| /* |
| * Copyright © 2014 Intel Corporation |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice (including the next |
| * paragraph) shall be included in all copies or substantial portions of the |
| * Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING |
| * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS |
| * IN THE SOFTWARE. |
| * |
| * Authors: |
| * Vinit Azad <vinit.azad@intel.com> |
| * Ben Widawsky <ben@bwidawsk.net> |
| * Dave Gordon <david.s.gordon@intel.com> |
| * Alex Dai <yu.dai@intel.com> |
| */ |
| #include <linux/firmware.h> |
| #include "i915_drv.h" |
| #include "intel_guc.h" |
| |
| /** |
| * DOC: GuC-specific firmware loader |
| * |
| * intel_guc: |
| * Top level structure of guc. It handles firmware loading and manages client |
| * pool and doorbells. intel_guc owns a i915_guc_client to replace the legacy |
| * ExecList submission. |
| * |
| * Firmware versioning: |
| * The firmware build process will generate a version header file with major and |
| * minor version defined. The versions are built into CSS header of firmware. |
| * i915 kernel driver set the minimal firmware version required per platform. |
| * The firmware installation package will install (symbolic link) proper version |
| * of firmware. |
| * |
| * GuC address space: |
| * GuC does not allow any gfx GGTT address that falls into range [0, WOPCM_TOP), |
| * which is reserved for Boot ROM, SRAM and WOPCM. Currently this top address is |
| * 512K. In order to exclude 0-512K address space from GGTT, all gfx objects |
| * used by GuC is pinned with PIN_OFFSET_BIAS along with size of WOPCM. |
| * |
| * Firmware log: |
| * Firmware log is enabled by setting i915.guc_log_level to non-negative level. |
| * Log data is printed out via reading debugfs i915_guc_log_dump. Reading from |
| * i915_guc_load_status will print out firmware loading status and scratch |
| * registers value. |
| * |
| */ |
| |
| #define SKL_FW_MAJOR 6 |
| #define SKL_FW_MINOR 1 |
| |
| #define BXT_FW_MAJOR 8 |
| #define BXT_FW_MINOR 7 |
| |
| #define KBL_FW_MAJOR 9 |
| #define KBL_FW_MINOR 14 |
| |
| #define GUC_FW_PATH(platform, major, minor) \ |
| "i915/" __stringify(platform) "_guc_ver" __stringify(major) "_" __stringify(minor) ".bin" |
| |
| #define I915_SKL_GUC_UCODE GUC_FW_PATH(skl, SKL_FW_MAJOR, SKL_FW_MINOR) |
| MODULE_FIRMWARE(I915_SKL_GUC_UCODE); |
| |
| #define I915_BXT_GUC_UCODE GUC_FW_PATH(bxt, BXT_FW_MAJOR, BXT_FW_MINOR) |
| MODULE_FIRMWARE(I915_BXT_GUC_UCODE); |
| |
| #define I915_KBL_GUC_UCODE GUC_FW_PATH(kbl, KBL_FW_MAJOR, KBL_FW_MINOR) |
| MODULE_FIRMWARE(I915_KBL_GUC_UCODE); |
| |
| /* User-friendly representation of an enum */ |
| const char *intel_guc_fw_status_repr(enum intel_guc_fw_status status) |
| { |
| switch (status) { |
| case GUC_FIRMWARE_FAIL: |
| return "FAIL"; |
| case GUC_FIRMWARE_NONE: |
| return "NONE"; |
| case GUC_FIRMWARE_PENDING: |
| return "PENDING"; |
| case GUC_FIRMWARE_SUCCESS: |
| return "SUCCESS"; |
| default: |
| return "UNKNOWN!"; |
| } |
| }; |
| |
| static void guc_interrupts_release(struct drm_i915_private *dev_priv) |
| { |
| struct intel_engine_cs *engine; |
| enum intel_engine_id id; |
| int irqs; |
| |
