| // SPDX-License-Identifier: GPL-2.0 |
| // |
| // Cryptographic API. |
| // |
| // Support for Samsung S5PV210 and Exynos HW acceleration. |
| // |
| // Copyright (C) 2011 NetUP Inc. All rights reserved. |
| // Copyright (c) 2017 Samsung Electronics Co., Ltd. All rights reserved. |
| // |
| // Hash part based on omap-sham.c driver. |
| |
| #include <linux/clk.h> |
| #include <linux/crypto.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/err.h> |
| #include <linux/errno.h> |
| #include <linux/init.h> |
| #include <linux/interrupt.h> |
| #include <linux/io.h> |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/of.h> |
| #include <linux/platform_device.h> |
| #include <linux/scatterlist.h> |
| |
| #include <crypto/ctr.h> |
| #include <crypto/aes.h> |
| #include <crypto/algapi.h> |
| #include <crypto/scatterwalk.h> |
| |
| #include <crypto/hash.h> |
| #include <crypto/md5.h> |
| #include <crypto/sha.h> |
| #include <crypto/internal/hash.h> |
| |
| #define _SBF(s, v) ((v) << (s)) |
| |
| /* Feed control registers */ |
| #define SSS_REG_FCINTSTAT 0x0000 |
| #define SSS_FCINTSTAT_HPARTINT BIT(7) |
| #define SSS_FCINTSTAT_HDONEINT BIT(5) |
| #define SSS_FCINTSTAT_BRDMAINT BIT(3) |
| #define SSS_FCINTSTAT_BTDMAINT BIT(2) |
| #define SSS_FCINTSTAT_HRDMAINT BIT(1) |
| #define SSS_FCINTSTAT_PKDMAINT BIT(0) |
| |
| #define SSS_REG_FCINTENSET 0x0004 |
| #define SSS_FCINTENSET_HPARTINTENSET BIT(7) |
| #define SSS_FCINTENSET_HDONEINTENSET BIT(5) |
| #define SSS_FCINTENSET_BRDMAINTENSET BIT(3) |
| #define SSS_FCINTENSET_BTDMAINTENSET BIT(2) |
| #define SSS_FCINTENSET_HRDMAINTENSET BIT(1) |
| #define SSS_FCINTENSET_PKDMAINTENSET BIT(0) |
| |
| #define SSS_REG_FCINTENCLR 0x0008 |
| #define SSS_FCINTENCLR_HPARTINTENCLR BIT(7) |
| #define SSS_FCINTENCLR_HDONEINTENCLR BIT(5) |
| #define SSS_FCINTENCLR_BRDMAINTENCLR BIT(3) |
| #define SSS_FCINTENCLR_BTDMAINTENCLR BIT(2) |
| #define SSS_FCINTENCLR_HRDMAINTENCLR BIT(1) |
| #define SSS_FCINTENCLR_PKDMAINTENCLR BIT(0) |
| |
| #define SSS_REG_FCINTPEND 0x000C |
| #define SSS_FCINTPEND_HPARTINTP BIT(7) |
| #define SSS_FCINTPEND_HDONEINTP BIT(5) |
| #define SSS_FCINTPEND_BRDMAINTP BIT(3) |
| #define SSS_FCINTPEND_BTDMAINTP BIT(2) |
| #define SSS_FCINTPEND_HRDMAINTP BIT(1) |
| #define SSS_FCINTPEND_PKDMAINTP BIT(0) |
| |
| #define SSS_REG_FCFIFOSTAT 0x0010 |
| #define SSS_FCFIFOSTAT_BRFIFOFUL BIT(7) |
| #define SSS_FCFIFOSTAT_BRFIFOEMP BIT(6) |
| #define SSS_FCFIFOSTAT_BTFIFOFUL BIT(5) |
| #define SSS_FCFIFOSTAT_BTFIFOEMP BIT(4) |
| #define SSS_FCFIFOSTAT_HRFIFOFUL BIT(3) |
| #define SSS_FCFIFOSTAT_HRFIFOEMP BIT(2) |
| #define SSS_FCFIFOSTAT_PKFIFOFUL BIT(1) |
| #define SSS_FCFIFOSTAT_PKFIFOEMP BIT(0) |
| |
| #define SSS_REG_FCFIFOCTRL 0x0014 |
| #define SSS_FCFIFOCTRL_DESSEL BIT(2) |
| #define SSS_HASHIN_INDEPENDENT _SBF(0, 0x00) |
| #define SSS_HASHIN_CIPHER_INPUT _SBF(0, 0x01) |
| #define SSS_HASHIN_CIPHER_OUTPUT _SBF(0, 0x02) |
| #define SSS_HASHIN_MASK _SBF(0, 0x03) |
| |
| #define SSS_REG_FCBRDMAS 0x0020 |
| #define SSS_REG_FCBRDMAL 0x0024 |
| #define SSS_REG_FCBRDMAC 0x0028 |
| #define SSS_FCBRDMAC_BYTESWAP BIT(1) |
| #define SSS_FCBRDMAC_FLUSH BIT(0) |
| |
| #define SSS_REG_FCBTDMAS 0x0030 |
| #define SSS_REG_FCBTDMAL 0x0034 |
| #define SSS_REG_FCBTDMAC 0x0038 |
| #define SSS_FCBTDMAC_BYTESWAP BIT(1) |
| #define SSS_FCBTDMAC_FLUSH BIT(0) |
| |
| #define SSS_REG_FCHRDMAS 0x0040 |
| #define SSS_REG_FCHRDMAL 0x0044 |
| #define SSS_REG_FCHRDMAC 0x0048 |
| #define SSS_FCHRDMAC_BYTESWAP BIT(1) |
| #define SSS_FCHRDMAC_FLUSH BIT(0) |
| |
| #define SSS_REG_FCPKDMAS 0x0050 |
| #define SSS_REG_FCPKDMAL 0x0054 |
| #define SSS_REG_FCPKDMAC 0x0058 |
| #define SSS_FCPKDMAC_BYTESWAP BIT(3) |
| #define SSS_FCPKDMAC_DESCEND BIT(2) |
| #define SSS_FCPKDMAC_TRANSMIT BIT(1) |
| #define SSS_FCPKDMAC_FLUSH BIT(0) |
| |
| #define SSS_REG_FCPKDMAO 0x005C |
| |
| /* AES registers */ |
| #define SSS_REG_AES_CONTROL 0x00 |
| #define SSS_AES_BYTESWAP_DI BIT(11) |
| #define SSS_AES_BYTESWAP_DO BIT(10) |
| #define SSS_AES_BYTESWAP_IV BIT(9) |
| #define SSS_AES_BYTESWAP_CNT BIT(8) |
| #define SSS_AES_BYTESWAP_KEY BIT(7) |
| #define SSS_AES_KEY_CHANGE_MODE BIT(6) |
| #define SSS_AES_KEY_SIZE_128 _SBF(4, 0x00) |
| #define SSS_AES_KEY_SIZE_192 _SBF(4, 0x01) |
| #define SSS_AES_KEY_SIZE_256 _SBF(4, 0x02) |
| #define SSS_AES_FIFO_MODE BIT(3) |
| #define SSS_AES_CHAIN_MODE_ECB _SBF(1, 0x00) |
| #define SSS_AES_CHAIN_MODE_CBC _SBF(1, 0x01) |
| #define SSS_AES_CHAIN_MODE_CTR _SBF(1, 0x02) |
| #define SSS_AES_MODE_DECRYPT BIT(0) |
| |
| #define SSS_REG_AES_STATUS 0x04 |
| #define SSS_AES_BUSY BIT(2) |
| #define SSS_AES_INPUT_READY BIT(1) |
| #define SSS_AES_OUTPUT_READY BIT(0) |
| |
| #define SSS_REG_AES_IN_DATA(s) (0x10 + (s << 2)) |
| #define SSS_REG_AES_OUT_DATA(s) (0x20 + (s << 2)) |
| #define SSS_REG_AES_IV_DATA(s) (0x30 + (s << 2)) |
| #define SSS_REG_AES_CNT_DATA(s) (0x40 + (s << 2)) |
| #define SSS_REG_AES_KEY_DATA(s) (0x80 + (s << 2)) |
| |
| #define SSS_REG(dev, reg) ((dev)->ioaddr + (SSS_REG_##reg)) |
| #define SSS_READ(dev, reg) __raw_readl(SSS_REG(dev, reg)) |
| #define SSS_WRITE(dev, reg, val) __raw_writel((val), SSS_REG(dev, reg)) |
| |
| #define SSS_AES_REG(dev, reg) ((dev)->aes_ioaddr + SSS_REG_##reg) |
| #define SSS_AES_WRITE(dev, reg, val) __raw_writel((val), \ |
| SSS_AES_REG(dev, reg)) |
| |
| /* HW engine modes */ |
| #define FLAGS_AES_DECRYPT BIT(0) |
| #define FLAGS_AES_MODE_MASK _SBF(1, 0x03) |
| #define FLAGS_AES_CBC _SBF(1, 0x01) |
| #define FLAGS_AES_CTR _SBF(1, 0x02) |
| |
| #define AES_KEY_LEN 16 |
| #define CRYPTO_QUEUE_LEN 1 |
| |
| /* HASH registers */ |
| #define SSS_REG_HASH_CTRL 0x00 |
| |
| #define SSS_HASH_USER_IV_EN BIT(5) |
| #define SSS_HASH_INIT_BIT BIT(4) |
| #define SSS_HASH_ENGINE_SHA1 _SBF(1, 0x00) |
| #define SSS_HASH_ENGINE_MD5 _SBF(1, 0x01) |
| #define SSS_HASH_ENGINE_SHA256 _SBF(1, 0x02) |
| |
| #define SSS_HASH_ENGINE_MASK _SBF(1, 0x03) |
| |
| #define SSS_REG_HASH_CTRL_PAUSE 0x04 |
| |
| #define SSS_HASH_PAUSE BIT(0) |
| |
| #define SSS_REG_HASH_CTRL_FIFO 0x08 |
| |
| #define SSS_HASH_FIFO_MODE_DMA BIT(0) |
| #define SSS_HASH_FIFO_MODE_CPU 0 |
| |
| #define SSS_REG_HASH_CTRL_SWAP 0x0C |
| |
| #define SSS_HASH_BYTESWAP_DI BIT(3) |
| #define SSS_HASH_BYTESWAP_DO BIT(2) |
| #define SSS_HASH_BYTESWAP_IV BIT(1) |
| #define SSS_HASH_BYTESWAP_KEY BIT(0) |
| |
| #define SSS_REG_HASH_STATUS 0x10 |
| |
| #define SSS_HASH_STATUS_MSG_DONE BIT(6) |
| #define SSS_HASH_STATUS_PARTIAL_DONE BIT(4) |
| #define SSS_HASH_STATUS_BUFFER_READY BIT(0) |
| |
| #define SSS_REG_HASH_MSG_SIZE_LOW 0x20 |
| #define SSS_REG_HASH_MSG_SIZE_HIGH 0x24 |
| |
| #define SSS_REG_HASH_PRE_MSG_SIZE_LOW 0x28 |
| #define SSS_REG_HASH_PRE_MSG_SIZE_HIGH 0x2C |
| |
| #define SSS_REG_HASH_IV(s) (0xB0 + ((s) << 2)) |
| #define SSS_REG_HASH_OUT(s) (0x100 + ((s) << 2)) |
| |
| #define HASH_BLOCK_SIZE 64 |
| #define HASH_REG_SIZEOF 4 |
| #define HASH_MD5_MAX_REG (MD5_DIGEST_SIZE / HASH_REG_SIZEOF) |
| #define HASH_SHA1_MAX_REG (SHA1_DIGEST_SIZE / HASH_REG_SIZEOF) |
| #define HASH_SHA256_MAX_REG (SHA256_DIGEST_SIZE / HASH_REG_SIZEOF) |
| |
| /* |
| * HASH bit numbers, used by device, setting in dev->hash_flags with |
| * functions set_bit(), clear_bit() or tested with test_bit() or BIT(), |
| * to keep HASH state BUSY or FREE, or to signal state from irq_handler |
| * to hash_tasklet. SGS keep track of allocated memory for scatterlist |
| */ |
| #define HASH_FLAGS_BUSY 0 |
| #define HASH_FLAGS_FINAL 1 |
| #define HASH_FLAGS_DMA_ACTIVE 2 |
| #define HASH_FLAGS_OUTPUT_READY 3 |
| #define HASH_FLAGS_DMA_READY 4 |
| #define HASH_FLAGS_SGS_COPIED 5 |
| #define HASH_FLAGS_SGS_ALLOCED 6 |
| |
| /* HASH HW constants */ |
| #define BUFLEN HASH_BLOCK_SIZE |
| |
| #define SSS_HASH_DMA_LEN_ALIGN 8 |
| #define SSS_HASH_DMA_ALIGN_MASK (SSS_HASH_DMA_LEN_ALIGN - 1) |
| |
| #define SSS_HASH_QUEUE_LENGTH 10 |
| |
| /** |
| * struct samsung_aes_variant - platform specific SSS driver data |
| * @aes_offset: AES register offset from SSS module's base. |
| * @hash_offset: HASH register offset from SSS module's base. |
| * |
| * Specifies platform specific configuration of SSS module. |
| * Note: A structure for driver specific platform data is used for future |
