blob: 4dbe0c680fe6363a88ca47cb167dcae9327920d1 [file] [log] [blame]
/*
* net/sched/cls_u32.c Ugly (or Universal) 32bit key Packet Classifier.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
* Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
*
* The filters are packed to hash tables of key nodes
* with a set of 32bit key/mask pairs at every node.
* Nodes reference next level hash tables etc.
*
* This scheme is the best universal classifier I managed to
* invent; it is not super-fast, but it is not slow (provided you
* program it correctly), and general enough. And its relative
* speed grows as the number of rules becomes larger.
*
* It seems that it represents the best middle point between
* speed and manageability both by human and by machine.
*
* It is especially useful for link sharing combined with QoS;
* pure RSVP doesn't need such a general approach and can use
* much simpler (and faster) schemes, sort of cls_rsvp.c.
*
* JHS: We should remove the CONFIG_NET_CLS_IND from here
* eventually when the meta match extension is made available
*
* nfmark match added by Catalin(ux aka Dino) BOIE <catab at umbrella.ro>
*/
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/errno.h>
#include <linux/percpu.h>
#include <linux/rtnetlink.h>
#include <linux/skbuff.h>
#include <linux/bitmap.h>
#include <net/netlink.h>
#include <net/act_api.h>
#include <net/pkt_cls.h>
#include <linux/netdevice.h>
struct tc_u_knode {
struct tc_u_knode __rcu *next;
u32 handle;
struct tc_u_hnode __rcu *ht_up;
struct tcf_exts exts;
#ifdef CONFIG_NET_CLS_IND
int ifindex;
#endif
u8 fshift;
struct tcf_result res;
struct tc_u_hnode __rcu *ht_down;
#ifdef CONFIG_CLS_U32_PERF
struct tc_u32_pcnt __percpu *pf;
#endif
u32 flags;
#ifdef CONFIG_CLS_U32_MARK
u32 val;
u32 mask;
u32 __percpu *pcpu_success;
#endif
struct tcf_proto *tp;
struct rcu_head rcu;
/* The 'sel' field MUST be the last field in structure to allow for
* tc_u32_keys allocated at end of structure.
*/
struct tc_u32_sel sel;
};
struct tc_u_hnode {
struct tc_u_hnode __rcu *next;
u32 handle;
u32 prio;
struct tc_u_common *tp_c;
int refcnt;
unsigned int divisor;
struct rcu_head rcu;
/* The 'ht' field MUST be the last field in structure to allow for
* more entries allocated at end of structure.
*/
struct tc_u_knode __rcu *ht[1];
};
struct tc_u_common {
struct tc_u_hnode __rcu *hlist;
struct Qdisc *q;
int refcnt;
u32 hgenerator;
struct rcu_head rcu;
};
static inline unsigned int u32_hash_fold(__be32 key,
const struct tc_u32_sel *sel,
u8 fshift)
{
unsigned int h = ntohl(key & sel->hmask) >> fshift;
return h;
}
static int u32_classify(struct sk_buff *skb, const struct tcf_proto *tp,
struct tcf_result *res)
{
struct {
struct tc_u_knode *knode;
unsigned int off;
} stack[TC_U32_MAXDEPTH];
struct tc_u_hnode *ht = rcu_dereference_bh(tp->root);
unsigned int off = skb_network_offset(skb);
struct tc_u_knode *n;
int sdepth = 0;
int off2 = 0;
int sel = 0;
#ifdef CONFIG_CLS_U32_PERF
int j;
#endif
int i, r;
next_ht:
n = rcu_dereference_bh(ht->ht[sel]);
next_knode:
if (n) {
struct tc_u32_key *key = n->sel.keys;
#ifdef CONFIG_CLS_U32_PERF
__this_cpu_inc(n->pf->rcnt);
j = 0;
#endif
if (tc_skip_sw(n->flags)) {
n = rcu_dereference_bh(n->next);
goto next_knode;
}
#ifdef CONFIG_CLS_U32_MARK
if ((skb->mark & n->mask) != n->val) {
n = rcu_dereference_bh(n->next);
goto next_knode;
} else {
__this_cpu_inc(*n->pcpu_success);
}
#endif
for (i = n->sel.nkeys; i > 0; i--, key++) {
int toff = off + key->off + (off2 & key->offmask);
__be32 *data, hdata;
if (skb_headroom(skb) + toff > INT_MAX)
goto out;
data = skb_header_pointer(skb, toff, 4, &hdata);
if (!data)
goto out;
if ((*data ^ key->val) & key->mask) {
n = rcu_dereference_bh(n->next);
goto next_knode;
}
#ifdef CONFIG_CLS_U32_PERF
__this_cpu_inc(n->pf->kcnts[j]);
j++;
#endif
}
ht = rcu_dereference_bh(n->ht_down);
if (!ht) {
check_terminal:
if (n->sel.flags & TC_U32_TERMINAL) {
*res = n->res;
#ifdef CONFIG_NET_CLS_IND
if (!tcf_match_indev(skb, n->ifindex)) {
