| /* |
| * linux/fs/namespace.c |
| * |
| * (C) Copyright Al Viro 2000, 2001 |
| * Released under GPL v2. |
| * |
| * Based on code from fs/super.c, copyright Linus Torvalds and others. |
| * Heavily rewritten. |
| */ |
| |
| #include <linux/syscalls.h> |
| #include <linux/slab.h> |
| #include <linux/sched.h> |
| #include <linux/smp_lock.h> |
| #include <linux/init.h> |
| #include <linux/kernel.h> |
| #include <linux/acct.h> |
| #include <linux/capability.h> |
| #include <linux/cpumask.h> |
| #include <linux/module.h> |
| #include <linux/sysfs.h> |
| #include <linux/seq_file.h> |
| #include <linux/mnt_namespace.h> |
| #include <linux/namei.h> |
| #include <linux/security.h> |
| #include <linux/mount.h> |
| #include <linux/ramfs.h> |
| #include <linux/log2.h> |
| #include <linux/idr.h> |
| #include <asm/uaccess.h> |
| #include <asm/unistd.h> |
| #include "pnode.h" |
| #include "internal.h" |
| |
| #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head)) |
| #define HASH_SIZE (1UL << HASH_SHIFT) |
| |
| /* spinlock for vfsmount related operations, inplace of dcache_lock */ |
| __cacheline_aligned_in_smp DEFINE_SPINLOCK(vfsmount_lock); |
| |
| static int event; |
| static DEFINE_IDA(mnt_id_ida); |
| static DEFINE_IDA(mnt_group_ida); |
| |
| static struct list_head *mount_hashtable __read_mostly; |
| static struct kmem_cache *mnt_cache __read_mostly; |
| static struct rw_semaphore namespace_sem; |
| |
| /* /sys/fs */ |
| struct kobject *fs_kobj; |
| EXPORT_SYMBOL_GPL(fs_kobj); |
| |
| static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry) |
| { |
| unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES); |
| tmp += ((unsigned long)dentry / L1_CACHE_BYTES); |
| tmp = tmp + (tmp >> HASH_SHIFT); |
| return tmp & (HASH_SIZE - 1); |
| } |
| |
| #define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16) |
| |
| /* allocation is serialized by namespace_sem */ |
| static int mnt_alloc_id(struct vfsmount *mnt) |
| { |
| int res; |
| |
| retry: |
| ida_pre_get(&mnt_id_ida, GFP_KERNEL); |
| spin_lock(&vfsmount_lock); |
| res = ida_get_new(&mnt_id_ida, &mnt->mnt_id); |
| spin_unlock(&vfsmount_lock); |
| if (res == -EAGAIN) |
| goto retry; |
| |
| return res; |
| } |
| |
| static void mnt_free_id(struct vfsmount *mnt) |
| { |
| spin_lock(&vfsmount_lock); |
| ida_remove(&mnt_id_ida, mnt->mnt_id); |
| spin_unlock(&vfsmount_lock); |
| } |
| |
| /* |
| * Allocate a new peer group ID |
| * |
| * mnt_group_ida is protected by namespace_sem |
| */ |
| static int mnt_alloc_group_id(struct vfsmount *mnt) |
| { |
| if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL)) |
| return -ENOMEM; |
| |
| return ida_get_new_above(&mnt_group_ida, 1, &mnt->mnt_group_id); |
| } |
| |
| /* |
| * Release a peer group ID |
| */ |
| void mnt_release_group_id(struct vfsmount *mnt) |
| { |
| ida_remove(&mnt_group_ida, mnt->mnt_group_id); |
| mnt->mnt_group_id = 0; |
| } |
| |
| struct vfsmount *alloc_vfsmnt(const char *name) |
| { |
| struct vfsmount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL); |
| if (mnt) { |
| int err; |
| |
| err = mnt_alloc_id(mnt); |
| if (err) |
| goto out_free_cache; |
| |
| if (name) { |
| mnt->mnt_devname = kstrdup(name, GFP_KERNEL); |
| if (!mnt->mnt_devname) |
| goto out_free_id; |
| } |
| |
| atomic_set(&mnt->mnt_count, 1); |
| INIT_LIST_HEAD(&mnt->mnt_hash); |
| INIT_LIST_HEAD(&mnt->mnt_child); |
| INIT_LIST_HEAD(&mnt->mnt_mounts); |
| INIT_LIST_HEAD(&mnt->mnt_list); |
| INIT_LIST_HEAD(&mnt->mnt_expire); |
| INIT_LIST_HEAD(&mnt->mnt_share); |
| INIT_LIST_HEAD(&mnt->mnt_slave_list); |
| INIT_LIST_HEAD(&mnt->mnt_slave); |
| atomic_set(&mnt->__mnt_writers, 0); |
| } |
| return mnt; |
| |
| out_free_id: |
| mnt_free_id(mnt); |
| out_free_cache: |
| kmem_cache_free(mnt_cache, mnt); |
| return NULL; |
| } |
| |
| /* |
| * Most r/o checks on a fs are for operations that take |
| * discrete amounts of time, like a write() or unlink(). |
| * We must keep track of when those operations start |
| * (for permission checks) and when they end, so that |
| * we can determine when writes are able to occur to |
| * a filesystem. |
| */ |
| /* |
| * __mnt_is_readonly: check whether a mount is read-only |
| * @mnt: the mount to check for its write status |
| * |
| * This shouldn't be used directly ouside of the VFS. |
| * It does not guarantee that the filesystem will stay |
| * r/w, just that it is right *now*. This can not and |
| * should not be used in place of IS_RDONLY(inode). |
| * mnt_want/drop_write() will _keep_ the filesystem |
| * r/w. |
| */ |
| int __mnt_is_readonly(struct vfsmount *mnt) |
| { |
| if (mnt->mnt_flags & MNT_READONLY) |
| return 1; |
| if (mnt->mnt_sb->s_flags & MS_RDONLY) |
| return 1; |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(__mnt_is_readonly); |
| |
| struct mnt_writer { |
| /* |
| * If holding multiple instances of this lock, they |
| * must be ordered by cpu number. |
| */ |
| spinlock_t lock; |
| struct lock_class_key lock_class; /* compiles out with !lockdep */ |
| unsigned long count; |
| struct vfsmount *mnt; |
| } ____cacheline_aligned_in_smp; |
| static DEFINE_PER_CPU(struct mnt_writer, mnt_writers); |
| |
| static int __init init_mnt_writers(void) |
| { |
| int cpu; |
| for_each_possible_cpu(cpu) { |
| struct mnt_writer *writer = &per_cpu(mnt_writers, cpu); |
| spin_lock_init(&writer->lock); |
| lockdep_set_class(&writer->lock, &writer->lock_class); |
| writer->count = 0; |
| } |
| return 0; |
| } |
| fs_initcall(init_mnt_writers); |
| |
| static void unlock_mnt_writers(void) |
| { |
| int cpu; |
| struct mnt_writer *cpu_writer; |
| |
| for_each_possible_cpu(cpu) { |
| cpu_writer = &per_cpu(mnt_writers, cpu); |
| spin_unlock(&cpu_writer->lock); |
| } |
| } |
| |
| static inline void __clear_mnt_count(struct mnt_writer *cpu_writer) |
| { |
| if (!cpu_writer->mnt) |
| return; |
| /* |
| * This is in case anyone ever leaves an invalid, |
| * old ->mnt and a count of 0. |
| */ |
| if (!cpu_writer->count) |
| return; |
| atomic_add(cpu_writer->count, &cpu_writer->mnt->__mnt_writers); |