| * expansion of its usage. |
| */ |
| struct samsung_aes_variant { |
| unsigned int aes_offset; |
| unsigned int hash_offset; |
| }; |
| |
| struct s5p_aes_reqctx { |
| unsigned long mode; |
| }; |
| |
| struct s5p_aes_ctx { |
| struct s5p_aes_dev *dev; |
| |
| uint8_t aes_key[AES_MAX_KEY_SIZE]; |
| uint8_t nonce[CTR_RFC3686_NONCE_SIZE]; |
| int keylen; |
| }; |
| |
| /** |
| * struct s5p_aes_dev - Crypto device state container |
| * @dev: Associated device |
| * @clk: Clock for accessing hardware |
| * @ioaddr: Mapped IO memory region |
| * @aes_ioaddr: Per-varian offset for AES block IO memory |
| * @irq_fc: Feed control interrupt line |
| * @req: Crypto request currently handled by the device |
| * @ctx: Configuration for currently handled crypto request |
| * @sg_src: Scatter list with source data for currently handled block |
| * in device. This is DMA-mapped into device. |
| * @sg_dst: Scatter list with destination data for currently handled block |
| * in device. This is DMA-mapped into device. |
| * @sg_src_cpy: In case of unaligned access, copied scatter list |
| * with source data. |
| * @sg_dst_cpy: In case of unaligned access, copied scatter list |
| * with destination data. |
| * @tasklet: New request scheduling jib |
| * @queue: Crypto queue |
| * @busy: Indicates whether the device is currently handling some request |
| * thus it uses some of the fields from this state, like: |
| * req, ctx, sg_src/dst (and copies). This essentially |
| * protects against concurrent access to these fields. |
| * @lock: Lock for protecting both access to device hardware registers |
| * and fields related to current request (including the busy field). |
| * @res: Resources for hash. |
| * @io_hash_base: Per-variant offset for HASH block IO memory. |
| * @hash_lock: Lock for protecting hash_req, hash_queue and hash_flags |
| * variable. |
| * @hash_flags: Flags for current HASH op. |
| * @hash_queue: Async hash queue. |
| * @hash_tasklet: New HASH request scheduling job. |
| * @xmit_buf: Buffer for current HASH request transfer into SSS block. |
| * @hash_req: Current request sending to SSS HASH block. |
| * @hash_sg_iter: Scatterlist transferred through DMA into SSS HASH block. |
| * @hash_sg_cnt: Counter for hash_sg_iter. |
| * |
| * @use_hash: true if HASH algs enabled |
| */ |
| struct s5p_aes_dev { |
| struct device *dev; |
| struct clk *clk; |
| void __iomem *ioaddr; |
| void __iomem *aes_ioaddr; |
| int irq_fc; |
| |
| struct ablkcipher_request *req; |
| struct s5p_aes_ctx *ctx; |
| struct scatterlist *sg_src; |
| struct scatterlist *sg_dst; |
| |
| struct scatterlist *sg_src_cpy; |
| struct scatterlist *sg_dst_cpy; |
| |
| struct tasklet_struct tasklet; |
| struct crypto_queue queue; |
| bool busy; |
| spinlock_t lock; |
| |
| struct resource *res; |
| void __iomem *io_hash_base; |
| |
| spinlock_t hash_lock; /* protect hash_ vars */ |
| unsigned long hash_flags; |
| struct crypto_queue hash_queue; |
| struct tasklet_struct hash_tasklet; |
| |
| u8 xmit_buf[BUFLEN]; |
| struct ahash_request *hash_req; |
| struct scatterlist *hash_sg_iter; |
| unsigned int hash_sg_cnt; |
| |
| bool use_hash; |
| }; |
| |
| /** |
| * struct s5p_hash_reqctx - HASH request context |
| * @dd: Associated device |
| * @op_update: Current request operation (OP_UPDATE or OP_FINAL) |
| * @digcnt: Number of bytes processed by HW (without buffer[] ones) |
| * @digest: Digest message or IV for partial result |
| * @nregs: Number of HW registers for digest or IV read/write |
| * @engine: Bits for selecting type of HASH in SSS block |
| * @sg: sg for DMA transfer |
| * @sg_len: Length of sg for DMA transfer |
| * @sgl[]: sg for joining buffer and req->src scatterlist |
| * @skip: Skip offset in req->src for current op |
| * @total: Total number of bytes for current request |
| * @finup: Keep state for finup or final. |
| * @error: Keep track of error. |
| * @bufcnt: Number of bytes holded in buffer[] |
| * @buffer[]: For byte(s) from end of req->src in UPDATE op |
| */ |
| struct s5p_hash_reqctx { |
| struct s5p_aes_dev *dd; |
| bool op_update; |
| |
| u64 digcnt; |
| u8 digest[SHA256_DIGEST_SIZE]; |
| |
| unsigned int nregs; /* digest_size / sizeof(reg) */ |
| u32 engine; |
| |
| struct scatterlist *sg; |
| unsigned int sg_len; |
| struct scatterlist sgl[2]; |
| unsigned int skip; |
| unsigned int total; |
| bool finup; |
| bool error; |
| |
| u32 bufcnt; |
| u8 buffer[0]; |
| }; |
| |
| /** |
| * struct s5p_hash_ctx - HASH transformation context |
| * @dd: Associated device |
| * @flags: Bits for algorithm HASH. |
| * @fallback: Software transformation for zero message or size < BUFLEN. |
| */ |
| struct s5p_hash_ctx { |
| struct s5p_aes_dev *dd; |
| unsigned long flags; |
| struct crypto_shash *fallback; |
| }; |
| |
| static const struct samsung_aes_variant s5p_aes_data = { |
| .aes_offset = 0x4000, |
| .hash_offset = 0x6000, |
| }; |
| |
| static const struct samsung_aes_variant exynos_aes_data = { |
| .aes_offset = 0x200, |
| .hash_offset = 0x400, |
| }; |
| |
| static const struct of_device_id s5p_sss_dt_match[] = { |
| { |
| .compatible = "samsung,s5pv210-secss", |
| .data = &s5p_aes_data, |
| }, |
| { |
| .compatible = "samsung,exynos4210-secss", |
| .data = &exynos_aes_data, |
| }, |
| { }, |
| }; |
| MODULE_DEVICE_TABLE(of, s5p_sss_dt_match); |
| |
| static inline struct samsung_aes_variant *find_s5p_sss_version |
| (struct platform_device *pdev) |
| { |
| if (IS_ENABLED(CONFIG_OF) && (pdev->dev.of_node)) { |
| const struct of_device_id *match; |
| |
| match = of_match_node(s5p_sss_dt_match, |
| pdev->dev.of_node); |
| return (struct samsung_aes_variant *)match->data; |
| } |
| return (struct samsung_aes_variant *) |
| platform_get_device_id(pdev)->driver_data; |
| } |
| |
| static struct s5p_aes_dev *s5p_dev; |
| |
| static void s5p_set_dma_indata(struct s5p_aes_dev *dev, struct scatterlist *sg) |
| { |
| SSS_WRITE(dev, FCBRDMAS, sg_dma_address(sg)); |
| SSS_WRITE(dev, FCBRDMAL, sg_dma_len(sg)); |
| } |
| |
| static void s5p_set_dma_outdata(struct s5p_aes_dev *dev, struct scatterlist *sg) |
| { |
| SSS_WRITE(dev, FCBTDMAS, sg_dma_address(sg)); |
| SSS_WRITE(dev, FCBTDMAL, sg_dma_len(sg)); |
| } |
| |
| static void s5p_free_sg_cpy(struct s5p_aes_dev *dev, struct scatterlist **sg) |
| { |
| int len; |
| |
| if (!*sg) |
| return; |
| |
| len = ALIGN(dev->req->nbytes, AES_BLOCK_SIZE); |
| free_pages((unsigned long)sg_virt(*sg), get_order(len)); |
| |
| kfree(*sg); |
| *sg = NULL; |
| } |
| |
| static void s5p_sg_copy_buf(void *buf, struct scatterlist *sg, |
| unsigned int nbytes, int out) |
| { |
| struct scatter_walk walk; |
| |
| if (!nbytes) |
| return; |
| |
| scatterwalk_start(&walk, sg); |
| scatterwalk_copychunks(buf, &walk, nbytes, out); |
| scatterwalk_done(&walk, out, 0); |
| } |
| |
| static void s5p_sg_done(struct s5p_aes_dev *dev) |
| { |
| if (dev->sg_dst_cpy) { |
| dev_dbg(dev->dev, |
| "Copying %d bytes of output data back to original place\n", |
| dev->req->nbytes); |
| s5p_sg_copy_buf(sg_virt(dev->sg_dst_cpy), dev->req->dst, |
| dev->req->nbytes, 1); |
| } |
| s5p_free_sg_cpy(dev, &dev->sg_src_cpy); |
| s5p_free_sg_cpy(dev, &dev->sg_dst_cpy); |
| } |
| |
| /* Calls the completion. Cannot be called with dev->lock hold. */ |
| static void s5p_aes_complete(struct s5p_aes_dev *dev, int err) |
| { |
| dev->req->base.complete(&dev->req->base, err); |
| } |
| |
| static void s5p_unset_outdata(struct s5p_aes_dev *dev) |
| { |
| dma_unmap_sg(dev->dev, dev->sg_dst, 1, DMA_FROM_DEVICE); |
| } |
| |
| static void s5p_unset_indata(struct s5p_aes_dev *dev) |
| { |
| dma_unmap_sg(dev->dev, dev->sg_src, 1, DMA_TO_DEVICE); |
| } |
| |
| static int s5p_make_sg_cpy(struct s5p_aes_dev *dev, struct scatterlist *src, |
| struct scatterlist **dst) |
| { |
| void *pages; |
| int len; |
| |
| *dst = kmalloc(sizeof(**dst), GFP_ATOMIC); |
| if (!*dst) |
| return -ENOMEM; |
| |
| len = ALIGN(dev->req->nbytes, AES_BLOCK_SIZE); |
| pages = (void *)__get_free_pages(GFP_ATOMIC, get_order(len)); |
| if (!pages) { |
| kfree(*dst); |
| *dst = NULL; |
| return -ENOMEM; |
| } |
| |
| s5p_sg_copy_buf(pages, src, dev->req->nbytes, 0); |
| |
| sg_init_table(*dst, 1); |