n = rcu_dereference_bh(n->next);
goto next_knode;
}
#endif
#ifdef CONFIG_CLS_U32_PERF
__this_cpu_inc(n->pf->rhit);
#endif
r = tcf_exts_exec(skb, &n->exts, res);
if (r < 0) {
n = rcu_dereference_bh(n->next);
goto next_knode;
}
return r;
}
n = rcu_dereference_bh(n->next);
goto next_knode;
}
/* PUSH */
if (sdepth >= TC_U32_MAXDEPTH)
goto deadloop;
stack[sdepth].knode = n;
stack[sdepth].off = off;
sdepth++;
ht = rcu_dereference_bh(n->ht_down);
sel = 0;
if (ht->divisor) {
__be32 *data, hdata;
data = skb_header_pointer(skb, off + n->sel.hoff, 4,
&hdata);
if (!data)
goto out;
sel = ht->divisor & u32_hash_fold(*data, &n->sel,
n->fshift);
}
if (!(n->sel.flags & (TC_U32_VAROFFSET | TC_U32_OFFSET | TC_U32_EAT)))
goto next_ht;
if (n->sel.flags & (TC_U32_OFFSET | TC_U32_VAROFFSET)) {
off2 = n->sel.off + 3;
if (n->sel.flags & TC_U32_VAROFFSET) {
__be16 *data, hdata;
data = skb_header_pointer(skb,
off + n->sel.offoff,
2, &hdata);
if (!data)
goto out;
off2 += ntohs(n->sel.offmask & *data) >>
n->sel.offshift;
}
off2 &= ~3;
}
if (n->sel.flags & TC_U32_EAT) {
off += off2;
off2 = 0;
}
if (off < skb->len)
goto next_ht;
}
/* POP */
if (sdepth--) {
n = stack[sdepth].knode;
ht = rcu_dereference_bh(n->ht_up);
off = stack[sdepth].off;
goto check_terminal;
}
out:
return -1;
deadloop:
net_warn_ratelimited("cls_u32: dead loop\n");
return -1;
}
static struct tc_u_hnode *u32_lookup_ht(struct tc_u_common *tp_c, u32 handle)
{
struct tc_u_hnode *ht;
for (ht = rtnl_dereference(tp_c->hlist);
ht;
ht = rtnl_dereference(ht->next))
if (ht->handle == handle)
break;
return ht;
}
static struct tc_u_knode *u32_lookup_key(struct tc_u_hnode *ht, u32 handle)
{
unsigned int sel;
struct tc_u_knode *n = NULL;
sel = TC_U32_HASH(handle);
if (sel > ht->divisor)
goto out;
for (n = rtnl_dereference(ht->ht[sel]);
n;
n = rtnl_dereference(n->next))
if (n->handle == handle)
break;
out:
return n;
}
static unsigned long u32_get(struct tcf_proto *tp, u32 handle)
{
struct tc_u_hnode *ht;
struct tc_u_common *tp_c = tp->data;
if (TC_U32_HTID(handle) == TC_U32_ROOT)
ht = rtnl_dereference(tp->root);
else
ht = u32_lookup_ht(tp_c, TC_U32_HTID(handle));
if (!ht)
return 0;
if (TC_U32_KEY(handle) == 0)
return (unsigned long)ht;
return (unsigned long)u32_lookup_key(ht, handle);
}
static u32 gen_new_htid(struct tc_u_common *tp_c)
{
int i = 0x800;
/* hgenerator only used inside rtnl lock it is safe to increment
* without read _copy_ update semantics
*/
do {
if (++tp_c->hgenerator == 0x7FF)
tp_c->hgenerator = 1;
} while (--i > 0 && u32_lookup_ht(tp_c, (tp_c->hgenerator|0x800)<<20));
return i > 0 ? (tp_c->hgenerator|0x800)<<20 : 0;
}
static int u32_init(struct tcf_proto *tp)
{
struct tc_u_hnode *root_ht;
struct tc_u_common *tp_c;
tp_c = tp->q->u32_node;
root_ht = kzalloc(sizeof(*root_ht), GFP_KERNEL);
if (root_ht == NULL)
return -ENOBUFS;
root_ht->refcnt++;
root_ht->handle = tp_c ? gen_new_htid(tp_c) : 0x80000000;
root_ht->prio = tp->prio;
if (tp_c == NULL) {
tp_c = kzalloc(sizeof(*tp_c), GFP_KERNEL);
if (tp_c == NULL) {
kfree(root_ht);
return -ENOBUFS;
}
tp_c->q = tp->q;
tp->q->u32_node = tp_c;
}
tp_c->refcnt++;
RCU_INIT_POINTER(root_ht->next, tp_c->hlist);
rcu_assign_pointer(tp_c->hlist, root_ht);
root_ht->tp_c = tp_c;
rcu_assign_pointer(tp->root, root_ht);
tp->data = tp_c;
return 0;
}
static int u32_destroy_key(struct tcf_proto *tp, struct tc_u_knode *n,
bool free_pf)
{
tcf_exts_destroy(&n->exts);
if (n->ht_down)
n->ht_down->refcnt--;
#ifdef CONFIG_CLS_U32_PERF
if (free_pf)
free_percpu(n->pf);
#endif
#ifdef CONFIG_CLS_U32_MARK
if (free_pf)
free_percpu(n->pcpu_success);
#endif
kfree(n);
return 0;
}
/* u32_delete_key_rcu should be called when free'ing a copied
* version of a tc_u_knode obtained from u32_init_knode(). When
* copies are obtained from u32_init_knode() the statistics are
* shared between the old and new copies to allow readers to
* continue to update the statistics during the copy. To support
* this the u32_delete_key_rcu variant does not free the percpu
* statistics.
