| /* |
| * Freescale SSI ALSA SoC Digital Audio Interface (DAI) driver |
| * |
| * Author: Timur Tabi <timur@freescale.com> |
| * |
| * Copyright 2007-2010 Freescale Semiconductor, Inc. |
| * |
| * This file is licensed under the terms of the GNU General Public License |
| * version 2. This program is licensed "as is" without any warranty of any |
| * kind, whether express or implied. |
| * |
| * |
| * Some notes why imx-pcm-fiq is used instead of DMA on some boards: |
| * |
| * The i.MX SSI core has some nasty limitations in AC97 mode. While most |
| * sane processor vendors have a FIFO per AC97 slot, the i.MX has only |
| * one FIFO which combines all valid receive slots. We cannot even select |
| * which slots we want to receive. The WM9712 with which this driver |
| * was developed with always sends GPIO status data in slot 12 which |
| * we receive in our (PCM-) data stream. The only chance we have is to |
| * manually skip this data in the FIQ handler. With sampling rates different |
| * from 48000Hz not every frame has valid receive data, so the ratio |
| * between pcm data and GPIO status data changes. Our FIQ handler is not |
| * able to handle this, hence this driver only works with 48000Hz sampling |
| * rate. |
| * Reading and writing AC97 registers is another challenge. The core |
| * provides us status bits when the read register is updated with *another* |
| * value. When we read the same register two times (and the register still |
| * contains the same value) these status bits are not set. We work |
| * around this by not polling these bits but only wait a fixed delay. |
| */ |
| |
| #include <linux/init.h> |
| #include <linux/io.h> |
| #include <linux/module.h> |
| #include <linux/interrupt.h> |
| #include <linux/clk.h> |
| #include <linux/device.h> |
| #include <linux/delay.h> |
| #include <linux/slab.h> |
| #include <linux/spinlock.h> |
| #include <linux/of_address.h> |
| #include <linux/of_irq.h> |
| #include <linux/of_platform.h> |
| |
| #include <sound/core.h> |
| #include <sound/pcm.h> |
| #include <sound/pcm_params.h> |
| #include <sound/initval.h> |
| #include <sound/soc.h> |
| #include <sound/dmaengine_pcm.h> |
| |
| #include "fsl_ssi.h" |
| #include "imx-pcm.h" |
| |
| #ifdef PPC |
| #define read_ssi(addr) in_be32(addr) |
| #define write_ssi(val, addr) out_be32(addr, val) |
| #define write_ssi_mask(addr, clear, set) clrsetbits_be32(addr, clear, set) |
| #else |
| #define read_ssi(addr) readl(addr) |
| #define write_ssi(val, addr) writel(val, addr) |
| /* |
| * FIXME: Proper locking should be added at write_ssi_mask caller level |
| * to ensure this register read/modify/write sequence is race free. |
| */ |
| static inline void write_ssi_mask(u32 __iomem *addr, u32 clear, u32 set) |
| { |
| u32 val = readl(addr); |
| val = (val & ~clear) | set; |
| writel(val, addr); |
| } |
| #endif |
| |
| /** |
| * FSLSSI_I2S_RATES: sample rates supported by the I2S |
| * |
| * This driver currently only supports the SSI running in I2S slave mode, |
| * which means the codec determines the sample rate. Therefore, we tell |
| * ALSA that we support all rates and let the codec driver decide what rates |
| * are really supported. |
| */ |
| #define FSLSSI_I2S_RATES SNDRV_PCM_RATE_CONTINUOUS |
| |
| /** |
| * FSLSSI_I2S_FORMATS: audio formats supported by the SSI |
| * |
| * This driver currently only supports the SSI running in I2S slave mode. |
| * |
| * The SSI has a limitation in that the samples must be in the same byte |
| * order as the host CPU. This is because when multiple bytes are written |
| * to the STX register, the bytes and bits must be written in the same |
| * order. The STX is a shift register, so all the bits need to be aligned |
| * (bit-endianness must match byte-endianness). Processors typically write |
| * the bits within a byte in the same order that the bytes of a word are |
| * written in. So if the host CPU is big-endian, then only big-endian |
| * samples will be written to STX properly. |
| */ |
| #ifdef __BIG_ENDIAN |
| #define FSLSSI_I2S_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_BE | \ |
| SNDRV_PCM_FMTBIT_S18_3BE | SNDRV_PCM_FMTBIT_S20_3BE | \ |
| SNDRV_PCM_FMTBIT_S24_3BE | SNDRV_PCM_FMTBIT_S24_BE) |
| #else |
| #define FSLSSI_I2S_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_LE | \ |
| SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S20_3LE | \ |
| SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S24_LE) |
| #endif |
| |
| #define FSLSSI_SIER_DBG_RX_FLAGS (CCSR_SSI_SIER_RFF0_EN | \ |
| CCSR_SSI_SIER_RLS_EN | CCSR_SSI_SIER_RFS_EN | \ |
| CCSR_SSI_SIER_ROE0_EN | CCSR_SSI_SIER_RFRC_EN) |
| #define FSLSSI_SIER_DBG_TX_FLAGS (CCSR_SSI_SIER_TFE0_EN | \ |
| CCSR_SSI_SIER_TLS_EN | CCSR_SSI_SIER_TFS_EN | \ |
| CCSR_SSI_SIER_TUE0_EN | CCSR_SSI_SIER_TFRC_EN) |
| |
| enum fsl_ssi_type { |
| FSL_SSI_MCP8610, |
| FSL_SSI_MX21, |
| FSL_SSI_MX35, |
| FSL_SSI_MX51, |
| }; |
| |
| struct fsl_ssi_reg_val { |
| u32 sier; |
| u32 srcr; |
| u32 stcr; |
| u32 scr; |
| }; |
| |
| struct fsl_ssi_rxtx_reg_val { |
| struct fsl_ssi_reg_val rx; |
| struct fsl_ssi_reg_val tx; |
| }; |
| |
| /** |
| * fsl_ssi_private: per-SSI private data |
| * |
| * @ssi: pointer to the SSI's registers |
| * @ssi_phys: physical address of the SSI registers |
| * @irq: IRQ of this SSI |
| * @playback: the number of playback streams opened |
| * @capture: the number of capture streams opened |