| /* tell all command streamers NOT to forward interrupts or vblank to GuC */ |
| irqs = _MASKED_FIELD(GFX_FORWARD_VBLANK_MASK, GFX_FORWARD_VBLANK_NEVER); |
| irqs |= _MASKED_BIT_DISABLE(GFX_INTERRUPT_STEERING); |
| for_each_engine(engine, dev_priv, id) |
| I915_WRITE(RING_MODE_GEN7(engine), irqs); |
| |
| /* route all GT interrupts to the host */ |
| I915_WRITE(GUC_BCS_RCS_IER, 0); |
| I915_WRITE(GUC_VCS2_VCS1_IER, 0); |
| I915_WRITE(GUC_WD_VECS_IER, 0); |
| } |
| |
| static void guc_interrupts_capture(struct drm_i915_private *dev_priv) |
| { |
| struct intel_engine_cs *engine; |
| enum intel_engine_id id; |
| int irqs; |
| u32 tmp; |
| |
| /* tell all command streamers to forward interrupts (but not vblank) to GuC */ |
| irqs = _MASKED_BIT_ENABLE(GFX_INTERRUPT_STEERING); |
| for_each_engine(engine, dev_priv, id) |
| I915_WRITE(RING_MODE_GEN7(engine), irqs); |
| |
| /* route USER_INTERRUPT to Host, all others are sent to GuC. */ |
| irqs = GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT | |
| GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT; |
| /* These three registers have the same bit definitions */ |
| I915_WRITE(GUC_BCS_RCS_IER, ~irqs); |
| I915_WRITE(GUC_VCS2_VCS1_IER, ~irqs); |
| I915_WRITE(GUC_WD_VECS_IER, ~irqs); |
| |
| /* |
| * The REDIRECT_TO_GUC bit of the PMINTRMSK register directs all |
| * (unmasked) PM interrupts to the GuC. All other bits of this |
| * register *disable* generation of a specific interrupt. |
| * |
| * 'pm_intr_keep' indicates bits that are NOT to be set when |
| * writing to the PM interrupt mask register, i.e. interrupts |
| * that must not be disabled. |
| * |
| * If the GuC is handling these interrupts, then we must not let |
| * the PM code disable ANY interrupt that the GuC is expecting. |
| * So for each ENABLED (0) bit in this register, we must SET the |
| * bit in pm_intr_keep so that it's left enabled for the GuC. |
| * |
| * OTOH the REDIRECT_TO_GUC bit is initially SET in pm_intr_keep |
| * (so interrupts go to the DISPLAY unit at first); but here we |
| * need to CLEAR that bit, which will result in the register bit |
| * being left SET! |
| */ |
| tmp = I915_READ(GEN6_PMINTRMSK); |
| if (tmp & GEN8_PMINTR_REDIRECT_TO_GUC) { |
| dev_priv->rps.pm_intr_keep |= ~tmp; |
| dev_priv->rps.pm_intr_keep &= ~GEN8_PMINTR_REDIRECT_TO_GUC; |
| } |
| } |
| |
| static u32 get_gttype(struct drm_i915_private *dev_priv) |
| { |
| /* XXX: GT type based on PCI device ID? field seems unused by fw */ |
| return 0; |
| } |
| |
| static u32 get_core_family(struct drm_i915_private *dev_priv) |
| { |
| u32 gen = INTEL_GEN(dev_priv); |
| |
| switch (gen) { |
| case 9: |
| return GFXCORE_FAMILY_GEN9; |
| |
| default: |
| WARN(1, "GEN%d does not support GuC operation!\n", gen); |
| return GFXCORE_FAMILY_UNKNOWN; |
| } |
| } |
| |
| /* |
| * Initialise the GuC parameter block before starting the firmware |
| * transfer. These parameters are read by the firmware on startup |
| * and cannot be changed thereafter. |
| */ |
| static void guc_params_init(struct drm_i915_private *dev_priv) |
| { |
| struct intel_guc *guc = &dev_priv->guc; |
| u32 params[GUC_CTL_MAX_DWORDS]; |
| int i; |
| |