*/
static void u32_delete_key_rcu(struct rcu_head *rcu)
{
struct tc_u_knode *key = container_of(rcu, struct tc_u_knode, rcu);
u32_destroy_key(key->tp, key, false);
}
/* u32_delete_key_freepf_rcu is the rcu callback variant
* that free's the entire structure including the statistics
* percpu variables. Only use this if the key is not a copy
* returned by u32_init_knode(). See u32_delete_key_rcu()
* for the variant that should be used with keys return from
* u32_init_knode()
*/
static void u32_delete_key_freepf_rcu(struct rcu_head *rcu)
{
struct tc_u_knode *key = container_of(rcu, struct tc_u_knode, rcu);
u32_destroy_key(key->tp, key, true);
}
static int u32_delete_key(struct tcf_proto *tp, struct tc_u_knode *key)
{
struct tc_u_knode __rcu **kp;
struct tc_u_knode *pkp;
struct tc_u_hnode *ht = rtnl_dereference(key->ht_up);
if (ht) {
kp = &ht->ht[TC_U32_HASH(key->handle)];
for (pkp = rtnl_dereference(*kp); pkp;
kp = &pkp->next, pkp = rtnl_dereference(*kp)) {
if (pkp == key) {
RCU_INIT_POINTER(*kp, key->next);
tcf_unbind_filter(tp, &key->res);
call_rcu(&key->rcu, u32_delete_key_freepf_rcu);
return 0;
}
}
}
WARN_ON(1);
return 0;
}
static void u32_remove_hw_knode(struct tcf_proto *tp, u32 handle)
{
struct net_device *dev = tp->q->dev_queue->dev;
struct tc_cls_u32_offload u32_offload = {0};
struct tc_to_netdev offload;
offload.type = TC_SETUP_CLSU32;
offload.cls_u32 = &u32_offload;
if (tc_should_offload(dev, tp, 0)) {
offload.cls_u32->command = TC_CLSU32_DELETE_KNODE;
offload.cls_u32->knode.handle = handle;
dev->netdev_ops->ndo_setup_tc(dev, tp->q->handle,
tp->protocol, &offload);
}
}
static int u32_replace_hw_hnode(struct tcf_proto *tp, struct tc_u_hnode *h,
u32 flags)
{
struct net_device *dev = tp->q->dev_queue->dev;
struct tc_cls_u32_offload u32_offload = {0};
struct tc_to_netdev offload;
int err;
if (!tc_should_offload(dev, tp, flags))
return tc_skip_sw(flags) ? -EINVAL : 0;
offload.type = TC_SETUP_CLSU32;
offload.cls_u32 = &u32_offload;
offload.cls_u32->command = TC_CLSU32_NEW_HNODE;
offload.cls_u32->hnode.divisor = h->divisor;
offload.cls_u32->hnode.handle = h->handle;
offload.cls_u32->hnode.prio = h->prio;
err = dev->netdev_ops->ndo_setup_tc(dev, tp->q->handle,
tp->protocol, &offload);
if (tc_skip_sw(flags))
return err;
return 0;
}
static void u32_clear_hw_hnode(struct tcf_proto *tp, struct tc_u_hnode *h)
{
struct net_device *dev = tp->q->dev_queue->dev;
struct tc_cls_u32_offload u32_offload = {0};
struct tc_to_netdev offload;
offload.type = TC_SETUP_CLSU32;
offload.cls_u32 = &u32_offload;
if (tc_should_offload(dev, tp, 0)) {
offload.cls_u32->command = TC_CLSU32_DELETE_HNODE;
offload.cls_u32->hnode.divisor = h->divisor;
offload.cls_u32->hnode.handle = h->handle;
offload.cls_u32->hnode.prio = h->prio;
dev->netdev_ops->ndo_setup_tc(dev, tp->q->handle,
tp->protocol, &offload);
}
}
static int u32_replace_hw_knode(struct tcf_proto *tp, struct tc_u_knode *n,
u32 flags)
{
struct net_device *dev = tp->q->dev_queue->dev;