| cpu_writer->count = 0; |
| } |
| /* |
| * must hold cpu_writer->lock |
| */ |
| static inline void use_cpu_writer_for_mount(struct mnt_writer *cpu_writer, |
| struct vfsmount *mnt) |
| { |
| if (cpu_writer->mnt == mnt) |
| return; |
| __clear_mnt_count(cpu_writer); |
| cpu_writer->mnt = mnt; |
| } |
| |
| /* |
| * Most r/o checks on a fs are for operations that take |
| * discrete amounts of time, like a write() or unlink(). |
| * We must keep track of when those operations start |
| * (for permission checks) and when they end, so that |
| * we can determine when writes are able to occur to |
| * a filesystem. |
| */ |
| /** |
| * mnt_want_write - get write access to a mount |
| * @mnt: the mount on which to take a write |
| * |
| * This tells the low-level filesystem that a write is |
| * about to be performed to it, and makes sure that |
| * writes are allowed before returning success. When |
| * the write operation is finished, mnt_drop_write() |
| * must be called. This is effectively a refcount. |
| */ |
| int mnt_want_write(struct vfsmount *mnt) |
| { |
| int ret = 0; |
| struct mnt_writer *cpu_writer; |
| |
| cpu_writer = &get_cpu_var(mnt_writers); |
| spin_lock(&cpu_writer->lock); |
| if (__mnt_is_readonly(mnt)) { |
| ret = -EROFS; |
| goto out; |
| } |
| use_cpu_writer_for_mount(cpu_writer, mnt); |
| cpu_writer->count++; |
| out: |
| spin_unlock(&cpu_writer->lock); |
| put_cpu_var(mnt_writers); |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(mnt_want_write); |
| |
| static void lock_mnt_writers(void) |
| { |
| int cpu; |
| struct mnt_writer *cpu_writer; |
| |
| for_each_possible_cpu(cpu) { |
| cpu_writer = &per_cpu(mnt_writers, cpu); |
| spin_lock(&cpu_writer->lock); |
| __clear_mnt_count(cpu_writer); |
| cpu_writer->mnt = NULL; |
| } |
| } |
| |
| /* |
| * These per-cpu write counts are not guaranteed to have |
| * matched increments and decrements on any given cpu. |
| * A file open()ed for write on one cpu and close()d on |
| * another cpu will imbalance this count. Make sure it |
| * does not get too far out of whack. |
| */ |
| static void handle_write_count_underflow(struct vfsmount *mnt) |
| { |
| if (atomic_read(&mnt->__mnt_writers) >= |
| MNT_WRITER_UNDERFLOW_LIMIT) |
| return; |
| /* |
| * It isn't necessary to hold all of the locks |
| * at the same time, but doing it this way makes |
| * us share a lot more code. |
| */ |
| lock_mnt_writers(); |
| /* |
| * vfsmount_lock is for mnt_flags. |
| */ |
| spin_lock(&vfsmount_lock); |
| /* |
| * If coalescing the per-cpu writer counts did not |
| * get us back to a positive writer count, we have |
| * a bug. |
| */ |
| if ((atomic_read(&mnt->__mnt_writers) < 0) && |
| !(mnt->mnt_flags & MNT_IMBALANCED_WRITE_COUNT)) { |
| WARN(1, KERN_DEBUG "leak detected on mount(%p) writers " |
| "count: %d\n", |
| mnt, atomic_read(&mnt->__mnt_writers)); |
| /* use the flag to keep the dmesg spam down */ |
| mnt->mnt_flags |= MNT_IMBALANCED_WRITE_COUNT; |
| } |
| spin_unlock(&vfsmount_lock); |
| unlock_mnt_writers(); |
| } |
| |
| /** |
| * mnt_drop_write - give up write access to a mount |
| * @mnt: the mount on which to give up write access |
| * |
| * Tells the low-level filesystem that we are done |
| * performing writes to it. Must be matched with |
| * mnt_want_write() call above. |
| */ |
| void mnt_drop_write(struct vfsmount *mnt) |
| { |
| int must_check_underflow = 0; |
| struct mnt_writer *cpu_writer; |
| |
| cpu_writer = &get_cpu_var(mnt_writers); |
| spin_lock(&cpu_writer->lock); |
| |
| use_cpu_writer_for_mount(cpu_writer, mnt); |
| if (cpu_writer->count > 0) { |
| cpu_writer->count--; |
| } else { |
| must_check_underflow = 1; |
| atomic_dec(&mnt->__mnt_writers); |
| } |
| |
| spin_unlock(&cpu_writer->lock); |
| /* |
| * Logically, we could call this each time, |
| * but the __mnt_writers cacheline tends to |
| * be cold, and makes this expensive. |
| */ |
| if (must_check_underflow) |
| handle_write_count_underflow(mnt); |
| /* |
| * This could be done right after the spinlock |
| * is taken because the spinlock keeps us on |
| * the cpu, and disables preemption. However, |
| * putting it here bounds the amount that |
| * __mnt_writers can underflow. Without it, |
| * we could theoretically wrap __mnt_writers. |
| */ |
| put_cpu_var(mnt_writers); |
| } |
| EXPORT_SYMBOL_GPL(mnt_drop_write); |
| |
| static int mnt_make_readonly(struct vfsmount *mnt) |
| { |
| int ret = 0; |
| |
| lock_mnt_writers(); |
| /* |
| * With all the locks held, this value is stable |
| */ |
| if (atomic_read(&mnt->__mnt_writers) > 0) { |
| ret = -EBUSY; |
| goto out; |
| } |
| /* |
| * nobody can do a successful mnt_want_write() with all |
| * of the counts in MNT_DENIED_WRITE and the locks held. |
| */ |
| spin_lock(&vfsmount_lock); |
| if (!ret) |
| mnt->mnt_flags |= MNT_READONLY; |
| spin_unlock(&vfsmount_lock); |
| out: |
| unlock_mnt_writers(); |
| return ret; |
| } |
| |
| static void __mnt_unmake_readonly(struct vfsmount *mnt) |
| { |
| spin_lock(&vfsmount_lock); |
| mnt->mnt_flags &= ~MNT_READONLY; |
| spin_unlock(&vfsmount_lock); |
| } |
| |
| int simple_set_mnt(struct vfsmount *mnt, struct super_block *sb) |
| { |
| mnt->mnt_sb = sb; |
| mnt->mnt_root = dget(sb->s_root); |
| return 0; |
| } |
| |
| EXPORT_SYMBOL(simple_set_mnt); |
| |
| void free_vfsmnt(struct vfsmount *mnt) |
| { |
| kfree(mnt->mnt_devname); |
| mnt_free_id(mnt); |
| kmem_cache_free(mnt_cache, mnt); |
| } |
| |
| /* |
| * find the first or last mount at @dentry on vfsmount @mnt depending on |
| * @dir. If @dir is set return the first mount else return the last mount. |
| */ |
| struct vfsmount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry, |
| int dir) |
| { |
| struct list_head *head = mount_hashtable + hash(mnt, dentry); |
| struct list_head *tmp = head; |
| struct vfsmount *p, *found = NULL; |
| |
| for (;;) { |
| tmp = dir ? tmp->next : tmp->prev; |
| p = NULL; |
| if (tmp == head) |
| break; |
| p = list_entry(tmp, struct vfsmount, mnt_hash); |