| memset(¶ms, 0, sizeof(params)); |
| |
| params[GUC_CTL_DEVICE_INFO] |= |
| (get_gttype(dev_priv) << GUC_CTL_GTTYPE_SHIFT) | |
| (get_core_family(dev_priv) << GUC_CTL_COREFAMILY_SHIFT); |
| |
| /* |
| * GuC ARAT increment is 10 ns. GuC default scheduler quantum is one |
| * second. This ARAR is calculated by: |
| * Scheduler-Quantum-in-ns / ARAT-increment-in-ns = 1000000000 / 10 |
| */ |
| params[GUC_CTL_ARAT_HIGH] = 0; |
| params[GUC_CTL_ARAT_LOW] = 100000000; |
| |
| params[GUC_CTL_WA] |= GUC_CTL_WA_UK_BY_DRIVER; |
| |
| params[GUC_CTL_FEATURE] |= GUC_CTL_DISABLE_SCHEDULER | |
| GUC_CTL_VCS2_ENABLED; |
| |
| if (i915.guc_log_level >= 0) { |
| params[GUC_CTL_LOG_PARAMS] = guc->log_flags; |
| params[GUC_CTL_DEBUG] = |
| i915.guc_log_level << GUC_LOG_VERBOSITY_SHIFT; |
| } |
| |
| if (guc->ads_vma) { |
| u32 ads = i915_ggtt_offset(guc->ads_vma) >> PAGE_SHIFT; |
| params[GUC_CTL_DEBUG] |= ads << GUC_ADS_ADDR_SHIFT; |
| params[GUC_CTL_DEBUG] |= GUC_ADS_ENABLED; |
| } |
| |
| /* If GuC submission is enabled, set up additional parameters here */ |
| if (i915.enable_guc_submission) { |
| u32 pgs = i915_ggtt_offset(dev_priv->guc.ctx_pool_vma); |
| u32 ctx_in_16 = GUC_MAX_GPU_CONTEXTS / 16; |
| |
| pgs >>= PAGE_SHIFT; |
| params[GUC_CTL_CTXINFO] = (pgs << GUC_CTL_BASE_ADDR_SHIFT) | |
| (ctx_in_16 << GUC_CTL_CTXNUM_IN16_SHIFT); |
| |
| params[GUC_CTL_FEATURE] |= GUC_CTL_KERNEL_SUBMISSIONS; |
| |
| /* Unmask this bit to enable the GuC's internal scheduler */ |
| params[GUC_CTL_FEATURE] &= ~GUC_CTL_DISABLE_SCHEDULER; |
| } |
| |
| I915_WRITE(SOFT_SCRATCH(0), 0); |
| |
| for (i = 0; i < GUC_CTL_MAX_DWORDS; i++) |
| I915_WRITE(SOFT_SCRATCH(1 + i), params[i]); |
| } |
| |
| /* |
| * Read the GuC status register (GUC_STATUS) and store it in the |
| * specified location; then return a boolean indicating whether |
| * the value matches either of two values representing completion |
| * of the GuC boot process. |
| * |
| * This is used for polling the GuC status in a wait_for() |
| * loop below. |
| */ |
| static inline bool guc_ucode_response(struct drm_i915_private *dev_priv, |
| u32 *status) |
| { |
| u32 val = I915_READ(GUC_STATUS); |
| u32 uk_val = val & GS_UKERNEL_MASK; |
| *status = val; |
| return (uk_val == GS_UKERNEL_READY || |
| ((val & GS_MIA_CORE_STATE) && uk_val == GS_UKERNEL_LAPIC_DONE)); |
| } |
| |
| /* |
| * Transfer the firmware image to RAM for execution by the microcontroller. |
| * |
| * Architecturally, the DMA engine is bidirectional, and can potentially even |
| * transfer between GTT locations. This functionality is left out of the API |
| * for now as there is no need for it. |
| * |
| * Note that GuC needs the CSS header plus uKernel code to be copied by the |
| * DMA engine in one operation, whereas the RSA signature is loaded via MMIO. |
| */ |
| static int guc_ucode_xfer_dma(struct drm_i915_private *dev_priv, |
| struct i915_vma *vma) |
| { |
| struct intel_guc_fw *guc_fw = &dev_priv->guc.guc_fw; |
| unsigned long offset; |
| struct sg_table *sg = vma->pages; |
| u32 status, rsa[UOS_RSA_SCRATCH_MAX_COUNT]; |
| int i, ret = 0; |
| |
| /* where RSA signature starts */ |
| offset = guc_fw->rsa_offset; |
| |