| * @cpu_dai: the CPU DAI for this device |
| * @dev_attr: the sysfs device attribute structure |
| * @stats: SSI statistics |
| * @name: name for this device |
| */ |
| struct fsl_ssi_private { |
| struct ccsr_ssi __iomem *ssi; |
| dma_addr_t ssi_phys; |
| unsigned int irq; |
| unsigned int fifo_depth; |
| struct snd_soc_dai_driver cpu_dai_drv; |
| struct platform_device *pdev; |
| |
| enum fsl_ssi_type hw_type; |
| bool new_binding; |
| bool ssi_on_imx; |
| bool imx_ac97; |
| bool use_dma; |
| bool baudclk_locked; |
| bool irq_stats; |
| bool offline_config; |
| bool use_dual_fifo; |
| u8 i2s_mode; |
| spinlock_t baudclk_lock; |
| struct clk *baudclk; |
| struct clk *clk; |
| struct snd_dmaengine_dai_dma_data dma_params_tx; |
| struct snd_dmaengine_dai_dma_data dma_params_rx; |
| struct imx_dma_data filter_data_tx; |
| struct imx_dma_data filter_data_rx; |
| struct imx_pcm_fiq_params fiq_params; |
| /* Register values for rx/tx configuration */ |
| struct fsl_ssi_rxtx_reg_val rxtx_reg_val; |
| |
| struct fsl_ssi_dbg dbg_stats; |
| |
| char name[1]; |
| }; |
| |
| static const struct of_device_id fsl_ssi_ids[] = { |
| { .compatible = "fsl,mpc8610-ssi", .data = (void *) FSL_SSI_MCP8610}, |
| { .compatible = "fsl,imx51-ssi", .data = (void *) FSL_SSI_MX51}, |
| { .compatible = "fsl,imx35-ssi", .data = (void *) FSL_SSI_MX35}, |
| { .compatible = "fsl,imx21-ssi", .data = (void *) FSL_SSI_MX21}, |
| {} |
| }; |
| MODULE_DEVICE_TABLE(of, fsl_ssi_ids); |
| |
| /** |
| * fsl_ssi_isr: SSI interrupt handler |
| * |
| * Although it's possible to use the interrupt handler to send and receive |
| * data to/from the SSI, we use the DMA instead. Programming is more |
| * complicated, but the performance is much better. |
| * |
| * This interrupt handler is used only to gather statistics. |
| * |
| * @irq: IRQ of the SSI device |
| * @dev_id: pointer to the ssi_private structure for this SSI device |
| */ |
| static irqreturn_t fsl_ssi_isr(int irq, void *dev_id) |
| { |
| struct fsl_ssi_private *ssi_private = dev_id; |
| struct ccsr_ssi __iomem *ssi = ssi_private->ssi; |
| __be32 sisr; |
| __be32 sisr2; |
| __be32 sisr_write_mask = 0; |
| |
| switch (ssi_private->hw_type) { |
| case FSL_SSI_MX21: |
| sisr_write_mask = 0; |
| break; |
| |
| case FSL_SSI_MCP8610: |
| case FSL_SSI_MX35: |
| sisr_write_mask = CCSR_SSI_SISR_RFRC | CCSR_SSI_SISR_TFRC | |
| CCSR_SSI_SISR_ROE0 | CCSR_SSI_SISR_ROE1 | |
| CCSR_SSI_SISR_TUE0 | CCSR_SSI_SISR_TUE1; |
| break; |
| |
| case FSL_SSI_MX51: |
| sisr_write_mask = CCSR_SSI_SISR_ROE0 | CCSR_SSI_SISR_ROE1 | |
| CCSR_SSI_SISR_TUE0 | CCSR_SSI_SISR_TUE1; |
| break; |
| } |
| |
| /* We got an interrupt, so read the status register to see what we |
| were interrupted for. We mask it with the Interrupt Enable register |
| so that we only check for events that we're interested in. |
| */ |
| sisr = read_ssi(&ssi->sisr); |
| |
| sisr2 = sisr & sisr_write_mask; |
| /* Clear the bits that we set */ |
| if (sisr2) |
| write_ssi(sisr2, &ssi->sisr); |
| |
| fsl_ssi_dbg_isr(&ssi_private->dbg_stats, sisr); |
| |
| return IRQ_HANDLED; |
| } |
| |
| /* |
| * Enable/Disable all rx/tx config flags at once. |
| */ |
| static void fsl_ssi_rxtx_config(struct fsl_ssi_private *ssi_private, |
| bool enable) |
| { |
| struct ccsr_ssi __iomem *ssi = ssi_private->ssi; |
| struct fsl_ssi_rxtx_reg_val *vals = &ssi_private->rxtx_reg_val; |
| |
| if (enable) { |
| write_ssi_mask(&ssi->sier, 0, vals->rx.sier | vals->tx.sier); |
| write_ssi_mask(&ssi->srcr, 0, vals->rx.srcr | vals->tx.srcr); |
| write_ssi_mask(&ssi->stcr, 0, vals->rx.stcr | vals->tx.stcr); |
| } else { |
| write_ssi_mask(&ssi->srcr, vals->rx.srcr | vals->tx.srcr, 0); |
| write_ssi_mask(&ssi->stcr, vals->rx.stcr | vals->tx.stcr, 0); |
| write_ssi_mask(&ssi->sier, vals->rx.sier | vals->tx.sier, 0); |
| } |
| } |
| |
| /* |
| * Calculate the bits that have to be disabled for the current stream that is |
| * getting disabled. This keeps the bits enabled that are necessary for the |
| * second stream to work if 'stream_active' is true. |
| * |
| * Detailed calculation: |
| * These are the values that need to be active after disabling. For non-active |
| * second stream, this is 0: |
| * vals_stream * !!stream_active |
| * |
| * The following computes the overall differences between the setup for the |
| * to-disable stream and the active stream, a simple XOR: |
| * vals_disable ^ (vals_stream * !!(stream_active)) |
| * |
| * The full expression adds a mask on all values we care about |
| */ |
| #define fsl_ssi_disable_val(vals_disable, vals_stream, stream_active) \ |
| ((vals_disable) & \ |
| ((vals_disable) ^ ((vals_stream) * (u32)!!(stream_active)))) |
| |
| /* |
| * Enable/Disable a ssi configuration. You have to pass either |
| * ssi_private->rxtx_reg_val.rx or tx as vals parameter. |
| */ |
| static void fsl_ssi_config(struct fsl_ssi_private *ssi_private, bool enable, |
| struct fsl_ssi_reg_val *vals) |
| { |
| struct ccsr_ssi __iomem *ssi = ssi_private->ssi; |
| struct fsl_ssi_reg_val *avals; |
| u32 scr_val = read_ssi(&ssi->scr); |
| int nr_active_streams = !!(scr_val & CCSR_SSI_SCR_TE) + |
| !!(scr_val & CCSR_SSI_SCR_RE); |
| int keep_active; |
| |
| if (nr_active_streams - 1 > 0) |
| keep_active = 1; |
| else |
| keep_active = 0; |
| |
| /* Find the other direction values rx or tx which we do not want to |
| * modify */ |
| if (&ssi_private->rxtx_reg_val.rx == vals) |