| sg_set_buf(*dst, pages, len); |
| |
| return 0; |
| } |
| |
| static int s5p_set_outdata(struct s5p_aes_dev *dev, struct scatterlist *sg) |
| { |
| int err; |
| |
| if (!sg->length) { |
| err = -EINVAL; |
| goto exit; |
| } |
| |
| err = dma_map_sg(dev->dev, sg, 1, DMA_FROM_DEVICE); |
| if (!err) { |
| err = -ENOMEM; |
| goto exit; |
| } |
| |
| dev->sg_dst = sg; |
| err = 0; |
| |
| exit: |
| return err; |
| } |
| |
| static int s5p_set_indata(struct s5p_aes_dev *dev, struct scatterlist *sg) |
| { |
| int err; |
| |
| if (!sg->length) { |
| err = -EINVAL; |
| goto exit; |
| } |
| |
| err = dma_map_sg(dev->dev, sg, 1, DMA_TO_DEVICE); |
| if (!err) { |
| err = -ENOMEM; |
| goto exit; |
| } |
| |
| dev->sg_src = sg; |
| err = 0; |
| |
| exit: |
| return err; |
| } |
| |
| /* |
| * Returns -ERRNO on error (mapping of new data failed). |
| * On success returns: |
| * - 0 if there is no more data, |
| * - 1 if new transmitting (output) data is ready and its address+length |
| * have to be written to device (by calling s5p_set_dma_outdata()). |
| */ |
| static int s5p_aes_tx(struct s5p_aes_dev *dev) |
| { |
| int ret = 0; |
| |
| s5p_unset_outdata(dev); |
| |
| if (!sg_is_last(dev->sg_dst)) { |
| ret = s5p_set_outdata(dev, sg_next(dev->sg_dst)); |
| if (!ret) |
| ret = 1; |
| } |
| |
| return ret; |
| } |
| |
| /* |
| * Returns -ERRNO on error (mapping of new data failed). |
| * On success returns: |
| * - 0 if there is no more data, |
| * - 1 if new receiving (input) data is ready and its address+length |
| * have to be written to device (by calling s5p_set_dma_indata()). |
| */ |
| static int s5p_aes_rx(struct s5p_aes_dev *dev/*, bool *set_dma*/) |
| { |
| int ret = 0; |
| |
| s5p_unset_indata(dev); |
| |
| if (!sg_is_last(dev->sg_src)) { |
| ret = s5p_set_indata(dev, sg_next(dev->sg_src)); |
| if (!ret) |
| ret = 1; |
| } |
| |
| return ret; |
| } |
| |
| static inline u32 s5p_hash_read(struct s5p_aes_dev *dd, u32 offset) |
| { |
| return __raw_readl(dd->io_hash_base + offset); |
| } |
| |
| static inline void s5p_hash_write(struct s5p_aes_dev *dd, |
| u32 offset, u32 value) |
| { |
| __raw_writel(value, dd->io_hash_base + offset); |
| } |
| |
| /** |
| * s5p_set_dma_hashdata() - start DMA with sg |
| * @dev: device |
| * @sg: scatterlist ready to DMA transmit |
| */ |
| static void s5p_set_dma_hashdata(struct s5p_aes_dev *dev, |
| struct scatterlist *sg) |
| { |
| dev->hash_sg_cnt--; |
| SSS_WRITE(dev, FCHRDMAS, sg_dma_address(sg)); |
| SSS_WRITE(dev, FCHRDMAL, sg_dma_len(sg)); /* DMA starts */ |
| } |
| |
| /** |
| * s5p_hash_rx() - get next hash_sg_iter |
| * @dev: device |
| * |
| * Return: |
| * 2 if there is no more data and it is UPDATE op |
| * 1 if new receiving (input) data is ready and can be written to device |
| * 0 if there is no more data and it is FINAL op |
| */ |
| static int s5p_hash_rx(struct s5p_aes_dev *dev) |
| { |
| if (dev->hash_sg_cnt > 0) { |
| dev->hash_sg_iter = sg_next(dev->hash_sg_iter); |
| return 1; |
| } |
| |
| set_bit(HASH_FLAGS_DMA_READY, &dev->hash_flags); |
| if (test_bit(HASH_FLAGS_FINAL, &dev->hash_flags)) |
| return 0; |
| |
| return 2; |
| } |
| |
| static irqreturn_t s5p_aes_interrupt(int irq, void *dev_id) |
| { |
| struct platform_device *pdev = dev_id; |
| struct s5p_aes_dev *dev = platform_get_drvdata(pdev); |
| int err_dma_tx = 0; |
| int err_dma_rx = 0; |
| int err_dma_hx = 0; |
| bool tx_end = false; |
| bool hx_end = false; |
| unsigned long flags; |
| uint32_t status; |
| u32 st_bits; |
| int err; |
| |
| spin_lock_irqsave(&dev->lock, flags); |
| |
| /* |
| * Handle rx or tx interrupt. If there is still data (scatterlist did not |
| * reach end), then map next scatterlist entry. |
| * In case of such mapping error, s5p_aes_complete() should be called. |
| * |
| * If there is no more data in tx scatter list, call s5p_aes_complete() |
| * and schedule new tasklet. |
| * |
| * Handle hx interrupt. If there is still data map next entry. |
| */ |
| status = SSS_READ(dev, FCINTSTAT); |
| if (status & SSS_FCINTSTAT_BRDMAINT) |
| err_dma_rx = s5p_aes_rx(dev); |
| |
| if (status & SSS_FCINTSTAT_BTDMAINT) { |
| if (sg_is_last(dev->sg_dst)) |
| tx_end = true; |
| err_dma_tx = s5p_aes_tx(dev); |
| } |
| |
| if (status & SSS_FCINTSTAT_HRDMAINT) |
| err_dma_hx = s5p_hash_rx(dev); |
| |
| st_bits = status & (SSS_FCINTSTAT_BRDMAINT | SSS_FCINTSTAT_BTDMAINT | |
| SSS_FCINTSTAT_HRDMAINT); |
| /* clear DMA bits */ |
| SSS_WRITE(dev, FCINTPEND, st_bits); |
| |
| /* clear HASH irq bits */ |
| if (status & (SSS_FCINTSTAT_HDONEINT | SSS_FCINTSTAT_HPARTINT)) { |
| /* cannot have both HPART and HDONE */ |
| if (status & SSS_FCINTSTAT_HPARTINT) |
| st_bits = SSS_HASH_STATUS_PARTIAL_DONE; |
| |
| if (status & SSS_FCINTSTAT_HDONEINT) |
| st_bits = SSS_HASH_STATUS_MSG_DONE; |
| |
| set_bit(HASH_FLAGS_OUTPUT_READY, &dev->hash_flags); |
| s5p_hash_write(dev, SSS_REG_HASH_STATUS, st_bits); |
| hx_end = true; |
| /* when DONE or PART, do not handle HASH DMA */ |
| err_dma_hx = 0; |
| } |
| |
| if (err_dma_rx < 0) { |
| err = err_dma_rx; |
| goto error; |
| } |
| if (err_dma_tx < 0) { |
| err = err_dma_tx; |
| goto error; |
| } |
| |
| if (tx_end) { |
| s5p_sg_done(dev); |
| if (err_dma_hx == 1) |
| s5p_set_dma_hashdata(dev, dev->hash_sg_iter); |
| |
| spin_unlock_irqrestore(&dev->lock, flags); |
| |
| s5p_aes_complete(dev, 0); |
| /* Device is still busy */ |
| tasklet_schedule(&dev->tasklet); |
| } else { |
| /* |
| * Writing length of DMA block (either receiving or |
| * transmitting) will start the operation immediately, so this |
| * should be done at the end (even after clearing pending |
| * interrupts to not miss the interrupt). |
| */ |
| if (err_dma_tx == 1) |
| s5p_set_dma_outdata(dev, dev->sg_dst); |
| if (err_dma_rx == 1) |
| s5p_set_dma_indata(dev, dev->sg_src); |
| if (err_dma_hx == 1) |
| s5p_set_dma_hashdata(dev, dev->hash_sg_iter); |
| |
| spin_unlock_irqrestore(&dev->lock, flags); |
| } |
| |
| goto hash_irq_end; |
| |
| error: |
| s5p_sg_done(dev); |
| dev->busy = false; |
| if (err_dma_hx == 1) |
| s5p_set_dma_hashdata(dev, dev->hash_sg_iter); |
| |
| spin_unlock_irqrestore(&dev->lock, flags); |
| s5p_aes_complete(dev, err); |
| |
| hash_irq_end: |
| /* |
| * Note about else if: |
| * when hash_sg_iter reaches end and its UPDATE op, |
| * issue SSS_HASH_PAUSE and wait for HPART irq |
| */ |
| if (hx_end) |
| tasklet_schedule(&dev->hash_tasklet); |
| else if (err_dma_hx == 2) |
| s5p_hash_write(dev, SSS_REG_HASH_CTRL_PAUSE, |
| SSS_HASH_PAUSE); |
| |
| return IRQ_HANDLED; |
| } |
| |
| /** |
| * s5p_hash_read_msg() - read message or IV from HW |
| * @req: AHASH request |
| */ |
| static void s5p_hash_read_msg(struct ahash_request *req) |
| { |
| struct s5p_hash_reqctx *ctx = ahash_request_ctx(req); |
| struct s5p_aes_dev *dd = ctx->dd; |
| u32 *hash = (u32 *)ctx->digest; |
| unsigned int i; |
| |
| for (i = 0; i < ctx->nregs; i++) |
| hash[i] = s5p_hash_read(dd, SSS_REG_HASH_OUT(i)); |
| } |
| |
| /** |
| * s5p_hash_write_ctx_iv() - write IV for next partial/finup op. |
| * @dd: device |
| * @ctx: request context |
| */ |
| static void s5p_hash_write_ctx_iv(struct s5p_aes_dev *dd, |
| struct s5p_hash_reqctx *ctx) |
| { |
| u32 *hash = (u32 *)ctx->digest; |
| unsigned int i; |
| |
| for (i = 0; i < ctx->nregs; i++) |
| s5p_hash_write(dd, SSS_REG_HASH_IV(i), hash[i]); |
| } |
| |
| /** |
| * s5p_hash_write_iv() - write IV for next partial/finup op. |
| * @req: AHASH request |
| */ |
| static void s5p_hash_write_iv(struct ahash_request *req) |
| { |
| struct s5p_hash_reqctx *ctx = ahash_request_ctx(req); |
| |
| s5p_hash_write_ctx_iv(ctx->dd, ctx); |
| } |
| |
| /** |
| * s5p_hash_copy_result() - copy digest into req->result |
| * @req: AHASH request |
| */ |
| static void s5p_hash_copy_result(struct ahash_request *req) |
| { |
| struct s5p_hash_reqctx *ctx = ahash_request_ctx(req); |
| |
| if (!req->result) |
| return; |
| |
| memcpy(req->result, ctx->digest, ctx->nregs * HASH_REG_SIZEOF); |
| } |
| |
| /** |
| * s5p_hash_dma_flush() - flush HASH DMA |
| * @dev: secss device |
| */ |
| static void s5p_hash_dma_flush(struct s5p_aes_dev *dev) |
| { |
| SSS_WRITE(dev, FCHRDMAC, SSS_FCHRDMAC_FLUSH); |