struct tc_cls_u32_offload u32_offload = {0};
struct tc_to_netdev offload;
int err;
offload.type = TC_SETUP_CLSU32;
offload.cls_u32 = &u32_offload;
if (!tc_should_offload(dev, tp, flags))
return tc_skip_sw(flags) ? -EINVAL : 0;
offload.cls_u32->command = TC_CLSU32_REPLACE_KNODE;
offload.cls_u32->knode.handle = n->handle;
offload.cls_u32->knode.fshift = n->fshift;
#ifdef CONFIG_CLS_U32_MARK
offload.cls_u32->knode.val = n->val;
offload.cls_u32->knode.mask = n->mask;
#else
offload.cls_u32->knode.val = 0;
offload.cls_u32->knode.mask = 0;
#endif
offload.cls_u32->knode.sel = &n->sel;
offload.cls_u32->knode.exts = &n->exts;
if (n->ht_down)
offload.cls_u32->knode.link_handle = n->ht_down->handle;
err = dev->netdev_ops->ndo_setup_tc(dev, tp->q->handle,
tp->protocol, &offload);
if (!err)
n->flags |= TCA_CLS_FLAGS_IN_HW;
if (tc_skip_sw(flags))
return err;
return 0;
}
static void u32_clear_hnode(struct tcf_proto *tp, struct tc_u_hnode *ht)
{
struct tc_u_knode *n;
unsigned int h;
for (h = 0; h <= ht->divisor; h++) {
while ((n = rtnl_dereference(ht->ht[h])) != NULL) {
RCU_INIT_POINTER(ht->ht[h],
rtnl_dereference(n->next));
tcf_unbind_filter(tp, &n->res);
u32_remove_hw_knode(tp, n->handle);
call_rcu(&n->rcu, u32_delete_key_freepf_rcu);
}
}
}
static int u32_destroy_hnode(struct tcf_proto *tp, struct tc_u_hnode *ht)
{
struct tc_u_common *tp_c = tp->data;
struct tc_u_hnode __rcu **hn;
struct tc_u_hnode *phn;
WARN_ON(ht->refcnt);
u32_clear_hnode(tp, ht);
hn = &tp_c->hlist;
for (phn = rtnl_dereference(*hn);
phn;
hn = &phn->next, phn = rtnl_dereference(*hn)) {
if (phn == ht) {
u32_clear_hw_hnode(tp, ht);
RCU_INIT_POINTER(*hn, ht->next);
kfree_rcu(ht, rcu);
return 0;
}
}
return -ENOENT;
}
static bool ht_empty(struct tc_u_hnode *ht)
{
unsigned int h;
for (h = 0; h <= ht->divisor; h++)
if (rcu_access_pointer(ht->ht[h]))
return false;
return true;
}
static bool u32_destroy(struct tcf_proto *tp, bool force)
{
struct tc_u_common *tp_c = tp->data;
struct tc_u_hnode *root_ht = rtnl_dereference(tp->root);
WARN_ON(root_ht == NULL);
if (!force) {
if (root_ht) {
if (root_ht->refcnt > 1)
return false;
if (root_ht->refcnt == 1) {
if (!ht_empty(root_ht))
return false;
}
}
if (tp_c->refcnt > 1)
return false;
if (tp_c->refcnt == 1) {
struct tc_u_hnode *ht;
for (ht = rtnl_dereference(tp_c->hlist);
ht;
ht = rtnl_dereference(ht->next))
if (!ht_empty(ht))
return false;
}
}
if (root_ht && --root_ht->refcnt == 0)
u32_destroy_hnode(tp, root_ht);
if (--tp_c->refcnt == 0) {
struct tc_u_hnode *ht;
tp->q->u32_node = NULL;
for (ht = rtnl_dereference(tp_c->hlist);
ht;
ht = rtnl_dereference(ht->next)) {
ht->refcnt--;
u32_clear_hnode(tp, ht);
}
while ((ht = rtnl_dereference(tp_c->hlist)) != NULL) {
RCU_INIT_POINTER(tp_c->hlist, ht->next);
kfree_rcu(ht, rcu);
}
kfree(tp_c);
}
tp->data = NULL;
return true;
}
static int u32_delete(struct tcf_proto *tp, unsigned long arg)
{
struct tc_u_hnode *ht = (struct tc_u_hnode *)arg;