| if (p->mnt_parent == mnt && p->mnt_mountpoint == dentry) { |
| found = p; |
| break; |
| } |
| } |
| return found; |
| } |
| |
| /* |
| * lookup_mnt increments the ref count before returning |
| * the vfsmount struct. |
| */ |
| struct vfsmount *lookup_mnt(struct vfsmount *mnt, struct dentry *dentry) |
| { |
| struct vfsmount *child_mnt; |
| spin_lock(&vfsmount_lock); |
| if ((child_mnt = __lookup_mnt(mnt, dentry, 1))) |
| mntget(child_mnt); |
| spin_unlock(&vfsmount_lock); |
| return child_mnt; |
| } |
| |
| static inline int check_mnt(struct vfsmount *mnt) |
| { |
| return mnt->mnt_ns == current->nsproxy->mnt_ns; |
| } |
| |
| static void touch_mnt_namespace(struct mnt_namespace *ns) |
| { |
| if (ns) { |
| ns->event = ++event; |
| wake_up_interruptible(&ns->poll); |
| } |
| } |
| |
| static void __touch_mnt_namespace(struct mnt_namespace *ns) |
| { |
| if (ns && ns->event != event) { |
| ns->event = event; |
| wake_up_interruptible(&ns->poll); |
| } |
| } |
| |
| static void detach_mnt(struct vfsmount *mnt, struct path *old_path) |
| { |
| old_path->dentry = mnt->mnt_mountpoint; |
| old_path->mnt = mnt->mnt_parent; |
| mnt->mnt_parent = mnt; |
| mnt->mnt_mountpoint = mnt->mnt_root; |
| list_del_init(&mnt->mnt_child); |
| list_del_init(&mnt->mnt_hash); |
| old_path->dentry->d_mounted--; |
| } |
| |
| void mnt_set_mountpoint(struct vfsmount *mnt, struct dentry *dentry, |
| struct vfsmount *child_mnt) |
| { |
| child_mnt->mnt_parent = mntget(mnt); |
| child_mnt->mnt_mountpoint = dget(dentry); |
| dentry->d_mounted++; |
| } |
| |
| static void attach_mnt(struct vfsmount *mnt, struct path *path) |
| { |
| mnt_set_mountpoint(path->mnt, path->dentry, mnt); |
| list_add_tail(&mnt->mnt_hash, mount_hashtable + |
| hash(path->mnt, path->dentry)); |
| list_add_tail(&mnt->mnt_child, &path->mnt->mnt_mounts); |
| } |
| |
| /* |
| * the caller must hold vfsmount_lock |
| */ |
| static void commit_tree(struct vfsmount *mnt) |
| { |
| struct vfsmount *parent = mnt->mnt_parent; |
| struct vfsmount *m; |
| LIST_HEAD(head); |
| struct mnt_namespace *n = parent->mnt_ns; |
| |
| BUG_ON(parent == mnt); |
| |
| list_add_tail(&head, &mnt->mnt_list); |
| list_for_each_entry(m, &head, mnt_list) |
| m->mnt_ns = n; |
| list_splice(&head, n->list.prev); |
| |
| list_add_tail(&mnt->mnt_hash, mount_hashtable + |
| hash(parent, mnt->mnt_mountpoint)); |
| list_add_tail(&mnt->mnt_child, &parent->mnt_mounts); |
| touch_mnt_namespace(n); |
| } |
| |
| static struct vfsmount *next_mnt(struct vfsmount *p, struct vfsmount *root) |
| { |
| struct list_head *next = p->mnt_mounts.next; |
| if (next == &p->mnt_mounts) { |
| while (1) { |
| if (p == root) |
| return NULL; |
| next = p->mnt_child.next; |
| if (next != &p->mnt_parent->mnt_mounts) |
| break; |
| p = p->mnt_parent; |
| } |
| } |
| return list_entry(next, struct vfsmount, mnt_child); |
| } |
| |
| static struct vfsmount *skip_mnt_tree(struct vfsmount *p) |
| { |
| struct list_head *prev = p->mnt_mounts.prev; |
| while (prev != &p->mnt_mounts) { |
| p = list_entry(prev, struct vfsmount, mnt_child); |
| prev = p->mnt_mounts.prev; |
| } |
| return p; |
| } |
| |
| static struct vfsmount *clone_mnt(struct vfsmount *old, struct dentry *root, |
| int flag) |
| { |
| struct super_block *sb = old->mnt_sb; |
| struct vfsmount *mnt = alloc_vfsmnt(old->mnt_devname); |
| |
| if (mnt) { |
| if (flag & (CL_SLAVE | CL_PRIVATE)) |
| mnt->mnt_group_id = 0; /* not a peer of original */ |
| else |
| mnt->mnt_group_id = old->mnt_group_id; |
| |
| if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) { |
| int err = mnt_alloc_group_id(mnt); |
| if (err) |
| goto out_free; |
| } |
| |
| mnt->mnt_flags = old->mnt_flags; |
| atomic_inc(&sb->s_active); |
| mnt->mnt_sb = sb; |
| mnt->mnt_root = dget(root); |
| mnt->mnt_mountpoint = mnt->mnt_root; |
| mnt->mnt_parent = mnt; |
| |
| if (flag & CL_SLAVE) { |
| list_add(&mnt->mnt_slave, &old->mnt_slave_list); |
| mnt->mnt_master = old; |
| CLEAR_MNT_SHARED(mnt); |
| } else if (!(flag & CL_PRIVATE)) { |
| if ((flag & CL_PROPAGATION) || IS_MNT_SHARED(old)) |
| list_add(&mnt->mnt_share, &old->mnt_share); |
| if (IS_MNT_SLAVE(old)) |
| list_add(&mnt->mnt_slave, &old->mnt_slave); |
| mnt->mnt_master = old->mnt_master; |
| } |
| if (flag & CL_MAKE_SHARED) |
| set_mnt_shared(mnt); |
| |
| /* stick the duplicate mount on the same expiry list |
| * as the original if that was on one */ |
| if (flag & CL_EXPIRE) { |
| if (!list_empty(&old->mnt_expire)) |
| list_add(&mnt->mnt_expire, &old->mnt_expire); |
| } |
| } |
| return mnt; |
| |
| out_free: |
| free_vfsmnt(mnt); |
| return NULL; |
| } |
| |
| static inline void __mntput(struct vfsmount *mnt) |
| { |
| int cpu; |
| struct super_block *sb = mnt->mnt_sb; |
| /* |
| * We don't have to hold all of the locks at the |
| * same time here because we know that we're the |
| * last reference to mnt and that no new writers |
| * can come in. |
| */ |
| for_each_possible_cpu(cpu) { |
| struct mnt_writer *cpu_writer = &per_cpu(mnt_writers, cpu); |
| if (cpu_writer->mnt != mnt) |
| continue; |
| spin_lock(&cpu_writer->lock); |
| atomic_add(cpu_writer->count, &mnt->__mnt_writers); |
| cpu_writer->count = 0; |
| /* |
| * Might as well do this so that no one |
| * ever sees the pointer and expects |
| * it to be valid. |
| */ |
| cpu_writer->mnt = NULL; |
| spin_unlock(&cpu_writer->lock); |
| } |
| /* |
| * This probably indicates that somebody messed |
| * up a mnt_want/drop_write() pair. If this |
| * happens, the filesystem was probably unable |
| * to make r/w->r/o transitions. |
| */ |
| WARN_ON(atomic_read(&mnt->__mnt_writers)); |
| dput(mnt->mnt_root); |
| free_vfsmnt(mnt); |
| deactivate_super(sb); |
| } |
| |
| void mntput_no_expire(struct vfsmount *mnt) |
| { |
| repeat: |
| if (atomic_dec_and_lock(&mnt->mnt_count, &vfsmount_lock)) { |
| if (likely(!mnt->mnt_pinned)) { |
| spin_unlock(&vfsmount_lock); |
| __mntput(mnt); |
| return; |
| } |
| atomic_add(mnt->mnt_pinned + 1, &mnt->mnt_count); |
| mnt->mnt_pinned = 0; |
