blob: 2e5c545f5040d8fd6613d7f461e0148c0e81ece6 [file] [log] [blame]
/*
* Copyright (C) 2013 STMicroelectronics (R&D) Limited.
* Authors:
* Srinivas Kandagatla <srinivas.kandagatla@st.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/init.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/err.h>
#include <linux/io.h>
#include <linux/of.h>
#include <linux/of_irq.h>
#include <linux/of_gpio.h>
#include <linux/of_address.h>
#include <linux/regmap.h>
#include <linux/mfd/syscon.h>
#include <linux/pinctrl/pinctrl.h>
#include <linux/pinctrl/pinmux.h>
#include <linux/pinctrl/pinconf.h>
#include <linux/platform_device.h>
#include "core.h"
/* PIO Block registers */
/* PIO output */
#define REG_PIO_POUT 0x00
/* Set bits of POUT */
#define REG_PIO_SET_POUT 0x04
/* Clear bits of POUT */
#define REG_PIO_CLR_POUT 0x08
/* PIO input */
#define REG_PIO_PIN 0x10
/* PIO configuration */
#define REG_PIO_PC(n) (0x20 + (n) * 0x10)
/* Set bits of PC[2:0] */
#define REG_PIO_SET_PC(n) (0x24 + (n) * 0x10)
/* Clear bits of PC[2:0] */
#define REG_PIO_CLR_PC(n) (0x28 + (n) * 0x10)
/* PIO input comparison */
#define REG_PIO_PCOMP 0x50
/* Set bits of PCOMP */
#define REG_PIO_SET_PCOMP 0x54
/* Clear bits of PCOMP */
#define REG_PIO_CLR_PCOMP 0x58
/* PIO input comparison mask */
#define REG_PIO_PMASK 0x60
/* Set bits of PMASK */
#define REG_PIO_SET_PMASK 0x64
/* Clear bits of PMASK */
#define REG_PIO_CLR_PMASK 0x68
#define ST_GPIO_DIRECTION_BIDIR 0x1
#define ST_GPIO_DIRECTION_OUT 0x2
#define ST_GPIO_DIRECTION_IN 0x4
/**
* Packed style retime configuration.
* There are two registers cfg0 and cfg1 in this style for each bank.
* Each field in this register is 8 bit corresponding to 8 pins in the bank.
*/
#define RT_P_CFGS_PER_BANK 2
#define RT_P_CFG0_CLK1NOTCLK0_FIELD(reg) REG_FIELD(reg, 0, 7)
#define RT_P_CFG0_DELAY_0_FIELD(reg) REG_FIELD(reg, 16, 23)
#define RT_P_CFG0_DELAY_1_FIELD(reg) REG_FIELD(reg, 24, 31)
#define RT_P_CFG1_INVERTCLK_FIELD(reg) REG_FIELD(reg, 0, 7)
#define RT_P_CFG1_RETIME_FIELD(reg) REG_FIELD(reg, 8, 15)
#define RT_P_CFG1_CLKNOTDATA_FIELD(reg) REG_FIELD(reg, 16, 23)
#define RT_P_CFG1_DOUBLE_EDGE_FIELD(reg) REG_FIELD(reg, 24, 31)
/**
* Dedicated style retime Configuration register
* each register is dedicated per pin.
*/
#define RT_D_CFGS_PER_BANK 8
#define RT_D_CFG_CLK_SHIFT 0
#define RT_D_CFG_CLK_MASK (0x3 << 0)
#define RT_D_CFG_CLKNOTDATA_SHIFT 2
#define RT_D_CFG_CLKNOTDATA_MASK BIT(2)
#define RT_D_CFG_DELAY_SHIFT 3
#define RT_D_CFG_DELAY_MASK (0xf << 3)
#define RT_D_CFG_DELAY_INNOTOUT_SHIFT 7
#define RT_D_CFG_DELAY_INNOTOUT_MASK BIT(7)
#define RT_D_CFG_DOUBLE_EDGE_SHIFT 8
#define RT_D_CFG_DOUBLE_EDGE_MASK BIT(8)
#define RT_D_CFG_INVERTCLK_SHIFT 9
#define RT_D_CFG_INVERTCLK_MASK BIT(9)
#define RT_D_CFG_RETIME_SHIFT 10
#define RT_D_CFG_RETIME_MASK BIT(10)
/*
* Pinconf is represented in an opaque unsigned long variable.
* Below is the bit allocation details for each possible configuration.
* All the bit fields can be encapsulated into four variables
* (direction, retime-type, retime-clk, retime-delay)
*
* +----------------+
*[31:28]| reserved-3 |
* +----------------+-------------
*[27] | oe | |
* +----------------+ v
*[26] | pu | [Direction ]
* +----------------+ ^
*[25] | od | |
* +----------------+-------------
*[24] | reserved-2 |
* +----------------+-------------
*[23] | retime | |
* +----------------+ |
*[22] | retime-invclk | |
* +----------------+ v
*[21] |retime-clknotdat| [Retime-type ]
* +----------------+ ^
*[20] | retime-de | |
* +----------------+-------------
*[19:18]| retime-clk |------>[Retime-Clk ]
* +----------------+
*[17:16]| reserved-1 |
* +----------------+
*[15..0]| retime-delay |------>[Retime Delay]
* +----------------+
*/
#define ST_PINCONF_UNPACK(conf, param)\
((conf >> ST_PINCONF_ ##param ##_SHIFT) \
& ST_PINCONF_ ##param ##_MASK)
#define ST_PINCONF_PACK(conf, val, param) (conf |=\
((val & ST_PINCONF_ ##param ##_MASK) << \
ST_PINCONF_ ##param ##_SHIFT))
/* Output enable */
#define ST_PINCONF_OE_MASK 0x1
#define ST_PINCONF_OE_SHIFT 27
#define ST_PINCONF_OE BIT(27)
#define ST_PINCONF_UNPACK_OE(conf) ST_PINCONF_UNPACK(conf, OE)
#define ST_PINCONF_PACK_OE(conf) ST_PINCONF_PACK(conf, 1, OE)
/* Pull Up */
#define ST_PINCONF_PU_MASK 0x1
#define ST_PINCONF_PU_SHIFT 26
#define ST_PINCONF_PU BIT(26)
#define ST_PINCONF_UNPACK_PU(conf) ST_PINCONF_UNPACK(conf, PU)
#define ST_PINCONF_PACK_PU(conf) ST_PINCONF_PACK(conf, 1, PU)
/* Open Drain */
#define ST_PINCONF_OD_MASK 0x1
#define ST_PINCONF_OD_SHIFT 25
#define ST_PINCONF_OD BIT(25)
#define ST_PINCONF_UNPACK_OD(conf) ST_PINCONF_UNPACK(conf, OD)
#define ST_PINCONF_PACK_OD(conf) ST_PINCONF_PACK(conf, 1, OD)
#define ST_PINCONF_RT_MASK 0x1
#define ST_PINCONF_RT_SHIFT 23
#define ST_PINCONF_RT BIT(23)
#define ST_PINCONF_UNPACK_RT(conf) ST_PINCONF_UNPACK(conf, RT)
#define ST_PINCONF_PACK_RT(conf) ST_PINCONF_PACK(conf, 1, RT)
#define ST_PINCONF_RT_INVERTCLK_MASK 0x1
#define ST_PINCONF_RT_INVERTCLK_SHIFT 22
#define ST_PINCONF_RT_INVERTCLK BIT(22)
#define ST_PINCONF_UNPACK_RT_INVERTCLK(conf) \
ST_PINCONF_UNPACK(conf, RT_INVERTCLK)
#define ST_PINCONF_PACK_RT_INVERTCLK(conf) \
ST_PINCONF_PACK(conf, 1, RT_INVERTCLK)
#define ST_PINCONF_RT_CLKNOTDATA_MASK 0x1
#define ST_PINCONF_RT_CLKNOTDATA_SHIFT 21
#define ST_PINCONF_RT_CLKNOTDATA BIT(21)
#define ST_PINCONF_UNPACK_RT_CLKNOTDATA(conf) \
ST_PINCONF_UNPACK(conf, RT_CLKNOTDATA)
#define ST_PINCONF_PACK_RT_CLKNOTDATA(conf) \
ST_PINCONF_PACK(conf, 1, RT_CLKNOTDATA)
#define ST_PINCONF_RT_DOUBLE_EDGE_MASK 0x1
#define ST_PINCONF_RT_DOUBLE_EDGE_SHIFT 20
#define ST_PINCONF_RT_DOUBLE_EDGE BIT(20)
#define ST_PINCONF_UNPACK_RT_DOUBLE_EDGE(conf) \
ST_PINCONF_UNPACK(conf, RT_DOUBLE_EDGE)
#define ST_PINCONF_PACK_RT_DOUBLE_EDGE(conf) \
ST_PINCONF_PACK(conf, 1, RT_DOUBLE_EDGE)
#define ST_PINCONF_RT_CLK_MASK 0x3
#define ST_PINCONF_RT_CLK_SHIFT 18
#define ST_PINCONF_RT_CLK BIT(18)
#define ST_PINCONF_UNPACK_RT_CLK(conf) ST_PINCONF_UNPACK(conf, RT_CLK)
