SMASK |
| | DC_DC8051_CFG_RST_IRAM_SMASK |
| | DC_DC8051_CFG_RST_SFR_SMASK; |
| write_csr(dd, DC_DC8051_CFG_RST, reg); |
| |
| /* |
| * DC reset step 2 (optional): Load 8051 data memory with link |
| * configuration |
| */ |
| |
| /* |
| * DC reset step 3: Load DC8051 firmware |
| */ |
| /* release all but the core reset */ |
| reg = DC_DC8051_CFG_RST_M8051W_SMASK; |
| write_csr(dd, DC_DC8051_CFG_RST, reg); |
| |
| /* Firmware load step 1 */ |
| load_security_variables(dd, fdet); |
| |
| /* |
| * Firmware load step 2. Clear MISC_CFG_FW_CTRL.FW_8051_LOADED |
| */ |
| write_csr(dd, MISC_CFG_FW_CTRL, 0); |
| |
| /* Firmware load steps 3-5 */ |
| ret = write_8051(dd, 1/*code*/, 0, fdet->firmware_ptr, |
| fdet->firmware_len); |
| if (ret) |
| return ret; |
| |
| /* |
| * DC reset step 4. Host starts the DC8051 firmware |
| */ |
| /* |
| * Firmware load step 6. Set MISC_CFG_FW_CTRL.FW_8051_LOADED |
| */ |
| write_csr(dd, MISC_CFG_FW_CTRL, MISC_CFG_FW_CTRL_FW_8051_LOADED_SMASK); |
| |
| /* Firmware load steps 7-10 */ |
| ret = run_rsa(dd, "8051", fdet->signature); |
| if (ret) |
| return ret; |
| |
| /* clear all reset bits, releasing the 8051 */ |
| write_csr(dd, DC_DC8051_CFG_RST, 0ull); |
| |
| /* |
| * DC reset step 5. Wait for firmware to be ready to accept host |
| * requests. |
| */ |
| ret = wait_fm_ready(dd, TIMEOUT_8051_START); |
| if (ret) { /* timed out */ |
| dd_dev_err(dd, "8051 start timeout, current state 0x%x\n", |
| get_firmware_state(dd)); |
| return -ETIMEDOUT; |
| } |
| |
| read_misc_status(dd, &ver_a, &ver_b); |
| dd_dev_info(dd, "8051 firmware version %d.%d\n", |
| (int)ver_b, (int)ver_a); |
| dd->dc8051_ver = dc8051_ver(ver_b, ver_a); |
| |
| return 0; |
| } |
| |
| /* |
| * Write the SBus request register |
| * |
| * No need for masking - the arguments are sized exactly. |
| */ |
| void sbus_request(struct hfi1_devdata *dd, |
| u8 receiver_addr, u8 data_addr, u8 command, u32 data_in) |
| { |
| write_csr(dd, ASIC_CFG_SBUS_REQUEST, |
| ((u64)data_in << ASIC_CFG_SBUS_REQUEST_DATA_IN_SHIFT) | |
| ((u64)command << ASIC_CFG_SBUS_REQUEST_COMMAND_SHIFT) | |
| ((u64)data_addr << ASIC_CFG_SBUS_REQUEST_DATA_ADDR_SHIFT) | |
| ((u64)receiver_addr << |
| ASIC_CFG_SBUS_REQUEST_RECEIVER_ADDR_SHIFT)); |
| } |
| |
| /* |
| * Read a value from the SBus. |
| * |
| * Requires the caller to be in fast mode |
| */ |
| static u32 sbus_read(struct hfi1_devdata *dd, u8 receiver_addr, u8 data_addr, |
| u32 data_in) |
| { |
| u64 reg; |
| int retries; |
| int success = 0; |
| u32 result = 0; |
| u32 result_code = 0; |
| |
| sbus_request(dd, receiver_addr, data_addr, READ_SBUS_RECEIVER, data_in); |
| |
| for (retries = 0; retries < 100; retries++) { |
| usleep_range(1000, 1200); /* arbitrary */ |
| reg = read_csr(dd, ASIC_STS_SBUS_RESULT); |
| result_code = (reg >> ASIC_STS_SBUS_RESULT_RESULT_CODE_SHIFT) |
| & ASIC_STS_SBUS_RESULT_RESULT_CODE_MASK; |
| if (result_code != SBUS_READ_COMPLETE) |
| continue; |
| |
| success = 1; |
| result = (reg >> ASIC_STS_SBUS_RESULT_DATA_OUT_SHIFT) |
| & ASIC_STS_SBUS_RESULT_DATA_OUT_MASK; |
| break; |
| } |
| |
| if (!success) { |
| dd_dev_err(dd, "%s: read failed, result code 0x%x\n", __func__, |
| result_code); |
| } |
| |
| return result; |
| } |
| |
| /* |
| * Turn off the SBus and fabric serdes spicos. |
| * |
| * + Must be called with Sbus fast mode turned on. |
| * + Must be called after fabric serdes broadcast is set up. |
| * + Must be called before the 8051 is loaded - assumes 8051 is not loaded |
| * when using MISC_CFG_FW_CTRL. |
| */ |
| static void turn_off_spicos(struct hfi1_devdata *dd, int flags) |
| { |
| /* only needed on A0 */ |
| if (!is_ax(dd)) |
| return; |
| |
| dd_dev_info(dd, "Turning off spicos:%s%s\n", |
| flags & SPICO_SBUS ? " SBus" : "", |
| flags & SPICO_FABRIC ? " fabric" : ""); |
| |
| write_csr(dd, MISC_CFG_FW_CTRL, ENABLE_SPICO_SMASK); |
| /* disable SBus spico */ |
| if (flags & SPICO_SBUS) |
| sbus_request(dd, SBUS_MASTER_BROADCAST, 0x01, |
| WRITE_SBUS_RECEIVER, 0x00000040); |
| |
| /* disable the fabric serdes spicos */ |
| if (flags & SPICO_FABRIC) |
| sbus_request(dd, fabric_serdes_broadcast[dd->hfi1_id], |
| 0x07, WRITE_SBUS_RECEIVER, 0x00000000); |
| write_csr(dd, MISC_CFG_FW_CTRL, 0); |
| } |
| |
| /* |
| * Reset all of the fabric serdes for this HFI in preparation to take the |
| * link to Polling. |
| * |