| spin_unlock(&vfsmount_lock); |
| acct_auto_close_mnt(mnt); |
| security_sb_umount_close(mnt); |
| goto repeat; |
| } |
| } |
| |
| EXPORT_SYMBOL(mntput_no_expire); |
| |
| void mnt_pin(struct vfsmount *mnt) |
| { |
| spin_lock(&vfsmount_lock); |
| mnt->mnt_pinned++; |
| spin_unlock(&vfsmount_lock); |
| } |
| |
| EXPORT_SYMBOL(mnt_pin); |
| |
| void mnt_unpin(struct vfsmount *mnt) |
| { |
| spin_lock(&vfsmount_lock); |
| if (mnt->mnt_pinned) { |
| atomic_inc(&mnt->mnt_count); |
| mnt->mnt_pinned--; |
| } |
| spin_unlock(&vfsmount_lock); |
| } |
| |
| EXPORT_SYMBOL(mnt_unpin); |
| |
| static inline void mangle(struct seq_file *m, const char *s) |
| { |
| seq_escape(m, s, " \t\n\\"); |
| } |
| |
| /* |
| * Simple .show_options callback for filesystems which don't want to |
| * implement more complex mount option showing. |
| * |
| * See also save_mount_options(). |
| */ |
| int generic_show_options(struct seq_file *m, struct vfsmount *mnt) |
| { |
| const char *options = mnt->mnt_sb->s_options; |
| |
| if (options != NULL && options[0]) { |
| seq_putc(m, ','); |
| mangle(m, options); |
| } |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(generic_show_options); |
| |
| /* |
| * If filesystem uses generic_show_options(), this function should be |
| * called from the fill_super() callback. |
| * |
| * The .remount_fs callback usually needs to be handled in a special |
| * way, to make sure, that previous options are not overwritten if the |
| * remount fails. |
| * |
| * Also note, that if the filesystem's .remount_fs function doesn't |
| * reset all options to their default value, but changes only newly |
| * given options, then the displayed options will not reflect reality |
| * any more. |
| */ |
| void save_mount_options(struct super_block *sb, char *options) |
| { |
| kfree(sb->s_options); |
| sb->s_options = kstrdup(options, GFP_KERNEL); |
| } |
| EXPORT_SYMBOL(save_mount_options); |
| |
| #ifdef CONFIG_PROC_FS |
| /* iterator */ |
| static void *m_start(struct seq_file *m, loff_t *pos) |
| { |
| struct proc_mounts *p = m->private; |
| |
| down_read(&namespace_sem); |
| return seq_list_start(&p->ns->list, *pos); |
| } |
| |
| static void *m_next(struct seq_file *m, void *v, loff_t *pos) |
| { |
| struct proc_mounts *p = m->private; |
| |
| return seq_list_next(v, &p->ns->list, pos); |
| } |
| |
| static void m_stop(struct seq_file *m, void *v) |
| { |
| up_read(&namespace_sem); |
| } |
| |
| struct proc_fs_info { |
| int flag; |
| const char *str; |
| }; |
| |
| static int show_sb_opts(struct seq_file *m, struct super_block *sb) |
| { |
| static const struct proc_fs_info fs_info[] = { |
| { MS_SYNCHRONOUS, ",sync" }, |
| { MS_DIRSYNC, ",dirsync" }, |
| { MS_MANDLOCK, ",mand" }, |
| { 0, NULL } |
| }; |
| const struct proc_fs_info *fs_infop; |
| |
| for (fs_infop = fs_info; fs_infop->flag; fs_infop++) { |
| if (sb->s_flags & fs_infop->flag) |
| seq_puts(m, fs_infop->str); |
| } |
| |
| return security_sb_show_options(m, sb); |
| } |
| |
| static void show_mnt_opts(struct seq_file *m, struct vfsmount *mnt) |
| { |
| static const struct proc_fs_info mnt_info[] = { |
| { MNT_NOSUID, ",nosuid" }, |
| { MNT_NODEV, ",nodev" }, |
| { MNT_NOEXEC, ",noexec" }, |
| { MNT_NOATIME, ",noatime" }, |
| { MNT_NODIRATIME, ",nodiratime" }, |
| { MNT_RELATIME, ",relatime" }, |
| { 0, NULL } |
| }; |
| const struct proc_fs_info *fs_infop; |
| |
| for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) { |
| if (mnt->mnt_flags & fs_infop->flag) |
| seq_puts(m, fs_infop->str); |
| } |
| } |
| |
| static void show_type(struct seq_file *m, struct super_block *sb) |
| { |
| mangle(m, sb->s_type->name); |
| if (sb->s_subtype && sb->s_subtype[0]) { |
| seq_putc(m, '.'); |
| mangle(m, sb->s_subtype); |
| } |
| } |
| |
| static int show_vfsmnt(struct seq_file *m, void *v) |
| { |
| struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list); |
| int err = 0; |
| struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt }; |
| |
| mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none"); |
| seq_putc(m, ' '); |
| seq_path(m, &mnt_path, " \t\n\\"); |
| seq_putc(m, ' '); |
| show_type(m, mnt->mnt_sb); |
| seq_puts(m, __mnt_is_readonly(mnt) ? " ro" : " rw"); |
| err = show_sb_opts(m, mnt->mnt_sb); |
| if (err) |
| goto out; |
| show_mnt_opts(m, mnt); |
| if (mnt->mnt_sb->s_op->show_options) |
| err = mnt->mnt_sb->s_op->show_options(m, mnt); |
| seq_puts(m, " 0 0\n"); |
| out: |
| return err; |
| } |
| |
| const struct seq_operations mounts_op = { |
| .start = m_start, |
| .next = m_next, |
| .stop = m_stop, |
| .show = show_vfsmnt |
| }; |
| |
| static int show_mountinfo(struct seq_file *m, void *v) |
| { |
| struct proc_mounts *p = m->private; |
| struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list); |
| struct super_block *sb = mnt->mnt_sb; |
| struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt }; |
| struct path root = p->root; |
| int err = 0; |
| |
| seq_printf(m, "%i %i %u:%u ", mnt->mnt_id, mnt->mnt_parent->mnt_id, |
| MAJOR(sb->s_dev), MINOR(sb->s_dev)); |
| seq_dentry(m, mnt->mnt_root, " \t\n\\"); |
| seq_putc(m, ' '); |
| seq_path_root(m, &mnt_path, &root, " \t\n\\"); |
| if (root.mnt != p->root.mnt || root.dentry != p->root.dentry) { |
| /* |
| * Mountpoint is outside root, discard that one. Ugly, |
| * but less so than trying to do that in iterator in a |
| * race-free way (due to renames). |
| */ |
| return SEQ_SKIP; |
| } |
| seq_puts(m, mnt->mnt_flags & MNT_READONLY ? " ro" : " rw"); |
| show_mnt_opts(m, mnt); |
| |
| /* Tagged fields ("foo:X" or "bar") */ |
| if (IS_MNT_SHARED(mnt)) |
| seq_printf(m, " shared:%i", mnt->mnt_group_id); |
| if (IS_MNT_SLAVE(mnt)) { |
| int master = mnt->mnt_master->mnt_group_id; |
| int dom = get_dominating_id(mnt, &p->root); |
| seq_printf(m, " master:%i", master); |
| if (dom && dom != master) |
| seq_printf(m, " propagate_from:%i", dom); |
| } |
| if (IS_MNT_UNBINDABLE(mnt)) |
| seq_puts(m, " unbindable"); |
| |
| /* Filesystem specific data */ |