#define ST_PINCONF_PACK_RT_CLK(conf, val) ST_PINCONF_PACK(conf, val, RT_CLK)
/* RETIME_DELAY in Pico Secs */
#define ST_PINCONF_RT_DELAY_MASK 0xffff
#define ST_PINCONF_RT_DELAY_SHIFT 0
#define ST_PINCONF_UNPACK_RT_DELAY(conf) ST_PINCONF_UNPACK(conf, RT_DELAY)
#define ST_PINCONF_PACK_RT_DELAY(conf, val) \
ST_PINCONF_PACK(conf, val, RT_DELAY)
#define ST_GPIO_PINS_PER_BANK (8)
#define OF_GPIO_ARGS_MIN (4)
#define OF_RT_ARGS_MIN (2)
#define gpio_range_to_bank(chip) \
container_of(chip, struct st_gpio_bank, range)
#define pc_to_bank(pc) \
container_of(pc, struct st_gpio_bank, pc)
enum st_retime_style {
st_retime_style_none,
st_retime_style_packed,
st_retime_style_dedicated,
};
struct st_retime_dedicated {
struct regmap_field *rt[ST_GPIO_PINS_PER_BANK];
};
struct st_retime_packed {
struct regmap_field *clk1notclk0;
struct regmap_field *delay_0;
struct regmap_field *delay_1;
struct regmap_field *invertclk;
struct regmap_field *retime;
struct regmap_field *clknotdata;
struct regmap_field *double_edge;
};
struct st_pio_control {
u32 rt_pin_mask;
struct regmap_field *alt, *oe, *pu, *od;
/* retiming */
union {
struct st_retime_packed rt_p;
struct st_retime_dedicated rt_d;
} rt;
};
struct st_pctl_data {
const enum st_retime_style rt_style;
const unsigned int *input_delays;
const int ninput_delays;
const unsigned int *output_delays;
const int noutput_delays;
/* register offset information */
const int alt, oe, pu, od, rt;
};
struct st_pinconf {
int pin;
const char *name;
unsigned long config;
int altfunc;
};
struct st_pmx_func {
const char *name;
const char **groups;
unsigned ngroups;
};
struct st_pctl_group {
const char *name;
unsigned int *pins;
unsigned npins;
struct st_pinconf *pin_conf;
};
/*
* Edge triggers are not supported at hardware level, it is supported by
* software by exploiting the level trigger support in hardware.
* Software uses a virtual register (EDGE_CONF) for edge trigger configuration
* of each gpio pin in a GPIO bank.
*
* Each bank has a 32 bit EDGE_CONF register which is divided in to 8 parts of
* 4-bits. Each 4-bit space is allocated for each pin in a gpio bank.
*
* bit allocation per pin is:
* Bits: [0 - 3] | [4 - 7] [8 - 11] ... ... ... ... [ 28 - 31]
* --------------------------------------------------------
* | pin-0 | pin-2 | pin-3 | ... ... ... ... | pin -7 |
* --------------------------------------------------------
*
* A pin can have one of following the values in its edge configuration field.
*
* ------- ----------------------------
* [0-3] - Description
* ------- ----------------------------
* 0000 - No edge IRQ.
* 0001 - Falling edge IRQ.
* 0010 - Rising edge IRQ.
* 0011 - Rising and Falling edge IRQ.
* ------- ----------------------------
*/
#define ST_IRQ_EDGE_CONF_BITS_PER_PIN 4
#define ST_IRQ_EDGE_MASK 0xf
#define ST_IRQ_EDGE_FALLING BIT(0)
#define ST_IRQ_EDGE_RISING BIT(1)
#define ST_IRQ_EDGE_BOTH (BIT(0) | BIT(1))
#define ST_IRQ_RISING_EDGE_CONF(pin) \
(ST_IRQ_EDGE_RISING << (pin * ST_IRQ_EDGE_CONF_BITS_PER_PIN))
#define ST_IRQ_FALLING_EDGE_CONF(pin) \
(ST_IRQ_EDGE_FALLING << (pin * ST_IRQ_EDGE_CONF_BITS_PER_PIN))
#define ST_IRQ_BOTH_EDGE_CONF(pin) \
(ST_IRQ_EDGE_BOTH << (pin * ST_IRQ_EDGE_CONF_BITS_PER_PIN))
#define ST_IRQ_EDGE_CONF(conf, pin) \
(conf >> (pin * ST_IRQ_EDGE_CONF_BITS_PER_PIN) & ST_IRQ_EDGE_MASK)
struct st_gpio_bank {
struct gpio_chip gpio_chip;
struct pinctrl_gpio_range range;
void __iomem *base;
struct st_pio_control pc;
unsigned long irq_edge_conf;
spinlock_t lock;
};
struct st_pinctrl {
struct device *dev;
struct pinctrl_dev *pctl;
struct st_gpio_bank *banks;
int nbanks;
struct st_pmx_func *functions;
int nfunctions;
struct st_pctl_group *groups;
int ngroups;
struct regmap *regmap;
const struct st_pctl_data *data;
void __iomem *irqmux_base;
};
/* SOC specific data */
/* STiH415 data */
static const unsigned int stih415_input_delays[] = {0, 500, 1000, 1500};
static const unsigned int stih415_output_delays[] = {0, 1000, 2000, 3000};
#define STIH415_PCTRL_COMMON_DATA \
.rt_style = st_retime_style_packed, \
.input_delays = stih415_input_delays, \
.ninput_delays = ARRAY_SIZE(stih415_input_delays), \
.output_delays = stih415_output_delays, \
.noutput_delays = ARRAY_SIZE(stih415_output_delays)
static const struct st_pctl_data stih415_sbc_data = {
STIH415_PCTRL_COMMON_DATA,
.alt = 0, .oe = 5, .pu = 7, .od = 9, .rt = 16,
};
static const struct st_pctl_data stih415_front_data = {
STIH415_PCTRL_COMMON_DATA,
.alt = 0, .oe = 8, .pu = 10, .od = 12, .rt = 16,
};
static const struct st_pctl_data stih415_rear_data = {
STIH415_PCTRL_COMMON_DATA,
.alt = 0, .oe = 6, .pu = 8, .od = 10, .rt = 38,
};
static const struct st_pctl_data stih415_left_data = {
STIH415_PCTRL_COMMON_DATA,
.alt = 0, .oe = 3, .pu = 4, .od = 5, .rt = 6,
};
static const struct st_pctl_data stih415_right_data = {
STIH415_PCTRL_COMMON_DATA,
.alt = 0, .oe = 5, .pu = 7, .od = 9, .rt = 11,
};
/* STiH416 data */
static const unsigned int stih416_delays[] = {0, 300, 500, 750, 1000, 1250,
1500, 1750, 2000, 2250, 2500, 2750, 3000, 3250 };
static const struct st_pctl_data stih416_data = {
.rt_style = st_retime_style_dedicated,
.input_delays = stih416_delays,
.ninput_delays = ARRAY_SIZE(stih416_delays),
.output_delays = stih416_delays,
.noutput_delays = ARRAY_SIZE(stih416_delays),
.alt = 0, .oe = 40, .pu = 50, .od = 60, .rt = 100,
};
static const struct st_pctl_data stih407_flashdata = {
.rt_style = st_retime_style_none,
.input_delays = stih416_delays,
.ninput_delays = ARRAY_SIZE(stih416_delays),
.output_delays = stih416_delays,
.noutput_delays = ARRAY_SIZE(stih416_delays),
.alt = 0,
.oe = -1, /* Not Available */
.pu = -1, /* Not Available */
.od = 60,
.rt = 100,
};
static struct st_pio_control *st_get_pio_control(
struct pinctrl_dev *pctldev, int pin)
{
struct pinctrl_gpio_range *range =
pinctrl_find_gpio_range_from_pin(pctldev, pin);
struct st_gpio_bank *bank = gpio_range_to_bank(range);
return &bank->pc;
}
