| /* |
| * Lockless get_user_pages_fast for powerpc |
| * |
| * Copyright (C) 2008 Nick Piggin |
| * Copyright (C) 2008 Novell Inc. |
| */ |
| #undef DEBUG |
| |
| #include <linux/sched.h> |
| #include <linux/mm.h> |
| #include <linux/hugetlb.h> |
| #include <linux/vmstat.h> |
| #include <linux/pagemap.h> |
| #include <linux/rwsem.h> |
| #include <asm/pgtable.h> |
| |
| #ifdef __HAVE_ARCH_PTE_SPECIAL |
| |
| /* |
| * The performance critical leaf functions are made noinline otherwise gcc |
| * inlines everything into a single function which results in too much |
| * register pressure. |
| */ |
| static noinline int gup_pte_range(pmd_t pmd, unsigned long addr, |
| unsigned long end, int write, struct page **pages, int *nr) |
| { |
| unsigned long mask, result; |
| pte_t *ptep; |
| |
| result = _PAGE_PRESENT|_PAGE_USER; |
| if (write) |
| result |= _PAGE_RW; |
| mask = result | _PAGE_SPECIAL; |
| |
| ptep = pte_offset_kernel(&pmd, addr); |
| do { |
| pte_t pte = ACCESS_ONCE(*ptep); |
| struct page *page; |
| |
| if ((pte_val(pte) & mask) != result) |
| return 0; |
| VM_BUG_ON(!pfn_valid(pte_pfn(pte))); |
| page = pte_page(pte); |
| if (!page_cache_get_speculative(page)) |
| return 0; |
| if (unlikely(pte_val(pte) != pte_val(*ptep))) { |
| put_page(page); |
| return 0; |
| } |
| pages[*nr] = page; |
| (*nr)++; |
| |
| } while (ptep++, addr += PAGE_SIZE, addr != end); |
| |
| return 1; |
| } |
| |
| static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end, |
| int write, struct page **pages, int *nr) |
| { |
| unsigned long next; |
| pmd_t *pmdp; |
| |
| pmdp = pmd_offset(&pud, addr); |
| do { |
| pmd_t pmd = ACCESS_ONCE(*pmdp); |
| |
| next = pmd_addr_end(addr, end); |
| /* |
| * If we find a splitting transparent hugepage we |
| * return zero. That will result in taking the slow |
| * path which will call wait_split_huge_page() |
| * if the pmd is still in splitting state |
| */ |
| if (pmd_none(pmd) || pmd_trans_splitting(pmd)) |
| return 0; |
| if (pmd_huge(pmd) || pmd_large(pmd)) { |
| if (!gup_hugepte((pte_t *)pmdp, PMD_SIZE, addr, next, |
| write, pages, nr)) |
| return 0; |
| } else if (is_hugepd(pmdp)) { |
| if (!gup_hugepd((hugepd_t *)pmdp, PMD_SHIFT, |
| addr, next, write, pages, nr)) |
| return 0; |
| } else if (!gup_pte_range(pmd, addr, next, write, pages, nr)) |
| return 0; |
| } while (pmdp++, addr = next, addr != end); |
| |
| return 1; |
| } |
| |
| static int gup_pud_range(pgd_t pgd, unsigned long addr, unsigned long end, |
| int write, struct page **pages, int *nr) |
| { |
| unsigned long next; |
| pud_t *pudp; |
| |
| pudp = pud_offset(&pgd, addr); |
| do { |
| pud_t pud = ACCESS_ONCE(*pudp); |
| |
| next = pud_addr_end(addr, end); |
| if (pud_none(pud)) |
| return 0; |
| if (pud_huge(pud)) { |
| if (!gup_hugepte((pte_t *)pudp, PUD_SIZE, addr, next, |
| write, pages, nr)) |
| return 0; |
| } else if (is_hugepd(pudp)) { |
| if (!gup_hugepd((hugepd_t *)pudp, PUD_SHIFT, |
| addr, next, write, pages, nr)) |
| return 0; |