| seq_puts(m, " - "); |
| show_type(m, sb); |
| seq_putc(m, ' '); |
| mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none"); |
| seq_puts(m, sb->s_flags & MS_RDONLY ? " ro" : " rw"); |
| err = show_sb_opts(m, sb); |
| if (err) |
| goto out; |
| if (sb->s_op->show_options) |
| err = sb->s_op->show_options(m, mnt); |
| seq_putc(m, '\n'); |
| out: |
| return err; |
| } |
| |
| const struct seq_operations mountinfo_op = { |
| .start = m_start, |
| .next = m_next, |
| .stop = m_stop, |
| .show = show_mountinfo, |
| }; |
| |
| static int show_vfsstat(struct seq_file *m, void *v) |
| { |
| struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list); |
| struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt }; |
| int err = 0; |
| |
| /* device */ |
| if (mnt->mnt_devname) { |
| seq_puts(m, "device "); |
| mangle(m, mnt->mnt_devname); |
| } else |
| seq_puts(m, "no device"); |
| |
| /* mount point */ |
| seq_puts(m, " mounted on "); |
| seq_path(m, &mnt_path, " \t\n\\"); |
| seq_putc(m, ' '); |
| |
| /* file system type */ |
| seq_puts(m, "with fstype "); |
| show_type(m, mnt->mnt_sb); |
| |
| /* optional statistics */ |
| if (mnt->mnt_sb->s_op->show_stats) { |
| seq_putc(m, ' '); |
| err = mnt->mnt_sb->s_op->show_stats(m, mnt); |
| } |
| |
| seq_putc(m, '\n'); |
| return err; |
| } |
| |
| const struct seq_operations mountstats_op = { |
| .start = m_start, |
| .next = m_next, |
| .stop = m_stop, |
| .show = show_vfsstat, |
| }; |
| #endif /* CONFIG_PROC_FS */ |
| |
| /** |
| * may_umount_tree - check if a mount tree is busy |
| * @mnt: root of mount tree |
| * |
| * This is called to check if a tree of mounts has any |
| * open files, pwds, chroots or sub mounts that are |
| * busy. |
| */ |
| int may_umount_tree(struct vfsmount *mnt) |
| { |
| int actual_refs = 0; |
| int minimum_refs = 0; |
| struct vfsmount *p; |
| |
| spin_lock(&vfsmount_lock); |
| for (p = mnt; p; p = next_mnt(p, mnt)) { |
| actual_refs += atomic_read(&p->mnt_count); |
| minimum_refs += 2; |
| } |
| spin_unlock(&vfsmount_lock); |
| |
| if (actual_refs > minimum_refs) |
| return 0; |
| |
| return 1; |
| } |
| |
| EXPORT_SYMBOL(may_umount_tree); |
| |
| /** |
| * may_umount - check if a mount point is busy |
| * @mnt: root of mount |
| * |
| * This is called to check if a mount point has any |
| * open files, pwds, chroots or sub mounts. If the |
| * mount has sub mounts this will return busy |
| * regardless of whether the sub mounts are busy. |
| * |
| * Doesn't take quota and stuff into account. IOW, in some cases it will |
| * give false negatives. The main reason why it's here is that we need |
| * a non-destructive way to look for easily umountable filesystems. |
| */ |
| int may_umount(struct vfsmount *mnt) |
| { |
| int ret = 1; |
| spin_lock(&vfsmount_lock); |
| if (propagate_mount_busy(mnt, 2)) |
| ret = 0; |
| spin_unlock(&vfsmount_lock); |
| return ret; |
| } |
| |
| EXPORT_SYMBOL(may_umount); |
| |
| void release_mounts(struct list_head *head) |
| { |
| struct vfsmount *mnt; |
| while (!list_empty(head)) { |
| mnt = list_first_entry(head, struct vfsmount, mnt_hash); |
| list_del_init(&mnt->mnt_hash); |
| if (mnt->mnt_parent != mnt) { |
| struct dentry *dentry; |
| struct vfsmount *m; |
| spin_lock(&vfsmount_lock); |
| dentry = mnt->mnt_mountpoint; |
| m = mnt->mnt_parent; |
| mnt->mnt_mountpoint = mnt->mnt_root; |
| mnt->mnt_parent = mnt; |
| m->mnt_ghosts--; |
| spin_unlock(&vfsmount_lock); |
| dput(dentry); |
| mntput(m); |
| } |
| mntput(mnt); |
| } |
| } |
| |
| void umount_tree(struct vfsmount *mnt, int propagate, struct list_head *kill) |
| { |
| struct vfsmount *p; |
| |
| for (p = mnt; p; p = next_mnt(p, mnt)) |
| list_move(&p->mnt_hash, kill); |
| |
| if (propagate) |
| propagate_umount(kill); |
| |
| list_for_each_entry(p, kill, mnt_hash) { |
| list_del_init(&p->mnt_expire); |
| list_del_init(&p->mnt_list); |
| __touch_mnt_namespace(p->mnt_ns); |
| p->mnt_ns = NULL; |
| list_del_init(&p->mnt_child); |
| if (p->mnt_parent != p) { |
| p->mnt_parent->mnt_ghosts++; |
| p->mnt_mountpoint->d_mounted--; |
| } |
| change_mnt_propagation(p, MS_PRIVATE); |
| } |
| } |
| |
| static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts); |
| |
| static int do_umount(struct vfsmount *mnt, int flags) |
| { |
| struct super_block *sb = mnt->mnt_sb; |
| int retval; |
| LIST_HEAD(umount_list); |
| |
| retval = security_sb_umount(mnt, flags); |
| if (retval) |
| return retval; |
| |
| /* |
| * Allow userspace to request a mountpoint be expired rather than |
| * unmounting unconditionally. Unmount only happens if: |
| * (1) the mark is already set (the mark is cleared by mntput()) |
| * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount] |
| */ |
| if (flags & MNT_EXPIRE) { |
| if (mnt == current->fs->root.mnt || |
| flags & (MNT_FORCE | MNT_DETACH)) |
| return -EINVAL; |
| |
| if (atomic_read(&mnt->mnt_count) != 2) |
| return -EBUSY; |
| |
| if (!xchg(&mnt->mnt_expiry_mark, 1)) |
| return -EAGAIN; |
| } |
| |
| /* |
| * If we may have to abort operations to get out of this |
| * mount, and they will themselves hold resources we must |
| * allow the fs to do things. In the Unix tradition of |
| * 'Gee thats tricky lets do it in userspace' the umount_begin |
| * might fail to complete on the first run through as other tasks |
| * must return, and the like. Thats for the mount program to worry |
| * about for the moment. |
| */ |
| |
| if (flags & MNT_FORCE && sb->s_op->umount_begin) { |
| lock_kernel(); |
| sb->s_op->umount_begin(sb); |
| unlock_kernel(); |
| } |
| |
| /* |
| * No sense to grab the lock for this test, but test itself looks |
| * somewhat bogus. Suggestions for better replacement? |
| * Ho-hum... In principle, we might treat that as umount + switch |
| * to rootfs. GC would eventually take care of the old vfsmount. |
| * Actually it makes sense, especially if rootfs would contain a |
| * /reboot - static binary that would close all descriptors and |
| * call reboot(9). Then init(8) could umount root and exec /reboot. |