struct tc_u_hnode *root_ht = rtnl_dereference(tp->root);
if (ht == NULL)
return 0;
if (TC_U32_KEY(ht->handle)) {
u32_remove_hw_knode(tp, ht->handle);
return u32_delete_key(tp, (struct tc_u_knode *)ht);
}
if (root_ht == ht)
return -EINVAL;
if (ht->refcnt == 1) {
ht->refcnt--;
u32_destroy_hnode(tp, ht);
} else {
return -EBUSY;
}
return 0;
}
#define NR_U32_NODE (1<<12)
static u32 gen_new_kid(struct tc_u_hnode *ht, u32 handle)
{
struct tc_u_knode *n;
unsigned long i;
unsigned long *bitmap = kzalloc(BITS_TO_LONGS(NR_U32_NODE) * sizeof(unsigned long),
GFP_KERNEL);
if (!bitmap)
return handle | 0xFFF;
for (n = rtnl_dereference(ht->ht[TC_U32_HASH(handle)]);
n;
n = rtnl_dereference(n->next))
set_bit(TC_U32_NODE(n->handle), bitmap);
i = find_next_zero_bit(bitmap, NR_U32_NODE, 0x800);
if (i >= NR_U32_NODE)
i = find_next_zero_bit(bitmap, NR_U32_NODE, 1);
kfree(bitmap);
return handle | (i >= NR_U32_NODE ? 0xFFF : i);
}
static const struct nla_policy u32_policy[TCA_U32_MAX + 1] = {
[TCA_U32_CLASSID] = { .type = NLA_U32 },
[TCA_U32_HASH] = { .type = NLA_U32 },
[TCA_U32_LINK] = { .type = NLA_U32 },
[TCA_U32_DIVISOR] = { .type = NLA_U32 },
[TCA_U32_SEL] = { .len = sizeof(struct tc_u32_sel) },
[TCA_U32_INDEV] = { .type = NLA_STRING, .len = IFNAMSIZ },
[TCA_U32_MARK] = { .len = sizeof(struct tc_u32_mark) },
[TCA_U32_FLAGS] = { .type = NLA_U32 },
};
static int u32_set_parms(struct net *net, struct tcf_proto *tp,
unsigned long base, struct tc_u_hnode *ht,
struct tc_u_knode *n, struct nlattr **tb,
struct nlattr *est, bool ovr)
{
struct tcf_exts e;
int err;
err = tcf_exts_init(&e, TCA_U32_ACT, TCA_U32_POLICE);
if (err < 0)
return err;
err = tcf_exts_validate(net, tp, tb, est, &e, ovr);
if (err < 0)
goto errout;
err = -EINVAL;
if (tb[TCA_U32_LINK]) {
u32 handle = nla_get_u32(tb[TCA_U32_LINK]);
struct tc_u_hnode *ht_down = NULL, *ht_old;
if (TC_U32_KEY(handle))
goto errout;
if (handle) {
ht_down = u32_lookup_ht(ht->tp_c, handle);
if (ht_down == NULL)
goto errout;
ht_down->refcnt++;
}
ht_old = rtnl_dereference(n->ht_down);
rcu_assign_pointer(n->ht_down, ht_down);
if (ht_old)
ht_old->refcnt--;
}
if (tb[TCA_U32_CLASSID]) {
n->res.classid = nla_get_u32(tb[TCA_U32_CLASSID]);
tcf_bind_filter(tp, &n->res, base);
}
#ifdef CONFIG_NET_CLS_IND
if (tb[TCA_U32_INDEV]) {
int ret;
ret = tcf_change_indev(net, tb[TCA_U32_INDEV]);
if (ret < 0)
goto errout;
n->ifindex = ret;
}
#endif
tcf_exts_change(tp, &n->exts, &e);
return 0;
errout:
tcf_exts_destroy(&e);
return err;
}
static void u32_replace_knode(struct tcf_proto *tp, struct tc_u_common *tp_c,
struct tc_u_knode *n)
{
struct tc_u_knode __rcu **ins;
struct tc_u_knode *pins;
struct tc_u_hnode *ht;
if (TC_U32_HTID(n->handle) == TC_U32_ROOT)
ht = rtnl_dereference(tp->root);
else
ht = u32_lookup_ht(tp_c, TC_U32_HTID(n->handle));
ins = &ht->ht[TC_U32_HASH(n->handle)];
/* The node must always exist for it to be replaced if this is not the
* case then something went very wrong elsewhere.