| /* Copy RSA signature from the fw image to HW for verification */ |
| sg_pcopy_to_buffer(sg->sgl, sg->nents, rsa, sizeof(rsa), offset); |
| for (i = 0; i < UOS_RSA_SCRATCH_MAX_COUNT; i++) |
| I915_WRITE(UOS_RSA_SCRATCH(i), rsa[i]); |
| |
| /* The header plus uCode will be copied to WOPCM via DMA, excluding any |
| * other components */ |
| I915_WRITE(DMA_COPY_SIZE, guc_fw->header_size + guc_fw->ucode_size); |
| |
| /* Set the source address for the new blob */ |
| offset = i915_ggtt_offset(vma) + guc_fw->header_offset; |
| I915_WRITE(DMA_ADDR_0_LOW, lower_32_bits(offset)); |
| I915_WRITE(DMA_ADDR_0_HIGH, upper_32_bits(offset) & 0xFFFF); |
| |
| /* |
| * Set the DMA destination. Current uCode expects the code to be |
| * loaded at 8k; locations below this are used for the stack. |
| */ |
| I915_WRITE(DMA_ADDR_1_LOW, 0x2000); |
| I915_WRITE(DMA_ADDR_1_HIGH, DMA_ADDRESS_SPACE_WOPCM); |
| |
| /* Finally start the DMA */ |
| I915_WRITE(DMA_CTRL, _MASKED_BIT_ENABLE(UOS_MOVE | START_DMA)); |
| |
| /* |
| * Wait for the DMA to complete & the GuC to start up. |
| * NB: Docs recommend not using the interrupt for completion. |
| * Measurements indicate this should take no more than 20ms, so a |
| * timeout here indicates that the GuC has failed and is unusable. |
| * (Higher levels of the driver will attempt to fall back to |
| * execlist mode if this happens.) |
| */ |
| ret = wait_for(guc_ucode_response(dev_priv, &status), 100); |
| |
| DRM_DEBUG_DRIVER("DMA status 0x%x, GuC status 0x%x\n", |
| I915_READ(DMA_CTRL), status); |
| |
| if ((status & GS_BOOTROM_MASK) == GS_BOOTROM_RSA_FAILED) { |
| DRM_ERROR("GuC firmware signature verification failed\n"); |
| ret = -ENOEXEC; |
| } |
| |
| DRM_DEBUG_DRIVER("returning %d\n", ret); |
| |
| return ret; |
| } |
| |
| static u32 guc_wopcm_size(struct drm_i915_private *dev_priv) |
| { |
| u32 wopcm_size = GUC_WOPCM_TOP; |
| |
| /* On BXT, the top of WOPCM is reserved for RC6 context */ |
| if (IS_BROXTON(dev_priv)) |
| wopcm_size -= BXT_GUC_WOPCM_RC6_RESERVED; |
| |
| return wopcm_size; |
| } |
| |
| /* |
| * Load the GuC firmware blob into the MinuteIA. |
| */ |
| static int guc_ucode_xfer(struct drm_i915_private *dev_priv) |
| { |
| struct intel_guc_fw *guc_fw = &dev_priv->guc.guc_fw; |
| struct i915_vma *vma; |
| int ret; |
| |
| ret = i915_gem_object_set_to_gtt_domain(guc_fw->guc_fw_obj, false); |
| if (ret) { |
| DRM_DEBUG_DRIVER("set-domain failed %d\n", ret); |
| return ret; |
| } |
| |
| vma = i915_gem_object_ggtt_pin(guc_fw->guc_fw_obj, NULL, 0, 0, 0); |
| if (IS_ERR(vma)) { |
| DRM_DEBUG_DRIVER("pin failed %d\n", (int)PTR_ERR(vma)); |
| return PTR_ERR(vma); |
| } |
| |
| /* Invalidate GuC TLB to let GuC take the latest updates to GTT. */ |
| I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE); |
| |
| intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL); |
| |
| /* init WOPCM */ |
| I915_WRITE(GUC_WOPCM_SIZE, guc_wopcm_size(dev_priv)); |
| I915_WRITE(DMA_GUC_WOPCM_OFFSET, GUC_WOPCM_OFFSET_VALUE); |
| |
| /* Enable MIA caching. GuC clock gating is disabled. */ |
| I915_WRITE(GUC_SHIM_CONTROL, GUC_SHIM_CONTROL_VALUE); |
| |
| /* WaDisableMinuteIaClockGating:bxt */ |