/* Low level functions.. */
static inline int st_gpio_bank(int gpio)
{
return gpio/ST_GPIO_PINS_PER_BANK;
}
static inline int st_gpio_pin(int gpio)
{
return gpio%ST_GPIO_PINS_PER_BANK;
}
static void st_pinconf_set_config(struct st_pio_control *pc,
int pin, unsigned long config)
{
struct regmap_field *output_enable = pc->oe;
struct regmap_field *pull_up = pc->pu;
struct regmap_field *open_drain = pc->od;
unsigned int oe_value, pu_value, od_value;
unsigned long mask = BIT(pin);
if (output_enable) {
regmap_field_read(output_enable, &oe_value);
oe_value &= ~mask;
if (config & ST_PINCONF_OE)
oe_value |= mask;
regmap_field_write(output_enable, oe_value);
}
if (pull_up) {
regmap_field_read(pull_up, &pu_value);
pu_value &= ~mask;
if (config & ST_PINCONF_PU)
pu_value |= mask;
regmap_field_write(pull_up, pu_value);
}
if (open_drain) {
regmap_field_read(open_drain, &od_value);
od_value &= ~mask;
if (config & ST_PINCONF_OD)
od_value |= mask;
regmap_field_write(open_drain, od_value);
}
}
static void st_pctl_set_function(struct st_pio_control *pc,
int pin_id, int function)
{
struct regmap_field *alt = pc->alt;
unsigned int val;
int pin = st_gpio_pin(pin_id);
int offset = pin * 4;
if (!alt)
return;
regmap_field_read(alt, &val);
val &= ~(0xf << offset);
val |= function << offset;
regmap_field_write(alt, val);
}
static unsigned int st_pctl_get_pin_function(struct st_pio_control *pc, int pin)
{
struct regmap_field *alt = pc->alt;
unsigned int val;
int offset = pin * 4;
if (!alt)
return 0;
regmap_field_read(alt, &val);
return (val >> offset) & 0xf;
}
static unsigned long st_pinconf_delay_to_bit(unsigned int delay,
const struct st_pctl_data *data, unsigned long config)
{
const unsigned int *delay_times;
int num_delay_times, i, closest_index = -1;
unsigned int closest_divergence = UINT_MAX;
if (ST_PINCONF_UNPACK_OE(config)) {
delay_times = data->output_delays;
num_delay_times = data->noutput_delays;
} else {
delay_times = data->input_delays;
num_delay_times = data->ninput_delays;
}
for (i = 0; i < num_delay_times; i++) {
unsigned int divergence = abs(delay - delay_times[i]);
if (divergence == 0)
return i;
if (divergence < closest_divergence) {
closest_divergence = divergence;
closest_index = i;
}
}
pr_warn("Attempt to set delay %d, closest available %d\n",
delay, delay_times[closest_index]);
return closest_index;
}
static unsigned long st_pinconf_bit_to_delay(unsigned int index,
const struct st_pctl_data *data, unsigned long output)
{
const unsigned int *delay_times;
int num_delay_times;
if (output) {
delay_times = data->output_delays;
num_delay_times = data->noutput_delays;
} else {
delay_times = data->input_delays;
num_delay_times = data->ninput_delays;
}
if (index < num_delay_times) {
return delay_times[index];
} else {
pr_warn("Delay not found in/out delay list\n");
return 0;
}
}
static void st_regmap_field_bit_set_clear_pin(struct regmap_field *field,
int enable, int pin)
{
unsigned int val = 0;
regmap_field_read(field, &val);
if (enable)
val |= BIT(pin);
else
val &= ~BIT(pin);
regmap_field_write(field, val);
}
static void st_pinconf_set_retime_packed(struct st_pinctrl *info,
struct st_pio_control *pc, unsigned long config, int pin)
{
const struct st_pctl_data *data = info->data;
struct st_retime_packed *rt_p = &pc->rt.rt_p;
unsigned int delay;
st_regmap_field_bit_set_clear_pin(rt_p->clk1notclk0,
ST_PINCONF_UNPACK_RT_CLK(config), pin);
st_regmap_field_bit_set_clear_pin(rt_p->clknotdata,
ST_PINCONF_UNPACK_RT_CLKNOTDATA(config), pin);
st_regmap_field_bit_set_clear_pin(rt_p->double_edge,
ST_PINCONF_UNPACK_RT_DOUBLE_EDGE(config), pin);
st_regmap_field_bit_set_clear_pin(rt_p->invertclk,
ST_PINCONF_UNPACK_RT_INVERTCLK(config), pin);
st_regmap_field_bit_set_clear_pin(rt_p->retime,
ST_PINCONF_UNPACK_RT(config), pin);
delay = st_pinconf_delay_to_bit(ST_PINCONF_UNPACK_RT_DELAY(config),
data, config);
/* 2 bit delay, lsb */
st_regmap_field_bit_set_clear_pin(rt_p->delay_0, delay & 0x1, pin);
/* 2 bit delay, msb */
st_regmap_field_bit_set_clear_pin(rt_p->delay_1, delay & 0x2, pin);
}
static void st_pinconf_set_retime_dedicated(struct st_pinctrl *info,
struct st_pio_control *pc, unsigned long config, int pin)
{
int input = ST_PINCONF_UNPACK_OE(config) ? 0 : 1;
int clk = ST_PINCONF_UNPACK_RT_CLK(config);
int clknotdata = ST_PINCONF_UNPACK_RT_CLKNOTDATA(config);
int double_edge = ST_PINCONF_UNPACK_RT_DOUBLE_EDGE(config);
int invertclk = ST_PINCONF_UNPACK_RT_INVERTCLK(config);
int retime = ST_PINCONF_UNPACK_RT(config);
unsigned long delay = st_pinconf_delay_to_bit(
ST_PINCONF_UNPACK_RT_DELAY(config),
info->data, config);
struct st_retime_dedicated *rt_d = &pc->rt.rt_d;
unsigned long retime_config =
((clk) << RT_D_CFG_CLK_SHIFT) |
((delay) << RT_D_CFG_DELAY_SHIFT) |
((input) << RT_D_CFG_DELAY_INNOTOUT_SHIFT) |
((retime) << RT_D_CFG_RETIME_SHIFT) |
((clknotdata) << RT_D_CFG_CLKNOTDATA_SHIFT) |
((invertclk) << RT_D_CFG_INVERTCLK_SHIFT) |
((double_edge) << RT_D_CFG_DOUBLE_EDGE_SHIFT);
regmap_field_write(rt_d->rt[pin], retime_config);
}
static void st_pinconf_get_direction(struct st_pio_control *pc,
int pin, unsigned long *config)
{
unsigned int oe_value, pu_value, od_value;
if (pc->oe) {
regmap_field_read(pc->oe, &oe_value);
if (oe_value & BIT(pin))
ST_PINCONF_PACK_OE(*config);
}
if (pc->pu) {
regmap_field_read(pc->pu, &pu_value);
if (pu_value & BIT(pin))
ST_PINCONF_PACK_PU(*config);
}
if (pc->od) {
regmap_field_read(pc->od, &od_value);
if (od_value & BIT(pin))
ST_PINCONF_PACK_OD(*config);
}
}
static int st_pinconf_get_retime_packed(struct st_pinctrl *info,
struct st_pio_control *pc, int pin, unsigned long *config)
{
const struct st_pctl_data *data = info->data;
struct st_retime_packed *rt_p = &pc->rt.rt_p;
unsigned int delay_bits, delay, delay0, delay1, val;
int output = ST_PINCONF_UNPACK_OE(*config);
if (!regmap_field_read(rt_p->retime, &val) && (val & BIT(pin)))
ST_PINCONF_PACK_RT(*config);
if (!regmap_field_read(rt_p->clk1notclk0, &val) && (val & BIT(pin)))