| */ |
| if (mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) { |
| /* |
| * Special case for "unmounting" root ... |
| * we just try to remount it readonly. |
| */ |
| down_write(&sb->s_umount); |
| if (!(sb->s_flags & MS_RDONLY)) { |
| lock_kernel(); |
| retval = do_remount_sb(sb, MS_RDONLY, NULL, 0); |
| unlock_kernel(); |
| } |
| up_write(&sb->s_umount); |
| return retval; |
| } |
| |
| down_write(&namespace_sem); |
| spin_lock(&vfsmount_lock); |
| event++; |
| |
| if (!(flags & MNT_DETACH)) |
| shrink_submounts(mnt, &umount_list); |
| |
| retval = -EBUSY; |
| if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) { |
| if (!list_empty(&mnt->mnt_list)) |
| umount_tree(mnt, 1, &umount_list); |
| retval = 0; |
| } |
| spin_unlock(&vfsmount_lock); |
| if (retval) |
| security_sb_umount_busy(mnt); |
| up_write(&namespace_sem); |
| release_mounts(&umount_list); |
| return retval; |
| } |
| |
| /* |
| * Now umount can handle mount points as well as block devices. |
| * This is important for filesystems which use unnamed block devices. |
| * |
| * We now support a flag for forced unmount like the other 'big iron' |
| * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD |
| */ |
| |
| asmlinkage long sys_umount(char __user * name, int flags) |
| { |
| struct path path; |
| int retval; |
| |
| retval = user_path(name, &path); |
| if (retval) |
| goto out; |
| retval = -EINVAL; |
| if (path.dentry != path.mnt->mnt_root) |
| goto dput_and_out; |
| if (!check_mnt(path.mnt)) |
| goto dput_and_out; |
| |
| retval = -EPERM; |
| if (!capable(CAP_SYS_ADMIN)) |
| goto dput_and_out; |
| |
| retval = do_umount(path.mnt, flags); |
| dput_and_out: |
| /* we mustn't call path_put() as that would clear mnt_expiry_mark */ |
| dput(path.dentry); |
| mntput_no_expire(path.mnt); |
| out: |
| return retval; |
| } |
| |
| #ifdef __ARCH_WANT_SYS_OLDUMOUNT |
| |
| /* |
| * The 2.0 compatible umount. No flags. |
| */ |
| asmlinkage long sys_oldumount(char __user * name) |
| { |
| return sys_umount(name, 0); |
| } |
| |
| #endif |
| |
| static int mount_is_safe(struct path *path) |
| { |
| if (capable(CAP_SYS_ADMIN)) |
| return 0; |
| return -EPERM; |
| #ifdef notyet |
| if (S_ISLNK(path->dentry->d_inode->i_mode)) |
| return -EPERM; |
| if (path->dentry->d_inode->i_mode & S_ISVTX) { |
| if (current->uid != path->dentry->d_inode->i_uid) |
| return -EPERM; |
| } |
| if (inode_permission(path->dentry->d_inode, MAY_WRITE)) |
| return -EPERM; |
| return 0; |
| #endif |
| } |
| |
| struct vfsmount *copy_tree(struct vfsmount *mnt, struct dentry *dentry, |
| int flag) |
| { |
| struct vfsmount *res, *p, *q, *r, *s; |
| struct path path; |
| |
| if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt)) |
| return NULL; |
| |
| res = q = clone_mnt(mnt, dentry, flag); |
| if (!q) |
| goto Enomem; |
| q->mnt_mountpoint = mnt->mnt_mountpoint; |
| |
| p = mnt; |
| list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) { |
| if (!is_subdir(r->mnt_mountpoint, dentry)) |
| continue; |
| |
| for (s = r; s; s = next_mnt(s, r)) { |
| if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) { |
| s = skip_mnt_tree(s); |
| continue; |
| } |
| while (p != s->mnt_parent) { |
| p = p->mnt_parent; |
| q = q->mnt_parent; |
| } |
| p = s; |
| path.mnt = q; |
| path.dentry = p->mnt_mountpoint; |
| q = clone_mnt(p, p->mnt_root, flag); |
| if (!q) |
| goto Enomem; |
| spin_lock(&vfsmount_lock); |
| list_add_tail(&q->mnt_list, &res->mnt_list); |
| attach_mnt(q, &path); |
| spin_unlock(&vfsmount_lock); |
| } |
| } |
| return res; |
| Enomem: |
| if (res) { |
| LIST_HEAD(umount_list); |
| spin_lock(&vfsmount_lock); |
| umount_tree(res, 0, &umount_list); |
| spin_unlock(&vfsmount_lock); |
| release_mounts(&umount_list); |
| } |
| return NULL; |
| } |
| |
| struct vfsmount *collect_mounts(struct vfsmount *mnt, struct dentry *dentry) |
| { |
| struct vfsmount *tree; |
| down_write(&namespace_sem); |
| tree = copy_tree(mnt, dentry, CL_COPY_ALL | CL_PRIVATE); |
| up_write(&namespace_sem); |
| return tree; |
| } |
| |
| void drop_collected_mounts(struct vfsmount *mnt) |
| { |
| LIST_HEAD(umount_list); |
| down_write(&namespace_sem); |
| spin_lock(&vfsmount_lock); |
| umount_tree(mnt, 0, &umount_list); |
| spin_unlock(&vfsmount_lock); |
| up_write(&namespace_sem); |
| release_mounts(&umount_list); |
| } |
| |
| static void cleanup_group_ids(struct vfsmount *mnt, struct vfsmount *end) |
| { |
| struct vfsmount *p; |
| |
| for (p = mnt; p != end; p = next_mnt(p, mnt)) { |
| if (p->mnt_group_id && !IS_MNT_SHARED(p)) |
| mnt_release_group_id(p); |
| } |
| } |
| |
| static int invent_group_ids(struct vfsmount *mnt, bool recurse) |
| { |
| struct vfsmount *p; |
| |
| for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) { |
| if (!p->mnt_group_id && !IS_MNT_SHARED(p)) { |
| int err = mnt_alloc_group_id(p); |
| if (err) { |
| cleanup_group_ids(mnt, p); |
| return err; |
| } |
| } |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * @source_mnt : mount tree to be attached |
| * @nd : place the mount tree @source_mnt is attached |
| * @parent_nd : if non-null, detach the source_mnt from its parent and |
| * store the parent mount and mountpoint dentry. |
| * (done when source_mnt is moved) |
| * |
| * NOTE: in the table below explains the semantics when a source mount |
| * of a given type is attached to a destination mount of a given type. |
| * --------------------------------------------------------------------------- |
| * | BIND MOUNT OPERATION | |
| * |************************************************************************** |
| * | source-->| shared | private | slave | unbindable | |
| * | dest | | | | | |
| * | | | | | | | |
| * | v | | | | | |
| * |************************************************************************** |
| * | shared | shared (++) | shared (+) | shared(+++)| invalid | |
| * | | | | | | |
| * |non-shared| shared (+) | private | slave (*) | invalid | |
| * *************************************************************************** |
