| /* |
| * linux/arch/arm/mach-sa1100/cpu-sa1110.c |
| * |
| * Copyright (C) 2001 Russell King |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| * |
| * Note: there are two erratas that apply to the SA1110 here: |
| * 7 - SDRAM auto-power-up failure (rev A0) |
| * 13 - Corruption of internal register reads/writes following |
| * SDRAM reads (rev A0, B0, B1) |
| * |
| * We ignore rev. A0 and B0 devices; I don't think they're worth supporting. |
| * |
| * The SDRAM type can be passed on the command line as cpu_sa1110.sdram=type |
| */ |
| #include <linux/cpufreq.h> |
| #include <linux/delay.h> |
| #include <linux/init.h> |
| #include <linux/io.h> |
| #include <linux/kernel.h> |
| #include <linux/moduleparam.h> |
| #include <linux/types.h> |
| |
| #include <asm/cputype.h> |
| #include <asm/mach-types.h> |
| |
| #include <mach/hardware.h> |
| |
| #include "generic.h" |
| |
| #undef DEBUG |
| |
| struct sdram_params { |
| const char name[20]; |
| u_char rows; /* bits */ |
| u_char cas_latency; /* cycles */ |
| u_char tck; /* clock cycle time (ns) */ |
| u_char trcd; /* activate to r/w (ns) */ |
| u_char trp; /* precharge to activate (ns) */ |
| u_char twr; /* write recovery time (ns) */ |
| u_short refresh; /* refresh time for array (us) */ |
| }; |
| |
| struct sdram_info { |
| u_int mdcnfg; |
| u_int mdrefr; |
| u_int mdcas[3]; |
| }; |
| |
| static struct sdram_params sdram_tbl[] __initdata = { |
| { /* Toshiba TC59SM716 CL2 */ |
| .name = "TC59SM716-CL2", |
| .rows = 12, |
| .tck = 10, |
| .trcd = 20, |
| .trp = 20, |
| .twr = 10, |
| .refresh = 64000, |
| .cas_latency = 2, |
| }, { /* Toshiba TC59SM716 CL3 */ |
| .name = "TC59SM716-CL3", |
| .rows = 12, |
| .tck = 8, |
| .trcd = 20, |
| .trp = 20, |
| .twr = 8, |
| .refresh = 64000, |
| .cas_latency = 3, |
| }, { /* Samsung K4S641632D TC75 */ |
| .name = "K4S641632D", |
| .rows = 14, |
| .tck = 9, |
| .trcd = 27, |
| .trp = 20, |
| .twr = 9, |
| .refresh = 64000, |
| .cas_latency = 3, |
| }, { /* Samsung K4S281632B-1H */ |
| .name = "K4S281632B-1H", |
| .rows = 12, |
| .tck = 10, |
| .trp = 20, |
| .twr = 10, |
| .refresh = 64000, |
| .cas_latency = 3, |
| }, { /* Samsung KM416S4030CT */ |
| .name = "KM416S4030CT", |
| .rows = 13, |
| .tck = 8, |
| .trcd = 24, /* 3 CLKs */ |
| .trp = 24, /* 3 CLKs */ |
| .twr = 16, /* Trdl: 2 CLKs */ |
| .refresh = 64000, |
| .cas_latency = 3, |
| }, { /* Winbond W982516AH75L CL3 */ |
| .name = "W982516AH75L", |
| .rows = 16, |
| .tck = 8, |
| .trcd = 20, |
| .trp = 20, |
| .twr = 8, |
| .refresh = 64000, |
| .cas_latency = 3, |
| }, { /* Micron MT48LC8M16A2TG-75 */ |
| .name = "MT48LC8M16A2TG-75", |
| .rows = 12, |
| .tck = 8, |
| .trcd = 20, |
| .trp = 20, |
| .twr = 8, |
| .refresh = 64000, |
| .cas_latency = 3, |
| }, |
| }; |
| |
| static struct sdram_params sdram_params; |
| |
| /* |
| * Given a period in ns and frequency in khz, calculate the number of |
| * cycles of frequency in period. Note that we round up to the next |
| * cycle, even if we are only slightly over. |
| */ |
| static inline u_int ns_to_cycles(u_int ns, u_int khz) |
| { |
| return (ns * khz + 999999) / 1000000; |
| } |
| |
| /* |
| * Create the MDCAS register bit pattern. |
| */ |
| static inline void set_mdcas(u_int *mdcas, int delayed, u_int rcd) |
| { |
| u_int shift; |
| |
| rcd = 2 * rcd - 1; |
| shift = delayed + 1 + rcd; |
| |
| mdcas[0] = (1 << rcd) - 1; |
| mdcas[0] |= 0x55555555 << shift; |
| mdcas[1] = mdcas[2] = 0x55555555 << (shift & 1); |
| } |
| |
| static void |
| sdram_calculate_timing(struct sdram_info *sd, u_int cpu_khz, |