*/
for (pins = rtnl_dereference(*ins); ;
ins = &pins->next, pins = rtnl_dereference(*ins))
if (pins->handle == n->handle)
break;
RCU_INIT_POINTER(n->next, pins->next);
rcu_assign_pointer(*ins, n);
}
static struct tc_u_knode *u32_init_knode(struct tcf_proto *tp,
struct tc_u_knode *n)
{
struct tc_u_knode *new;
struct tc_u32_sel *s = &n->sel;
new = kzalloc(sizeof(*n) + s->nkeys*sizeof(struct tc_u32_key),
GFP_KERNEL);
if (!new)
return NULL;
RCU_INIT_POINTER(new->next, n->next);
new->handle = n->handle;
RCU_INIT_POINTER(new->ht_up, n->ht_up);
#ifdef CONFIG_NET_CLS_IND
new->ifindex = n->ifindex;
#endif
new->fshift = n->fshift;
new->res = n->res;
new->flags = n->flags;
RCU_INIT_POINTER(new->ht_down, n->ht_down);
/* bump reference count as long as we hold pointer to structure */
if (new->ht_down)
new->ht_down->refcnt++;
#ifdef CONFIG_CLS_U32_PERF
/* Statistics may be incremented by readers during update
* so we must keep them in tact. When the node is later destroyed
* a special destroy call must be made to not free the pf memory.
*/
new->pf = n->pf;
#endif
#ifdef CONFIG_CLS_U32_MARK
new->val = n->val;
new->mask = n->mask;
/* Similarly success statistics must be moved as pointers */
new->pcpu_success = n->pcpu_success;
#endif
new->tp = tp;
memcpy(&new->sel, s, sizeof(*s) + s->nkeys*sizeof(struct tc_u32_key));
if (tcf_exts_init(&new->exts, TCA_U32_ACT, TCA_U32_POLICE)) {
kfree(new);
return NULL;
}
return new;
}
static int u32_change(struct net *net, struct sk_buff *in_skb,
struct tcf_proto *tp, unsigned long base, u32 handle,
struct nlattr **tca, unsigned long *arg, bool ovr)
{
struct tc_u_common *tp_c = tp->data;
struct tc_u_hnode *ht;
struct tc_u_knode *n;
struct tc_u32_sel *s;
struct nlattr *opt = tca[TCA_OPTIONS];
struct nlattr *tb[TCA_U32_MAX + 1];
u32 htid, flags = 0;
int err;
#ifdef CONFIG_CLS_U32_PERF
size_t size;
#endif
if (opt == NULL)
return handle ? -EINVAL : 0;
err = nla_parse_nested(tb, TCA_U32_MAX, opt, u32_policy);
if (err < 0)
return err;
if (tb[TCA_U32_FLAGS]) {
flags = nla_get_u32(tb[TCA_U32_FLAGS]);
if (!tc_flags_valid(flags))
return -EINVAL;
}
n = (struct tc_u_knode *)*arg;
if (n) {
struct tc_u_knode *new;
if (TC_U32_KEY(n->handle) == 0)
return -EINVAL;
if (n->flags != flags)
return -EINVAL;
new = u32_init_knode(tp, n);
if (!new)
return -ENOMEM;
err = u32_set_parms(net, tp, base,
rtnl_dereference(n->ht_up), new, tb,
tca[TCA_RATE], ovr);
if (err) {
u32_destroy_key(tp, new, false);
return err;
}
err = u32_replace_hw_knode(tp, new, flags);
if (err) {
u32_destroy_key(tp, new, false);
return err;
}
if (!tc_in_hw(new->flags))
new->flags |= TCA_CLS_FLAGS_NOT_IN_HW;
u32_replace_knode(tp, tp_c, new);
tcf_unbind_filter(tp, &n->res);
call_rcu(&n->rcu, u32_delete_key_rcu);
return 0;
}
if (tb[TCA_U32_DIVISOR]) {
unsigned int divisor = nla_get_u32(tb[TCA_U32_DIVISOR]);
if (--divisor > 0x100)
return -EINVAL;
if (TC_U32_KEY(handle))
return -EINVAL;
if (handle == 0) {
handle = gen_new_htid(tp->data);
if (handle == 0)
return -ENOMEM;
}
ht = kzalloc(sizeof(*ht) + divisor*sizeof(void *), GFP_KERNEL);
if (ht == NULL)
return -ENOBUFS;
ht->tp_c = tp_c;
ht->refcnt = 1;
ht->divisor = divisor;
ht->handle = handle;