| } else if (!gup_pmd_range(pud, addr, next, write, pages, nr)) |
| return 0; |
| } while (pudp++, addr = next, addr != end); |
| |
| return 1; |
| } |
| |
| int __get_user_pages_fast(unsigned long start, int nr_pages, int write, |
| struct page **pages) |
| { |
| struct mm_struct *mm = current->mm; |
| unsigned long addr, len, end; |
| unsigned long next; |
| unsigned long flags; |
| pgd_t *pgdp; |
| int nr = 0; |
| |
| pr_devel("%s(%lx,%x,%s)\n", __func__, start, nr_pages, write ? "write" : "read"); |
| |
| start &= PAGE_MASK; |
| addr = start; |
| len = (unsigned long) nr_pages << PAGE_SHIFT; |
| end = start + len; |
| |
| if (unlikely(!access_ok(write ? VERIFY_WRITE : VERIFY_READ, |
| start, len))) |
| return 0; |
| |
| pr_devel(" aligned: %lx .. %lx\n", start, end); |
| |
| /* |
| * XXX: batch / limit 'nr', to avoid large irq off latency |
| * needs some instrumenting to determine the common sizes used by |
| * important workloads (eg. DB2), and whether limiting the batch size |
| * will decrease performance. |
| * |
| * It seems like we're in the clear for the moment. Direct-IO is |
| * the main guy that batches up lots of get_user_pages, and even |
| * they are limited to 64-at-a-time which is not so many. |
| */ |
| /* |
| * This doesn't prevent pagetable teardown, but does prevent |
| * the pagetables from being freed on powerpc. |
| * |
| * So long as we atomically load page table pointers versus teardown, |
| * we can follow the address down to the the page and take a ref on it. |
| */ |
| local_irq_save(flags); |
| |
| pgdp = pgd_offset(mm, addr); |
| do { |
| pgd_t pgd = ACCESS_ONCE(*pgdp); |
| |
| pr_devel(" %016lx: normal pgd %p\n", addr, |
| (void *)pgd_val(pgd)); |
| next = pgd_addr_end(addr, end); |
| if (pgd_none(pgd)) |
| break; |
| if (pgd_huge(pgd)) { |
| if (!gup_hugepte((pte_t *)pgdp, PGDIR_SIZE, addr, next, |
| write, pages, &nr)) |
| break; |
| } else if (is_hugepd(pgdp)) { |
| if (!gup_hugepd((hugepd_t *)pgdp, PGDIR_SHIFT, |
| addr, next, write, pages, &nr)) |
| break; |
| } else if (!gup_pud_range(pgd, addr, next, write, pages, &nr)) |
| break; |
| } while (pgdp++, addr = next, addr != end); |
| |
| local_irq_restore(flags); |
| |
| return nr; |
| } |
| |
| int get_user_pages_fast(unsigned long start, int nr_pages, int write, |
| struct page **pages) |
| { |
| struct mm_struct *mm = current->mm; |
| int nr, ret; |
| |
| start &= PAGE_MASK; |
| nr = __get_user_pages_fast(start, nr_pages, write, pages); |
| ret = nr; |
| |
| if (nr < nr_pages) { |
| pr_devel(" slow path ! nr = %d\n", nr); |
| |
| /* Try to get the remaining pages with get_user_pages */ |
| start += nr << PAGE_SHIFT; |
| pages += nr; |
| |
| down_read(&mm->mmap_sem); |
| ret = get_user_pages(current, mm, start, |
| nr_pages - nr, write, 0, pages, NULL); |
| up_read(&mm->mmap_sem); |
| |
| /* Have to be a bit careful with return values */ |
| if (nr > 0) { |
| if (ret < 0) |
| ret = nr; |
| else |
| ret += nr; |
| } |
| } |
| |
| return ret; |
| } |
| |
| #endif /* __HAVE_ARCH_PTE_SPECIAL */ |