| * To do a reset, we need to write to to the serdes registers. Unfortunately, |
| * the fabric serdes download to the other HFI on the ASIC will have turned |
| * off the firmware validation on this HFI. This means we can't write to the |
| * registers to reset the serdes. Work around this by performing a complete |
| * re-download and validation of the fabric serdes firmware. This, as a |
| * by-product, will reset the serdes. NOTE: the re-download requires that |
| * the 8051 be in the Offline state. I.e. not actively trying to use the |
| * serdes. This routine is called at the point where the link is Offline and |
| * is getting ready to go to Polling. |
| */ |
| void fabric_serdes_reset(struct hfi1_devdata *dd) |
| { |
| int ret; |
| |
| if (!fw_fabric_serdes_load) |
| return; |
| |
| ret = acquire_chip_resource(dd, CR_SBUS, SBUS_TIMEOUT); |
| if (ret) { |
| dd_dev_err(dd, |
| "Cannot acquire SBus resource to reset fabric SerDes - perhaps you should reboot\n"); |
| return; |
| } |
| set_sbus_fast_mode(dd); |
| |
| if (is_ax(dd)) { |
| /* A0 serdes do not work with a re-download */ |
| u8 ra = fabric_serdes_broadcast[dd->hfi1_id]; |
| |
| /* place SerDes in reset and disable SPICO */ |
| sbus_request(dd, ra, 0x07, WRITE_SBUS_RECEIVER, 0x00000011); |
| /* wait 100 refclk cycles @ 156.25MHz => 640ns */ |
| udelay(1); |
| /* remove SerDes reset */ |
| sbus_request(dd, ra, 0x07, WRITE_SBUS_RECEIVER, 0x00000010); |
| /* turn SPICO enable on */ |
| sbus_request(dd, ra, 0x07, WRITE_SBUS_RECEIVER, 0x00000002); |
| } else { |
| turn_off_spicos(dd, SPICO_FABRIC); |
| /* |
| * No need for firmware retry - what to download has already |
| * been decided. |
| * No need to pay attention to the load return - the only |
| * failure is a validation failure, which has already been |
| * checked by the initial download. |
| */ |
| (void)load_fabric_serdes_firmware(dd, &fw_fabric); |
| } |
| |
| clear_sbus_fast_mode(dd); |
| release_chip_resource(dd, CR_SBUS); |
| } |
| |
| /* Access to the SBus in this routine should probably be serialized */ |
| int sbus_request_slow(struct hfi1_devdata *dd, |
| u8 receiver_addr, u8 data_addr, u8 command, u32 data_in) |
| { |
| u64 reg, count = 0; |
| |
| /* make sure fast mode is clear */ |
| clear_sbus_fast_mode(dd); |
| |
| sbus_request(dd, receiver_addr, data_addr, command, data_in); |
| write_csr(dd, ASIC_CFG_SBUS_EXECUTE, |
| ASIC_CFG_SBUS_EXECUTE_EXECUTE_SMASK); |
| /* Wait for both DONE and RCV_DATA_VALID to go high */ |
| reg = read_csr(dd, ASIC_STS_SBUS_RESULT); |
| while (!((reg & ASIC_STS_SBUS_RESULT_DONE_SMASK) && |
| (reg & ASIC_STS_SBUS_RESULT_RCV_DATA_VALID_SMASK))) { |
| if (count++ >= SBUS_MAX_POLL_COUNT) { |
| u64 counts = read_csr(dd, ASIC_STS_SBUS_COUNTERS); |
| /* |
| * If the loop has timed out, we are OK if DONE bit |
| * is set and RCV_DATA_VALID and EXECUTE counters |
| * are the same. If not, we cannot proceed. |
| */ |
| if ((reg & ASIC_STS_SBUS_RESULT_DONE_SMASK) && |
| (SBUS_COUNTER(counts, RCV_DATA_VALID) == |
| SBUS_COUNTER(counts, EXECUTE))) |
| break; |
| return -ETIMEDOUT; |
| } |
| udelay(1); |
| reg = read_csr(dd, ASIC_STS_SBUS_RESULT); |
| } |
| count = 0; |
| write_csr(dd, ASIC_CFG_SBUS_EXECUTE, 0); |
| /* Wait for DONE to clear after EXECUTE is cleared */ |
| reg = read_csr(dd, ASIC_STS_SBUS_RESULT); |
| while (reg & ASIC_STS_SBUS_RESULT_DONE_SMASK) { |
| if (count++ >= SBUS_MAX_POLL_COUNT) |
| return -ETIME; |
| udelay(1); |
| reg = read_csr(dd, ASIC_STS_SBUS_RESULT); |
| } |
| return 0; |
| } |
| |
| static int load_fabric_serdes_firmware(struct hfi1_devdata *dd, |
| struct firmware_details *fdet) |
| { |
| int i, err; |
| const u8 ra = fabric_serdes_broadcast[dd->hfi1_id]; /* receiver addr */ |
| |
| dd_dev_info(dd, "Downloading fabric firmware\n"); |
| |
| /* step 1: load security variables */ |
| load_security_variables(dd, fdet); |
| /* step 2: place SerDes in reset and disable SPICO */ |
| sbus_request(dd, ra, 0x07, WRITE_SBUS_RECEIVER, 0x00000011); |
| /* wait 100 refclk cycles @ 156.25MHz => 640ns */ |
| udelay(1); |
| /* step 3: remove SerDes reset */ |
| sbus_request(dd, ra, 0x07, WRITE_SBUS_RECEIVER, 0x00000010); |
| /* step 4: assert IMEM override */ |
| sbus_request(dd, ra, 0x00, WRITE_SBUS_RECEIVER, 0x40000000); |
| /* step 5: download SerDes machine code */ |
| for (i = 0; i < fdet->firmware_len; i += 4) { |
| sbus_request(dd, ra, 0x0a, WRITE_SBUS_RECEIVER, |