| avals = &ssi_private->rxtx_reg_val.tx; |
| else |
| avals = &ssi_private->rxtx_reg_val.rx; |
| |
| /* If vals should be disabled, start with disabling the unit */ |
| if (!enable) { |
| u32 scr = fsl_ssi_disable_val(vals->scr, avals->scr, |
| keep_active); |
| write_ssi_mask(&ssi->scr, scr, 0); |
| } |
| |
| /* |
| * We are running on a SoC which does not support online SSI |
| * reconfiguration, so we have to enable all necessary flags at once |
| * even if we do not use them later (capture and playback configuration) |
| */ |
| if (ssi_private->offline_config) { |
| if ((enable && !nr_active_streams) || |
| (!enable && !keep_active)) |
| fsl_ssi_rxtx_config(ssi_private, enable); |
| |
| goto config_done; |
| } |
| |
| /* |
| * Configure single direction units while the SSI unit is running |
| * (online configuration) |
| */ |
| if (enable) { |
| write_ssi_mask(&ssi->sier, 0, vals->sier); |
| write_ssi_mask(&ssi->srcr, 0, vals->srcr); |
| write_ssi_mask(&ssi->stcr, 0, vals->stcr); |
| } else { |
| u32 sier; |
| u32 srcr; |
| u32 stcr; |
| |
| /* |
| * Disabling the necessary flags for one of rx/tx while the |
| * other stream is active is a little bit more difficult. We |
| * have to disable only those flags that differ between both |
| * streams (rx XOR tx) and that are set in the stream that is |
| * disabled now. Otherwise we could alter flags of the other |
| * stream |
| */ |
| |
| /* These assignments are simply vals without bits set in avals*/ |
| sier = fsl_ssi_disable_val(vals->sier, avals->sier, |
| keep_active); |
| srcr = fsl_ssi_disable_val(vals->srcr, avals->srcr, |
| keep_active); |
| stcr = fsl_ssi_disable_val(vals->stcr, avals->stcr, |
| keep_active); |
| |
| write_ssi_mask(&ssi->srcr, srcr, 0); |
| write_ssi_mask(&ssi->stcr, stcr, 0); |
| write_ssi_mask(&ssi->sier, sier, 0); |
| } |
| |
| config_done: |
| /* Enabling of subunits is done after configuration */ |
| if (enable) |
| write_ssi_mask(&ssi->scr, 0, vals->scr); |
| } |
| |
| |
| static void fsl_ssi_rx_config(struct fsl_ssi_private *ssi_private, bool enable) |
| { |
| fsl_ssi_config(ssi_private, enable, &ssi_private->rxtx_reg_val.rx); |
| } |
| |
| static void fsl_ssi_tx_config(struct fsl_ssi_private *ssi_private, bool enable) |
| { |
| fsl_ssi_config(ssi_private, enable, &ssi_private->rxtx_reg_val.tx); |
| } |
| |
| /* |
| * Setup rx/tx register values used to enable/disable the streams. These will |
| * be used later in fsl_ssi_config to setup the streams without the need to |
| * check for all different SSI modes. |
| */ |
| static void fsl_ssi_setup_reg_vals(struct fsl_ssi_private *ssi_private) |
| { |
| struct fsl_ssi_rxtx_reg_val *reg = &ssi_private->rxtx_reg_val; |
| |
| reg->rx.sier = CCSR_SSI_SIER_RFF0_EN; |
| reg->rx.srcr = CCSR_SSI_SRCR_RFEN0; |
| reg->rx.scr = 0; |
| reg->tx.sier = CCSR_SSI_SIER_TFE0_EN; |
| reg->tx.stcr = CCSR_SSI_STCR_TFEN0; |
| reg->tx.scr = 0; |
| |
| if (!ssi_private->imx_ac97) { |
| reg->rx.scr = CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_RE; |
| reg->rx.sier |= CCSR_SSI_SIER_RFF0_EN; |
| reg->tx.scr = CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_TE; |
| reg->tx.sier |= CCSR_SSI_SIER_TFE0_EN; |
| } |
| |
| if (ssi_private->use_dma) { |
| reg->rx.sier |= CCSR_SSI_SIER_RDMAE; |
| reg->tx.sier |= CCSR_SSI_SIER_TDMAE; |
| } else { |
| reg->rx.sier |= CCSR_SSI_SIER_RIE; |
| reg->tx.sier |= CCSR_SSI_SIER_TIE; |
| } |
| |
| reg->rx.sier |= FSLSSI_SIER_DBG_RX_FLAGS; |
| reg->tx.sier |= FSLSSI_SIER_DBG_TX_FLAGS; |
| } |
| |
| static void fsl_ssi_setup_ac97(struct fsl_ssi_private *ssi_private) |
| { |
| struct ccsr_ssi __iomem *ssi = ssi_private->ssi; |
| |
| /* |
| * Setup the clock control register |
| */ |
| write_ssi(CCSR_SSI_SxCCR_WL(17) | CCSR_SSI_SxCCR_DC(13), |
| &ssi->stccr); |
| write_ssi(CCSR_SSI_SxCCR_WL(17) | CCSR_SSI_SxCCR_DC(13), |
| &ssi->srccr); |
| |
| /* |
| * Enable AC97 mode and startup the SSI |
| */ |
| write_ssi(CCSR_SSI_SACNT_AC97EN | CCSR_SSI_SACNT_FV, |
| &ssi->sacnt); |
| write_ssi(0xff, &ssi->saccdis); |
| write_ssi(0x300, &ssi->saccen); |
| |
| /* |
| * Enable SSI, Transmit and Receive. AC97 has to communicate with the |
| * codec before a stream is started. |
| */ |
| write_ssi_mask(&ssi->scr, 0, CCSR_SSI_SCR_SSIEN | |
| CCSR_SSI_SCR_TE | CCSR_SSI_SCR_RE); |
| |
| write_ssi(CCSR_SSI_SOR_WAIT(3), &ssi->sor); |
| } |
| |
| /** |
| * fsl_ssi_startup: create a new substream |
| * |
| * This is the first function called when a stream is opened. |
| * |
| * If this is the first stream open, then grab the IRQ and program most of |
| * the SSI registers. |
| */ |
| static int fsl_ssi_startup(struct snd_pcm_substream *substream, |
| struct snd_soc_dai *dai) |
| { |
| struct snd_soc_pcm_runtime *rtd = substream->private_data; |
| struct fsl_ssi_private *ssi_private = |
| snd_soc_dai_get_drvdata(rtd->cpu_dai); |
| unsigned long flags; |
| |
| if (!dai->active && !ssi_private->imx_ac97) { |
| spin_lock_irqsave(&ssi_private->baudclk_lock, flags); |
| ssi_private->baudclk_locked = false; |
| spin_unlock_irqrestore(&ssi_private->baudclk_lock, flags); |
| } |
| |
| /* When using dual fifo mode, it is safer to ensure an even period |
| * size. If appearing to an odd number while DMA always starts its |
| * task from fifo0, fifo1 would be neglected at the end of each |
| * period. But SSI would still access fifo1 with an invalid data. |
| */ |
| if (ssi_private->use_dual_fifo) |