ST_PINCONF_PACK_RT_CLK(*config, 1);
if (!regmap_field_read(rt_p->clknotdata, &val) && (val & BIT(pin)))
ST_PINCONF_PACK_RT_CLKNOTDATA(*config);
if (!regmap_field_read(rt_p->double_edge, &val) && (val & BIT(pin)))
ST_PINCONF_PACK_RT_DOUBLE_EDGE(*config);
if (!regmap_field_read(rt_p->invertclk, &val) && (val & BIT(pin)))
ST_PINCONF_PACK_RT_INVERTCLK(*config);
regmap_field_read(rt_p->delay_0, &delay0);
regmap_field_read(rt_p->delay_1, &delay1);
delay_bits = (((delay1 & BIT(pin)) ? 1 : 0) << 1) |
(((delay0 & BIT(pin)) ? 1 : 0));
delay = st_pinconf_bit_to_delay(delay_bits, data, output);
ST_PINCONF_PACK_RT_DELAY(*config, delay);
return 0;
}
static int st_pinconf_get_retime_dedicated(struct st_pinctrl *info,
struct st_pio_control *pc, int pin, unsigned long *config)
{
unsigned int value;
unsigned long delay_bits, delay, rt_clk;
int output = ST_PINCONF_UNPACK_OE(*config);
struct st_retime_dedicated *rt_d = &pc->rt.rt_d;
regmap_field_read(rt_d->rt[pin], &value);
rt_clk = (value & RT_D_CFG_CLK_MASK) >> RT_D_CFG_CLK_SHIFT;
ST_PINCONF_PACK_RT_CLK(*config, rt_clk);
delay_bits = (value & RT_D_CFG_DELAY_MASK) >> RT_D_CFG_DELAY_SHIFT;
delay = st_pinconf_bit_to_delay(delay_bits, info->data, output);
ST_PINCONF_PACK_RT_DELAY(*config, delay);
if (value & RT_D_CFG_CLKNOTDATA_MASK)
ST_PINCONF_PACK_RT_CLKNOTDATA(*config);
if (value & RT_D_CFG_DOUBLE_EDGE_MASK)
ST_PINCONF_PACK_RT_DOUBLE_EDGE(*config);
if (value & RT_D_CFG_INVERTCLK_MASK)
ST_PINCONF_PACK_RT_INVERTCLK(*config);
if (value & RT_D_CFG_RETIME_MASK)
ST_PINCONF_PACK_RT(*config);
return 0;
}
/* GPIO related functions */
static inline void __st_gpio_set(struct st_gpio_bank *bank,
unsigned offset, int value)
{
if (value)
writel(BIT(offset), bank->base + REG_PIO_SET_POUT);
else
writel(BIT(offset), bank->base + REG_PIO_CLR_POUT);
}
static void st_gpio_direction(struct st_gpio_bank *bank,
unsigned int gpio, unsigned int direction)
{
int offset = st_gpio_pin(gpio);
int i = 0;
/**
* There are three configuration registers (PIOn_PC0, PIOn_PC1
* and PIOn_PC2) for each port. These are used to configure the
* PIO port pins. Each pin can be configured as an input, output,
* bidirectional, or alternative function pin. Three bits, one bit
* from each of the three registers, configure the corresponding bit of
* the port. Valid bit settings is:
*
* PC2 PC1 PC0 Direction.
* 0 0 0 [Input Weak pull-up]
* 0 0 or 1 1 [Bidirection]
* 0 1 0 [Output]
* 1 0 0 [Input]
*
* PIOn_SET_PC and PIOn_CLR_PC registers are used to set and clear bits
* individually.
*/
for (i = 0; i <= 2; i++) {
if (direction & BIT(i))
writel(BIT(offset), bank->base + REG_PIO_SET_PC(i));
else
writel(BIT(offset), bank->base + REG_PIO_CLR_PC(i));
}
}
static int st_gpio_get(struct gpio_chip *chip, unsigned offset)
{
struct st_gpio_bank *bank = gpiochip_get_data(chip);
return !!(readl(bank->base + REG_PIO_PIN) & BIT(offset));
}
static void st_gpio_set(struct gpio_chip *chip, unsigned offset, int value)
{
struct st_gpio_bank *bank = gpiochip_get_data(chip);
__st_gpio_set(bank, offset, value);
}
static int st_gpio_direction_input(struct gpio_chip *chip, unsigned offset)
{
pinctrl_gpio_direction_input(chip->base + offset);
return 0;
}
static int st_gpio_direction_output(struct gpio_chip *chip,
unsigned offset, int value)
{
struct st_gpio_bank *bank = gpiochip_get_data(chip);
__st_gpio_set(bank, offset, value);
pinctrl_gpio_direction_output(chip->base + offset);
return 0;
}
static int st_gpio_get_direction(struct gpio_chip *chip, unsigned offset)
{
struct st_gpio_bank *bank = gpiochip_get_data(chip);
struct st_pio_control pc = bank->pc;
unsigned long config;
unsigned int direction = 0;
unsigned int function;
unsigned int value;
int i = 0;
/* Alternate function direction is handled by Pinctrl */
function = st_pctl_get_pin_function(&pc, offset);
if (function) {
st_pinconf_get_direction(&pc, offset, &config);
return !ST_PINCONF_UNPACK_OE(config);
}
/*
* GPIO direction is handled differently
* - See st_gpio_direction() above for an explanation
*/
for (i = 0; i <= 2; i++) {
value = readl(bank->base + REG_PIO_PC(i));
direction |= ((value >> offset) & 0x1) << i;
}
return (direction == ST_GPIO_DIRECTION_IN);
}
/* Pinctrl Groups */
static int st_pctl_get_groups_count(struct pinctrl_dev *pctldev)
{
struct st_pinctrl *info = pinctrl_dev_get_drvdata(pctldev);
return info->ngroups;
}
static const char *st_pctl_get_group_name(struct pinctrl_dev *pctldev,
unsigned selector)
{
struct st_pinctrl *info = pinctrl_dev_get_drvdata(pctldev);
return info->groups[selector].name;
}
static int st_pctl_get_group_pins(struct pinctrl_dev *pctldev,
unsigned selector, const unsigned **pins, unsigned *npins)
{
struct st_pinctrl *info = pinctrl_dev_get_drvdata(pctldev);
if (selector >= info->ngroups)
return -EINVAL;
*pins = info->groups[selector].pins;
*npins = info->groups[selector].npins;
return 0;
}
static inline const struct st_pctl_group *st_pctl_find_group_by_name(
const struct st_pinctrl *info, const char *name)
{
int i;
for (i = 0; i < info->ngroups; i++) {
if (!strcmp(info->groups[i].name, name))
return &info->groups[i];
}
return NULL;
}
static int st_pctl_dt_node_to_map(struct pinctrl_dev *pctldev,
struct device_node *np, struct pinctrl_map **map, unsigned *num_maps)
{
struct st_pinctrl *info = pinctrl_dev_get_drvdata(pctldev);
const struct st_pctl_group *grp;
struct pinctrl_map *new_map;
struct device_node *parent;
int map_num, i;
grp = st_pctl_find_group_by_name(info, np->name);
if (!grp) {
dev_err(info->dev, "unable to find group for node %s\n",
np->name);
return -EINVAL;
}
map_num = grp->npins + 1;
new_map = devm_kzalloc(pctldev->dev,
sizeof(*new_map) * map_num, GFP_KERNEL);
if (!new_map)
return -ENOMEM;
parent = of_get_parent(np);
if (!parent) {
devm_kfree(pctldev->dev, new_map);
return -EINVAL;
}
*map = new_map;
*num_maps = map_num;
new_map[0].type = PIN_MAP_TYPE_MUX_GROUP;
new_map[0].data.mux.function = parent->name;