| } |
| |
| /** |
| * s5p_hash_dma_enable() - enable DMA mode for HASH |
| * @dev: secss device |
| * |
| * enable DMA mode for HASH |
| */ |
| static void s5p_hash_dma_enable(struct s5p_aes_dev *dev) |
| { |
| s5p_hash_write(dev, SSS_REG_HASH_CTRL_FIFO, SSS_HASH_FIFO_MODE_DMA); |
| } |
| |
| /** |
| * s5p_hash_irq_disable() - disable irq HASH signals |
| * @dev: secss device |
| * @flags: bitfield with irq's to be disabled |
| */ |
| static void s5p_hash_irq_disable(struct s5p_aes_dev *dev, u32 flags) |
| { |
| SSS_WRITE(dev, FCINTENCLR, flags); |
| } |
| |
| /** |
| * s5p_hash_irq_enable() - enable irq signals |
| * @dev: secss device |
| * @flags: bitfield with irq's to be enabled |
| */ |
| static void s5p_hash_irq_enable(struct s5p_aes_dev *dev, int flags) |
| { |
| SSS_WRITE(dev, FCINTENSET, flags); |
| } |
| |
| /** |
| * s5p_hash_set_flow() - set flow inside SecSS AES/DES with/without HASH |
| * @dev: secss device |
| * @hashflow: HASH stream flow with/without crypto AES/DES |
| */ |
| static void s5p_hash_set_flow(struct s5p_aes_dev *dev, u32 hashflow) |
| { |
| unsigned long flags; |
| u32 flow; |
| |
| spin_lock_irqsave(&dev->lock, flags); |
| |
| flow = SSS_READ(dev, FCFIFOCTRL); |
| flow &= ~SSS_HASHIN_MASK; |
| flow |= hashflow; |
| SSS_WRITE(dev, FCFIFOCTRL, flow); |
| |
| spin_unlock_irqrestore(&dev->lock, flags); |
| } |
| |
| /** |
| * s5p_ahash_dma_init() - enable DMA and set HASH flow inside SecSS |
| * @dev: secss device |
| * @hashflow: HASH stream flow with/without AES/DES |
| * |
| * flush HASH DMA and enable DMA, set HASH stream flow inside SecSS HW, |
| * enable HASH irq's HRDMA, HDONE, HPART |
| */ |
| static void s5p_ahash_dma_init(struct s5p_aes_dev *dev, u32 hashflow) |
| { |
| s5p_hash_irq_disable(dev, SSS_FCINTENCLR_HRDMAINTENCLR | |
| SSS_FCINTENCLR_HDONEINTENCLR | |
| SSS_FCINTENCLR_HPARTINTENCLR); |
| s5p_hash_dma_flush(dev); |
| |
| s5p_hash_dma_enable(dev); |
| s5p_hash_set_flow(dev, hashflow & SSS_HASHIN_MASK); |
| s5p_hash_irq_enable(dev, SSS_FCINTENSET_HRDMAINTENSET | |
| SSS_FCINTENSET_HDONEINTENSET | |
| SSS_FCINTENSET_HPARTINTENSET); |
| } |
| |
| /** |
| * s5p_hash_write_ctrl() - prepare HASH block in SecSS for processing |
| * @dd: secss device |
| * @length: length for request |
| * @final: true if final op |
| * |
| * Prepare SSS HASH block for processing bytes in DMA mode. If it is called |
| * after previous updates, fill up IV words. For final, calculate and set |
| * lengths for HASH so SecSS can finalize hash. For partial, set SSS HASH |
| * length as 2^63 so it will be never reached and set to zero prelow and |
| * prehigh. |
| * |
| * This function does not start DMA transfer. |
| */ |
| static void s5p_hash_write_ctrl(struct s5p_aes_dev *dd, size_t length, |
| bool final) |
| { |
| struct s5p_hash_reqctx *ctx = ahash_request_ctx(dd->hash_req); |
| u32 prelow, prehigh, low, high; |
| u32 configflags, swapflags; |
| u64 tmplen; |
| |
| configflags = ctx->engine | SSS_HASH_INIT_BIT; |
| |
| if (likely(ctx->digcnt)) { |
| s5p_hash_write_ctx_iv(dd, ctx); |
| configflags |= SSS_HASH_USER_IV_EN; |
| } |
| |
| if (final) { |
| /* number of bytes for last part */ |
| low = length; |
| high = 0; |
| /* total number of bits prev hashed */ |
| tmplen = ctx->digcnt * 8; |
| prelow = (u32)tmplen; |
| prehigh = (u32)(tmplen >> 32); |
| } else { |
| prelow = 0; |
| prehigh = 0; |
| low = 0; |
| high = BIT(31); |
| } |
| |
| swapflags = SSS_HASH_BYTESWAP_DI | SSS_HASH_BYTESWAP_DO | |
| SSS_HASH_BYTESWAP_IV | SSS_HASH_BYTESWAP_KEY; |
| |
| s5p_hash_write(dd, SSS_REG_HASH_MSG_SIZE_LOW, low); |
| s5p_hash_write(dd, SSS_REG_HASH_MSG_SIZE_HIGH, high); |
| s5p_hash_write(dd, SSS_REG_HASH_PRE_MSG_SIZE_LOW, prelow); |
| s5p_hash_write(dd, SSS_REG_HASH_PRE_MSG_SIZE_HIGH, prehigh); |
| |
| s5p_hash_write(dd, SSS_REG_HASH_CTRL_SWAP, swapflags); |
| s5p_hash_write(dd, SSS_REG_HASH_CTRL, configflags); |
| } |
| |
| /** |
| * s5p_hash_xmit_dma() - start DMA hash processing |
| * @dd: secss device |
| * @length: length for request |
| * @final: true if final op |
| * |
| * Update digcnt here, as it is needed for finup/final op. |
| */ |
| static int s5p_hash_xmit_dma(struct s5p_aes_dev *dd, size_t length, |
| bool final) |
| { |
| struct s5p_hash_reqctx *ctx = ahash_request_ctx(dd->hash_req); |
| unsigned int cnt; |
| |
| cnt = dma_map_sg(dd->dev, ctx->sg, ctx->sg_len, DMA_TO_DEVICE); |
| if (!cnt) { |
| dev_err(dd->dev, "dma_map_sg error\n"); |
| ctx->error = true; |
| return -EINVAL; |
| } |
| |
| set_bit(HASH_FLAGS_DMA_ACTIVE, &dd->hash_flags); |
| dd->hash_sg_iter = ctx->sg; |
| dd->hash_sg_cnt = cnt; |
| s5p_hash_write_ctrl(dd, length, final); |
| ctx->digcnt += length; |
| ctx->total -= length; |
| |
| /* catch last interrupt */ |
| if (final) |
| set_bit(HASH_FLAGS_FINAL, &dd->hash_flags); |
| |
| s5p_set_dma_hashdata(dd, dd->hash_sg_iter); /* DMA starts */ |
| |
| return -EINPROGRESS; |
| } |
| |
| /** |
| * s5p_hash_copy_sgs() - copy request's bytes into new buffer |
| * @ctx: request context |
| * @sg: source scatterlist request |
| * @new_len: number of bytes to process from sg |
| * |
| * Allocate new buffer, copy data for HASH into it. If there was xmit_buf |
| * filled, copy it first, then copy data from sg into it. Prepare one sgl[0] |
| * with allocated buffer. |
| * |
| * Set bit in dd->hash_flag so we can free it after irq ends processing. |
| */ |
| static int s5p_hash_copy_sgs(struct s5p_hash_reqctx *ctx, |
| struct scatterlist *sg, unsigned int new_len) |
| { |
| unsigned int pages, len; |
| void *buf; |
| |
| len = new_len + ctx->bufcnt; |
| pages = get_order(len); |
| |
| buf = (void *)__get_free_pages(GFP_ATOMIC, pages); |
| if (!buf) { |
| dev_err(ctx->dd->dev, "alloc pages for unaligned case.\n"); |
| ctx->error = true; |
| return -ENOMEM; |
| } |
| |
| if (ctx->bufcnt) |
| memcpy(buf, ctx->dd->xmit_buf, ctx->bufcnt); |
| |
| scatterwalk_map_and_copy(buf + ctx->bufcnt, sg, ctx->skip, |
| new_len, 0); |
| sg_init_table(ctx->sgl, 1); |
| sg_set_buf(ctx->sgl, buf, len); |
| ctx->sg = ctx->sgl; |
| ctx->sg_len = 1; |
| ctx->bufcnt = 0; |
| ctx->skip = 0; |
| set_bit(HASH_FLAGS_SGS_COPIED, &ctx->dd->hash_flags); |
| |
| return 0; |
| } |
| |
| /** |
| * s5p_hash_copy_sg_lists() - copy sg list and make fixes in copy |
| * @ctx: request context |
| * @sg: source scatterlist request |
| * @new_len: number of bytes to process from sg |
| * |
| * Allocate new scatterlist table, copy data for HASH into it. If there was |
| * xmit_buf filled, prepare it first, then copy page, length and offset from |
| * source sg into it, adjusting begin and/or end for skip offset and |
| * hash_later value. |
| * |
| * Resulting sg table will be assigned to ctx->sg. Set flag so we can free |
| * it after irq ends processing. |
| */ |
| static int s5p_hash_copy_sg_lists(struct s5p_hash_reqctx *ctx, |
| struct scatterlist *sg, unsigned int new_len) |
| { |
| unsigned int skip = ctx->skip, n = sg_nents(sg); |
| struct scatterlist *tmp; |
| unsigned int len; |
| |
| if (ctx->bufcnt) |
| n++; |
| |
| ctx->sg = kmalloc_array(n, sizeof(*sg), GFP_KERNEL); |
| if (!ctx->sg) { |
| ctx->error = true; |
| return -ENOMEM; |
| } |
| |
| sg_init_table(ctx->sg, n); |
| |
| tmp = ctx->sg; |
| |
| ctx->sg_len = 0; |
| |
| if (ctx->bufcnt) { |
| sg_set_buf(tmp, ctx->dd->xmit_buf, ctx->bufcnt); |
| tmp = sg_next(tmp); |
| ctx->sg_len++; |
| } |
| |
| while (sg && skip >= sg->length) { |
| skip -= sg->length; |
| sg = sg_next(sg); |
| } |
| |
| while (sg && new_len) { |
| len = sg->length - skip; |
| if (new_len < len) |
| len = new_len; |
| |
| new_len -= len; |
| sg_set_page(tmp, sg_page(sg), len, sg->offset + skip); |
| skip = 0; |
| if (new_len <= 0) |
| sg_mark_end(tmp); |
| |
| tmp = sg_next(tmp); |
| ctx->sg_len++; |
| sg = sg_next(sg); |
| } |
| |
| set_bit(HASH_FLAGS_SGS_ALLOCED, &ctx->dd->hash_flags); |
| |
| return 0; |
| } |
| |
| /** |
| * s5p_hash_prepare_sgs() - prepare sg for processing |
| * @ctx: request context |
| * @sg: source scatterlist request |
| * @nbytes: number of bytes to process from sg |
| * @final: final flag |
| * |
| * Check two conditions: (1) if buffers in sg have len aligned data, and (2) |