| snd_pcm_hw_constraint_step(substream->runtime, 0, |
| SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 2); |
| |
| return 0; |
| } |
| |
| /** |
| * fsl_ssi_hw_params - program the sample size |
| * |
| * Most of the SSI registers have been programmed in the startup function, |
| * but the word length must be programmed here. Unfortunately, programming |
| * the SxCCR.WL bits requires the SSI to be temporarily disabled. This can |
| * cause a problem with supporting simultaneous playback and capture. If |
| * the SSI is already playing a stream, then that stream may be temporarily |
| * stopped when you start capture. |
| * |
| * Note: The SxCCR.DC and SxCCR.PM bits are only used if the SSI is the |
| * clock master. |
| */ |
| static int fsl_ssi_hw_params(struct snd_pcm_substream *substream, |
| struct snd_pcm_hw_params *hw_params, struct snd_soc_dai *cpu_dai) |
| { |
| struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(cpu_dai); |
| struct ccsr_ssi __iomem *ssi = ssi_private->ssi; |
| unsigned int channels = params_channels(hw_params); |
| unsigned int sample_size = |
| snd_pcm_format_width(params_format(hw_params)); |
| u32 wl = CCSR_SSI_SxCCR_WL(sample_size); |
| int enabled = read_ssi(&ssi->scr) & CCSR_SSI_SCR_SSIEN; |
| |
| /* |
| * If we're in synchronous mode, and the SSI is already enabled, |
| * then STCCR is already set properly. |
| */ |
| if (enabled && ssi_private->cpu_dai_drv.symmetric_rates) |
| return 0; |
| |
| /* |
| * FIXME: The documentation says that SxCCR[WL] should not be |
| * modified while the SSI is enabled. The only time this can |
| * happen is if we're trying to do simultaneous playback and |
| * capture in asynchronous mode. Unfortunately, I have been enable |
| * to get that to work at all on the P1022DS. Therefore, we don't |
| * bother to disable/enable the SSI when setting SxCCR[WL], because |
| * the SSI will stop anyway. Maybe one day, this will get fixed. |
| */ |
| |
| /* In synchronous mode, the SSI uses STCCR for capture */ |
| if ((substream->stream == SNDRV_PCM_STREAM_PLAYBACK) || |
| ssi_private->cpu_dai_drv.symmetric_rates) |
| write_ssi_mask(&ssi->stccr, CCSR_SSI_SxCCR_WL_MASK, wl); |
| else |
| write_ssi_mask(&ssi->srccr, CCSR_SSI_SxCCR_WL_MASK, wl); |
| |
| if (!ssi_private->imx_ac97) |
| write_ssi_mask(&ssi->scr, |
| CCSR_SSI_SCR_NET | CCSR_SSI_SCR_I2S_MODE_MASK, |
| channels == 1 ? 0 : ssi_private->i2s_mode); |
| |
| return 0; |
| } |
| |
| /** |
| * fsl_ssi_set_dai_fmt - configure Digital Audio Interface Format. |
| */ |
| static int fsl_ssi_set_dai_fmt(struct snd_soc_dai *cpu_dai, unsigned int fmt) |
| { |
| struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(cpu_dai); |
| struct ccsr_ssi __iomem *ssi = ssi_private->ssi; |
| u32 strcr = 0, stcr, srcr, scr, mask; |
| u8 wm; |
| |
| fsl_ssi_setup_reg_vals(ssi_private); |
| |
| scr = read_ssi(&ssi->scr) & ~(CCSR_SSI_SCR_SYN | CCSR_SSI_SCR_I2S_MODE_MASK); |
| |
| mask = CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TFDIR | CCSR_SSI_STCR_TXDIR | |
| CCSR_SSI_STCR_TSCKP | CCSR_SSI_STCR_TFSI | CCSR_SSI_STCR_TFSL | |
| CCSR_SSI_STCR_TEFS; |
| stcr = read_ssi(&ssi->stcr) & ~mask; |
| srcr = read_ssi(&ssi->srcr) & ~mask; |
| |
| ssi_private->i2s_mode = CCSR_SSI_SCR_NET; |
| switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) { |
| case SND_SOC_DAIFMT_I2S: |
| switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) { |
| case SND_SOC_DAIFMT_CBS_CFS: |
| ssi_private->i2s_mode |= CCSR_SSI_SCR_I2S_MODE_MASTER; |
| break; |
| case SND_SOC_DAIFMT_CBM_CFM: |
| ssi_private->i2s_mode |= CCSR_SSI_SCR_I2S_MODE_SLAVE; |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| /* Data on rising edge of bclk, frame low, 1clk before data */ |
| strcr |= CCSR_SSI_STCR_TFSI | CCSR_SSI_STCR_TSCKP | |
| CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TEFS; |
| break; |
| case SND_SOC_DAIFMT_LEFT_J: |
| /* Data on rising edge of bclk, frame high */ |
| strcr |= CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TSCKP; |
| break; |
| case SND_SOC_DAIFMT_DSP_A: |
| /* Data on rising edge of bclk, frame high, 1clk before data */ |
| strcr |= CCSR_SSI_STCR_TFSL | CCSR_SSI_STCR_TSCKP | |
| CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TEFS; |
| break; |
| case SND_SOC_DAIFMT_DSP_B: |
| /* Data on rising edge of bclk, frame high */ |
| strcr |= CCSR_SSI_STCR_TFSL | CCSR_SSI_STCR_TSCKP | |
| CCSR_SSI_STCR_TXBIT0; |
| break; |
| case SND_SOC_DAIFMT_AC97: |
| ssi_private->i2s_mode |= CCSR_SSI_SCR_I2S_MODE_NORMAL; |
| break; |
| default: |
| return -EINVAL; |
| } |
| scr |= ssi_private->i2s_mode; |
| |
| /* DAI clock inversion */ |
| switch (fmt & SND_SOC_DAIFMT_INV_MASK) { |
| case SND_SOC_DAIFMT_NB_NF: |
| /* Nothing to do for both normal cases */ |
| break; |
| case SND_SOC_DAIFMT_IB_NF: |
| /* Invert bit clock */ |
| strcr ^= CCSR_SSI_STCR_TSCKP; |
| break; |
| case SND_SOC_DAIFMT_NB_IF: |
| /* Invert frame clock */ |
| strcr ^= CCSR_SSI_STCR_TFSI; |
| break; |
| case SND_SOC_DAIFMT_IB_IF: |
| /* Invert both clocks */ |
| strcr ^= CCSR_SSI_STCR_TSCKP; |
| strcr ^= CCSR_SSI_STCR_TFSI; |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| /* DAI clock master masks */ |
| switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) { |
| case SND_SOC_DAIFMT_CBS_CFS: |
| strcr |= CCSR_SSI_STCR_TFDIR | CCSR_SSI_STCR_TXDIR; |
| scr |= CCSR_SSI_SCR_SYS_CLK_EN; |
| break; |
| case SND_SOC_DAIFMT_CBM_CFM: |