ht->prio = tp->prio;
err = u32_replace_hw_hnode(tp, ht, flags);
if (err) {
kfree(ht);
return err;
}
RCU_INIT_POINTER(ht->next, tp_c->hlist);
rcu_assign_pointer(tp_c->hlist, ht);
*arg = (unsigned long)ht;
return 0;
}
if (tb[TCA_U32_HASH]) {
htid = nla_get_u32(tb[TCA_U32_HASH]);
if (TC_U32_HTID(htid) == TC_U32_ROOT) {
ht = rtnl_dereference(tp->root);
htid = ht->handle;
} else {
ht = u32_lookup_ht(tp->data, TC_U32_HTID(htid));
if (ht == NULL)
return -EINVAL;
}
} else {
ht = rtnl_dereference(tp->root);
htid = ht->handle;
}
if (ht->divisor < TC_U32_HASH(htid))
return -EINVAL;
if (handle) {
if (TC_U32_HTID(handle) && TC_U32_HTID(handle^htid))
return -EINVAL;
handle = htid | TC_U32_NODE(handle);
} else
handle = gen_new_kid(ht, htid);
if (tb[TCA_U32_SEL] == NULL)
return -EINVAL;
s = nla_data(tb[TCA_U32_SEL]);
n = kzalloc(sizeof(*n) + s->nkeys*sizeof(struct tc_u32_key), GFP_KERNEL);
if (n == NULL)
return -ENOBUFS;
#ifdef CONFIG_CLS_U32_PERF
size = sizeof(struct tc_u32_pcnt) + s->nkeys * sizeof(u64);
n->pf = __alloc_percpu(size, __alignof__(struct tc_u32_pcnt));
if (!n->pf) {
kfree(n);
return -ENOBUFS;
}
#endif
memcpy(&n->sel, s, sizeof(*s) + s->nkeys*sizeof(struct tc_u32_key));
RCU_INIT_POINTER(n->ht_up, ht);
n->handle = handle;
n->fshift = s->hmask ? ffs(ntohl(s->hmask)) - 1 : 0;
n->flags = flags;
n->tp = tp;
err = tcf_exts_init(&n->exts, TCA_U32_ACT, TCA_U32_POLICE);
if (err < 0)
goto errout;
#ifdef CONFIG_CLS_U32_MARK
n->pcpu_success = alloc_percpu(u32);
if (!n->pcpu_success) {
err = -ENOMEM;
goto errout;
}
if (tb[TCA_U32_MARK]) {
struct tc_u32_mark *mark;
mark = nla_data(tb[TCA_U32_MARK]);
n->val = mark->val;
n->mask = mark->mask;
}
#endif
err = u32_set_parms(net, tp, base, ht, n, tb, tca[TCA_RATE], ovr);
if (err == 0) {
struct tc_u_knode __rcu **ins;
struct tc_u_knode *pins;
err = u32_replace_hw_knode(tp, n, flags);
if (err)
goto errhw;
if (!tc_in_hw(n->flags))
n->flags |= TCA_CLS_FLAGS_NOT_IN_HW;
ins = &ht->ht[TC_U32_HASH(handle)];
for (pins = rtnl_dereference(*ins); pins;
ins = &pins->next, pins = rtnl_dereference(*ins))
if (TC_U32_NODE(handle) < TC_U32_NODE(pins->handle))
break;
RCU_INIT_POINTER(n->next, pins);
rcu_assign_pointer(*ins, n);
*arg = (unsigned long)n;
return 0;
}
errhw:
#ifdef CONFIG_CLS_U32_MARK
free_percpu(n->pcpu_success);
#endif
errout:
tcf_exts_destroy(&n->exts);
#ifdef CONFIG_CLS_U32_PERF
free_percpu(n->pf);
#endif
kfree(n);
return err;
}
static void u32_walk(struct tcf_proto *tp, struct tcf_walker *arg)
{
struct tc_u_common *tp_c = tp->data;
struct tc_u_hnode *ht;
struct tc_u_knode *n;
unsigned int h;
if (arg->stop)
return;
for (ht = rtnl_dereference(tp_c->hlist);
ht;
ht = rtnl_dereference(ht->next)) {
if (ht->prio != tp->prio)
continue;
if (arg->count >= arg->skip) {
if (arg->fn(tp, (unsigned long)ht, arg) < 0) {
arg->stop = 1;
return;
}
}
arg->count++;
for (h = 0; h <= ht->divisor; h++) {
for (n = rtnl_dereference(ht->ht[h]);
n;
n = rtnl_dereference(n->next)) {
if (arg->count < arg->skip) {
arg->count++;
continue;
}
if (arg->fn(tp, (unsigned long)n, arg) < 0) {
arg->stop = 1;
return;
}
arg->count++;
}
}
}
}
static int u32_dump(struct net *net, struct tcf_proto *tp, unsigned long fh,