| *(u32 *)&fdet->firmware_ptr[i]); |
| } |
| /* step 6: IMEM override off */ |
| sbus_request(dd, ra, 0x00, WRITE_SBUS_RECEIVER, 0x00000000); |
| /* step 7: turn ECC on */ |
| sbus_request(dd, ra, 0x0b, WRITE_SBUS_RECEIVER, 0x000c0000); |
| |
| /* steps 8-11: run the RSA engine */ |
| err = run_rsa(dd, "fabric serdes", fdet->signature); |
| if (err) |
| return err; |
| |
| /* step 12: turn SPICO enable on */ |
| sbus_request(dd, ra, 0x07, WRITE_SBUS_RECEIVER, 0x00000002); |
| /* step 13: enable core hardware interrupts */ |
| sbus_request(dd, ra, 0x08, WRITE_SBUS_RECEIVER, 0x00000000); |
| |
| return 0; |
| } |
| |
| static int load_sbus_firmware(struct hfi1_devdata *dd, |
| struct firmware_details *fdet) |
| { |
| int i, err; |
| const u8 ra = SBUS_MASTER_BROADCAST; /* receiver address */ |
| |
| dd_dev_info(dd, "Downloading SBus firmware\n"); |
| |
| /* step 1: load security variables */ |
| load_security_variables(dd, fdet); |
| /* step 2: place SPICO into reset and enable off */ |
| sbus_request(dd, ra, 0x01, WRITE_SBUS_RECEIVER, 0x000000c0); |
| /* step 3: remove reset, enable off, IMEM_CNTRL_EN on */ |
| sbus_request(dd, ra, 0x01, WRITE_SBUS_RECEIVER, 0x00000240); |
| /* step 4: set starting IMEM address for burst download */ |
| sbus_request(dd, ra, 0x03, WRITE_SBUS_RECEIVER, 0x80000000); |
| /* step 5: download the SBus Master machine code */ |
| for (i = 0; i < fdet->firmware_len; i += 4) { |
| sbus_request(dd, ra, 0x14, WRITE_SBUS_RECEIVER, |
| *(u32 *)&fdet->firmware_ptr[i]); |
| } |
| /* step 6: set IMEM_CNTL_EN off */ |
| sbus_request(dd, ra, 0x01, WRITE_SBUS_RECEIVER, 0x00000040); |
| /* step 7: turn ECC on */ |
| sbus_request(dd, ra, 0x16, WRITE_SBUS_RECEIVER, 0x000c0000); |
| |
| /* steps 8-11: run the RSA engine */ |
| err = run_rsa(dd, "SBus", fdet->signature); |
| if (err) |
| return err; |
| |
| /* step 12: set SPICO_ENABLE on */ |
| sbus_request(dd, ra, 0x01, WRITE_SBUS_RECEIVER, 0x00000140); |
| |
| return 0; |
| } |
| |
| static int load_pcie_serdes_firmware(struct hfi1_devdata *dd, |
| struct firmware_details *fdet) |
| { |
| int i; |
| const u8 ra = SBUS_MASTER_BROADCAST; /* receiver address */ |
| |
| dd_dev_info(dd, "Downloading PCIe firmware\n"); |
| |
| /* step 1: load security variables */ |
| load_security_variables(dd, fdet); |
| /* step 2: assert single step (halts the SBus Master spico) */ |
| sbus_request(dd, ra, 0x05, WRITE_SBUS_RECEIVER, 0x00000001); |
| /* step 3: enable XDMEM access */ |
| sbus_request(dd, ra, 0x01, WRITE_SBUS_RECEIVER, 0x00000d40); |
| /* step 4: load firmware into SBus Master XDMEM */ |
| /* |
| * NOTE: the dmem address, write_en, and wdata are all pre-packed, |
| * we only need to pick up the bytes and write them |
| */ |
| for (i = 0; i < fdet->firmware_len; i += 4) { |
| sbus_request(dd, ra, 0x04, WRITE_SBUS_RECEIVER, |
| *(u32 *)&fdet->firmware_ptr[i]); |
| } |
| /* step 5: disable XDMEM access */ |
| sbus_request(dd, ra, 0x01, WRITE_SBUS_RECEIVER, 0x00000140); |
| /* step 6: allow SBus Spico to run */ |
| sbus_request(dd, ra, 0x05, WRITE_SBUS_RECEIVER, 0x00000000); |
| |
| /* |
| * steps 7-11: run RSA, if it succeeds, firmware is available to |
| * be swapped |
| */ |
| return run_rsa(dd, "PCIe serdes", fdet->signature); |
| } |
| |
| /* |
| * Set the given broadcast values on the given list of devices. |
| */ |
| static void set_serdes_broadcast(struct hfi1_devdata *dd, u8 bg1, u8 bg2, |
| const u8 *addrs, int count) |
| { |
| while (--count >= 0) { |
| /* |
| * Set BROADCAST_GROUP_1 and BROADCAST_GROUP_2, leave |
| * defaults for everything else. Do not read-modify-write, |
| * per instruction from the manufacturer. |
| * |
| * Register 0xfd: |
| * bits what |
| * ----- --------------------------------- |
| * 0 IGNORE_BROADCAST (default 0) |
| * 11:4 BROADCAST_GROUP_1 (default 0xff) |
| * 23:16 BROADCAST_GROUP_2 (default 0xff) |
| */ |
| sbus_request(dd, addrs[count], 0xfd, WRITE_SBUS_RECEIVER, |
| (u32)bg1 << 4 | (u32)bg2 << 16); |
| } |
| } |
| |
| int acquire_hw_mutex(struct hfi1_devdata *dd) |
| { |
| unsigned long timeout; |
| int try = 0; |
| u8 mask = 1 << dd->hfi1_id; |
| u8 user; |
| |
| retry: |
| timeout = msecs_to_jiffies(HM_TIMEOUT) + jiffies; |
| while (1) { |
| write_csr(dd, ASIC_CFG_MUTEX, mask); |
| user = (u8)read_csr(dd, ASIC_CFG_MUTEX); |
| if (user == mask) |
| return 0; /* success */ |
| if (time_after(jiffies, timeout)) |