| if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) { |
| I915_WRITE(GUC_SHIM_CONTROL, (I915_READ(GUC_SHIM_CONTROL) & |
| ~GUC_ENABLE_MIA_CLOCK_GATING)); |
| } |
| |
| /* WaC6DisallowByGfxPause:bxt */ |
| if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0)) |
| I915_WRITE(GEN6_GFXPAUSE, 0x30FFF); |
| |
| if (IS_BROXTON(dev_priv)) |
| I915_WRITE(GEN9LP_GT_PM_CONFIG, GT_DOORBELL_ENABLE); |
| else |
| I915_WRITE(GEN9_GT_PM_CONFIG, GT_DOORBELL_ENABLE); |
| |
| if (IS_GEN9(dev_priv)) { |
| /* DOP Clock Gating Enable for GuC clocks */ |
| I915_WRITE(GEN7_MISCCPCTL, (GEN8_DOP_CLOCK_GATE_GUC_ENABLE | |
| I915_READ(GEN7_MISCCPCTL))); |
| |
| /* allows for 5us (in 10ns units) before GT can go to RC6 */ |
| I915_WRITE(GUC_ARAT_C6DIS, 0x1FF); |
| } |
| |
| guc_params_init(dev_priv); |
| |
| ret = guc_ucode_xfer_dma(dev_priv, vma); |
| |
| intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL); |
| |
| /* |
| * We keep the object pages for reuse during resume. But we can unpin it |
| * now that DMA has completed, so it doesn't continue to take up space. |
| */ |
| i915_vma_unpin(vma); |
| |
| return ret; |
| } |
| |
| static int guc_hw_reset(struct drm_i915_private *dev_priv) |
| { |
| int ret; |
| u32 guc_status; |
| |
| ret = intel_guc_reset(dev_priv); |
| if (ret) { |
| DRM_ERROR("GuC reset failed, ret = %d\n", ret); |
| return ret; |
| } |
| |
| guc_status = I915_READ(GUC_STATUS); |
| WARN(!(guc_status & GS_MIA_IN_RESET), |
| "GuC status: 0x%x, MIA core expected to be in reset\n", guc_status); |
| |
| return ret; |
| } |
| |
| /** |
| * intel_guc_setup() - finish preparing the GuC for activity |
| * @dev: drm device |
| * |
| * Called from gem_init_hw() during driver loading and also after a GPU reset. |
| * |
| * The main action required here it to load the GuC uCode into the device. |
| * The firmware image should have already been fetched into memory by the |
| * earlier call to intel_guc_init(), so here we need only check that worked, |
| * and then transfer the image to the h/w. |
| * |
| * Return: non-zero code on error |
| */ |
| int intel_guc_setup(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| struct intel_guc_fw *guc_fw = &dev_priv->guc.guc_fw; |
| const char *fw_path = guc_fw->guc_fw_path; |
| int retries, ret, err; |
| |
| DRM_DEBUG_DRIVER("GuC fw status: path %s, fetch %s, load %s\n", |
| fw_path, |
| intel_guc_fw_status_repr(guc_fw->guc_fw_fetch_status), |
| intel_guc_fw_status_repr(guc_fw->guc_fw_load_status)); |
| |
| /* Loading forbidden, or no firmware to load? */ |
| if (!i915.enable_guc_loading) { |
| err = 0; |
| goto fail; |
| } else if (fw_path == NULL) { |
| /* Device is known to have no uCode (e.g. no GuC) */ |
| err = -ENXIO; |
| goto fail; |
| } else if (*fw_path == '\0') { |
| /* Device has a GuC but we don't know what f/w to load? */ |
| WARN(1, "No GuC firmware known for this platform!\n"); |
| err = -ENODEV; |
| goto fail; |
| } |
| |
| /* Fetch failed, or already fetched but failed to load? */ |
| if (guc_fw->guc_fw_fetch_status != GUC_FIRMWARE_SUCCESS) { |
| err = -EIO; |
| goto fail; |
| } else if (guc_fw->guc_fw_load_status == GUC_FIRMWARE_FAIL) { |
| err = -ENOEXEC; |
| goto fail; |
| } |
| |