| struct sdram_params *sdram) |
| { |
| u_int mem_khz, sd_khz, trp, twr; |
| |
| mem_khz = cpu_khz / 2; |
| sd_khz = mem_khz; |
| |
| /* |
| * If SDCLK would invalidate the SDRAM timings, |
| * run SDCLK at half speed. |
| * |
| * CPU steppings prior to B2 must either run the memory at |
| * half speed or use delayed read latching (errata 13). |
| */ |
| if ((ns_to_cycles(sdram->tck, sd_khz) > 1) || |
| (CPU_REVISION < CPU_SA1110_B2 && sd_khz < 62000)) |
| sd_khz /= 2; |
| |
| sd->mdcnfg = MDCNFG & 0x007f007f; |
| |
| twr = ns_to_cycles(sdram->twr, mem_khz); |
| |
| /* trp should always be >1 */ |
| trp = ns_to_cycles(sdram->trp, mem_khz) - 1; |
| if (trp < 1) |
| trp = 1; |
| |
| sd->mdcnfg |= trp << 8; |
| sd->mdcnfg |= trp << 24; |
| sd->mdcnfg |= sdram->cas_latency << 12; |
| sd->mdcnfg |= sdram->cas_latency << 28; |
| sd->mdcnfg |= twr << 14; |
| sd->mdcnfg |= twr << 30; |
| |
| sd->mdrefr = MDREFR & 0xffbffff0; |
| sd->mdrefr |= 7; |
| |
| if (sd_khz != mem_khz) |
| sd->mdrefr |= MDREFR_K1DB2; |
| |
| /* initial number of '1's in MDCAS + 1 */ |
| set_mdcas(sd->mdcas, sd_khz >= 62000, |
| ns_to_cycles(sdram->trcd, mem_khz)); |
| |
| #ifdef DEBUG |
| printk(KERN_DEBUG "MDCNFG: %08x MDREFR: %08x MDCAS0: %08x MDCAS1: %08x MDCAS2: %08x\n", |
| sd->mdcnfg, sd->mdrefr, sd->mdcas[0], sd->mdcas[1], |
| sd->mdcas[2]); |
| #endif |
| } |
| |
| /* |
| * Set the SDRAM refresh rate. |
| */ |
| static inline void sdram_set_refresh(u_int dri) |
| { |
| MDREFR = (MDREFR & 0xffff000f) | (dri << 4); |
| (void) MDREFR; |
| } |
| |
| /* |
| * Update the refresh period. We do this such that we always refresh |
| * the SDRAMs within their permissible period. The refresh period is |
| * always a multiple of the memory clock (fixed at cpu_clock / 2). |
| * |
| * FIXME: we don't currently take account of burst accesses here, |
| * but neither do Intels DM nor Angel. |
| */ |
| static void |
| sdram_update_refresh(u_int cpu_khz, struct sdram_params *sdram) |
| { |
| u_int ns_row = (sdram->refresh * 1000) >> sdram->rows; |
| u_int dri = ns_to_cycles(ns_row, cpu_khz / 2) / 32; |
| |
| #ifdef DEBUG |
| mdelay(250); |
| printk(KERN_DEBUG "new dri value = %d\n", dri); |
| #endif |
| |
| sdram_set_refresh(dri); |
| } |
| |
| /* |
| * Ok, set the CPU frequency. |
| */ |
| static int sa1110_target(struct cpufreq_policy *policy, |
| unsigned int target_freq, |
| unsigned int relation) |
| { |
| struct sdram_params *sdram = &sdram_params; |
| struct cpufreq_freqs freqs; |
| struct sdram_info sd; |
| unsigned long flags; |
| unsigned int ppcr, unused; |
| |
| switch (relation) { |
| case CPUFREQ_RELATION_L: |
| ppcr = sa11x0_freq_to_ppcr(target_freq); |
| if (sa11x0_ppcr_to_freq(ppcr) > policy->max) |
| ppcr--; |
| break; |
| case CPUFREQ_RELATION_H: |
| ppcr = sa11x0_freq_to_ppcr(target_freq); |
| if (ppcr && (sa11x0_ppcr_to_freq(ppcr) > target_freq) && |
| (sa11x0_ppcr_to_freq(ppcr-1) >= policy->min)) |
| ppcr--; |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| freqs.old = sa11x0_getspeed(0); |
| freqs.new = sa11x0_ppcr_to_freq(ppcr); |
| freqs.cpu = 0; |
| |
| sdram_calculate_timing(&sd, freqs.new, sdram); |
| |
| #if 0 |
| /* |
| * These values are wrong according to the SA1110 documentation |
| * and errata, but they seem to work. Need to get a storage |
| * scope on to the SDRAM signals to work out why. |
| */ |
| if (policy->max < 147500) { |
| sd.mdrefr |= MDREFR_K1DB2; |
| sd.mdcas[0] = 0xaaaaaa7f; |
| } else { |
| sd.mdrefr &= ~MDREFR_K1DB2; |
| sd.mdcas[0] = 0xaaaaaa9f; |
| } |
| sd.mdcas[1] = 0xaaaaaaaa; |