new_map[0].data.mux.group = np->name;
of_node_put(parent);
/* create config map per pin */
new_map++;
for (i = 0; i < grp->npins; i++) {
new_map[i].type = PIN_MAP_TYPE_CONFIGS_PIN;
new_map[i].data.configs.group_or_pin =
pin_get_name(pctldev, grp->pins[i]);
new_map[i].data.configs.configs = &grp->pin_conf[i].config;
new_map[i].data.configs.num_configs = 1;
}
dev_info(pctldev->dev, "maps: function %s group %s num %d\n",
(*map)->data.mux.function, grp->name, map_num);
return 0;
}
static void st_pctl_dt_free_map(struct pinctrl_dev *pctldev,
struct pinctrl_map *map, unsigned num_maps)
{
}
static struct pinctrl_ops st_pctlops = {
.get_groups_count = st_pctl_get_groups_count,
.get_group_pins = st_pctl_get_group_pins,
.get_group_name = st_pctl_get_group_name,
.dt_node_to_map = st_pctl_dt_node_to_map,
.dt_free_map = st_pctl_dt_free_map,
};
/* Pinmux */
static int st_pmx_get_funcs_count(struct pinctrl_dev *pctldev)
{
struct st_pinctrl *info = pinctrl_dev_get_drvdata(pctldev);
return info->nfunctions;
}
static const char *st_pmx_get_fname(struct pinctrl_dev *pctldev,
unsigned selector)
{
struct st_pinctrl *info = pinctrl_dev_get_drvdata(pctldev);
return info->functions[selector].name;
}
static int st_pmx_get_groups(struct pinctrl_dev *pctldev,
unsigned selector, const char * const **grps, unsigned * const ngrps)
{
struct st_pinctrl *info = pinctrl_dev_get_drvdata(pctldev);
*grps = info->functions[selector].groups;
*ngrps = info->functions[selector].ngroups;
return 0;
}
static int st_pmx_set_mux(struct pinctrl_dev *pctldev, unsigned fselector,
unsigned group)
{
struct st_pinctrl *info = pinctrl_dev_get_drvdata(pctldev);
struct st_pinconf *conf = info->groups[group].pin_conf;
struct st_pio_control *pc;
int i;
for (i = 0; i < info->groups[group].npins; i++) {
pc = st_get_pio_control(pctldev, conf[i].pin);
st_pctl_set_function(pc, conf[i].pin, conf[i].altfunc);
}
return 0;
}
static int st_pmx_set_gpio_direction(struct pinctrl_dev *pctldev,
struct pinctrl_gpio_range *range, unsigned gpio,
bool input)
{
struct st_gpio_bank *bank = gpio_range_to_bank(range);
/*
* When a PIO bank is used in its primary function mode (altfunc = 0)
* Output Enable (OE), Open Drain(OD), and Pull Up (PU)
* for the primary PIO functions are driven by the related PIO block
*/
st_pctl_set_function(&bank->pc, gpio, 0);
st_gpio_direction(bank, gpio, input ?
ST_GPIO_DIRECTION_IN : ST_GPIO_DIRECTION_OUT);
return 0;
}
static struct pinmux_ops st_pmxops = {
.get_functions_count = st_pmx_get_funcs_count,
.get_function_name = st_pmx_get_fname,
.get_function_groups = st_pmx_get_groups,
.set_mux = st_pmx_set_mux,
.gpio_set_direction = st_pmx_set_gpio_direction,
.strict = true,
};
/* Pinconf */
static void st_pinconf_get_retime(struct st_pinctrl *info,
struct st_pio_control *pc, int pin, unsigned long *config)
{
if (info->data->rt_style == st_retime_style_packed)
st_pinconf_get_retime_packed(info, pc, pin, config);
else if (info->data->rt_style == st_retime_style_dedicated)
if ((BIT(pin) & pc->rt_pin_mask))
st_pinconf_get_retime_dedicated(info, pc,
pin, config);
}
static void st_pinconf_set_retime(struct st_pinctrl *info,
struct st_pio_control *pc, int pin, unsigned long config)
{
if (info->data->rt_style == st_retime_style_packed)
st_pinconf_set_retime_packed(info, pc, config, pin);
else if (info->data->rt_style == st_retime_style_dedicated)
if ((BIT(pin) & pc->rt_pin_mask))
st_pinconf_set_retime_dedicated(info, pc,
config, pin);
}
static int st_pinconf_set(struct pinctrl_dev *pctldev, unsigned pin_id,
unsigned long *configs, unsigned num_configs)
{
int pin = st_gpio_pin(pin_id);
struct st_pinctrl *info = pinctrl_dev_get_drvdata(pctldev);
struct st_pio_control *pc = st_get_pio_control(pctldev, pin_id);
int i;
for (i = 0; i < num_configs; i++) {
st_pinconf_set_config(pc, pin, configs[i]);
st_pinconf_set_retime(info, pc, pin, configs[i]);
} /* for each config */
return 0;
}
static int st_pinconf_get(struct pinctrl_dev *pctldev,
unsigned pin_id, unsigned long *config)
{
int pin = st_gpio_pin(pin_id);
struct st_pinctrl *info = pinctrl_dev_get_drvdata(pctldev);
struct st_pio_control *pc = st_get_pio_control(pctldev, pin_id);
*config = 0;
st_pinconf_get_direction(pc, pin, config);
st_pinconf_get_retime(info, pc, pin, config);
return 0;
}
static void st_pinconf_dbg_show(struct pinctrl_dev *pctldev,
struct seq_file *s, unsigned pin_id)
{
struct st_pio_control *pc;
unsigned long config;
unsigned int function;
int offset = st_gpio_pin(pin_id);
char f[16];
mutex_unlock(&pctldev->mutex);
pc = st_get_pio_control(pctldev, pin_id);
st_pinconf_get(pctldev, pin_id, &config);
mutex_lock(&pctldev->mutex);
function = st_pctl_get_pin_function(pc, offset);
if (function)
snprintf(f, 10, "Alt Fn %d", function);
else
snprintf(f, 5, "GPIO");
seq_printf(s, "[OE:%d,PU:%ld,OD:%ld]\t%s\n"
"\t\t[retime:%ld,invclk:%ld,clknotdat:%ld,"
"de:%ld,rt-clk:%ld,rt-delay:%ld]",
!st_gpio_get_direction(&pc_to_bank(pc)->gpio_chip, offset),
ST_PINCONF_UNPACK_PU(config),
ST_PINCONF_UNPACK_OD(config),
f,
ST_PINCONF_UNPACK_RT(config),
ST_PINCONF_UNPACK_RT_INVERTCLK(config),
ST_PINCONF_UNPACK_RT_CLKNOTDATA(config),
ST_PINCONF_UNPACK_RT_DOUBLE_EDGE(config),
ST_PINCONF_UNPACK_RT_CLK(config),
ST_PINCONF_UNPACK_RT_DELAY(config));
}
static struct pinconf_ops st_confops = {
.pin_config_get = st_pinconf_get,
.pin_config_set = st_pinconf_set,
.pin_config_dbg_show = st_pinconf_dbg_show,
};
static void st_pctl_dt_child_count(struct st_pinctrl *info,
struct device_node *np)
{
struct device_node *child;
for_each_child_of_node(np, child) {
if (of_property_read_bool(child, "gpio-controller")) {
info->nbanks++;
} else {
info->nfunctions++;
info->ngroups += of_get_child_count(child);
}
}
}
static int st_pctl_dt_setup_retime_packed(struct st_pinctrl *info,
int bank, struct st_pio_control *pc)
{
struct device *dev = info->dev;
struct regmap *rm = info->regmap;
const struct st_pctl_data *data = info->data;
/* 2 registers per bank */