| break; /* timed out */ |
| msleep(20); |
| } |
| |
| /* timed out */ |
| dd_dev_err(dd, |
| "Unable to acquire hardware mutex, mutex mask %u, my mask %u (%s)\n", |
| (u32)user, (u32)mask, (try == 0) ? "retrying" : "giving up"); |
| |
| if (try == 0) { |
| /* break mutex and retry */ |
| write_csr(dd, ASIC_CFG_MUTEX, 0); |
| try++; |
| goto retry; |
| } |
| |
| return -EBUSY; |
| } |
| |
| void release_hw_mutex(struct hfi1_devdata *dd) |
| { |
| write_csr(dd, ASIC_CFG_MUTEX, 0); |
| } |
| |
| /* return the given resource bit(s) as a mask for the given HFI */ |
| static inline u64 resource_mask(u32 hfi1_id, u32 resource) |
| { |
| return ((u64)resource) << (hfi1_id ? CR_DYN_SHIFT : 0); |
| } |
| |
| static void fail_mutex_acquire_message(struct hfi1_devdata *dd, |
| const char *func) |
| { |
| dd_dev_err(dd, |
| "%s: hardware mutex stuck - suggest rebooting the machine\n", |
| func); |
| } |
| |
| /* |
| * Acquire access to a chip resource. |
| * |
| * Return 0 on success, -EBUSY if resource busy, -EIO if mutex acquire failed. |
| */ |
| static int __acquire_chip_resource(struct hfi1_devdata *dd, u32 resource) |
| { |
| u64 scratch0, all_bits, my_bit; |
| int ret; |
| |
| if (resource & CR_DYN_MASK) { |
| /* a dynamic resource is in use if either HFI has set the bit */ |
| if (dd->pcidev->device == PCI_DEVICE_ID_INTEL0 && |
| (resource & (CR_I2C1 | CR_I2C2))) { |
| /* discrete devices must serialize across both chains */ |
| all_bits = resource_mask(0, CR_I2C1 | CR_I2C2) | |
| resource_mask(1, CR_I2C1 | CR_I2C2); |
| } else { |
| all_bits = resource_mask(0, resource) | |
| resource_mask(1, resource); |
| } |
| my_bit = resource_mask(dd->hfi1_id, resource); |
| } else { |
| /* non-dynamic resources are not split between HFIs */ |
| all_bits = resource; |
| my_bit = resource; |
| } |
| |
| /* lock against other callers within the driver wanting a resource */ |
| mutex_lock(&dd->asic_data->asic_resource_mutex); |
| |
| ret = acquire_hw_mutex(dd); |
| if (ret) { |
| fail_mutex_acquire_message(dd, __func__); |
| ret = -EIO; |
| goto done; |
| } |
| |
| scratch0 = read_csr(dd, ASIC_CFG_SCRATCH); |
| if (scratch0 & all_bits) { |
| ret = -EBUSY; |
| } else { |
| write_csr(dd, ASIC_CFG_SCRATCH, scratch0 | my_bit); |
| /* force write to be visible to other HFI on another OS */ |
| (void)read_csr(dd, ASIC_CFG_SCRATCH); |
| } |
| |
| release_hw_mutex(dd); |
| |
| done: |
| mutex_unlock(&dd->asic_data->asic_resource_mutex); |
| return ret; |
| } |
| |
| /* |
| * Acquire access to a chip resource, wait up to mswait milliseconds for |
| * the resource to become available. |
| * |
| * Return 0 on success, -EBUSY if busy (even after wait), -EIO if mutex |
| * acquire failed. |
| */ |
| int acquire_chip_resource(struct hfi1_devdata *dd, u32 resource, u32 mswait) |
| { |
| unsigned long timeout; |
| int ret; |
| |
| timeout = jiffies + msecs_to_jiffies(mswait); |
| while (1) { |
| ret = __acquire_chip_resource(dd, resource); |
| if (ret != -EBUSY) |
| return ret; |
| /* resource is busy, check our timeout */ |
| if (time_after_eq(jiffies, timeout)) |
| return -EBUSY; |
| usleep_range(80, 120); /* arbitrary delay */ |
| } |
| } |
| |
| /* |
| * Release access to a chip resource |
| */ |
| void release_chip_resource(struct hfi1_devdata *dd, u32 resource) |
| { |
| u64 scratch0, bit; |
| |
| /* only dynamic resources should ever be cleared */ |
| if (!(resource & CR_DYN_MASK)) { |
| dd_dev_err(dd, "%s: invalid resource 0x%x\n", __func__, |
| resource); |
| return; |
| } |
| bit = resource_mask(dd->hfi1_id, resource); |
| |
| /* lock against other callers within the driver wanting a resource */ |
| mutex_lock(&dd->asic_data->asic_resource_mutex); |
| |
| if (acquire_hw_mutex(dd)) { |
| fail_mutex_acquire_message(dd, __func__); |
| goto done; |
| } |
| |
| scratch0 = read_csr(dd, ASIC_CFG_SCRATCH); |
| if ((scratch0 & bit) != 0) { |
| scratch0 &= ~bit; |
| write_csr(dd, ASIC_CFG_SCRATCH, scratch0); |
| /* force write to be visible to other HFI on another OS */ |
| (void)read_csr(dd, ASIC_CFG_SCRATCH); |
| } else { |
| dd_dev_warn(dd, "%s: id %d, resource 0x%x: bit not set\n", |
| __func__, dd->hfi1_id, resource); |
| } |
| |
| release_hw_mutex(dd); |
| |
| done: |
| mutex_unlock(&dd->asic_data->asic_resource_mutex); |
| } |
| |
| /* |
| * Return true if resource is set, false otherwise. Print a warning |