| guc_interrupts_release(dev_priv); |
| |
| guc_fw->guc_fw_load_status = GUC_FIRMWARE_PENDING; |
| |
| DRM_DEBUG_DRIVER("GuC fw status: fetch %s, load %s\n", |
| intel_guc_fw_status_repr(guc_fw->guc_fw_fetch_status), |
| intel_guc_fw_status_repr(guc_fw->guc_fw_load_status)); |
| |
| err = i915_guc_submission_init(dev_priv); |
| if (err) |
| goto fail; |
| |
| /* |
| * WaEnableuKernelHeaderValidFix:skl,bxt |
| * For BXT, this is only upto B0 but below WA is required for later |
| * steppings also so this is extended as well. |
| */ |
| /* WaEnableGuCBootHashCheckNotSet:skl,bxt */ |
| for (retries = 3; ; ) { |
| /* |
| * Always reset the GuC just before (re)loading, so |
| * that the state and timing are fairly predictable |
| */ |
| err = guc_hw_reset(dev_priv); |
| if (err) |
| goto fail; |
| |
| err = guc_ucode_xfer(dev_priv); |
| if (!err) |
| break; |
| |
| if (--retries == 0) |
| goto fail; |
| |
| DRM_INFO("GuC fw load failed: %d; will reset and " |
| "retry %d more time(s)\n", err, retries); |
| } |
| |
| guc_fw->guc_fw_load_status = GUC_FIRMWARE_SUCCESS; |
| |
| DRM_DEBUG_DRIVER("GuC fw status: fetch %s, load %s\n", |
| intel_guc_fw_status_repr(guc_fw->guc_fw_fetch_status), |
| intel_guc_fw_status_repr(guc_fw->guc_fw_load_status)); |
| |
| if (i915.enable_guc_submission) { |
| err = i915_guc_submission_enable(dev_priv); |
| if (err) |
| goto fail; |
| guc_interrupts_capture(dev_priv); |
| } |
| |
| return 0; |
| |
| fail: |
| if (guc_fw->guc_fw_load_status == GUC_FIRMWARE_PENDING) |
| guc_fw->guc_fw_load_status = GUC_FIRMWARE_FAIL; |
| |
| guc_interrupts_release(dev_priv); |
| i915_guc_submission_disable(dev_priv); |
| i915_guc_submission_fini(dev_priv); |
| |
| /* |
| * We've failed to load the firmware :( |
| * |
| * Decide whether to disable GuC submission and fall back to |
| * execlist mode, and whether to hide the error by returning |
| * zero or to return -EIO, which the caller will treat as a |
| * nonfatal error (i.e. it doesn't prevent driver load, but |
| * marks the GPU as wedged until reset). |
| */ |
| if (i915.enable_guc_loading > 1) { |
| ret = -EIO; |
| } else if (i915.enable_guc_submission > 1) { |
| ret = -EIO; |
| } else { |
| ret = 0; |
| } |
| |
| if (err == 0 && !HAS_GUC_UCODE(dev)) |
| ; /* Don't mention the GuC! */ |
| else if (err == 0) |
| DRM_INFO("GuC firmware load skipped\n"); |
| else if (ret != -EIO) |
| DRM_NOTE("GuC firmware load failed: %d\n", err); |
| else |
| DRM_WARN("GuC firmware load failed: %d\n", err); |
| |
| if (i915.enable_guc_submission) { |
| if (fw_path == NULL) |
| DRM_INFO("GuC submission without firmware not supported\n"); |
| if (ret == 0) |
| DRM_NOTE("Falling back from GuC submission to execlist mode\n"); |
| else |
| DRM_ERROR("GuC init failed: %d\n", ret); |
| } |
| i915.enable_guc_submission = 0; |
| |
| return ret; |
| } |
| |
| static void guc_fw_fetch(struct drm_device *dev, struct intel_guc_fw *guc_fw) |
| { |
| struct pci_dev *pdev = dev->pdev; |
| struct drm_i915_gem_object *obj; |
| const struct firmware *fw; |
| struct guc_css_header *css; |
| size_t size; |
| int err; |
| |
| DRM_DEBUG_DRIVER("before requesting firmware: GuC fw fetch status %s\n", |