int reg = (data->rt + bank * RT_P_CFGS_PER_BANK) * 4;
struct st_retime_packed *rt_p = &pc->rt.rt_p;
/* cfg0 */
struct reg_field clk1notclk0 = RT_P_CFG0_CLK1NOTCLK0_FIELD(reg);
struct reg_field delay_0 = RT_P_CFG0_DELAY_0_FIELD(reg);
struct reg_field delay_1 = RT_P_CFG0_DELAY_1_FIELD(reg);
/* cfg1 */
struct reg_field invertclk = RT_P_CFG1_INVERTCLK_FIELD(reg + 4);
struct reg_field retime = RT_P_CFG1_RETIME_FIELD(reg + 4);
struct reg_field clknotdata = RT_P_CFG1_CLKNOTDATA_FIELD(reg + 4);
struct reg_field double_edge = RT_P_CFG1_DOUBLE_EDGE_FIELD(reg + 4);
rt_p->clk1notclk0 = devm_regmap_field_alloc(dev, rm, clk1notclk0);
rt_p->delay_0 = devm_regmap_field_alloc(dev, rm, delay_0);
rt_p->delay_1 = devm_regmap_field_alloc(dev, rm, delay_1);
rt_p->invertclk = devm_regmap_field_alloc(dev, rm, invertclk);
rt_p->retime = devm_regmap_field_alloc(dev, rm, retime);
rt_p->clknotdata = devm_regmap_field_alloc(dev, rm, clknotdata);
rt_p->double_edge = devm_regmap_field_alloc(dev, rm, double_edge);
if (IS_ERR(rt_p->clk1notclk0) || IS_ERR(rt_p->delay_0) ||
IS_ERR(rt_p->delay_1) || IS_ERR(rt_p->invertclk) ||
IS_ERR(rt_p->retime) || IS_ERR(rt_p->clknotdata) ||
IS_ERR(rt_p->double_edge))
return -EINVAL;
return 0;
}
static int st_pctl_dt_setup_retime_dedicated(struct st_pinctrl *info,
int bank, struct st_pio_control *pc)
{
struct device *dev = info->dev;
struct regmap *rm = info->regmap;
const struct st_pctl_data *data = info->data;
/* 8 registers per bank */
int reg_offset = (data->rt + bank * RT_D_CFGS_PER_BANK) * 4;
struct st_retime_dedicated *rt_d = &pc->rt.rt_d;
unsigned int j;
u32 pin_mask = pc->rt_pin_mask;
for (j = 0; j < RT_D_CFGS_PER_BANK; j++) {
if (BIT(j) & pin_mask) {
struct reg_field reg = REG_FIELD(reg_offset, 0, 31);
rt_d->rt[j] = devm_regmap_field_alloc(dev, rm, reg);
if (IS_ERR(rt_d->rt[j]))
return -EINVAL;
reg_offset += 4;
}
}
return 0;
}
static int st_pctl_dt_setup_retime(struct st_pinctrl *info,
int bank, struct st_pio_control *pc)
{
const struct st_pctl_data *data = info->data;
if (data->rt_style == st_retime_style_packed)
return st_pctl_dt_setup_retime_packed(info, bank, pc);
else if (data->rt_style == st_retime_style_dedicated)
return st_pctl_dt_setup_retime_dedicated(info, bank, pc);
return -EINVAL;
}
static struct regmap_field *st_pc_get_value(struct device *dev,
struct regmap *regmap, int bank,
int data, int lsb, int msb)
{
struct reg_field reg = REG_FIELD((data + bank) * 4, lsb, msb);
if (data < 0)
return NULL;
return devm_regmap_field_alloc(dev, regmap, reg);
}
static void st_parse_syscfgs(struct st_pinctrl *info, int bank,
struct device_node *np)
{
const struct st_pctl_data *data = info->data;
/**
* For a given shared register like OE/PU/OD, there are 8 bits per bank
* 0:7 belongs to bank0, 8:15 belongs to bank1 ...
* So each register is shared across 4 banks.
*/
int lsb = (bank%4) * ST_GPIO_PINS_PER_BANK;
int msb = lsb + ST_GPIO_PINS_PER_BANK - 1;
struct st_pio_control *pc = &info->banks[bank].pc;
struct device *dev = info->dev;
struct regmap *regmap = info->regmap;
pc->alt = st_pc_get_value(dev, regmap, bank, data->alt, 0, 31);
pc->oe = st_pc_get_value(dev, regmap, bank/4, data->oe, lsb, msb);
pc->pu = st_pc_get_value(dev, regmap, bank/4, data->pu, lsb, msb);
pc->od = st_pc_get_value(dev, regmap, bank/4, data->od, lsb, msb);
/* retime avaiable for all pins by default */
pc->rt_pin_mask = 0xff;
of_property_read_u32(np, "st,retime-pin-mask", &pc->rt_pin_mask);
st_pctl_dt_setup_retime(info, bank, pc);
return;
}
/*
* Each pin is represented in of the below forms.
* <bank offset mux direction rt_type rt_delay rt_clk>
*/
static int st_pctl_dt_parse_groups(struct device_node *np,
struct st_pctl_group *grp, struct st_pinctrl *info, int idx)
{
/* bank pad direction val altfunction */
const __be32 *list;
struct property *pp;
struct st_pinconf *conf;
struct device_node *pins;
int i = 0, npins = 0, nr_props;
pins = of_get_child_by_name(np, "st,pins");
if (!pins)
return -ENODATA;
for_each_property_of_node(pins, pp) {
/* Skip those we do not want to proceed */
if (!strcmp(pp->name, "name"))
continue;
if (pp && (pp->length/sizeof(__be32)) >= OF_GPIO_ARGS_MIN) {
npins++;
} else {
pr_warn("Invalid st,pins in %s node\n", np->name);
return -EINVAL;
}
}
grp->npins = npins;
grp->name = np->name;
grp->pins = devm_kzalloc(info->dev, npins * sizeof(u32), GFP_KERNEL);
grp->pin_conf = devm_kzalloc(info->dev,
npins * sizeof(*conf), GFP_KERNEL);
if (!grp->pins || !grp->pin_conf)
return -ENOMEM;
/* <bank offset mux direction rt_type rt_delay rt_clk> */
for_each_property_of_node(pins, pp) {
if (!strcmp(pp->name, "name"))
continue;
nr_props = pp->length/sizeof(u32);
list = pp->value;
conf = &grp->pin_conf[i];
/* bank & offset */
be32_to_cpup(list++);
be32_to_cpup(list++);
conf->pin = of_get_named_gpio(pins, pp->name, 0);
conf->name = pp->name;
grp->pins[i] = conf->pin;
/* mux */
conf->altfunc = be32_to_cpup(list++);
conf->config = 0;
/* direction */
conf->config |= be32_to_cpup(list++);
/* rt_type rt_delay rt_clk */
if (nr_props >= OF_GPIO_ARGS_MIN + OF_RT_ARGS_MIN) {
/* rt_type */
conf->config |= be32_to_cpup(list++);
/* rt_delay */
conf->config |= be32_to_cpup(list++);
/* rt_clk */
if (nr_props > OF_GPIO_ARGS_MIN + OF_RT_ARGS_MIN)
conf->config |= be32_to_cpup(list++);
}
i++;
}
of_node_put(pins);
return 0;
}
static int st_pctl_parse_functions(struct device_node *np,
struct st_pinctrl *info, u32 index, int *grp_index)
{
struct device_node *child;
struct st_pmx_func *func;
struct st_pctl_group *grp;
int ret, i;
func = &info->functions[index];
func->name = np->name;
func->ngroups = of_get_child_count(np);
if (func->ngroups == 0) {
dev_err(info->dev, "No groups defined\n");
return -EINVAL;
}
func->groups = devm_kzalloc(info->dev,
func->ngroups * sizeof(char *), GFP_KERNEL);
if (!func->groups)
return -ENOMEM;
i = 0;
for_each_child_of_node(np, child) {
func->groups[i] = child->name;
grp = &info->groups[*grp_index];
*grp_index += 1;