| * if not set and a function is supplied. |
| */ |
| bool check_chip_resource(struct hfi1_devdata *dd, u32 resource, |
| const char *func) |
| { |
| u64 scratch0, bit; |
| |
| if (resource & CR_DYN_MASK) |
| bit = resource_mask(dd->hfi1_id, resource); |
| else |
| bit = resource; |
| |
| scratch0 = read_csr(dd, ASIC_CFG_SCRATCH); |
| if ((scratch0 & bit) == 0) { |
| if (func) |
| dd_dev_warn(dd, |
| "%s: id %d, resource 0x%x, not acquired!\n", |
| func, dd->hfi1_id, resource); |
| return false; |
| } |
| return true; |
| } |
| |
| static void clear_chip_resources(struct hfi1_devdata *dd, const char *func) |
| { |
| u64 scratch0; |
| |
| /* lock against other callers within the driver wanting a resource */ |
| mutex_lock(&dd->asic_data->asic_resource_mutex); |
| |
| if (acquire_hw_mutex(dd)) { |
| fail_mutex_acquire_message(dd, func); |
| goto done; |
| } |
| |
| /* clear all dynamic access bits for this HFI */ |
| scratch0 = read_csr(dd, ASIC_CFG_SCRATCH); |
| scratch0 &= ~resource_mask(dd->hfi1_id, CR_DYN_MASK); |
| write_csr(dd, ASIC_CFG_SCRATCH, scratch0); |
| /* force write to be visible to other HFI on another OS */ |
| (void)read_csr(dd, ASIC_CFG_SCRATCH); |
| |
| release_hw_mutex(dd); |
| |
| done: |
| mutex_unlock(&dd->asic_data->asic_resource_mutex); |
| } |
| |
| void init_chip_resources(struct hfi1_devdata *dd) |
| { |
| /* clear any holds left by us */ |
| clear_chip_resources(dd, __func__); |
| } |
| |
| void finish_chip_resources(struct hfi1_devdata *dd) |
| { |
| /* clear any holds left by us */ |
| clear_chip_resources(dd, __func__); |
| } |
| |
| void set_sbus_fast_mode(struct hfi1_devdata *dd) |
| { |
| write_csr(dd, ASIC_CFG_SBUS_EXECUTE, |
| ASIC_CFG_SBUS_EXECUTE_FAST_MODE_SMASK); |
| } |
| |
| void clear_sbus_fast_mode(struct hfi1_devdata *dd) |
| { |
| u64 reg, count = 0; |
| |
| reg = read_csr(dd, ASIC_STS_SBUS_COUNTERS); |
| while (SBUS_COUNTER(reg, EXECUTE) != |
| SBUS_COUNTER(reg, RCV_DATA_VALID)) { |
| if (count++ >= SBUS_MAX_POLL_COUNT) |
| break; |
| udelay(1); |
| reg = read_csr(dd, ASIC_STS_SBUS_COUNTERS); |
| } |
| write_csr(dd, ASIC_CFG_SBUS_EXECUTE, 0); |
| } |
| |
| int load_firmware(struct hfi1_devdata *dd) |
| { |
| int ret; |
| |
| if (fw_fabric_serdes_load) { |
| ret = acquire_chip_resource(dd, CR_SBUS, SBUS_TIMEOUT); |
| if (ret) |
| return ret; |
| |
| set_sbus_fast_mode(dd); |
| |
| set_serdes_broadcast(dd, all_fabric_serdes_broadcast, |
| fabric_serdes_broadcast[dd->hfi1_id], |
| fabric_serdes_addrs[dd->hfi1_id], |
| NUM_FABRIC_SERDES); |
| turn_off_spicos(dd, SPICO_FABRIC); |
| do { |
| ret = load_fabric_serdes_firmware(dd, &fw_fabric); |
| } while (retry_firmware(dd, ret)); |
| |
| clear_sbus_fast_mode(dd); |
| release_chip_resource(dd, CR_SBUS); |
| if (ret) |
| return ret; |
| } |
| |
| if (fw_8051_load) { |
| do { |
| ret = load_8051_firmware(dd, &fw_8051); |
| } while (retry_firmware(dd, ret)); |
| if (ret) |
| return ret; |
| } |
| |
| dump_fw_version(dd); |
| return 0; |
| } |
| |
| int hfi1_firmware_init(struct hfi1_devdata *dd) |
| { |
| /* only RTL can use these */ |
| if (dd->icode != ICODE_RTL_SILICON) { |
| fw_fabric_serdes_load = 0; |
| fw_pcie_serdes_load = 0; |
| fw_sbus_load = 0; |
| } |
| |
| /* no 8051 or QSFP on simulator */ |
| if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR) { |
| fw_8051_load = 0; |
| platform_config_load = 0; |
| } |
| |
| if (!fw_8051_name) { |
| if (dd->icode == ICODE_RTL_SILICON) |
| fw_8051_name = DEFAULT_FW_8051_NAME_ASIC; |
| else |
| fw_8051_name = DEFAULT_FW_8051_NAME_FPGA; |
| } |
| if (!fw_fabric_serdes_name) |
| fw_fabric_serdes_name = DEFAULT_FW_FABRIC_NAME; |
| if (!fw_sbus_name) |
| fw_sbus_name = DEFAULT_FW_SBUS_NAME; |
| if (!fw_pcie_serdes_name) |
| fw_pcie_serdes_name = DEFAULT_FW_PCIE_NAME; |
| if (!platform_config_name) |
| platform_config_name = DEFAULT_PLATFORM_CONFIG_NAME; |
| |
| return obtain_firmware(dd); |
| } |
| |
| /* |
| * This function is a helper function for parse_platform_config(...) and |
| * does not check for validity of the platform configuration cache |
| * (because we know it is invalid as we are building up the cache). |
| * As such, this should not be called from anywhere other than |
| * parse_platform_config |
| */ |
| static int check_meta_version(struct hfi1_devdata *dd, u32 *system_table) |
| { |
| u32 meta_ver, meta_ver_meta, ver_start, ver_len, mask; |
| struct platform_config_cache *pcfgcache = &dd->pcfg_cache; |