| scr &= ~CCSR_SSI_SCR_SYS_CLK_EN; |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| stcr |= strcr; |
| srcr |= strcr; |
| |
| if (ssi_private->cpu_dai_drv.symmetric_rates) { |
| /* Need to clear RXDIR when using SYNC mode */ |
| srcr &= ~CCSR_SSI_SRCR_RXDIR; |
| scr |= CCSR_SSI_SCR_SYN; |
| } |
| |
| write_ssi(stcr, &ssi->stcr); |
| write_ssi(srcr, &ssi->srcr); |
| write_ssi(scr, &ssi->scr); |
| |
| /* |
| * Set the watermark for transmit FIFI 0 and receive FIFO 0. We don't |
| * use FIFO 1. We program the transmit water to signal a DMA transfer |
| * if there are only two (or fewer) elements left in the FIFO. Two |
| * elements equals one frame (left channel, right channel). This value, |
| * however, depends on the depth of the transmit buffer. |
| * |
| * We set the watermark on the same level as the DMA burstsize. For |
| * fiq it is probably better to use the biggest possible watermark |
| * size. |
| */ |
| if (ssi_private->use_dma) |
| wm = ssi_private->fifo_depth - 2; |
| else |
| wm = ssi_private->fifo_depth; |
| |
| write_ssi(CCSR_SSI_SFCSR_TFWM0(wm) | CCSR_SSI_SFCSR_RFWM0(wm) | |
| CCSR_SSI_SFCSR_TFWM1(wm) | CCSR_SSI_SFCSR_RFWM1(wm), |
| &ssi->sfcsr); |
| |
| if (ssi_private->use_dual_fifo) { |
| write_ssi_mask(&ssi->srcr, CCSR_SSI_SRCR_RFEN1, |
| CCSR_SSI_SRCR_RFEN1); |
| write_ssi_mask(&ssi->stcr, CCSR_SSI_STCR_TFEN1, |
| CCSR_SSI_STCR_TFEN1); |
| write_ssi_mask(&ssi->scr, CCSR_SSI_SCR_TCH_EN, |
| CCSR_SSI_SCR_TCH_EN); |
| } |
| |
| if (fmt & SND_SOC_DAIFMT_AC97) |
| fsl_ssi_setup_ac97(ssi_private); |
| |
| return 0; |
| } |
| |
| /** |
| * fsl_ssi_set_dai_sysclk - configure Digital Audio Interface bit clock |
| * |
| * Note: This function can be only called when using SSI as DAI master |
| * |
| * Quick instruction for parameters: |
| * freq: Output BCLK frequency = samplerate * 32 (fixed) * channels |
| * dir: SND_SOC_CLOCK_OUT -> TxBCLK, SND_SOC_CLOCK_IN -> RxBCLK. |
| */ |
| static int fsl_ssi_set_dai_sysclk(struct snd_soc_dai *cpu_dai, |
| int clk_id, unsigned int freq, int dir) |
| { |
| struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(cpu_dai); |
| struct ccsr_ssi __iomem *ssi = ssi_private->ssi; |
| int synchronous = ssi_private->cpu_dai_drv.symmetric_rates, ret; |
| u32 pm = 999, div2, psr, stccr, mask, afreq, factor, i; |
| unsigned long flags, clkrate, baudrate, tmprate; |
| u64 sub, savesub = 100000; |
| |
| /* Don't apply it to any non-baudclk circumstance */ |
| if (IS_ERR(ssi_private->baudclk)) |
| return -EINVAL; |
| |
| /* It should be already enough to divide clock by setting pm alone */ |
| psr = 0; |
| div2 = 0; |
| |
| factor = (div2 + 1) * (7 * psr + 1) * 2; |
| |
| for (i = 0; i < 255; i++) { |
| /* The bclk rate must be smaller than 1/5 sysclk rate */ |
| if (factor * (i + 1) < 5) |
| continue; |
| |
| tmprate = freq * factor * (i + 2); |
| clkrate = clk_round_rate(ssi_private->baudclk, tmprate); |
| |
| do_div(clkrate, factor); |
| afreq = (u32)clkrate / (i + 1); |
| |
| if (freq == afreq) |
| sub = 0; |
| else if (freq / afreq == 1) |
| sub = freq - afreq; |
| else if (afreq / freq == 1) |
| sub = afreq - freq; |
| else |
| continue; |
| |
| /* Calculate the fraction */ |
| sub *= 100000; |
| do_div(sub, freq); |
| |
| if (sub < savesub) { |
| baudrate = tmprate; |
| savesub = sub; |
| pm = i; |
| } |
| |
| /* We are lucky */ |
| if (savesub == 0) |
| break; |
| } |
| |
| /* No proper pm found if it is still remaining the initial value */ |
| if (pm == 999) { |
| dev_err(cpu_dai->dev, "failed to handle the required sysclk\n"); |
| return -EINVAL; |
| } |
| |
| stccr = CCSR_SSI_SxCCR_PM(pm + 1) | (div2 ? CCSR_SSI_SxCCR_DIV2 : 0) | |
| (psr ? CCSR_SSI_SxCCR_PSR : 0); |
| mask = CCSR_SSI_SxCCR_PM_MASK | CCSR_SSI_SxCCR_DIV2 | CCSR_SSI_SxCCR_PSR; |
| |
| if (dir == SND_SOC_CLOCK_OUT || synchronous) |
| write_ssi_mask(&ssi->stccr, mask, stccr); |
| else |
| write_ssi_mask(&ssi->srccr, mask, stccr); |
| |
| spin_lock_irqsave(&ssi_private->baudclk_lock, flags); |
| if (!ssi_private->baudclk_locked) { |
| ret = clk_set_rate(ssi_private->baudclk, baudrate); |
| if (ret) { |
| spin_unlock_irqrestore(&ssi_private->baudclk_lock, flags); |
| dev_err(cpu_dai->dev, "failed to set baudclk rate\n"); |
| return -EINVAL; |
| } |
| ssi_private->baudclk_locked = true; |
| } |
| spin_unlock_irqrestore(&ssi_private->baudclk_lock, flags); |
| |
| return 0; |
| } |
| |
| /** |
| * fsl_ssi_set_dai_tdm_slot - set TDM slot number |
| * |
| * Note: This function can be only called when using SSI as DAI master |
| */ |
| static int fsl_ssi_set_dai_tdm_slot(struct snd_soc_dai *cpu_dai, u32 tx_mask, |
| u32 rx_mask, int slots, int slot_width) |
| { |
| struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(cpu_dai); |
| struct ccsr_ssi __iomem *ssi = ssi_private->ssi; |
| u32 val; |
| |
| /* The slot number should be >= 2 if using Network mode or I2S mode */ |
| val = read_ssi(&ssi->scr) & (CCSR_SSI_SCR_I2S_MODE_MASK | CCSR_SSI_SCR_NET); |
| if (val && slots < 2) { |
| dev_err(cpu_dai->dev, "slot number should be >= 2 in I2S or NET\n"); |
| return -EINVAL; |
| } |
| |
| write_ssi_mask(&ssi->stccr, CCSR_SSI_SxCCR_DC_MASK, |
| CCSR_SSI_SxCCR_DC(slots)); |
| write_ssi_mask(&ssi->srccr, CCSR_SSI_SxCCR_DC_MASK, |
| CCSR_SSI_SxCCR_DC(slots)); |
| |
| /* The register SxMSKs needs SSI to provide essential clock due to |
| * hardware design. So we here temporarily enable SSI to set them. |
| */ |
| val = read_ssi(&ssi->scr) & CCSR_SSI_SCR_SSIEN; |