struct sk_buff *skb, struct tcmsg *t)
{
struct tc_u_knode *n = (struct tc_u_knode *)fh;
struct tc_u_hnode *ht_up, *ht_down;
struct nlattr *nest;
if (n == NULL)
return skb->len;
t->tcm_handle = n->handle;
nest = nla_nest_start(skb, TCA_OPTIONS);
if (nest == NULL)
goto nla_put_failure;
if (TC_U32_KEY(n->handle) == 0) {
struct tc_u_hnode *ht = (struct tc_u_hnode *)fh;
u32 divisor = ht->divisor + 1;
if (nla_put_u32(skb, TCA_U32_DIVISOR, divisor))
goto nla_put_failure;
} else {
#ifdef CONFIG_CLS_U32_PERF
struct tc_u32_pcnt *gpf;
int cpu;
#endif
if (nla_put(skb, TCA_U32_SEL,
sizeof(n->sel) + n->sel.nkeys*sizeof(struct tc_u32_key),
&n->sel))
goto nla_put_failure;
ht_up = rtnl_dereference(n->ht_up);
if (ht_up) {
u32 htid = n->handle & 0xFFFFF000;
if (nla_put_u32(skb, TCA_U32_HASH, htid))
goto nla_put_failure;
}
if (n->res.classid &&
nla_put_u32(skb, TCA_U32_CLASSID, n->res.classid))
goto nla_put_failure;
ht_down = rtnl_dereference(n->ht_down);
if (ht_down &&
nla_put_u32(skb, TCA_U32_LINK, ht_down->handle))
goto nla_put_failure;
if (n->flags && nla_put_u32(skb, TCA_U32_FLAGS, n->flags))
goto nla_put_failure;
#ifdef CONFIG_CLS_U32_MARK
if ((n->val || n->mask)) {
struct tc_u32_mark mark = {.val = n->val,
.mask = n->mask,
.success = 0};
int cpum;
for_each_possible_cpu(cpum) {
__u32 cnt = *per_cpu_ptr(n->pcpu_success, cpum);
mark.success += cnt;
}
if (nla_put(skb, TCA_U32_MARK, sizeof(mark), &mark))
goto nla_put_failure;
}
#endif
if (tcf_exts_dump(skb, &n->exts) < 0)
goto nla_put_failure;
#ifdef CONFIG_NET_CLS_IND
if (n->ifindex) {
struct net_device *dev;
dev = __dev_get_by_index(net, n->ifindex);
if (dev && nla_put_string(skb, TCA_U32_INDEV, dev->name))
goto nla_put_failure;
}
#endif
#ifdef CONFIG_CLS_U32_PERF
gpf = kzalloc(sizeof(struct tc_u32_pcnt) +
n->sel.nkeys * sizeof(u64),
GFP_KERNEL);
if (!gpf)
goto nla_put_failure;
for_each_possible_cpu(cpu) {
int i;
struct tc_u32_pcnt *pf = per_cpu_ptr(n->pf, cpu);
gpf->rcnt += pf->rcnt;
gpf->rhit += pf->rhit;
for (i = 0; i < n->sel.nkeys; i++)
gpf->kcnts[i] += pf->kcnts[i];
}
if (nla_put_64bit(skb, TCA_U32_PCNT,
sizeof(struct tc_u32_pcnt) +
n->sel.nkeys * sizeof(u64),
gpf, TCA_U32_PAD)) {
kfree(gpf);
goto nla_put_failure;
}
kfree(gpf);
#endif
}
nla_nest_end(skb, nest);
if (TC_U32_KEY(n->handle))
if (tcf_exts_dump_stats(skb, &n->exts) < 0)
goto nla_put_failure;
return skb->len;
nla_put_failure:
nla_nest_cancel(skb, nest);
return -1;
}
static struct tcf_proto_ops cls_u32_ops __read_mostly = {
.kind = "u32",
.classify = u32_classify,
.init = u32_init,
.destroy = u32_destroy,
.get = u32_get,
.change = u32_change,
.delete = u32_delete,
.walk = u32_walk,
.dump = u32_dump,
.owner = THIS_MODULE,
};
static int __init init_u32(void)
{
pr_info("u32 classifier\n");
#ifdef CONFIG_CLS_U32_PERF
pr_info(" Performance counters on\n");
#endif
#ifdef CONFIG_NET_CLS_IND
pr_info(" input device check on\n");
#endif
#ifdef CONFIG_NET_CLS_ACT
pr_info(" Actions configured\n");
#endif
return register_tcf_proto_ops(&cls_u32_ops);
}
static void __exit exit_u32(void)
{
unregister_tcf_proto_ops(&cls_u32_ops);
}
module_init(init_u32)
module_exit(exit_u32)
MODULE_LICENSE("GPL");