| |
| if (!system_table) |
| return -EINVAL; |
| |
| meta_ver_meta = |
| *(pcfgcache->config_tables[PLATFORM_CONFIG_SYSTEM_TABLE].table_metadata |
| + SYSTEM_TABLE_META_VERSION); |
| |
| mask = ((1 << METADATA_TABLE_FIELD_START_LEN_BITS) - 1); |
| ver_start = meta_ver_meta & mask; |
| |
| meta_ver_meta >>= METADATA_TABLE_FIELD_LEN_SHIFT; |
| |
| mask = ((1 << METADATA_TABLE_FIELD_LEN_LEN_BITS) - 1); |
| ver_len = meta_ver_meta & mask; |
| |
| ver_start /= 8; |
| meta_ver = *((u8 *)system_table + ver_start) & ((1 << ver_len) - 1); |
| |
| if (meta_ver < 5) { |
| dd_dev_info( |
| dd, "%s:Please update platform config\n", __func__); |
| return -EINVAL; |
| } |
| return 0; |
| } |
| |
| int parse_platform_config(struct hfi1_devdata *dd) |
| { |
| struct platform_config_cache *pcfgcache = &dd->pcfg_cache; |
| u32 *ptr = NULL; |
| u32 header1 = 0, header2 = 0, magic_num = 0, crc = 0, file_length = 0; |
| u32 record_idx = 0, table_type = 0, table_length_dwords = 0; |
| int ret = -EINVAL; /* assume failure */ |
| |
| if (!dd->platform_config.data) { |
| dd_dev_info(dd, "%s: Missing config file\n", __func__); |
| goto bail; |
| } |
| ptr = (u32 *)dd->platform_config.data; |
| |
| magic_num = *ptr; |
| ptr++; |
| if (magic_num != PLATFORM_CONFIG_MAGIC_NUM) { |
| dd_dev_info(dd, "%s: Bad config file\n", __func__); |
| goto bail; |
| } |
| |
| /* Field is file size in DWORDs */ |
| file_length = (*ptr) * 4; |
| ptr++; |
| |
| if (file_length > dd->platform_config.size) { |
| dd_dev_info(dd, "%s:File claims to be larger than read size\n", |
| __func__); |
| goto bail; |
| } else if (file_length < dd->platform_config.size) { |
| dd_dev_info(dd, |
| "%s:File claims to be smaller than read size, continuing\n", |
| __func__); |
| } |
| /* exactly equal, perfection */ |
| |
| /* |
| * In both cases where we proceed, using the self-reported file length |
| * is the safer option |
| */ |
| while (ptr < (u32 *)(dd->platform_config.data + file_length)) { |
| header1 = *ptr; |
| header2 = *(ptr + 1); |
| if (header1 != ~header2) { |
| dd_dev_info(dd, "%s: Failed validation at offset %ld\n", |
| __func__, (ptr - (u32 *) |
| dd->platform_config.data)); |
| goto bail; |
| } |
| |
| record_idx = *ptr & |
| ((1 << PLATFORM_CONFIG_HEADER_RECORD_IDX_LEN_BITS) - 1); |
| |
| table_length_dwords = (*ptr >> |
| PLATFORM_CONFIG_HEADER_TABLE_LENGTH_SHIFT) & |
| ((1 << PLATFORM_CONFIG_HEADER_TABLE_LENGTH_LEN_BITS) - 1); |
| |
| table_type = (*ptr >> PLATFORM_CONFIG_HEADER_TABLE_TYPE_SHIFT) & |
| ((1 << PLATFORM_CONFIG_HEADER_TABLE_TYPE_LEN_BITS) - 1); |
| |
| /* Done with this set of headers */ |
| ptr += 2; |
| |
| if (record_idx) { |
| /* data table */ |
| switch (table_type) { |
| case PLATFORM_CONFIG_SYSTEM_TABLE: |
| pcfgcache->config_tables[table_type].num_table = |
| 1; |
| ret = check_meta_version(dd, ptr); |
| if (ret) |
| goto bail; |
| break; |
| case PLATFORM_CONFIG_PORT_TABLE: |
| pcfgcache->config_tables[table_type].num_table = |
| 2; |
| break; |
| case PLATFORM_CONFIG_RX_PRESET_TABLE: |
| /* fall through */ |
| case PLATFORM_CONFIG_TX_PRESET_TABLE: |
| /* fall through */ |
| case PLATFORM_CONFIG_QSFP_ATTEN_TABLE: |
| /* fall through */ |
| case PLATFORM_CONFIG_VARIABLE_SETTINGS_TABLE: |
| pcfgcache->config_tables[table_type].num_table = |
| table_length_dwords; |
| break; |
| default: |
| dd_dev_info(dd, |
| "%s: Unknown data table %d, offset %ld\n", |
| __func__, table_type, |
| (ptr - (u32 *) |
| dd->platform_config.data)); |
| goto bail; /* We don't trust this file now */ |
| } |
| pcfgcache->config_tables[table_type].table = ptr; |
| } else { |
| /* metadata table */ |
| switch (table_type) { |
| case PLATFORM_CONFIG_SYSTEM_TABLE: |
| /* fall through */ |
| case PLATFORM_CONFIG_PORT_TABLE: |
| /* fall through */ |
| case PLATFORM_CONFIG_RX_PRESET_TABLE: |
| /* fall through */ |
| case PLATFORM_CONFIG_TX_PRESET_TABLE: |
| /* fall through */ |
| case PLATFORM_CONFIG_QSFP_ATTEN_TABLE: |
| /* fall through */ |
| case PLATFORM_CONFIG_VARIABLE_SETTINGS_TABLE: |
| break; |
| default: |
| dd_dev_info(dd, |
| "%s: Unknown meta table %d, offset %ld\n", |
| __func__, table_type, |
| (ptr - |
| (u32 *)dd->platform_config.data)); |
| goto bail; /* We don't trust this file now */ |
| } |
| pcfgcache->config_tables[table_type].table_metadata = |
| ptr; |
| } |
| |
| /* Calculate and check table crc */ |