| intel_guc_fw_status_repr(guc_fw->guc_fw_fetch_status)); |
| |
| err = request_firmware(&fw, guc_fw->guc_fw_path, &pdev->dev); |
| if (err) |
| goto fail; |
| if (!fw) |
| goto fail; |
| |
| DRM_DEBUG_DRIVER("fetch GuC fw from %s succeeded, fw %p\n", |
| guc_fw->guc_fw_path, fw); |
| |
| /* Check the size of the blob before examining buffer contents */ |
| if (fw->size < sizeof(struct guc_css_header)) { |
| DRM_NOTE("Firmware header is missing\n"); |
| goto fail; |
| } |
| |
| css = (struct guc_css_header *)fw->data; |
| |
| /* Firmware bits always start from header */ |
| guc_fw->header_offset = 0; |
| guc_fw->header_size = (css->header_size_dw - css->modulus_size_dw - |
| css->key_size_dw - css->exponent_size_dw) * sizeof(u32); |
| |
| if (guc_fw->header_size != sizeof(struct guc_css_header)) { |
| DRM_NOTE("CSS header definition mismatch\n"); |
| goto fail; |
| } |
| |
| /* then, uCode */ |
| guc_fw->ucode_offset = guc_fw->header_offset + guc_fw->header_size; |
| guc_fw->ucode_size = (css->size_dw - css->header_size_dw) * sizeof(u32); |
| |
| /* now RSA */ |
| if (css->key_size_dw != UOS_RSA_SCRATCH_MAX_COUNT) { |
| DRM_NOTE("RSA key size is bad\n"); |
| goto fail; |
| } |
| guc_fw->rsa_offset = guc_fw->ucode_offset + guc_fw->ucode_size; |
| guc_fw->rsa_size = css->key_size_dw * sizeof(u32); |
| |
| /* At least, it should have header, uCode and RSA. Size of all three. */ |
| size = guc_fw->header_size + guc_fw->ucode_size + guc_fw->rsa_size; |
| if (fw->size < size) { |
| DRM_NOTE("Missing firmware components\n"); |
| goto fail; |
| } |
| |
| /* Header and uCode will be loaded to WOPCM. Size of the two. */ |
| size = guc_fw->header_size + guc_fw->ucode_size; |
| if (size > guc_wopcm_size(to_i915(dev))) { |
| DRM_NOTE("Firmware is too large to fit in WOPCM\n"); |
| goto fail; |
| } |
| |
| /* |
| * The GuC firmware image has the version number embedded at a well-known |
| * offset within the firmware blob; note that major / minor version are |
| * TWO bytes each (i.e. u16), although all pointers and offsets are defined |
| * in terms of bytes (u8). |
| */ |
| guc_fw->guc_fw_major_found = css->guc_sw_version >> 16; |
| guc_fw->guc_fw_minor_found = css->guc_sw_version & 0xFFFF; |
| |
| if (guc_fw->guc_fw_major_found != guc_fw->guc_fw_major_wanted || |
| guc_fw->guc_fw_minor_found < guc_fw->guc_fw_minor_wanted) { |
| DRM_NOTE("GuC firmware version %d.%d, required %d.%d\n", |
| guc_fw->guc_fw_major_found, guc_fw->guc_fw_minor_found, |
| guc_fw->guc_fw_major_wanted, guc_fw->guc_fw_minor_wanted); |
| err = -ENOEXEC; |
| goto fail; |
| } |
| |
| DRM_DEBUG_DRIVER("firmware version %d.%d OK (minimum %d.%d)\n", |
| guc_fw->guc_fw_major_found, guc_fw->guc_fw_minor_found, |
| guc_fw->guc_fw_major_wanted, guc_fw->guc_fw_minor_wanted); |
| |
| mutex_lock(&dev->struct_mutex); |
| obj = i915_gem_object_create_from_data(dev, fw->data, fw->size); |
| mutex_unlock(&dev->struct_mutex); |
| if (IS_ERR_OR_NULL(obj)) { |
| err = obj ? PTR_ERR(obj) : -ENOMEM; |
| goto fail; |
| } |
| |
| guc_fw->guc_fw_obj = obj; |
| guc_fw->guc_fw_size = fw->size; |
| |
| DRM_DEBUG_DRIVER("GuC fw fetch status SUCCESS, obj %p\n", |
| guc_fw->guc_fw_obj); |
| |
| release_firmware(fw); |