| * A bind operation clones the source mount and mounts the clone on the |
| * destination mount. |
| * |
| * (++) the cloned mount is propagated to all the mounts in the propagation |
| * tree of the destination mount and the cloned mount is added to |
| * the peer group of the source mount. |
| * (+) the cloned mount is created under the destination mount and is marked |
| * as shared. The cloned mount is added to the peer group of the source |
| * mount. |
| * (+++) the mount is propagated to all the mounts in the propagation tree |
| * of the destination mount and the cloned mount is made slave |
| * of the same master as that of the source mount. The cloned mount |
| * is marked as 'shared and slave'. |
| * (*) the cloned mount is made a slave of the same master as that of the |
| * source mount. |
| * |
| * --------------------------------------------------------------------------- |
| * | MOVE MOUNT OPERATION | |
| * |************************************************************************** |
| * | source-->| shared | private | slave | unbindable | |
| * | dest | | | | | |
| * | | | | | | | |
| * | v | | | | | |
| * |************************************************************************** |
| * | shared | shared (+) | shared (+) | shared(+++) | invalid | |
| * | | | | | | |
| * |non-shared| shared (+*) | private | slave (*) | unbindable | |
| * *************************************************************************** |
| * |
| * (+) the mount is moved to the destination. And is then propagated to |
| * all the mounts in the propagation tree of the destination mount. |
| * (+*) the mount is moved to the destination. |
| * (+++) the mount is moved to the destination and is then propagated to |
| * all the mounts belonging to the destination mount's propagation tree. |
| * the mount is marked as 'shared and slave'. |
| * (*) the mount continues to be a slave at the new location. |
| * |
| * if the source mount is a tree, the operations explained above is |
| * applied to each mount in the tree. |
| * Must be called without spinlocks held, since this function can sleep |
| * in allocations. |
| */ |
| static int attach_recursive_mnt(struct vfsmount *source_mnt, |
| struct path *path, struct path *parent_path) |
| { |
| LIST_HEAD(tree_list); |
| struct vfsmount *dest_mnt = path->mnt; |
| struct dentry *dest_dentry = path->dentry; |
| struct vfsmount *child, *p; |
| int err; |
| |
| if (IS_MNT_SHARED(dest_mnt)) { |
| err = invent_group_ids(source_mnt, true); |
| if (err) |
| goto out; |
| } |
| err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list); |
| if (err) |
| goto out_cleanup_ids; |
| |
| if (IS_MNT_SHARED(dest_mnt)) { |
| for (p = source_mnt; p; p = next_mnt(p, source_mnt)) |
| set_mnt_shared(p); |
| } |
| |
| spin_lock(&vfsmount_lock); |
| if (parent_path) { |
| detach_mnt(source_mnt, parent_path); |
| attach_mnt(source_mnt, path); |
| touch_mnt_namespace(current->nsproxy->mnt_ns); |
| } else { |
| mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt); |
| commit_tree(source_mnt); |
| } |
| |
| list_for_each_entry_safe(child, p, &tree_list, mnt_hash) { |
| list_del_init(&child->mnt_hash); |
| commit_tree(child); |
| } |
| spin_unlock(&vfsmount_lock); |
| return 0; |
| |
| out_cleanup_ids: |
| if (IS_MNT_SHARED(dest_mnt)) |
| cleanup_group_ids(source_mnt, NULL); |
| out: |
| return err; |
| } |
| |
| static int graft_tree(struct vfsmount *mnt, struct path *path) |
| { |
| int err; |
| if (mnt->mnt_sb->s_flags & MS_NOUSER) |
| return -EINVAL; |
| |
| if (S_ISDIR(path->dentry->d_inode->i_mode) != |
| S_ISDIR(mnt->mnt_root->d_inode->i_mode)) |
| return -ENOTDIR; |
| |
| err = -ENOENT; |
| mutex_lock(&path->dentry->d_inode->i_mutex); |
| if (IS_DEADDIR(path->dentry->d_inode)) |
| goto out_unlock; |
| |
| err = security_sb_check_sb(mnt, path); |
| if (err) |
| goto out_unlock; |
| |
| err = -ENOENT; |
| if (IS_ROOT(path->dentry) || !d_unhashed(path->dentry)) |
| err = attach_recursive_mnt(mnt, path, NULL); |
| out_unlock: |
| mutex_unlock(&path->dentry->d_inode->i_mutex); |
| if (!err) |
| security_sb_post_addmount(mnt, path); |
| return err; |
| } |
| |
| /* |
| * recursively change the type of the mountpoint. |
| */ |
| static int do_change_type(struct path *path, int flag) |
| { |
| struct vfsmount *m, *mnt = path->mnt; |
| int recurse = flag & MS_REC; |
| int type = flag & ~MS_REC; |
| int err = 0; |
| |
| if (!capable(CAP_SYS_ADMIN)) |
| return -EPERM; |
| |
| if (path->dentry != path->mnt->mnt_root) |
| return -EINVAL; |
| |
| down_write(&namespace_sem); |
| if (type == MS_SHARED) { |
| err = invent_group_ids(mnt, recurse); |
| if (err) |
| goto out_unlock; |
| } |
| |
| spin_lock(&vfsmount_lock); |
| for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL)) |
| change_mnt_propagation(m, type); |
| spin_unlock(&vfsmount_lock); |
| |
| out_unlock: |
| up_write(&namespace_sem); |
| return err; |
| } |
| |
| /* |
| * do loopback mount. |
| */ |
| static int do_loopback(struct path *path, char *old_name, |
| int recurse) |
| { |
| struct path old_path; |
| struct vfsmount *mnt = NULL; |
| int err = mount_is_safe(path); |
| if (err) |
| return err; |
| if (!old_name || !*old_name) |
| return -EINVAL; |
| err = kern_path(old_name, LOOKUP_FOLLOW, &old_path); |
| if (err) |
| return err; |
| |
| down_write(&namespace_sem); |
| err = -EINVAL; |
| if (IS_MNT_UNBINDABLE(old_path.mnt)) |
| goto out; |
| |
| if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt)) |
| goto out; |
| |
| err = -ENOMEM; |
| if (recurse) |
| mnt = copy_tree(old_path.mnt, old_path.dentry, 0); |
| else |
| mnt = clone_mnt(old_path.mnt, old_path.dentry, 0); |
| |
| if (!mnt) |
| goto out; |
| |
| err = graft_tree(mnt, path); |
| if (err) { |
| LIST_HEAD(umount_list); |
| spin_lock(&vfsmount_lock); |
| umount_tree(mnt, 0, &umount_list); |
| spin_unlock(&vfsmount_lock); |
| release_mounts(&umount_list); |
| } |
| |
| out: |
| up_write(&namespace_sem); |
| path_put(&old_path); |
| return err; |
| } |