| crc = crc32_le(~(u32)0, (unsigned char const *)ptr, |
| (table_length_dwords * 4)); |
| crc ^= ~(u32)0; |
| |
| /* Jump the table */ |
| ptr += table_length_dwords; |
| if (crc != *ptr) { |
| dd_dev_info(dd, "%s: Failed CRC check at offset %ld\n", |
| __func__, (ptr - |
| (u32 *) |
| dd->platform_config.data)); |
| goto bail; |
| } |
| /* Jump the CRC DWORD */ |
| ptr++; |
| } |
| |
| pcfgcache->cache_valid = 1; |
| return 0; |
| bail: |
| memset(pcfgcache, 0, sizeof(struct platform_config_cache)); |
| return ret; |
| } |
| |
| static int get_platform_fw_field_metadata(struct hfi1_devdata *dd, int table, |
| int field, u32 *field_len_bits, |
| u32 *field_start_bits) |
| { |
| struct platform_config_cache *pcfgcache = &dd->pcfg_cache; |
| u32 *src_ptr = NULL; |
| |
| if (!pcfgcache->cache_valid) |
| return -EINVAL; |
| |
| switch (table) { |
| case PLATFORM_CONFIG_SYSTEM_TABLE: |
| /* fall through */ |
| case PLATFORM_CONFIG_PORT_TABLE: |
| /* fall through */ |
| case PLATFORM_CONFIG_RX_PRESET_TABLE: |
| /* fall through */ |
| case PLATFORM_CONFIG_TX_PRESET_TABLE: |
| /* fall through */ |
| case PLATFORM_CONFIG_QSFP_ATTEN_TABLE: |
| /* fall through */ |
| case PLATFORM_CONFIG_VARIABLE_SETTINGS_TABLE: |
| if (field && field < platform_config_table_limits[table]) |
| src_ptr = |
| pcfgcache->config_tables[table].table_metadata + field; |
| break; |
| default: |
| dd_dev_info(dd, "%s: Unknown table\n", __func__); |
| break; |
| } |
| |
| if (!src_ptr) |
| return -EINVAL; |
| |
| if (field_start_bits) |
| *field_start_bits = *src_ptr & |
| ((1 << METADATA_TABLE_FIELD_START_LEN_BITS) - 1); |
| |
| if (field_len_bits) |
| *field_len_bits = (*src_ptr >> METADATA_TABLE_FIELD_LEN_SHIFT) |
| & ((1 << METADATA_TABLE_FIELD_LEN_LEN_BITS) - 1); |
| |
| return 0; |
| } |
| |
| /* This is the central interface to getting data out of the platform config |
| * file. It depends on parse_platform_config() having populated the |
| * platform_config_cache in hfi1_devdata, and checks the cache_valid member to |
| * validate the sanity of the cache. |
| * |
| * The non-obvious parameters: |
| * @table_index: Acts as a look up key into which instance of the tables the |
| * relevant field is fetched from. |
| * |
| * This applies to the data tables that have multiple instances. The port table |
| * is an exception to this rule as each HFI only has one port and thus the |
| * relevant table can be distinguished by hfi_id. |
| * |
| * @data: pointer to memory that will be populated with the field requested. |
| * @len: length of memory pointed by @data in bytes. |
| */ |
| int get_platform_config_field(struct hfi1_devdata *dd, |
| enum platform_config_table_type_encoding |
| table_type, int table_index, int field_index, |
| u32 *data, u32 len) |
| { |
| int ret = 0, wlen = 0, seek = 0; |
| u32 field_len_bits = 0, field_start_bits = 0, *src_ptr = NULL; |
| struct platform_config_cache *pcfgcache = &dd->pcfg_cache; |
| |
| if (data) |
| memset(data, 0, len); |
| else |
| return -EINVAL; |
| |
| ret = get_platform_fw_field_metadata(dd, table_type, field_index, |
| &field_len_bits, |
| &field_start_bits); |
| if (ret) |
| return -EINVAL; |
| |
| /* Convert length to bits */ |
| len *= 8; |
| |
| /* Our metadata function checked cache_valid and field_index for us */ |
| switch (table_type) { |
| case PLATFORM_CONFIG_SYSTEM_TABLE: |
| src_ptr = pcfgcache->config_tables[table_type].table; |
| |
| if (field_index != SYSTEM_TABLE_QSFP_POWER_CLASS_MAX) { |
| if (len < field_len_bits) |
| return -EINVAL; |
| |
| seek = field_start_bits / 8; |
| wlen = field_len_bits / 8; |
| |
| src_ptr = (u32 *)((u8 *)src_ptr + seek); |
| |
| /* |
| * We expect the field to be byte aligned and whole byte |
| * lengths if we are here |
| */ |
| memcpy(data, src_ptr, wlen); |
| return 0; |
| } |
| break; |
| case PLATFORM_CONFIG_PORT_TABLE: |
| /* Port table is 4 DWORDS */ |
| src_ptr = dd->hfi1_id ? |
| pcfgcache->config_tables[table_type].table + 4 : |
| pcfgcache->config_tables[table_type].table; |
| break; |
| case PLATFORM_CONFIG_RX_PRESET_TABLE: |
| /* fall through */ |
| case PLATFORM_CONFIG_TX_PRESET_TABLE: |
| /* fall through */ |
| case PLATFORM_CONFIG_QSFP_ATTEN_TABLE: |
| /* fall through */ |
| case PLATFORM_CONFIG_VARIABLE_SETTINGS_TABLE: |
| src_ptr = pcfgcache->config_tables[table_type].table; |
| |
| if (table_index < |
| pcfgcache->config_tables[table_type].num_table) |