| * sg table have good aligned elements (list_ok). If one of this checks fails, |
| * then either (1) allocates new buffer for data with s5p_hash_copy_sgs, copy |
| * data into this buffer and prepare request in sgl, or (2) allocates new sg |
| * table and prepare sg elements. |
| * |
| * For digest or finup all conditions can be good, and we may not need any |
| * fixes. |
| */ |
| static int s5p_hash_prepare_sgs(struct s5p_hash_reqctx *ctx, |
| struct scatterlist *sg, |
| unsigned int new_len, bool final) |
| { |
| unsigned int skip = ctx->skip, nbytes = new_len, n = 0; |
| bool aligned = true, list_ok = true; |
| struct scatterlist *sg_tmp = sg; |
| |
| if (!sg || !sg->length || !new_len) |
| return 0; |
| |
| if (skip || !final) |
| list_ok = false; |
| |
| while (nbytes > 0 && sg_tmp) { |
| n++; |
| if (skip >= sg_tmp->length) { |
| skip -= sg_tmp->length; |
| if (!sg_tmp->length) { |
| aligned = false; |
| break; |
| } |
| } else { |
| if (!IS_ALIGNED(sg_tmp->length - skip, BUFLEN)) { |
| aligned = false; |
| break; |
| } |
| |
| if (nbytes < sg_tmp->length - skip) { |
| list_ok = false; |
| break; |
| } |
| |
| nbytes -= sg_tmp->length - skip; |
| skip = 0; |
| } |
| |
| sg_tmp = sg_next(sg_tmp); |
| } |
| |
| if (!aligned) |
| return s5p_hash_copy_sgs(ctx, sg, new_len); |
| else if (!list_ok) |
| return s5p_hash_copy_sg_lists(ctx, sg, new_len); |
| |
| /* |
| * Have aligned data from previous operation and/or current |
| * Note: will enter here only if (digest or finup) and aligned |
| */ |
| if (ctx->bufcnt) { |
| ctx->sg_len = n; |
| sg_init_table(ctx->sgl, 2); |
| sg_set_buf(ctx->sgl, ctx->dd->xmit_buf, ctx->bufcnt); |
| sg_chain(ctx->sgl, 2, sg); |
| ctx->sg = ctx->sgl; |
| ctx->sg_len++; |
| } else { |
| ctx->sg = sg; |
| ctx->sg_len = n; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * s5p_hash_prepare_request() - prepare request for processing |
| * @req: AHASH request |
| * @update: true if UPDATE op |
| * |
| * Note 1: we can have update flag _and_ final flag at the same time. |
| * Note 2: we enter here when digcnt > BUFLEN (=HASH_BLOCK_SIZE) or |
| * either req->nbytes or ctx->bufcnt + req->nbytes is > BUFLEN or |
| * we have final op |
| */ |
| static int s5p_hash_prepare_request(struct ahash_request *req, bool update) |
| { |
| struct s5p_hash_reqctx *ctx = ahash_request_ctx(req); |
| bool final = ctx->finup; |
| int xmit_len, hash_later, nbytes; |
| int ret; |
| |
| if (!req) |
| return 0; |
| |
| if (update) |
| nbytes = req->nbytes; |
| else |
| nbytes = 0; |
| |
| ctx->total = nbytes + ctx->bufcnt; |
| if (!ctx->total) |
| return 0; |
| |
| if (nbytes && (!IS_ALIGNED(ctx->bufcnt, BUFLEN))) { |
| /* bytes left from previous request, so fill up to BUFLEN */ |
| int len = BUFLEN - ctx->bufcnt % BUFLEN; |
| |
| if (len > nbytes) |
| len = nbytes; |
| |
| scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, req->src, |
| 0, len, 0); |
| ctx->bufcnt += len; |
| nbytes -= len; |
| ctx->skip = len; |
| } else { |
| ctx->skip = 0; |
| } |
| |
| if (ctx->bufcnt) |
| memcpy(ctx->dd->xmit_buf, ctx->buffer, ctx->bufcnt); |
| |
| xmit_len = ctx->total; |
| if (final) { |
| hash_later = 0; |
| } else { |
| if (IS_ALIGNED(xmit_len, BUFLEN)) |
| xmit_len -= BUFLEN; |
| else |
| xmit_len -= xmit_len & (BUFLEN - 1); |
| |
| hash_later = ctx->total - xmit_len; |
| /* copy hash_later bytes from end of req->src */ |
| /* previous bytes are in xmit_buf, so no overwrite */ |
| scatterwalk_map_and_copy(ctx->buffer, req->src, |
| req->nbytes - hash_later, |
| hash_later, 0); |
| } |
| |
| if (xmit_len > BUFLEN) { |
| ret = s5p_hash_prepare_sgs(ctx, req->src, nbytes - hash_later, |
| final); |
| if (ret) |
| return ret; |
| } else { |
| /* have buffered data only */ |
| if (unlikely(!ctx->bufcnt)) { |
| /* first update didn't fill up buffer */ |
| scatterwalk_map_and_copy(ctx->dd->xmit_buf, req->src, |
| 0, xmit_len, 0); |
| } |
| |
| sg_init_table(ctx->sgl, 1); |
| sg_set_buf(ctx->sgl, ctx->dd->xmit_buf, xmit_len); |
| |
| ctx->sg = ctx->sgl; |
| ctx->sg_len = 1; |
| } |
| |
| ctx->bufcnt = hash_later; |
| if (!final) |
| ctx->total = xmit_len; |
| |
| return 0; |
| } |
| |
| /** |
| * s5p_hash_update_dma_stop() - unmap DMA |
| * @dd: secss device |
| * |
| * Unmap scatterlist ctx->sg. |
| */ |
| static void s5p_hash_update_dma_stop(struct s5p_aes_dev *dd) |
| { |
| struct s5p_hash_reqctx *ctx = ahash_request_ctx(dd->hash_req); |
| |
| dma_unmap_sg(dd->dev, ctx->sg, ctx->sg_len, DMA_TO_DEVICE); |
| clear_bit(HASH_FLAGS_DMA_ACTIVE, &dd->hash_flags); |
| } |
| |
| /** |
| * s5p_hash_finish() - copy calculated digest to crypto layer |
| * @req: AHASH request |
| */ |
| static void s5p_hash_finish(struct ahash_request *req) |
| { |
| struct s5p_hash_reqctx *ctx = ahash_request_ctx(req); |
| struct s5p_aes_dev *dd = ctx->dd; |
| |
| if (ctx->digcnt) |
| s5p_hash_copy_result(req); |
| |
| dev_dbg(dd->dev, "hash_finish digcnt: %lld\n", ctx->digcnt); |
| } |
| |
| /** |
| * s5p_hash_finish_req() - finish request |
| * @req: AHASH request |
| * @err: error |
| */ |
| static void s5p_hash_finish_req(struct ahash_request *req, int err) |
| { |
| struct s5p_hash_reqctx *ctx = ahash_request_ctx(req); |
| struct s5p_aes_dev *dd = ctx->dd; |
| unsigned long flags; |
| |
| if (test_bit(HASH_FLAGS_SGS_COPIED, &dd->hash_flags)) |
| free_pages((unsigned long)sg_virt(ctx->sg), |
| get_order(ctx->sg->length)); |
| |
| if (test_bit(HASH_FLAGS_SGS_ALLOCED, &dd->hash_flags)) |
| kfree(ctx->sg); |
| |
| ctx->sg = NULL; |
| dd->hash_flags &= ~(BIT(HASH_FLAGS_SGS_ALLOCED) | |
| BIT(HASH_FLAGS_SGS_COPIED)); |
| |
| if (!err && !ctx->error) { |
| s5p_hash_read_msg(req); |
| if (test_bit(HASH_FLAGS_FINAL, &dd->hash_flags)) |
| s5p_hash_finish(req); |
| } else { |
| ctx->error = true; |
| } |
| |
| spin_lock_irqsave(&dd->hash_lock, flags); |
| dd->hash_flags &= ~(BIT(HASH_FLAGS_BUSY) | BIT(HASH_FLAGS_FINAL) | |
| BIT(HASH_FLAGS_DMA_READY) | |
| BIT(HASH_FLAGS_OUTPUT_READY)); |
| spin_unlock_irqrestore(&dd->hash_lock, flags); |
| |
| if (req->base.complete) |
| req->base.complete(&req->base, err); |
| } |
| |
| /** |
| * s5p_hash_handle_queue() - handle hash queue |
| * @dd: device s5p_aes_dev |
| * @req: AHASH request |
| * |
| * If req!=NULL enqueue it on dd->queue, if FLAGS_BUSY is not set on the |
| * device then processes the first request from the dd->queue |
| * |
| * Returns: see s5p_hash_final below. |
| */ |
| static int s5p_hash_handle_queue(struct s5p_aes_dev *dd, |
| struct ahash_request *req) |
| { |
| struct crypto_async_request *async_req, *backlog; |
| struct s5p_hash_reqctx *ctx; |
| unsigned long flags; |
| int err = 0, ret = 0; |
| |
| retry: |
| spin_lock_irqsave(&dd->hash_lock, flags); |
| if (req) |
| ret = ahash_enqueue_request(&dd->hash_queue, req); |
| |
| if (test_bit(HASH_FLAGS_BUSY, &dd->hash_flags)) { |
| spin_unlock_irqrestore(&dd->hash_lock, flags); |
| return ret; |
| } |
| |
| backlog = crypto_get_backlog(&dd->hash_queue); |
| async_req = crypto_dequeue_request(&dd->hash_queue); |
| if (async_req) |
| set_bit(HASH_FLAGS_BUSY, &dd->hash_flags); |
| |
| spin_unlock_irqrestore(&dd->hash_lock, flags); |
| |
| if (!async_req) |
| return ret; |
| |
| if (backlog) |
| backlog->complete(backlog, -EINPROGRESS); |
| |
| req = ahash_request_cast(async_req); |
| dd->hash_req = req; |
| ctx = ahash_request_ctx(req); |
| |
| err = s5p_hash_prepare_request(req, ctx->op_update); |
| if (err || !ctx->total) |
| goto out; |
| |
| dev_dbg(dd->dev, "handling new req, op_update: %u, nbytes: %d\n", |
| ctx->op_update, req->nbytes); |
| |
| s5p_ahash_dma_init(dd, SSS_HASHIN_INDEPENDENT); |
| if (ctx->digcnt) |
| s5p_hash_write_iv(req); /* restore hash IV */ |
| |
| if (ctx->op_update) { /* HASH_OP_UPDATE */ |
| err = s5p_hash_xmit_dma(dd, ctx->total, ctx->finup); |
| if (err != -EINPROGRESS && ctx->finup && !ctx->error) |
| /* no final() after finup() */ |
| err = s5p_hash_xmit_dma(dd, ctx->total, true); |
| } else { /* HASH_OP_FINAL */ |
| err = s5p_hash_xmit_dma(dd, ctx->total, true); |
| } |
| out: |
| if (err != -EINPROGRESS) { |
| /* hash_tasklet_cb will not finish it, so do it here */ |
| s5p_hash_finish_req(req, err); |
| req = NULL; |
| |
| /* |