| sd.mdcas[2] = 0xaaaaaaaa; |
| #endif |
| |
| cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE); |
| |
| /* |
| * The clock could be going away for some time. Set the SDRAMs |
| * to refresh rapidly (every 64 memory clock cycles). To get |
| * through the whole array, we need to wait 262144 mclk cycles. |
| * We wait 20ms to be safe. |
| */ |
| sdram_set_refresh(2); |
| if (!irqs_disabled()) |
| msleep(20); |
| else |
| mdelay(20); |
| |
| /* |
| * Reprogram the DRAM timings with interrupts disabled, and |
| * ensure that we are doing this within a complete cache line. |
| * This means that we won't access SDRAM for the duration of |
| * the programming. |
| */ |
| local_irq_save(flags); |
| asm("mcr p15, 0, %0, c7, c10, 4" : : "r" (0)); |
| udelay(10); |
| __asm__ __volatile__("\n\ |
| b 2f \n\ |
| .align 5 \n\ |
| 1: str %3, [%1, #0] @ MDCNFG \n\ |
| str %4, [%1, #28] @ MDREFR \n\ |
| str %5, [%1, #4] @ MDCAS0 \n\ |
| str %6, [%1, #8] @ MDCAS1 \n\ |
| str %7, [%1, #12] @ MDCAS2 \n\ |
| str %8, [%2, #0] @ PPCR \n\ |
| ldr %0, [%1, #0] \n\ |
| b 3f \n\ |
| 2: b 1b \n\ |
| 3: nop \n\ |
| nop" |
| : "=&r" (unused) |
| : "r" (&MDCNFG), "r" (&PPCR), "0" (sd.mdcnfg), |
| "r" (sd.mdrefr), "r" (sd.mdcas[0]), |
| "r" (sd.mdcas[1]), "r" (sd.mdcas[2]), "r" (ppcr)); |
| local_irq_restore(flags); |
| |
| /* |
| * Now, return the SDRAM refresh back to normal. |
| */ |
| sdram_update_refresh(freqs.new, sdram); |
| |
| cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE); |
| |
| return 0; |
| } |
| |
| static int __init sa1110_cpu_init(struct cpufreq_policy *policy) |
| { |
| if (policy->cpu != 0) |
| return -EINVAL; |
| policy->cur = policy->min = policy->max = sa11x0_getspeed(0); |
| policy->cpuinfo.min_freq = 59000; |
| policy->cpuinfo.max_freq = 287000; |
| policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL; |
| return 0; |
| } |
| |
| /* sa1110_driver needs __refdata because it must remain after init registers |
| * it with cpufreq_register_driver() */ |
| static struct cpufreq_driver sa1110_driver __refdata = { |
| .flags = CPUFREQ_STICKY, |
| .verify = sa11x0_verify_speed, |
| .target = sa1110_target, |
| .get = sa11x0_getspeed, |
| .init = sa1110_cpu_init, |
| .name = "sa1110", |
| }; |
| |
| static struct sdram_params *sa1110_find_sdram(const char *name) |
| { |
| struct sdram_params *sdram; |
| |
| for (sdram = sdram_tbl; sdram < sdram_tbl + ARRAY_SIZE(sdram_tbl); |
| sdram++) |
| if (strcmp(name, sdram->name) == 0) |
| return sdram; |
| |
| return NULL; |
| } |
| |
| static char sdram_name[16]; |
| |
| static int __init sa1110_clk_init(void) |
| { |
| struct sdram_params *sdram; |
| const char *name = sdram_name; |
| |
| if (!cpu_is_sa1110()) |
| return -ENODEV; |
| |
| if (!name[0]) { |
| if (machine_is_assabet()) |
| name = "TC59SM716-CL3"; |
| if (machine_is_pt_system3()) |
| name = "K4S641632D"; |
| if (machine_is_h3100()) |
| name = "KM416S4030CT"; |
| if (machine_is_jornada720()) |
| name = "K4S281632B-1H"; |
| if (machine_is_nanoengine()) |
| name = "MT48LC8M16A2TG-75"; |
| } |
| |
| sdram = sa1110_find_sdram(name); |
| if (sdram) { |
| printk(KERN_DEBUG "SDRAM: tck: %d trcd: %d trp: %d" |
| " twr: %d refresh: %d cas_latency: %d\n", |
| sdram->tck, sdram->trcd, sdram->trp, |
| sdram->twr, sdram->refresh, sdram->cas_latency); |
| |
| memcpy(&sdram_params, sdram, sizeof(sdram_params)); |
| |
| return cpufreq_register_driver(&sa1110_driver); |
| } |
| |
| return 0; |
| } |
| |
| module_param_string(sdram, sdram_name, sizeof(sdram_name), 0); |
| arch_initcall(sa1110_clk_init); |