| src_ptr += table_index; |
| else |
| src_ptr = NULL; |
| break; |
| default: |
| dd_dev_info(dd, "%s: Unknown table\n", __func__); |
| break; |
| } |
| |
| if (!src_ptr || len < field_len_bits) |
| return -EINVAL; |
| |
| src_ptr += (field_start_bits / 32); |
| *data = (*src_ptr >> (field_start_bits % 32)) & |
| ((1 << field_len_bits) - 1); |
| |
| return 0; |
| } |
| |
| /* |
| * Download the firmware needed for the Gen3 PCIe SerDes. An update |
| * to the SBus firmware is needed before updating the PCIe firmware. |
| * |
| * Note: caller must be holding the SBus resource. |
| */ |
| int load_pcie_firmware(struct hfi1_devdata *dd) |
| { |
| int ret = 0; |
| |
| /* both firmware loads below use the SBus */ |
| set_sbus_fast_mode(dd); |
| |
| if (fw_sbus_load) { |
| turn_off_spicos(dd, SPICO_SBUS); |
| do { |
| ret = load_sbus_firmware(dd, &fw_sbus); |
| } while (retry_firmware(dd, ret)); |
| if (ret) |
| goto done; |
| } |
| |
| if (fw_pcie_serdes_load) { |
| dd_dev_info(dd, "Setting PCIe SerDes broadcast\n"); |
| set_serdes_broadcast(dd, all_pcie_serdes_broadcast, |
| pcie_serdes_broadcast[dd->hfi1_id], |
| pcie_serdes_addrs[dd->hfi1_id], |
| NUM_PCIE_SERDES); |
| do { |
| ret = load_pcie_serdes_firmware(dd, &fw_pcie); |
| } while (retry_firmware(dd, ret)); |
| if (ret) |
| goto done; |
| } |
| |
| done: |
| clear_sbus_fast_mode(dd); |
| |
| return ret; |
| } |
| |
| /* |
| * Read the GUID from the hardware, store it in dd. |
| */ |
| void read_guid(struct hfi1_devdata *dd) |
| { |
| /* Take the DC out of reset to get a valid GUID value */ |
| write_csr(dd, CCE_DC_CTRL, 0); |
| (void)read_csr(dd, CCE_DC_CTRL); |
| |
| dd->base_guid = read_csr(dd, DC_DC8051_CFG_LOCAL_GUID); |
| dd_dev_info(dd, "GUID %llx", |
| (unsigned long long)dd->base_guid); |
| } |
| |
| /* read and display firmware version info */ |
| static void dump_fw_version(struct hfi1_devdata *dd) |
| { |
| u32 pcie_vers[NUM_PCIE_SERDES]; |
| u32 fabric_vers[NUM_FABRIC_SERDES]; |
| u32 sbus_vers; |
| int i; |
| int all_same; |
| int ret; |
| u8 rcv_addr; |
| |
| ret = acquire_chip_resource(dd, CR_SBUS, SBUS_TIMEOUT); |
| if (ret) { |
| dd_dev_err(dd, "Unable to acquire SBus to read firmware versions\n"); |
| return; |
| } |
| |
| /* set fast mode */ |
| set_sbus_fast_mode(dd); |
| |
| /* read version for SBus Master */ |
| sbus_request(dd, SBUS_MASTER_BROADCAST, 0x02, WRITE_SBUS_RECEIVER, 0); |
| sbus_request(dd, SBUS_MASTER_BROADCAST, 0x07, WRITE_SBUS_RECEIVER, 0x1); |
| /* wait for interrupt to be processed */ |
| usleep_range(10000, 11000); |
| sbus_vers = sbus_read(dd, SBUS_MASTER_BROADCAST, 0x08, 0x1); |
| dd_dev_info(dd, "SBus Master firmware version 0x%08x\n", sbus_vers); |
| |
| /* read version for PCIe SerDes */ |
| all_same = 1; |
| pcie_vers[0] = 0; |
| for (i = 0; i < NUM_PCIE_SERDES; i++) { |
| rcv_addr = pcie_serdes_addrs[dd->hfi1_id][i]; |
| sbus_request(dd, rcv_addr, 0x03, WRITE_SBUS_RECEIVER, 0); |
| /* wait for interrupt to be processed */ |
| usleep_range(10000, 11000); |
| pcie_vers[i] = sbus_read(dd, rcv_addr, 0x04, 0x0); |
| if (i > 0 && pcie_vers[0] != pcie_vers[i]) |
| all_same = 0; |
| } |
| |
| if (all_same) { |
| dd_dev_info(dd, "PCIe SerDes firmware version 0x%x\n", |
| pcie_vers[0]); |
| } else { |
| dd_dev_warn(dd, "PCIe SerDes do not have the same firmware version\n"); |
| for (i = 0; i < NUM_PCIE_SERDES; i++) { |
| dd_dev_info(dd, |
| "PCIe SerDes lane %d firmware version 0x%x\n", |
| i, pcie_vers[i]); |
| } |
| } |
| |
| /* read version for fabric SerDes */ |
| all_same = 1; |
| fabric_vers[0] = 0; |
| for (i = 0; i < NUM_FABRIC_SERDES; i++) { |
| rcv_addr = fabric_serdes_addrs[dd->hfi1_id][i]; |
| sbus_request(dd, rcv_addr, 0x03, WRITE_SBUS_RECEIVER, 0); |
| /* wait for interrupt to be processed */ |
| usleep_range(10000, 11000); |
| fabric_vers[i] = sbus_read(dd, rcv_addr, 0x04, 0x0); |
| if (i > 0 && fabric_vers[0] != fabric_vers[i]) |
| all_same = 0; |
| } |
| |
| if (all_same) { |
| dd_dev_info(dd, "Fabric SerDes firmware version 0x%x\n", |
| fabric_vers[0]); |
| } else { |
| dd_dev_warn(dd, "Fabric SerDes do not have the same firmware version\n"); |
| for (i = 0; i < NUM_FABRIC_SERDES; i++) { |
| dd_dev_info(dd, |
| "Fabric SerDes lane %d firmware version 0x%x\n", |
| i, fabric_vers[i]); |
| } |
| } |
| |
| clear_sbus_fast_mode(dd); |
| release_chip_resource(dd, CR_SBUS); |
| } |