| write_ssi_mask(&ssi->scr, 0, CCSR_SSI_SCR_SSIEN); |
| |
| write_ssi(tx_mask, &ssi->stmsk); |
| write_ssi(rx_mask, &ssi->srmsk); |
| |
| write_ssi_mask(&ssi->scr, CCSR_SSI_SCR_SSIEN, val); |
| |
| return 0; |
| } |
| |
| /** |
| * fsl_ssi_trigger: start and stop the DMA transfer. |
| * |
| * This function is called by ALSA to start, stop, pause, and resume the DMA |
| * transfer of data. |
| * |
| * The DMA channel is in external master start and pause mode, which |
| * means the SSI completely controls the flow of data. |
| */ |
| static int fsl_ssi_trigger(struct snd_pcm_substream *substream, int cmd, |
| struct snd_soc_dai *dai) |
| { |
| struct snd_soc_pcm_runtime *rtd = substream->private_data; |
| struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(rtd->cpu_dai); |
| struct ccsr_ssi __iomem *ssi = ssi_private->ssi; |
| unsigned long flags; |
| |
| switch (cmd) { |
| case SNDRV_PCM_TRIGGER_START: |
| case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: |
| if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) |
| fsl_ssi_tx_config(ssi_private, true); |
| else |
| fsl_ssi_rx_config(ssi_private, true); |
| break; |
| |
| case SNDRV_PCM_TRIGGER_STOP: |
| case SNDRV_PCM_TRIGGER_PAUSE_PUSH: |
| if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) |
| fsl_ssi_tx_config(ssi_private, false); |
| else |
| fsl_ssi_rx_config(ssi_private, false); |
| |
| if (!ssi_private->imx_ac97 && (read_ssi(&ssi->scr) & |
| (CCSR_SSI_SCR_TE | CCSR_SSI_SCR_RE)) == 0) { |
| spin_lock_irqsave(&ssi_private->baudclk_lock, flags); |
| ssi_private->baudclk_locked = false; |
| spin_unlock_irqrestore(&ssi_private->baudclk_lock, flags); |
| } |
| break; |
| |
| default: |
| return -EINVAL; |
| } |
| |
| if (ssi_private->imx_ac97) { |
| if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) |
| write_ssi(CCSR_SSI_SOR_TX_CLR, &ssi->sor); |
| else |
| write_ssi(CCSR_SSI_SOR_RX_CLR, &ssi->sor); |
| } |
| |
| return 0; |
| } |
| |
| static int fsl_ssi_dai_probe(struct snd_soc_dai *dai) |
| { |
| struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(dai); |
| |
| if (ssi_private->ssi_on_imx && ssi_private->use_dma) { |
| dai->playback_dma_data = &ssi_private->dma_params_tx; |
| dai->capture_dma_data = &ssi_private->dma_params_rx; |
| } |
| |
| return 0; |
| } |
| |
| static const struct snd_soc_dai_ops fsl_ssi_dai_ops = { |
| .startup = fsl_ssi_startup, |
| .hw_params = fsl_ssi_hw_params, |
| .set_fmt = fsl_ssi_set_dai_fmt, |
| .set_sysclk = fsl_ssi_set_dai_sysclk, |
| .set_tdm_slot = fsl_ssi_set_dai_tdm_slot, |
| .trigger = fsl_ssi_trigger, |
| }; |
| |
| /* Template for the CPU dai driver structure */ |
| static struct snd_soc_dai_driver fsl_ssi_dai_template = { |
| .probe = fsl_ssi_dai_probe, |
| .playback = { |
| .channels_min = 1, |
| .channels_max = 2, |
| .rates = FSLSSI_I2S_RATES, |
| .formats = FSLSSI_I2S_FORMATS, |
| }, |
| .capture = { |
| .channels_min = 1, |
| .channels_max = 2, |
| .rates = FSLSSI_I2S_RATES, |
| .formats = FSLSSI_I2S_FORMATS, |
| }, |
| .ops = &fsl_ssi_dai_ops, |
| }; |
| |
| static const struct snd_soc_component_driver fsl_ssi_component = { |
| .name = "fsl-ssi", |
| }; |
| |
| static struct snd_soc_dai_driver fsl_ssi_ac97_dai = { |
| .ac97_control = 1, |
| .playback = { |
| .stream_name = "AC97 Playback", |
| .channels_min = 2, |
| .channels_max = 2, |
| .rates = SNDRV_PCM_RATE_8000_48000, |
| .formats = SNDRV_PCM_FMTBIT_S16_LE, |
| }, |
| .capture = { |
| .stream_name = "AC97 Capture", |
| .channels_min = 2, |
| .channels_max = 2, |
| .rates = SNDRV_PCM_RATE_48000, |
| .formats = SNDRV_PCM_FMTBIT_S16_LE, |
| }, |
| .ops = &fsl_ssi_dai_ops, |
| }; |
| |
| |
| static struct fsl_ssi_private *fsl_ac97_data; |
| |
| static void fsl_ssi_ac97_write(struct snd_ac97 *ac97, unsigned short reg, |
| unsigned short val) |
| { |
| struct ccsr_ssi *ssi = fsl_ac97_data->ssi; |
| unsigned int lreg; |
| unsigned int lval; |
| |
| if (reg > 0x7f) |
| return; |
| |
| |
| lreg = reg << 12; |
| write_ssi(lreg, &ssi->sacadd); |
| |
| lval = val << 4; |
| write_ssi(lval , &ssi->sacdat); |
| |
| write_ssi_mask(&ssi->sacnt, CCSR_SSI_SACNT_RDWR_MASK, |
| CCSR_SSI_SACNT_WR); |
| udelay(100); |
| } |
| |
| static unsigned short fsl_ssi_ac97_read(struct snd_ac97 *ac97, |
| unsigned short reg) |
| { |
| struct ccsr_ssi *ssi = fsl_ac97_data->ssi; |
| |
| unsigned short val = -1; |
| unsigned int lreg; |
| |
| lreg = (reg & 0x7f) << 12; |
| write_ssi(lreg, &ssi->sacadd); |
| write_ssi_mask(&ssi->sacnt, CCSR_SSI_SACNT_RDWR_MASK, |
| CCSR_SSI_SACNT_RD); |
| |
| udelay(100); |
| |
| val = (read_ssi(&ssi->sacdat) >> 4) & 0xffff; |
| |
| return val; |
| } |
| |
| static struct snd_ac97_bus_ops fsl_ssi_ac97_ops = { |
| .read = fsl_ssi_ac97_read, |
| .write = fsl_ssi_ac97_write, |
| }; |
| |
| /** |
| * Make every character in a string lower-case |
| */ |
| static void make_lowercase(char *s) |
| { |
| char *p = s; |
| char c; |
| |
| while ((c = *p)) { |
| if ((c >= 'A') && (c <= 'Z')) |
| *p = c + ('a' - 'A'); |
| p++; |
| } |
| } |
| |
| static int fsl_ssi_probe(struct platform_device *pdev) |
| { |
| struct fsl_ssi_private *ssi_private; |
| int ret = 0; |
| struct device_attribute *dev_attr = NULL; |
| struct device_node *np = pdev->dev.of_node; |
| const struct of_device_id *of_id; |
| enum fsl_ssi_type hw_type; |
| const char *p, *sprop; |
| const uint32_t *iprop; |
| struct resource res; |
| char name[64]; |