| * Execute next request immediately if there is anything |
| * in queue. |
| */ |
| goto retry; |
| } |
| |
| return ret; |
| } |
| |
| /** |
| * s5p_hash_tasklet_cb() - hash tasklet |
| * @data: ptr to s5p_aes_dev |
| */ |
| static void s5p_hash_tasklet_cb(unsigned long data) |
| { |
| struct s5p_aes_dev *dd = (struct s5p_aes_dev *)data; |
| |
| if (!test_bit(HASH_FLAGS_BUSY, &dd->hash_flags)) { |
| s5p_hash_handle_queue(dd, NULL); |
| return; |
| } |
| |
| if (test_bit(HASH_FLAGS_DMA_READY, &dd->hash_flags)) { |
| if (test_and_clear_bit(HASH_FLAGS_DMA_ACTIVE, |
| &dd->hash_flags)) { |
| s5p_hash_update_dma_stop(dd); |
| } |
| |
| if (test_and_clear_bit(HASH_FLAGS_OUTPUT_READY, |
| &dd->hash_flags)) { |
| /* hash or semi-hash ready */ |
| clear_bit(HASH_FLAGS_DMA_READY, &dd->hash_flags); |
| goto finish; |
| } |
| } |
| |
| return; |
| |
| finish: |
| /* finish curent request */ |
| s5p_hash_finish_req(dd->hash_req, 0); |
| |
| /* If we are not busy, process next req */ |
| if (!test_bit(HASH_FLAGS_BUSY, &dd->hash_flags)) |
| s5p_hash_handle_queue(dd, NULL); |
| } |
| |
| /** |
| * s5p_hash_enqueue() - enqueue request |
| * @req: AHASH request |
| * @op: operation UPDATE (true) or FINAL (false) |
| * |
| * Returns: see s5p_hash_final below. |
| */ |
| static int s5p_hash_enqueue(struct ahash_request *req, bool op) |
| { |
| struct s5p_hash_reqctx *ctx = ahash_request_ctx(req); |
| struct s5p_hash_ctx *tctx = crypto_tfm_ctx(req->base.tfm); |
| |
| ctx->op_update = op; |
| |
| return s5p_hash_handle_queue(tctx->dd, req); |
| } |
| |
| /** |
| * s5p_hash_update() - process the hash input data |
| * @req: AHASH request |
| * |
| * If request will fit in buffer, copy it and return immediately |
| * else enqueue it with OP_UPDATE. |
| * |
| * Returns: see s5p_hash_final below. |
| */ |
| static int s5p_hash_update(struct ahash_request *req) |
| { |
| struct s5p_hash_reqctx *ctx = ahash_request_ctx(req); |
| |
| if (!req->nbytes) |
| return 0; |
| |
| if (ctx->bufcnt + req->nbytes <= BUFLEN) { |
| scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, req->src, |
| 0, req->nbytes, 0); |
| ctx->bufcnt += req->nbytes; |
| return 0; |
| } |
| |
| return s5p_hash_enqueue(req, true); /* HASH_OP_UPDATE */ |
| } |
| |
| /** |
| * s5p_hash_shash_digest() - calculate shash digest |
| * @tfm: crypto transformation |
| * @flags: tfm flags |
| * @data: input data |
| * @len: length of data |
| * @out: output buffer |
| */ |
| static int s5p_hash_shash_digest(struct crypto_shash *tfm, u32 flags, |
| const u8 *data, unsigned int len, u8 *out) |
| { |
| SHASH_DESC_ON_STACK(shash, tfm); |
| |
| shash->tfm = tfm; |
| shash->flags = flags & ~CRYPTO_TFM_REQ_MAY_SLEEP; |
| |
| return crypto_shash_digest(shash, data, len, out); |
| } |
| |
| /** |
| * s5p_hash_final_shash() - calculate shash digest |
| * @req: AHASH request |
| */ |
| static int s5p_hash_final_shash(struct ahash_request *req) |
| { |
| struct s5p_hash_ctx *tctx = crypto_tfm_ctx(req->base.tfm); |
| struct s5p_hash_reqctx *ctx = ahash_request_ctx(req); |
| |
| return s5p_hash_shash_digest(tctx->fallback, req->base.flags, |
| ctx->buffer, ctx->bufcnt, req->result); |
| } |
| |
| /** |
| * s5p_hash_final() - close up hash and calculate digest |
| * @req: AHASH request |
| * |
| * Note: in final req->src do not have any data, and req->nbytes can be |
| * non-zero. |
| * |
| * If there were no input data processed yet and the buffered hash data is |
| * less than BUFLEN (64) then calculate the final hash immediately by using |
| * SW algorithm fallback. |
| * |
| * Otherwise enqueues the current AHASH request with OP_FINAL operation op |
| * and finalize hash message in HW. Note that if digcnt!=0 then there were |
| * previous update op, so there are always some buffered bytes in ctx->buffer, |
| * which means that ctx->bufcnt!=0 |
| * |
| * Returns: |
| * 0 if the request has been processed immediately, |
| * -EINPROGRESS if the operation has been queued for later execution or is set |
| * to processing by HW, |
| * -EBUSY if queue is full and request should be resubmitted later, |
| * other negative values denotes an error. |
| */ |
| static int s5p_hash_final(struct ahash_request *req) |
| { |
| struct s5p_hash_reqctx *ctx = ahash_request_ctx(req); |
| |
| ctx->finup = true; |
| if (ctx->error) |
| return -EINVAL; /* uncompleted hash is not needed */ |
| |
| if (!ctx->digcnt && ctx->bufcnt < BUFLEN) |
| return s5p_hash_final_shash(req); |
| |
| return s5p_hash_enqueue(req, false); /* HASH_OP_FINAL */ |
| } |
| |
| /** |
| * s5p_hash_finup() - process last req->src and calculate digest |
| * @req: AHASH request containing the last update data |
| * |
| * Return values: see s5p_hash_final above. |
| */ |
| static int s5p_hash_finup(struct ahash_request *req) |
| { |
| struct s5p_hash_reqctx *ctx = ahash_request_ctx(req); |
| int err1, err2; |
| |
| ctx->finup = true; |
| |
| err1 = s5p_hash_update(req); |
| if (err1 == -EINPROGRESS || err1 == -EBUSY) |
| return err1; |
| |
| /* |
| * final() has to be always called to cleanup resources even if |
| * update() failed, except EINPROGRESS or calculate digest for small |
| * size |
| */ |
| err2 = s5p_hash_final(req); |
| |
| return err1 ?: err2; |
| } |
| |
| /** |
| * s5p_hash_init() - initialize AHASH request contex |
| * @req: AHASH request |
| * |
| * Init async hash request context. |
| */ |
| static int s5p_hash_init(struct ahash_request *req) |
| { |
| struct s5p_hash_reqctx *ctx = ahash_request_ctx(req); |
| struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); |
| struct s5p_hash_ctx *tctx = crypto_ahash_ctx(tfm); |
| |
| ctx->dd = tctx->dd; |
| ctx->error = false; |
| ctx->finup = false; |
| ctx->bufcnt = 0; |
| ctx->digcnt = 0; |
| ctx->total = 0; |
| ctx->skip = 0; |
| |
| dev_dbg(tctx->dd->dev, "init: digest size: %d\n", |
| crypto_ahash_digestsize(tfm)); |
| |
| switch (crypto_ahash_digestsize(tfm)) { |
| case MD5_DIGEST_SIZE: |
| ctx->engine = SSS_HASH_ENGINE_MD5; |
| ctx->nregs = HASH_MD5_MAX_REG; |
| break; |
| case SHA1_DIGEST_SIZE: |
| ctx->engine = SSS_HASH_ENGINE_SHA1; |
| ctx->nregs = HASH_SHA1_MAX_REG; |
| break; |
| case SHA256_DIGEST_SIZE: |
| ctx->engine = SSS_HASH_ENGINE_SHA256; |
| ctx->nregs = HASH_SHA256_MAX_REG; |
| break; |
| default: |
| ctx->error = true; |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * s5p_hash_digest - calculate digest from req->src |
| * @req: AHASH request |
| * |
| * Return values: see s5p_hash_final above. |
| */ |
| static int s5p_hash_digest(struct ahash_request *req) |
| { |
| return s5p_hash_init(req) ?: s5p_hash_finup(req); |
| } |
| |
| /** |
| * s5p_hash_cra_init_alg - init crypto alg transformation |
| * @tfm: crypto transformation |
| */ |
| static int s5p_hash_cra_init_alg(struct crypto_tfm *tfm) |
| { |
| struct s5p_hash_ctx *tctx = crypto_tfm_ctx(tfm); |
| const char *alg_name = crypto_tfm_alg_name(tfm); |
| |
| tctx->dd = s5p_dev; |
| /* Allocate a fallback and abort if it failed. */ |
| tctx->fallback = crypto_alloc_shash(alg_name, 0, |
| CRYPTO_ALG_NEED_FALLBACK); |
| if (IS_ERR(tctx->fallback)) { |
| pr_err("fallback alloc fails for '%s'\n", alg_name); |
| return PTR_ERR(tctx->fallback); |
| } |
| |
| crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm), |
| sizeof(struct s5p_hash_reqctx) + BUFLEN); |
| |
| return 0; |
| } |
| |
| /** |
| * s5p_hash_cra_init - init crypto tfm |
| * @tfm: crypto transformation |
| */ |
| static int s5p_hash_cra_init(struct crypto_tfm *tfm) |
| { |
| return s5p_hash_cra_init_alg(tfm); |
| } |
| |
| /** |
| * s5p_hash_cra_exit - exit crypto tfm |
| * @tfm: crypto transformation |
| * |
| * free allocated fallback |
| */ |
| static void s5p_hash_cra_exit(struct crypto_tfm *tfm) |
| { |
| struct s5p_hash_ctx *tctx = crypto_tfm_ctx(tfm); |
| |
| crypto_free_shash(tctx->fallback); |
| tctx->fallback = NULL; |
| } |
| |
| /** |
| * s5p_hash_export - export hash state |
| * @req: AHASH request |
| * @out: buffer for exported state |
| */ |
| static int s5p_hash_export(struct ahash_request *req, void *out) |
| { |
| struct s5p_hash_reqctx *ctx = ahash_request_ctx(req); |
| |
| memcpy(out, ctx, sizeof(*ctx) + ctx->bufcnt); |
| |