| guc_fw->guc_fw_fetch_status = GUC_FIRMWARE_SUCCESS; |
| return; |
| |
| fail: |
| DRM_WARN("Failed to fetch valid GuC firmware from %s (error %d)\n", |
| guc_fw->guc_fw_path, err); |
| DRM_DEBUG_DRIVER("GuC fw fetch status FAIL; err %d, fw %p, obj %p\n", |
| err, fw, guc_fw->guc_fw_obj); |
| |
| mutex_lock(&dev->struct_mutex); |
| obj = guc_fw->guc_fw_obj; |
| if (obj) |
| i915_gem_object_put(obj); |
| guc_fw->guc_fw_obj = NULL; |
| mutex_unlock(&dev->struct_mutex); |
| |
| release_firmware(fw); /* OK even if fw is NULL */ |
| guc_fw->guc_fw_fetch_status = GUC_FIRMWARE_FAIL; |
| } |
| |
| /** |
| * intel_guc_init() - define parameters and fetch firmware |
| * @dev: drm device |
| * |
| * Called early during driver load, but after GEM is initialised. |
| * |
| * The firmware will be transferred to the GuC's memory later, |
| * when intel_guc_setup() is called. |
| */ |
| void intel_guc_init(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| struct intel_guc_fw *guc_fw = &dev_priv->guc.guc_fw; |
| const char *fw_path; |
| |
| if (!HAS_GUC(dev)) { |
| i915.enable_guc_loading = 0; |
| i915.enable_guc_submission = 0; |
| } else { |
| /* A negative value means "use platform default" */ |
| if (i915.enable_guc_loading < 0) |
| i915.enable_guc_loading = HAS_GUC_UCODE(dev); |
| if (i915.enable_guc_submission < 0) |
| i915.enable_guc_submission = HAS_GUC_SCHED(dev); |
| } |
| |
| if (!HAS_GUC_UCODE(dev)) { |
| fw_path = NULL; |
| } else if (IS_SKYLAKE(dev_priv)) { |
| fw_path = I915_SKL_GUC_UCODE; |
| guc_fw->guc_fw_major_wanted = SKL_FW_MAJOR; |
| guc_fw->guc_fw_minor_wanted = SKL_FW_MINOR; |
| } else if (IS_BROXTON(dev_priv)) { |
| fw_path = I915_BXT_GUC_UCODE; |
| guc_fw->guc_fw_major_wanted = BXT_FW_MAJOR; |
| guc_fw->guc_fw_minor_wanted = BXT_FW_MINOR; |
| } else if (IS_KABYLAKE(dev_priv)) { |
| fw_path = I915_KBL_GUC_UCODE; |
| guc_fw->guc_fw_major_wanted = KBL_FW_MAJOR; |
| guc_fw->guc_fw_minor_wanted = KBL_FW_MINOR; |
| } else { |
| fw_path = ""; /* unknown device */ |
| } |
| |
| guc_fw->guc_dev = dev; |
| guc_fw->guc_fw_path = fw_path; |
| guc_fw->guc_fw_fetch_status = GUC_FIRMWARE_NONE; |
| guc_fw->guc_fw_load_status = GUC_FIRMWARE_NONE; |
| |
| /* Early (and silent) return if GuC loading is disabled */ |
| if (!i915.enable_guc_loading) |
| return; |
| if (fw_path == NULL) |
| return; |
| if (*fw_path == '\0') |
| return; |
| |
| guc_fw->guc_fw_fetch_status = GUC_FIRMWARE_PENDING; |
| DRM_DEBUG_DRIVER("GuC firmware pending, path %s\n", fw_path); |
| guc_fw_fetch(dev, guc_fw); |
| /* status must now be FAIL or SUCCESS */ |
| } |
| |
| /** |
| * intel_guc_fini() - clean up all allocated resources |
| * @dev: drm device |
| */ |
| void intel_guc_fini(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| struct intel_guc_fw *guc_fw = &dev_priv->guc.guc_fw; |
| |
| mutex_lock(&dev->struct_mutex); |
| guc_interrupts_release(dev_priv); |
| i915_guc_submission_disable(dev_priv); |
| i915_guc_submission_fini(dev_priv); |
| |
| if (guc_fw->guc_fw_obj) |
| i915_gem_object_put(guc_fw->guc_fw_obj); |
| guc_fw->guc_fw_obj = NULL; |
| mutex_unlock(&dev->struct_mutex); |
| |
| guc_fw->guc_fw_fetch_status = GUC_FIRMWARE_NONE; |
| } |