| bool shared; |
| bool ac97 = false; |
| |
| /* SSIs that are not connected on the board should have a |
| * status = "disabled" |
| * property in their device tree nodes. |
| */ |
| if (!of_device_is_available(np)) |
| return -ENODEV; |
| |
| of_id = of_match_device(fsl_ssi_ids, &pdev->dev); |
| if (!of_id) |
| return -EINVAL; |
| hw_type = (enum fsl_ssi_type) of_id->data; |
| |
| sprop = of_get_property(np, "fsl,mode", NULL); |
| if (!sprop) { |
| dev_err(&pdev->dev, "fsl,mode property is necessary\n"); |
| return -EINVAL; |
| } |
| if (!strcmp(sprop, "ac97-slave")) |
| ac97 = true; |
| |
| ssi_private = devm_kzalloc(&pdev->dev, sizeof(*ssi_private), |
| GFP_KERNEL); |
| if (!ssi_private) { |
| dev_err(&pdev->dev, "could not allocate DAI object\n"); |
| return -ENOMEM; |
| } |
| |
| ssi_private->use_dma = !of_property_read_bool(np, |
| "fsl,fiq-stream-filter"); |
| ssi_private->hw_type = hw_type; |
| |
| if (ac97) { |
| memcpy(&ssi_private->cpu_dai_drv, &fsl_ssi_ac97_dai, |
| sizeof(fsl_ssi_ac97_dai)); |
| |
| fsl_ac97_data = ssi_private; |
| ssi_private->imx_ac97 = true; |
| |
| snd_soc_set_ac97_ops_of_reset(&fsl_ssi_ac97_ops, pdev); |
| } else { |
| /* Initialize this copy of the CPU DAI driver structure */ |
| memcpy(&ssi_private->cpu_dai_drv, &fsl_ssi_dai_template, |
| sizeof(fsl_ssi_dai_template)); |
| } |
| ssi_private->cpu_dai_drv.name = dev_name(&pdev->dev); |
| |
| /* Get the addresses and IRQ */ |
| ret = of_address_to_resource(np, 0, &res); |
| if (ret) { |
| dev_err(&pdev->dev, "could not determine device resources\n"); |
| return ret; |
| } |
| ssi_private->ssi = of_iomap(np, 0); |
| if (!ssi_private->ssi) { |
| dev_err(&pdev->dev, "could not map device resources\n"); |
| return -ENOMEM; |
| } |
| ssi_private->ssi_phys = res.start; |
| |
| ssi_private->irq = irq_of_parse_and_map(np, 0); |
| if (!ssi_private->irq) { |
| dev_err(&pdev->dev, "no irq for node %s\n", np->full_name); |
| return -ENXIO; |
| } |
| |
| /* Are the RX and the TX clocks locked? */ |
| if (!of_find_property(np, "fsl,ssi-asynchronous", NULL)) { |
| ssi_private->cpu_dai_drv.symmetric_rates = 1; |
| ssi_private->cpu_dai_drv.symmetric_channels = 1; |
| ssi_private->cpu_dai_drv.symmetric_samplebits = 1; |
| } |
| |
| /* Determine the FIFO depth. */ |
| iprop = of_get_property(np, "fsl,fifo-depth", NULL); |
| if (iprop) |
| ssi_private->fifo_depth = be32_to_cpup(iprop); |
| else |
| /* Older 8610 DTs didn't have the fifo-depth property */ |
| ssi_private->fifo_depth = 8; |
| |
| ssi_private->baudclk_locked = false; |
| spin_lock_init(&ssi_private->baudclk_lock); |
| |
| /* |
| * imx51 and later SoCs have a slightly different IP that allows the |
| * SSI configuration while the SSI unit is running. |
| * |
| * More important, it is necessary on those SoCs to configure the |
| * sperate TX/RX DMA bits just before starting the stream |
| * (fsl_ssi_trigger). The SDMA unit has to be configured before fsl_ssi |
| * sends any DMA requests to the SDMA unit, otherwise it is not defined |
| * how the SDMA unit handles the DMA request. |
| * |
| * SDMA units are present on devices starting at imx35 but the imx35 |
| * reference manual states that the DMA bits should not be changed |
| * while the SSI unit is running (SSIEN). So we support the necessary |
| * online configuration of fsl-ssi starting at imx51. |
| */ |
| switch (hw_type) { |
| case FSL_SSI_MCP8610: |
| case FSL_SSI_MX21: |
| case FSL_SSI_MX35: |
| ssi_private->offline_config = true; |
| break; |
| case FSL_SSI_MX51: |
| ssi_private->offline_config = false; |
| break; |
| } |
| |
| if (hw_type == FSL_SSI_MX21 || hw_type == FSL_SSI_MX51 || |
| hw_type == FSL_SSI_MX35) { |
| u32 dma_events[2], dmas[4]; |
| ssi_private->ssi_on_imx = true; |
| |
| ssi_private->clk = devm_clk_get(&pdev->dev, NULL); |
| if (IS_ERR(ssi_private->clk)) { |
| ret = PTR_ERR(ssi_private->clk); |
| dev_err(&pdev->dev, "could not get clock: %d\n", ret); |
| goto error_irqmap; |
| } |
| ret = clk_prepare_enable(ssi_private->clk); |
| if (ret) { |
| dev_err(&pdev->dev, "clk_prepare_enable failed: %d\n", |
| ret); |
| goto error_irqmap; |
| } |
| |
| /* For those SLAVE implementations, we ingore non-baudclk cases |
| * and, instead, abandon MASTER mode that needs baud clock. |
| */ |
| ssi_private->baudclk = devm_clk_get(&pdev->dev, "baud"); |
| if (IS_ERR(ssi_private->baudclk)) |
| dev_dbg(&pdev->dev, "could not get baud clock: %ld\n", |
| PTR_ERR(ssi_private->baudclk)); |
| else |
| clk_prepare_enable(ssi_private->baudclk); |
| |
| /* |
| * We have burstsize be "fifo_depth - 2" to match the SSI |
| * watermark setting in fsl_ssi_startup(). |
| */ |
| ssi_private->dma_params_tx.maxburst = |
| ssi_private->fifo_depth - 2; |
| ssi_private->dma_params_rx.maxburst = |
| ssi_private->fifo_depth - 2; |
| ssi_private->dma_params_tx.addr = |
| ssi_private->ssi_phys + offsetof(struct ccsr_ssi, stx0); |
| ssi_private->dma_params_rx.addr = |
| ssi_private->ssi_phys + offsetof(struct ccsr_ssi, srx0); |
| ssi_private->dma_params_tx.filter_data = |
| &ssi_private->filter_data_tx; |
| ssi_private->dma_params_rx.filter_data = |
| &ssi_private->filter_data_rx; |
| if (!of_property_read_bool(pdev->dev.of_node, "dmas") && |
| ssi_private->use_dma) { |
| /* |
| * FIXME: This is a temporary solution until all |
| * necessary dma drivers support the generic dma |
| * bindings. |
| */ |
| ret = of_property_read_u32_array(pdev->dev.of_node, |