| return 0; |
| } |
| |
| /** |
| * s5p_hash_import - import hash state |
| * @req: AHASH request |
| * @in: buffer with state to be imported from |
| */ |
| static int s5p_hash_import(struct ahash_request *req, const void *in) |
| { |
| struct s5p_hash_reqctx *ctx = ahash_request_ctx(req); |
| struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); |
| struct s5p_hash_ctx *tctx = crypto_ahash_ctx(tfm); |
| const struct s5p_hash_reqctx *ctx_in = in; |
| |
| memcpy(ctx, in, sizeof(*ctx) + BUFLEN); |
| if (ctx_in->bufcnt > BUFLEN) { |
| ctx->error = true; |
| return -EINVAL; |
| } |
| |
| ctx->dd = tctx->dd; |
| ctx->error = false; |
| |
| return 0; |
| } |
| |
| static struct ahash_alg algs_sha1_md5_sha256[] = { |
| { |
| .init = s5p_hash_init, |
| .update = s5p_hash_update, |
| .final = s5p_hash_final, |
| .finup = s5p_hash_finup, |
| .digest = s5p_hash_digest, |
| .export = s5p_hash_export, |
| .import = s5p_hash_import, |
| .halg.statesize = sizeof(struct s5p_hash_reqctx) + BUFLEN, |
| .halg.digestsize = SHA1_DIGEST_SIZE, |
| .halg.base = { |
| .cra_name = "sha1", |
| .cra_driver_name = "exynos-sha1", |
| .cra_priority = 100, |
| .cra_flags = CRYPTO_ALG_TYPE_AHASH | |
| CRYPTO_ALG_KERN_DRIVER_ONLY | |
| CRYPTO_ALG_ASYNC | |
| CRYPTO_ALG_NEED_FALLBACK, |
| .cra_blocksize = HASH_BLOCK_SIZE, |
| .cra_ctxsize = sizeof(struct s5p_hash_ctx), |
| .cra_alignmask = SSS_HASH_DMA_ALIGN_MASK, |
| .cra_module = THIS_MODULE, |
| .cra_init = s5p_hash_cra_init, |
| .cra_exit = s5p_hash_cra_exit, |
| } |
| }, |
| { |
| .init = s5p_hash_init, |
| .update = s5p_hash_update, |
| .final = s5p_hash_final, |
| .finup = s5p_hash_finup, |
| .digest = s5p_hash_digest, |
| .export = s5p_hash_export, |
| .import = s5p_hash_import, |
| .halg.statesize = sizeof(struct s5p_hash_reqctx) + BUFLEN, |
| .halg.digestsize = MD5_DIGEST_SIZE, |
| .halg.base = { |
| .cra_name = "md5", |
| .cra_driver_name = "exynos-md5", |
| .cra_priority = 100, |
| .cra_flags = CRYPTO_ALG_TYPE_AHASH | |
| CRYPTO_ALG_KERN_DRIVER_ONLY | |
| CRYPTO_ALG_ASYNC | |
| CRYPTO_ALG_NEED_FALLBACK, |
| .cra_blocksize = HASH_BLOCK_SIZE, |
| .cra_ctxsize = sizeof(struct s5p_hash_ctx), |
| .cra_alignmask = SSS_HASH_DMA_ALIGN_MASK, |
| .cra_module = THIS_MODULE, |
| .cra_init = s5p_hash_cra_init, |
| .cra_exit = s5p_hash_cra_exit, |
| } |
| }, |
| { |
| .init = s5p_hash_init, |
| .update = s5p_hash_update, |
| .final = s5p_hash_final, |
| .finup = s5p_hash_finup, |
| .digest = s5p_hash_digest, |
| .export = s5p_hash_export, |
| .import = s5p_hash_import, |
| .halg.statesize = sizeof(struct s5p_hash_reqctx) + BUFLEN, |
| .halg.digestsize = SHA256_DIGEST_SIZE, |
| .halg.base = { |
| .cra_name = "sha256", |
| .cra_driver_name = "exynos-sha256", |
| .cra_priority = 100, |
| .cra_flags = CRYPTO_ALG_TYPE_AHASH | |
| CRYPTO_ALG_KERN_DRIVER_ONLY | |
| CRYPTO_ALG_ASYNC | |
| CRYPTO_ALG_NEED_FALLBACK, |
| .cra_blocksize = HASH_BLOCK_SIZE, |
| .cra_ctxsize = sizeof(struct s5p_hash_ctx), |
| .cra_alignmask = SSS_HASH_DMA_ALIGN_MASK, |
| .cra_module = THIS_MODULE, |
| .cra_init = s5p_hash_cra_init, |
| .cra_exit = s5p_hash_cra_exit, |
| } |
| } |
| |
| }; |
| |
| static void s5p_set_aes(struct s5p_aes_dev *dev, |
| uint8_t *key, uint8_t *iv, unsigned int keylen) |
| { |
| void __iomem *keystart; |
| |
| if (iv) |
| memcpy_toio(dev->aes_ioaddr + SSS_REG_AES_IV_DATA(0), iv, 0x10); |
| |
| if (keylen == AES_KEYSIZE_256) |
| keystart = dev->aes_ioaddr + SSS_REG_AES_KEY_DATA(0); |
| else if (keylen == AES_KEYSIZE_192) |
| keystart = dev->aes_ioaddr + SSS_REG_AES_KEY_DATA(2); |
| else |
| keystart = dev->aes_ioaddr + SSS_REG_AES_KEY_DATA(4); |
| |
| memcpy_toio(keystart, key, keylen); |
| } |
| |
| static bool s5p_is_sg_aligned(struct scatterlist *sg) |
| { |
| while (sg) { |
| if (!IS_ALIGNED(sg->length, AES_BLOCK_SIZE)) |
| return false; |
| sg = sg_next(sg); |
| } |
| |
| return true; |
| } |
| |
| static int s5p_set_indata_start(struct s5p_aes_dev *dev, |
| struct ablkcipher_request *req) |
| { |
| struct scatterlist *sg; |
| int err; |
| |
| dev->sg_src_cpy = NULL; |
| sg = req->src; |
| if (!s5p_is_sg_aligned(sg)) { |
| dev_dbg(dev->dev, |
| "At least one unaligned source scatter list, making a copy\n"); |
| err = s5p_make_sg_cpy(dev, sg, &dev->sg_src_cpy); |
| if (err) |
| return err; |
| |
| sg = dev->sg_src_cpy; |
| } |
| |
| err = s5p_set_indata(dev, sg); |
| if (err) { |
| s5p_free_sg_cpy(dev, &dev->sg_src_cpy); |
| return err; |
| } |
| |
| return 0; |
| } |
| |
| static int s5p_set_outdata_start(struct s5p_aes_dev *dev, |
| struct ablkcipher_request *req) |
| { |
| struct scatterlist *sg; |
| int err; |
| |
| dev->sg_dst_cpy = NULL; |
| sg = req->dst; |
| if (!s5p_is_sg_aligned(sg)) { |
| dev_dbg(dev->dev, |
| "At least one unaligned dest scatter list, making a copy\n"); |
| err = s5p_make_sg_cpy(dev, sg, &dev->sg_dst_cpy); |
| if (err) |
| return err; |
| |
| sg = dev->sg_dst_cpy; |
| } |
| |
| err = s5p_set_outdata(dev, sg); |
| if (err) { |
| s5p_free_sg_cpy(dev, &dev->sg_dst_cpy); |
| return err; |
| } |
| |
| return 0; |
| } |
| |
| static void s5p_aes_crypt_start(struct s5p_aes_dev *dev, unsigned long mode) |
| { |
| struct ablkcipher_request *req = dev->req; |
| uint32_t aes_control; |
| unsigned long flags; |
| int err; |
| u8 *iv; |
| |
| aes_control = SSS_AES_KEY_CHANGE_MODE; |
| if (mode & FLAGS_AES_DECRYPT) |
| aes_control |= SSS_AES_MODE_DECRYPT; |
| |
| if ((mode & FLAGS_AES_MODE_MASK) == FLAGS_AES_CBC) { |
| aes_control |= SSS_AES_CHAIN_MODE_CBC; |
| iv = req->info; |
| } else if ((mode & FLAGS_AES_MODE_MASK) == FLAGS_AES_CTR) { |
| aes_control |= SSS_AES_CHAIN_MODE_CTR; |
| iv = req->info; |
| } else { |
| iv = NULL; /* AES_ECB */ |
| } |
| |
| if (dev->ctx->keylen == AES_KEYSIZE_192) |
| aes_control |= SSS_AES_KEY_SIZE_192; |
| else if (dev->ctx->keylen == AES_KEYSIZE_256) |
| aes_control |= SSS_AES_KEY_SIZE_256; |
| |
| aes_control |= SSS_AES_FIFO_MODE; |
| |
| /* as a variant it is possible to use byte swapping on DMA side */ |
| aes_control |= SSS_AES_BYTESWAP_DI |
| | SSS_AES_BYTESWAP_DO |
| | SSS_AES_BYTESWAP_IV |
| | SSS_AES_BYTESWAP_KEY |
| | SSS_AES_BYTESWAP_CNT; |
| |
| spin_lock_irqsave(&dev->lock, flags); |
| |
| SSS_WRITE(dev, FCINTENCLR, |
| SSS_FCINTENCLR_BTDMAINTENCLR | SSS_FCINTENCLR_BRDMAINTENCLR); |
| SSS_WRITE(dev, FCFIFOCTRL, 0x00); |
| |
| err = s5p_set_indata_start(dev, req); |
| if (err) |
| goto indata_error; |
| |
| err = s5p_set_outdata_start(dev, req); |
| if (err) |
| goto outdata_error; |
| |
| SSS_AES_WRITE(dev, AES_CONTROL, aes_control); |
| s5p_set_aes(dev, dev->ctx->aes_key, iv, dev->ctx->keylen); |
| |
| s5p_set_dma_indata(dev, dev->sg_src); |
| s5p_set_dma_outdata(dev, dev->sg_dst); |
| |
| SSS_WRITE(dev, FCINTENSET, |
| SSS_FCINTENSET_BTDMAINTENSET | SSS_FCINTENSET_BRDMAINTENSET); |
| |
| spin_unlock_irqrestore(&dev->lock, flags); |
| |
| return; |
| |
| outdata_error: |
| s5p_unset_indata(dev); |
| |
| indata_error: |
| s5p_sg_done(dev); |
| dev->busy = false; |
| spin_unlock_irqrestore(&dev->lock, flags); |
| s5p_aes_complete(dev, err); |
| } |
| |
| static void s5p_tasklet_cb(unsigned long data) |
| { |
| struct s5p_aes_dev *dev = (struct s5p_aes_dev *)data; |
| struct crypto_async_request *async_req, *backlog; |
| struct s5p_aes_reqctx *reqctx; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&dev->lock, flags); |
| backlog = crypto_get_backlog(&dev->queue); |
| async_req = crypto_dequeue_request(&dev->queue); |
| |
| if (!async_req) { |
| dev->busy = false; |
| spin_unlock_irqrestore(&dev->lock, flags); |
| return; |
| } |
| spin_unlock_irqrestore(&dev->lock, flags); |
| |
| if (backlog) |
| backlog->complete(backlog, -EINPROGRESS); |
| |
| dev->req = ablkcipher_request_cast(async_req); |
| dev->ctx = crypto_tfm_ctx(dev->req->base.tfm); |
| reqctx = ablkcipher_request_ctx(dev->req); |
| |
| s5p_aes_crypt_start(dev, reqctx->mode); |
| } |
| |
| static int s5p_aes_handle_req(struct s5p_aes_dev *dev, |
| struct ablkcipher_request *req) |
| { |
| unsigned long flags; |
| int err; |
| |
| spin_lock_irqsave(&dev->lock, flags); |
| err = ablkcipher_enqueue_request(&dev->queue, req); |
| if (dev->busy) { |
| spin_unlock_irqrestore(&dev->lock, flags); |