ret = st_pctl_dt_parse_groups(child, grp, info, i++);
if (ret)
return ret;
}
dev_info(info->dev, "Function[%d\t name:%s,\tgroups:%d]\n",
index, func->name, func->ngroups);
return 0;
}
static void st_gpio_irq_mask(struct irq_data *d)
{
struct gpio_chip *gc = irq_data_get_irq_chip_data(d);
struct st_gpio_bank *bank = gpiochip_get_data(gc);
writel(BIT(d->hwirq), bank->base + REG_PIO_CLR_PMASK);
}
static void st_gpio_irq_unmask(struct irq_data *d)
{
struct gpio_chip *gc = irq_data_get_irq_chip_data(d);
struct st_gpio_bank *bank = gpiochip_get_data(gc);
writel(BIT(d->hwirq), bank->base + REG_PIO_SET_PMASK);
}
static int st_gpio_irq_set_type(struct irq_data *d, unsigned type)
{
struct gpio_chip *gc = irq_data_get_irq_chip_data(d);
struct st_gpio_bank *bank = gpiochip_get_data(gc);
unsigned long flags;
int comp, pin = d->hwirq;
u32 val;
u32 pin_edge_conf = 0;
switch (type) {
case IRQ_TYPE_LEVEL_HIGH:
comp = 0;
break;
case IRQ_TYPE_EDGE_FALLING:
comp = 0;
pin_edge_conf = ST_IRQ_FALLING_EDGE_CONF(pin);
break;
case IRQ_TYPE_LEVEL_LOW:
comp = 1;
break;
case IRQ_TYPE_EDGE_RISING:
comp = 1;
pin_edge_conf = ST_IRQ_RISING_EDGE_CONF(pin);
break;
case IRQ_TYPE_EDGE_BOTH:
comp = st_gpio_get(&bank->gpio_chip, pin);
pin_edge_conf = ST_IRQ_BOTH_EDGE_CONF(pin);
break;
default:
return -EINVAL;
}
spin_lock_irqsave(&bank->lock, flags);
bank->irq_edge_conf &= ~(ST_IRQ_EDGE_MASK << (
pin * ST_IRQ_EDGE_CONF_BITS_PER_PIN));
bank->irq_edge_conf |= pin_edge_conf;
spin_unlock_irqrestore(&bank->lock, flags);
val = readl(bank->base + REG_PIO_PCOMP);
val &= ~BIT(pin);
val |= (comp << pin);
writel(val, bank->base + REG_PIO_PCOMP);
return 0;
}
/*
* As edge triggers are not supported at hardware level, it is supported by
* software by exploiting the level trigger support in hardware.
*
* Steps for detection raising edge interrupt in software.
*
* Step 1: CONFIGURE pin to detect level LOW interrupts.
*
* Step 2: DETECT level LOW interrupt and in irqmux/gpio bank interrupt handler,
* if the value of pin is low, then CONFIGURE pin for level HIGH interrupt.
* IGNORE calling the actual interrupt handler for the pin at this stage.
*
* Step 3: DETECT level HIGH interrupt and in irqmux/gpio-bank interrupt handler
* if the value of pin is HIGH, CONFIGURE pin for level LOW interrupt and then
* DISPATCH the interrupt to the interrupt handler of the pin.
*
* step-1 ________ __________
* | | step - 3
* | |
* step -2 |_____|
*
* falling edge is also detected int the same way.
*
*/
static void __gpio_irq_handler(struct st_gpio_bank *bank)
{
unsigned long port_in, port_mask, port_comp, active_irqs;
unsigned long bank_edge_mask, flags;
int n, val, ecfg;
spin_lock_irqsave(&bank->lock, flags);
bank_edge_mask = bank->irq_edge_conf;
spin_unlock_irqrestore(&bank->lock, flags);
for (;;) {
port_in = readl(bank->base + REG_PIO_PIN);
port_comp = readl(bank->base + REG_PIO_PCOMP);
port_mask = readl(bank->base + REG_PIO_PMASK);
active_irqs = (port_in ^ port_comp) & port_mask;
if (active_irqs == 0)
break;
for_each_set_bit(n, &active_irqs, BITS_PER_LONG) {
/* check if we are detecting fake edges ... */
ecfg = ST_IRQ_EDGE_CONF(bank_edge_mask, n);
if (ecfg) {
/* edge detection. */
val = st_gpio_get(&bank->gpio_chip, n);
writel(BIT(n),
val ? bank->base + REG_PIO_SET_PCOMP :
bank->base + REG_PIO_CLR_PCOMP);
if (ecfg != ST_IRQ_EDGE_BOTH &&
!((ecfg & ST_IRQ_EDGE_FALLING) ^ val))
continue;
}
generic_handle_irq(irq_find_mapping(bank->gpio_chip.irqdomain, n));
}
}
}
static void st_gpio_irq_handler(struct irq_desc *desc)
{
/* interrupt dedicated per bank */
struct irq_chip *chip = irq_desc_get_chip(desc);
struct gpio_chip *gc = irq_desc_get_handler_data(desc);
struct st_gpio_bank *bank = gpiochip_get_data(gc);
chained_irq_enter(chip, desc);
__gpio_irq_handler(bank);
chained_irq_exit(chip, desc);
}
static void st_gpio_irqmux_handler(struct irq_desc *desc)
{
struct irq_chip *chip = irq_desc_get_chip(desc);
struct st_pinctrl *info = irq_desc_get_handler_data(desc);
unsigned long status;
int n;
chained_irq_enter(chip, desc);
status = readl(info->irqmux_base);
for_each_set_bit(n, &status, info->nbanks)
__gpio_irq_handler(&info->banks[n]);
chained_irq_exit(chip, desc);
}
static struct gpio_chip st_gpio_template = {
.request = gpiochip_generic_request,
.free = gpiochip_generic_free,
.get = st_gpio_get,
.set = st_gpio_set,
.direction_input = st_gpio_direction_input,
.direction_output = st_gpio_direction_output,
.get_direction = st_gpio_get_direction,
.ngpio = ST_GPIO_PINS_PER_BANK,
};
static struct irq_chip st_gpio_irqchip = {
.name = "GPIO",
.irq_disable = st_gpio_irq_mask,
.irq_mask = st_gpio_irq_mask,
.irq_unmask = st_gpio_irq_unmask,
.irq_set_type = st_gpio_irq_set_type,
.flags = IRQCHIP_SKIP_SET_WAKE,
};
static int st_gpiolib_register_bank(struct st_pinctrl *info,
int bank_nr, struct device_node *np)
{
struct st_gpio_bank *bank = &info->banks[bank_nr];
struct pinctrl_gpio_range *range = &bank->range;
struct device *dev = info->dev;
int bank_num = of_alias_get_id(np, "gpio");
struct resource res, irq_res;
int gpio_irq = 0, err;
if (of_address_to_resource(np, 0, &res))
return -ENODEV;
bank->base = devm_ioremap_resource(dev, &res);
if (IS_ERR(bank->base))
return PTR_ERR(bank->base);
bank->gpio_chip = st_gpio_template;
bank->gpio_chip.base = bank_num * ST_GPIO_PINS_PER_BANK;
bank->gpio_chip.ngpio = ST_GPIO_PINS_PER_BANK;
bank->gpio_chip.of_node = np;
bank->gpio_chip.parent = dev;
spin_lock_init(&bank->lock);
of_property_read_string(np, "st,bank-name", &range->name);
bank->gpio_chip.label = range->name;
range->id = bank_num;
range->pin_base = range->base = range->id * ST_GPIO_PINS_PER_BANK;
range->npins = bank->gpio_chip.ngpio;
range->gc = &bank->gpio_chip;
err = gpiochip_add_data(&bank->gpio_chip, bank);
if (err) {
dev_err(dev, "Failed to add gpiochip(%d)!\n", bank_num);
return err;
}
dev_info(dev, "%s bank added.\n", range->name);
/**
* GPIO bank can have one of the two possible types of
* interrupt-wirings.