| "fsl,ssi-dma-events", dma_events, 2); |
| if (ret && ssi_private->use_dma) { |
| dev_err(&pdev->dev, "could not get dma events but fsl-ssi is configured to use DMA\n"); |
| goto error_clk; |
| } |
| } |
| /* Should this be merge with the above? */ |
| if (!of_property_read_u32_array(pdev->dev.of_node, "dmas", dmas, 4) |
| && dmas[2] == IMX_DMATYPE_SSI_DUAL) { |
| ssi_private->use_dual_fifo = true; |
| /* When using dual fifo mode, we need to keep watermark |
| * as even numbers due to dma script limitation. |
| */ |
| ssi_private->dma_params_tx.maxburst &= ~0x1; |
| ssi_private->dma_params_rx.maxburst &= ~0x1; |
| } |
| |
| shared = of_device_is_compatible(of_get_parent(np), |
| "fsl,spba-bus"); |
| |
| imx_pcm_dma_params_init_data(&ssi_private->filter_data_tx, |
| dma_events[0], shared ? IMX_DMATYPE_SSI_SP : IMX_DMATYPE_SSI); |
| imx_pcm_dma_params_init_data(&ssi_private->filter_data_rx, |
| dma_events[1], shared ? IMX_DMATYPE_SSI_SP : IMX_DMATYPE_SSI); |
| } |
| |
| /* |
| * Enable interrupts only for MCP8610 and MX51. The other MXs have |
| * different writeable interrupt status registers. |
| */ |
| if (ssi_private->use_dma) { |
| ret = devm_request_irq(&pdev->dev, ssi_private->irq, |
| fsl_ssi_isr, 0, ssi_private->name, |
| ssi_private); |
| ssi_private->irq_stats = true; |
| if (ret < 0) { |
| dev_err(&pdev->dev, "could not claim irq %u\n", |
| ssi_private->irq); |
| goto error_clk; |
| } |
| } |
| |
| /* Register with ASoC */ |
| dev_set_drvdata(&pdev->dev, ssi_private); |
| |
| ret = snd_soc_register_component(&pdev->dev, &fsl_ssi_component, |
| &ssi_private->cpu_dai_drv, 1); |
| if (ret) { |
| dev_err(&pdev->dev, "failed to register DAI: %d\n", ret); |
| goto error_dev; |
| } |
| |
| ret = fsl_ssi_debugfs_create(&ssi_private->dbg_stats, &pdev->dev); |
| if (ret) |
| goto error_dbgfs; |
| |
| if (ssi_private->ssi_on_imx) { |
| if (!ssi_private->use_dma) { |
| |
| /* |
| * Some boards use an incompatible codec. To get it |
| * working, we are using imx-fiq-pcm-audio, that |
| * can handle those codecs. DMA is not possible in this |
| * situation. |
| */ |
| |
| ssi_private->fiq_params.irq = ssi_private->irq; |
| ssi_private->fiq_params.base = ssi_private->ssi; |
| ssi_private->fiq_params.dma_params_rx = |
| &ssi_private->dma_params_rx; |
| ssi_private->fiq_params.dma_params_tx = |
| &ssi_private->dma_params_tx; |
| |
| ret = imx_pcm_fiq_init(pdev, &ssi_private->fiq_params); |
| if (ret) |
| goto error_pcm; |
| } else { |
| ret = imx_pcm_dma_init(pdev); |
| if (ret) |
| goto error_pcm; |
| } |
| } |
| |
| /* |
| * If codec-handle property is missing from SSI node, we assume |
| * that the machine driver uses new binding which does not require |
| * SSI driver to trigger machine driver's probe. |
| */ |
| if (!of_get_property(np, "codec-handle", NULL)) { |
| ssi_private->new_binding = true; |
| goto done; |
| } |
| |
| /* Trigger the machine driver's probe function. The platform driver |
| * name of the machine driver is taken from /compatible property of the |
| * device tree. We also pass the address of the CPU DAI driver |
| * structure. |
| */ |
| sprop = of_get_property(of_find_node_by_path("/"), "compatible", NULL); |
| /* Sometimes the compatible name has a "fsl," prefix, so we strip it. */ |
| p = strrchr(sprop, ','); |
| if (p) |
| sprop = p + 1; |
| snprintf(name, sizeof(name), "snd-soc-%s", sprop); |
| make_lowercase(name); |
| |
| ssi_private->pdev = |
| platform_device_register_data(&pdev->dev, name, 0, NULL, 0); |
| if (IS_ERR(ssi_private->pdev)) { |
| ret = PTR_ERR(ssi_private->pdev); |
| dev_err(&pdev->dev, "failed to register platform: %d\n", ret); |
| goto error_dai; |
| } |
| |
| done: |
| return 0; |
| |
| error_dai: |
| if (ssi_private->ssi_on_imx && !ssi_private->use_dma) |
| imx_pcm_fiq_exit(pdev); |
| |
| error_pcm: |
| fsl_ssi_debugfs_remove(&ssi_private->dbg_stats); |
| |
| error_dbgfs: |
| snd_soc_unregister_component(&pdev->dev); |
| |
| error_dev: |
| device_remove_file(&pdev->dev, dev_attr); |
| |
| error_clk: |
| if (ssi_private->ssi_on_imx) { |
| if (!IS_ERR(ssi_private->baudclk)) |
| clk_disable_unprepare(ssi_private->baudclk); |
| clk_disable_unprepare(ssi_private->clk); |
| } |
| |
| error_irqmap: |
| if (ssi_private->irq_stats) |
| irq_dispose_mapping(ssi_private->irq); |
| |
| return ret; |
| } |
| |
| static int fsl_ssi_remove(struct platform_device *pdev) |
| { |
| struct fsl_ssi_private *ssi_private = dev_get_drvdata(&pdev->dev); |
| |
| fsl_ssi_debugfs_remove(&ssi_private->dbg_stats); |
| |
| if (!ssi_private->new_binding) |
| platform_device_unregister(ssi_private->pdev); |
| snd_soc_unregister_component(&pdev->dev); |
| if (ssi_private->ssi_on_imx) { |
| if (!IS_ERR(ssi_private->baudclk)) |
| clk_disable_unprepare(ssi_private->baudclk); |
| clk_disable_unprepare(ssi_private->clk); |
| } |
| if (ssi_private->irq_stats) |
| irq_dispose_mapping(ssi_private->irq); |
| |
| return 0; |
| } |
| |
| static struct platform_driver fsl_ssi_driver = { |
| .driver = { |
| .name = "fsl-ssi-dai", |
| .owner = THIS_MODULE, |
| .of_match_table = fsl_ssi_ids, |
| }, |
| .probe = fsl_ssi_probe, |
| .remove = fsl_ssi_remove, |
| }; |
| |
| module_platform_driver(fsl_ssi_driver); |
| |
| MODULE_ALIAS("platform:fsl-ssi-dai"); |
| MODULE_AUTHOR("Timur Tabi <timur@freescale.com>"); |
| MODULE_DESCRIPTION("Freescale Synchronous Serial Interface (SSI) ASoC Driver"); |
| MODULE_LICENSE("GPL v2"); |