| goto exit; |
| } |
| dev->busy = true; |
| |
| spin_unlock_irqrestore(&dev->lock, flags); |
| |
| tasklet_schedule(&dev->tasklet); |
| |
| exit: |
| return err; |
| } |
| |
| static int s5p_aes_crypt(struct ablkcipher_request *req, unsigned long mode) |
| { |
| struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req); |
| struct s5p_aes_reqctx *reqctx = ablkcipher_request_ctx(req); |
| struct s5p_aes_ctx *ctx = crypto_ablkcipher_ctx(tfm); |
| struct s5p_aes_dev *dev = ctx->dev; |
| |
| if (!IS_ALIGNED(req->nbytes, AES_BLOCK_SIZE)) { |
| dev_err(dev->dev, "request size is not exact amount of AES blocks\n"); |
| return -EINVAL; |
| } |
| |
| reqctx->mode = mode; |
| |
| return s5p_aes_handle_req(dev, req); |
| } |
| |
| static int s5p_aes_setkey(struct crypto_ablkcipher *cipher, |
| const uint8_t *key, unsigned int keylen) |
| { |
| struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher); |
| struct s5p_aes_ctx *ctx = crypto_tfm_ctx(tfm); |
| |
| if (keylen != AES_KEYSIZE_128 && |
| keylen != AES_KEYSIZE_192 && |
| keylen != AES_KEYSIZE_256) |
| return -EINVAL; |
| |
| memcpy(ctx->aes_key, key, keylen); |
| ctx->keylen = keylen; |
| |
| return 0; |
| } |
| |
| static int s5p_aes_ecb_encrypt(struct ablkcipher_request *req) |
| { |
| return s5p_aes_crypt(req, 0); |
| } |
| |
| static int s5p_aes_ecb_decrypt(struct ablkcipher_request *req) |
| { |
| return s5p_aes_crypt(req, FLAGS_AES_DECRYPT); |
| } |
| |
| static int s5p_aes_cbc_encrypt(struct ablkcipher_request *req) |
| { |
| return s5p_aes_crypt(req, FLAGS_AES_CBC); |
| } |
| |
| static int s5p_aes_cbc_decrypt(struct ablkcipher_request *req) |
| { |
| return s5p_aes_crypt(req, FLAGS_AES_DECRYPT | FLAGS_AES_CBC); |
| } |
| |
| static int s5p_aes_cra_init(struct crypto_tfm *tfm) |
| { |
| struct s5p_aes_ctx *ctx = crypto_tfm_ctx(tfm); |
| |
| ctx->dev = s5p_dev; |
| tfm->crt_ablkcipher.reqsize = sizeof(struct s5p_aes_reqctx); |
| |
| return 0; |
| } |
| |
| static struct crypto_alg algs[] = { |
| { |
| .cra_name = "ecb(aes)", |
| .cra_driver_name = "ecb-aes-s5p", |
| .cra_priority = 100, |
| .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | |
| CRYPTO_ALG_ASYNC | |
| CRYPTO_ALG_KERN_DRIVER_ONLY, |
| .cra_blocksize = AES_BLOCK_SIZE, |
| .cra_ctxsize = sizeof(struct s5p_aes_ctx), |
| .cra_alignmask = 0x0f, |
| .cra_type = &crypto_ablkcipher_type, |
| .cra_module = THIS_MODULE, |
| .cra_init = s5p_aes_cra_init, |
| .cra_u.ablkcipher = { |
| .min_keysize = AES_MIN_KEY_SIZE, |
| .max_keysize = AES_MAX_KEY_SIZE, |
| .setkey = s5p_aes_setkey, |
| .encrypt = s5p_aes_ecb_encrypt, |
| .decrypt = s5p_aes_ecb_decrypt, |
| } |
| }, |
| { |
| .cra_name = "cbc(aes)", |
| .cra_driver_name = "cbc-aes-s5p", |
| .cra_priority = 100, |
| .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | |
| CRYPTO_ALG_ASYNC | |
| CRYPTO_ALG_KERN_DRIVER_ONLY, |
| .cra_blocksize = AES_BLOCK_SIZE, |
| .cra_ctxsize = sizeof(struct s5p_aes_ctx), |
| .cra_alignmask = 0x0f, |
| .cra_type = &crypto_ablkcipher_type, |
| .cra_module = THIS_MODULE, |
| .cra_init = s5p_aes_cra_init, |
| .cra_u.ablkcipher = { |
| .min_keysize = AES_MIN_KEY_SIZE, |
| .max_keysize = AES_MAX_KEY_SIZE, |
| .ivsize = AES_BLOCK_SIZE, |
| .setkey = s5p_aes_setkey, |
| .encrypt = s5p_aes_cbc_encrypt, |
| .decrypt = s5p_aes_cbc_decrypt, |
| } |
| }, |
| }; |
| |
| static int s5p_aes_probe(struct platform_device *pdev) |
| { |
| struct device *dev = &pdev->dev; |
| int i, j, err = -ENODEV; |
| struct samsung_aes_variant *variant; |
| struct s5p_aes_dev *pdata; |
| struct resource *res; |
| unsigned int hash_i; |
| |
| if (s5p_dev) |
| return -EEXIST; |
| |
| pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL); |
| if (!pdata) |
| return -ENOMEM; |
| |
| variant = find_s5p_sss_version(pdev); |
| res = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| |
| /* |
| * Note: HASH and PRNG uses the same registers in secss, avoid |
| * overwrite each other. This will drop HASH when CONFIG_EXYNOS_RNG |
| * is enabled in config. We need larger size for HASH registers in |
| * secss, current describe only AES/DES |
| */ |
| if (IS_ENABLED(CONFIG_CRYPTO_DEV_EXYNOS_HASH)) { |
| if (variant == &exynos_aes_data) { |
| res->end += 0x300; |
| pdata->use_hash = true; |
| } |
| } |
| |
| pdata->res = res; |
| pdata->ioaddr = devm_ioremap_resource(&pdev->dev, res); |
| if (IS_ERR(pdata->ioaddr)) { |
| if (!pdata->use_hash) |
| return PTR_ERR(pdata->ioaddr); |
| /* try AES without HASH */ |
| res->end -= 0x300; |
| pdata->use_hash = false; |
| pdata->ioaddr = devm_ioremap_resource(&pdev->dev, res); |
| if (IS_ERR(pdata->ioaddr)) |
| return PTR_ERR(pdata->ioaddr); |
| } |
| |
| pdata->clk = devm_clk_get(dev, "secss"); |
| if (IS_ERR(pdata->clk)) { |
| dev_err(dev, "failed to find secss clock source\n"); |
| return -ENOENT; |
| } |
| |
| err = clk_prepare_enable(pdata->clk); |
| if (err < 0) { |
| dev_err(dev, "Enabling SSS clk failed, err %d\n", err); |
| return err; |
| } |
| |
| spin_lock_init(&pdata->lock); |
| spin_lock_init(&pdata->hash_lock); |
| |
| pdata->aes_ioaddr = pdata->ioaddr + variant->aes_offset; |
| pdata->io_hash_base = pdata->ioaddr + variant->hash_offset; |
| |
| pdata->irq_fc = platform_get_irq(pdev, 0); |
| if (pdata->irq_fc < 0) { |
| err = pdata->irq_fc; |
| dev_warn(dev, "feed control interrupt is not available.\n"); |
| goto err_irq; |
| } |
| err = devm_request_threaded_irq(dev, pdata->irq_fc, NULL, |
| s5p_aes_interrupt, IRQF_ONESHOT, |
| pdev->name, pdev); |
| if (err < 0) { |
| dev_warn(dev, "feed control interrupt is not available.\n"); |
| goto err_irq; |
| } |
| |
| pdata->busy = false; |
| pdata->dev = dev; |
| platform_set_drvdata(pdev, pdata); |
| s5p_dev = pdata; |
| |
| tasklet_init(&pdata->tasklet, s5p_tasklet_cb, (unsigned long)pdata); |
| crypto_init_queue(&pdata->queue, CRYPTO_QUEUE_LEN); |
| |
| for (i = 0; i < ARRAY_SIZE(algs); i++) { |
| err = crypto_register_alg(&algs[i]); |
| if (err) |
| goto err_algs; |
| } |
| |
| if (pdata->use_hash) { |
| tasklet_init(&pdata->hash_tasklet, s5p_hash_tasklet_cb, |
| (unsigned long)pdata); |
| crypto_init_queue(&pdata->hash_queue, SSS_HASH_QUEUE_LENGTH); |
| |
| for (hash_i = 0; hash_i < ARRAY_SIZE(algs_sha1_md5_sha256); |
| hash_i++) { |
| struct ahash_alg *alg; |
| |
| alg = &algs_sha1_md5_sha256[hash_i]; |
| err = crypto_register_ahash(alg); |
| if (err) { |
| dev_err(dev, "can't register '%s': %d\n", |
| alg->halg.base.cra_driver_name, err); |
| goto err_hash; |
| } |
| } |
| } |
| |
| dev_info(dev, "s5p-sss driver registered\n"); |
| |
| return 0; |
| |
| err_hash: |
| for (j = hash_i - 1; j >= 0; j--) |
| crypto_unregister_ahash(&algs_sha1_md5_sha256[j]); |
| |
| tasklet_kill(&pdata->hash_tasklet); |
| res->end -= 0x300; |
| |
| err_algs: |
| if (i < ARRAY_SIZE(algs)) |
| dev_err(dev, "can't register '%s': %d\n", algs[i].cra_name, |
| err); |
| |
| for (j = 0; j < i; j++) |
| crypto_unregister_alg(&algs[j]); |
| |
| tasklet_kill(&pdata->tasklet); |
| |
| err_irq: |
| clk_disable_unprepare(pdata->clk); |
| |
| s5p_dev = NULL; |
| |
| return err; |
| } |
| |
| static int s5p_aes_remove(struct platform_device *pdev) |
| { |
| struct s5p_aes_dev *pdata = platform_get_drvdata(pdev); |
| int i; |
| |
| if (!pdata) |
| return -ENODEV; |
| |
| for (i = 0; i < ARRAY_SIZE(algs); i++) |
| crypto_unregister_alg(&algs[i]); |
| |
| tasklet_kill(&pdata->tasklet); |
| if (pdata->use_hash) { |
| for (i = ARRAY_SIZE(algs_sha1_md5_sha256) - 1; i >= 0; i--) |
| crypto_unregister_ahash(&algs_sha1_md5_sha256[i]); |
| |
| pdata->res->end -= 0x300; |
| tasklet_kill(&pdata->hash_tasklet); |
| pdata->use_hash = false; |
| } |
| |
| clk_disable_unprepare(pdata->clk); |
| s5p_dev = NULL; |
| |
| return 0; |
| } |
| |
| static struct platform_driver s5p_aes_crypto = { |
| .probe = s5p_aes_probe, |
| .remove = s5p_aes_remove, |
| .driver = { |
| .name = "s5p-secss", |
| .of_match_table = s5p_sss_dt_match, |
| }, |
| }; |
| |
| module_platform_driver(s5p_aes_crypto); |
| |
| MODULE_DESCRIPTION("S5PV210 AES hw acceleration support."); |
| MODULE_LICENSE("GPL v2"); |
| MODULE_AUTHOR("Vladimir Zapolskiy <vzapolskiy@gmail.com>"); |
| MODULE_AUTHOR("Kamil Konieczny <k.konieczny@partner.samsung.com>"); |