*
* First type is via irqmux, single interrupt is used by multiple
* gpio banks. This reduces number of overall interrupts numbers
* required. All these banks belong to a single pincontroller.
* _________
* | |----> [gpio-bank (n) ]
* | |----> [gpio-bank (n + 1)]
* [irqN]-- | irq-mux |----> [gpio-bank (n + 2)]
* | |----> [gpio-bank (... )]
* |_________|----> [gpio-bank (n + 7)]
*
* Second type has a dedicated interrupt per each gpio bank.
*
* [irqN]----> [gpio-bank (n)]
*/
if (of_irq_to_resource(np, 0, &irq_res)) {
gpio_irq = irq_res.start;
gpiochip_set_chained_irqchip(&bank->gpio_chip, &st_gpio_irqchip,
gpio_irq, st_gpio_irq_handler);
}
if (info->irqmux_base || gpio_irq > 0) {
err = gpiochip_irqchip_add(&bank->gpio_chip, &st_gpio_irqchip,
0, handle_simple_irq,
IRQ_TYPE_LEVEL_LOW);
if (err) {
gpiochip_remove(&bank->gpio_chip);
dev_info(dev, "could not add irqchip\n");
return err;
}
} else {
dev_info(dev, "No IRQ support for %s bank\n", np->full_name);
}
return 0;
}
static const struct of_device_id st_pctl_of_match[] = {
{ .compatible = "st,stih415-sbc-pinctrl", .data = &stih415_sbc_data },
{ .compatible = "st,stih415-rear-pinctrl", .data = &stih415_rear_data },
{ .compatible = "st,stih415-left-pinctrl", .data = &stih415_left_data },
{ .compatible = "st,stih415-right-pinctrl",
.data = &stih415_right_data },
{ .compatible = "st,stih415-front-pinctrl",
.data = &stih415_front_data },
{ .compatible = "st,stih416-sbc-pinctrl", .data = &stih416_data},
{ .compatible = "st,stih416-front-pinctrl", .data = &stih416_data},
{ .compatible = "st,stih416-rear-pinctrl", .data = &stih416_data},
{ .compatible = "st,stih416-fvdp-fe-pinctrl", .data = &stih416_data},
{ .compatible = "st,stih416-fvdp-lite-pinctrl", .data = &stih416_data},
{ .compatible = "st,stih407-sbc-pinctrl", .data = &stih416_data},
{ .compatible = "st,stih407-front-pinctrl", .data = &stih416_data},
{ .compatible = "st,stih407-rear-pinctrl", .data = &stih416_data},
{ .compatible = "st,stih407-flash-pinctrl", .data = &stih407_flashdata},
{ /* sentinel */ }
};
static int st_pctl_probe_dt(struct platform_device *pdev,
struct pinctrl_desc *pctl_desc, struct st_pinctrl *info)
{
int ret = 0;
int i = 0, j = 0, k = 0, bank;
struct pinctrl_pin_desc *pdesc;
struct device_node *np = pdev->dev.of_node;
struct device_node *child;
int grp_index = 0;
int irq = 0;
struct resource *res;
st_pctl_dt_child_count(info, np);
if (!info->nbanks) {
dev_err(&pdev->dev, "you need atleast one gpio bank\n");
return -EINVAL;
}
dev_info(&pdev->dev, "nbanks = %d\n", info->nbanks);
dev_info(&pdev->dev, "nfunctions = %d\n", info->nfunctions);
dev_info(&pdev->dev, "ngroups = %d\n", info->ngroups);
info->functions = devm_kzalloc(&pdev->dev,
info->nfunctions * sizeof(*info->functions), GFP_KERNEL);
info->groups = devm_kzalloc(&pdev->dev,
info->ngroups * sizeof(*info->groups) , GFP_KERNEL);
info->banks = devm_kzalloc(&pdev->dev,
info->nbanks * sizeof(*info->banks), GFP_KERNEL);
if (!info->functions || !info->groups || !info->banks)
return -ENOMEM;
info->regmap = syscon_regmap_lookup_by_phandle(np, "st,syscfg");
if (IS_ERR(info->regmap)) {
dev_err(info->dev, "No syscfg phandle specified\n");
return PTR_ERR(info->regmap);
}
info->data = of_match_node(st_pctl_of_match, np)->data;
irq = platform_get_irq(pdev, 0);
if (irq > 0) {
res = platform_get_resource_byname(pdev,
IORESOURCE_MEM, "irqmux");
info->irqmux_base = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(info->irqmux_base))
return PTR_ERR(info->irqmux_base);
irq_set_chained_handler_and_data(irq, st_gpio_irqmux_handler,
info);
}
pctl_desc->npins = info->nbanks * ST_GPIO_PINS_PER_BANK;
pdesc = devm_kzalloc(&pdev->dev,
sizeof(*pdesc) * pctl_desc->npins, GFP_KERNEL);
if (!pdesc)
return -ENOMEM;
pctl_desc->pins = pdesc;
bank = 0;
for_each_child_of_node(np, child) {
if (of_property_read_bool(child, "gpio-controller")) {
const char *bank_name = NULL;
ret = st_gpiolib_register_bank(info, bank, child);
if (ret)
return ret;
k = info->banks[bank].range.pin_base;
bank_name = info->banks[bank].range.name;
for (j = 0; j < ST_GPIO_PINS_PER_BANK; j++, k++) {
pdesc->number = k;
pdesc->name = kasprintf(GFP_KERNEL, "%s[%d]",
bank_name, j);
pdesc++;
}
st_parse_syscfgs(info, bank, child);
bank++;
} else {
ret = st_pctl_parse_functions(child, info,
i++, &grp_index);
if (ret) {
dev_err(&pdev->dev, "No functions found.\n");
return ret;
}
}
}
return 0;
}
static int st_pctl_probe(struct platform_device *pdev)
{
struct st_pinctrl *info;
struct pinctrl_desc *pctl_desc;
int ret, i;
if (!pdev->dev.of_node) {
dev_err(&pdev->dev, "device node not found.\n");
return -EINVAL;
}
pctl_desc = devm_kzalloc(&pdev->dev, sizeof(*pctl_desc), GFP_KERNEL);
if (!pctl_desc)
return -ENOMEM;
info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
if (!info)
return -ENOMEM;
info->dev = &pdev->dev;
platform_set_drvdata(pdev, info);
ret = st_pctl_probe_dt(pdev, pctl_desc, info);
if (ret)
return ret;
pctl_desc->owner = THIS_MODULE;
pctl_desc->pctlops = &st_pctlops;
pctl_desc->pmxops = &st_pmxops;
pctl_desc->confops = &st_confops;
pctl_desc->name = dev_name(&pdev->dev);
info->pctl = devm_pinctrl_register(&pdev->dev, pctl_desc, info);
if (IS_ERR(info->pctl)) {
dev_err(&pdev->dev, "Failed pinctrl registration\n");
return PTR_ERR(info->pctl);
}
for (i = 0; i < info->nbanks; i++)
pinctrl_add_gpio_range(info->pctl, &info->banks[i].range);
return 0;
}
static struct platform_driver st_pctl_driver = {
.driver = {
.name = "st-pinctrl",
.of_match_table = st_pctl_of_match,
},
.probe = st_pctl_probe,
};
static int __init st_pctl_init(void)
{
return platform_driver_register(&st_pctl_driver);
}
arch_initcall(st_pctl_init);