| |
| static int change_mount_flags(struct vfsmount *mnt, int ms_flags) |
| { |
| int error = 0; |
| int readonly_request = 0; |
| |
| if (ms_flags & MS_RDONLY) |
| readonly_request = 1; |
| if (readonly_request == __mnt_is_readonly(mnt)) |
| return 0; |
| |
| if (readonly_request) |
| error = mnt_make_readonly(mnt); |
| else |
| __mnt_unmake_readonly(mnt); |
| return error; |
| } |
| |
| /* |
| * change filesystem flags. dir should be a physical root of filesystem. |
| * If you've mounted a non-root directory somewhere and want to do remount |
| * on it - tough luck. |
| */ |
| static int do_remount(struct path *path, int flags, int mnt_flags, |
| void *data) |
| { |
| int err; |
| struct super_block *sb = path->mnt->mnt_sb; |
| |
| if (!capable(CAP_SYS_ADMIN)) |
| return -EPERM; |
| |
| if (!check_mnt(path->mnt)) |
| return -EINVAL; |
| |
| if (path->dentry != path->mnt->mnt_root) |
| return -EINVAL; |
| |
| down_write(&sb->s_umount); |
| if (flags & MS_BIND) |
| err = change_mount_flags(path->mnt, flags); |
| else |
| err = do_remount_sb(sb, flags, data, 0); |
| if (!err) |
| path->mnt->mnt_flags = mnt_flags; |
| up_write(&sb->s_umount); |
| if (!err) { |
| security_sb_post_remount(path->mnt, flags, data); |
| |
| spin_lock(&vfsmount_lock); |
| touch_mnt_namespace(path->mnt->mnt_ns); |
| spin_unlock(&vfsmount_lock); |
| } |
| return err; |
| } |
| |
| static inline int tree_contains_unbindable(struct vfsmount *mnt) |
| { |
| struct vfsmount *p; |
| for (p = mnt; p; p = next_mnt(p, mnt)) { |
| if (IS_MNT_UNBINDABLE(p)) |
| return 1; |
| } |
| return 0; |
| } |
| |
| static int do_move_mount(struct path *path, char *old_name) |
| { |
| struct path old_path, parent_path; |
| struct vfsmount *p; |
| int err = 0; |
| if (!capable(CAP_SYS_ADMIN)) |
| return -EPERM; |
| if (!old_name || !*old_name) |
| return -EINVAL; |
| err = kern_path(old_name, LOOKUP_FOLLOW, &old_path); |
| if (err) |
| return err; |
| |
| down_write(&namespace_sem); |
| while (d_mountpoint(path->dentry) && |
| follow_down(&path->mnt, &path->dentry)) |
| ; |
| err = -EINVAL; |
| if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt)) |
| goto out; |
| |
| err = -ENOENT; |
| mutex_lock(&path->dentry->d_inode->i_mutex); |
| if (IS_DEADDIR(path->dentry->d_inode)) |
| goto out1; |
| |
| if (!IS_ROOT(path->dentry) && d_unhashed(path->dentry)) |
| goto out1; |
| |
| err = -EINVAL; |
| if (old_path.dentry != old_path.mnt->mnt_root) |
| goto out1; |
| |
| if (old_path.mnt == old_path.mnt->mnt_parent) |
| goto out1; |
| |
| if (S_ISDIR(path->dentry->d_inode->i_mode) != |
| S_ISDIR(old_path.dentry->d_inode->i_mode)) |
| goto out1; |
| /* |
| * Don't move a mount residing in a shared parent. |
| */ |
| if (old_path.mnt->mnt_parent && |
| IS_MNT_SHARED(old_path.mnt->mnt_parent)) |
| goto out1; |
| /* |
| * Don't move a mount tree containing unbindable mounts to a destination |
| * mount which is shared. |
| */ |
| if (IS_MNT_SHARED(path->mnt) && |
| tree_contains_unbindable(old_path.mnt)) |
| goto out1; |
| err = -ELOOP; |
| for (p = path->mnt; p->mnt_parent != p; p = p->mnt_parent) |
| if (p == old_path.mnt) |
| goto out1; |
| |
| err = attach_recursive_mnt(old_path.mnt, path, &parent_path); |
| if (err) |
| goto out1; |
| |
| /* if the mount is moved, it should no longer be expire |
| * automatically */ |
| list_del_init(&old_path.mnt->mnt_expire); |
| out1: |
| mutex_unlock(&path->dentry->d_inode->i_mutex); |
| out: |
| up_write(&namespace_sem); |
| if (!err) |
| path_put(&parent_path); |
| path_put(&old_path); |
| return err; |
| } |
| |
| /* |
| * create a new mount for userspace and request it to be added into the |
| * namespace's tree |
| */ |
| static int do_new_mount(struct path *path, char *type, int flags, |
| int mnt_flags, char *name, void *data) |
| { |
| struct vfsmount *mnt; |
| |
| if (!type || !memchr(type, 0, PAGE_SIZE)) |
| return -EINVAL; |
| |
| /* we need capabilities... */ |
| if (!capable(CAP_SYS_ADMIN)) |
| return -EPERM; |
| |
| mnt = do_kern_mount(type, flags, name, data); |
| if (IS_ERR(mnt)) |
| return PTR_ERR(mnt); |
| |
| return do_add_mount(mnt, path, mnt_flags, NULL); |
| } |
| |
| /* |
| * add a mount into a namespace's mount tree |
| * - provide the option of adding the new mount to an expiration list |
| */ |
| int do_add_mount(struct vfsmount *newmnt, struct path *path, |
| int mnt_flags, struct list_head *fslist) |
| { |
| int err; |
| |
| down_write(&namespace_sem); |
| /* Something was mounted here while we slept */ |
| while (d_mountpoint(path->dentry) && |
| follow_down(&path->mnt, &path->dentry)) |
| ; |
| err = -EINVAL; |
| if (!check_mnt(path->mnt)) |
| goto unlock; |
| |
| /* Refuse the same filesystem on the same mount point */ |
| err = -EBUSY; |
| if (path->mnt->mnt_sb == newmnt->mnt_sb && |
| path->mnt->mnt_root == path->dentry) |
| goto unlock; |
| |
| err = -EINVAL; |
| if (S_ISLNK(newmnt->mnt_root->d_inode->i_mode)) |
| goto unlock; |
| |
| newmnt->mnt_flags = mnt_flags; |
| if ((err = graft_tree(newmnt, path))) |
| goto unlock; |
| |
| if (fslist) /* add to the specified expiration list */ |
| list_add_tail(&newmnt->mnt_expire, fslist); |
| |
| up_write(&namespace_sem); |
| return 0; |
| |
| unlock: |
| up_write(&namespace_sem); |
| mntput(newmnt); |
| return err; |
| } |
| |
| EXPORT_SYMBOL_GPL(do_add_mount); |
| |
| /* |
| * process a list of expirable mountpoints with the intent of discarding any |
| * mountpoints that aren't in use and haven't been touched since last we came |
| * here |
| */ |
| void mark_mounts_for_expiry(struct list_head *mounts) |
| { |
| struct vfsmount *mnt, *next; |
| LIST_HEAD(graveyard); |
| LIST_HEAD(umounts); |
| |
| if (list_empty(mounts)) |
| return; |
| |
| down_write(&namespace_sem); |
| spin_lock(&vfsmount_lock); |
| |
| /* extract from the expiration list every vfsmount that matches the |
| * following criteria: |
| * - only referenced by its parent vfsmount |
| * - still marked for expiry (marked on the last call here; marks are |
| * cleared by mntput()) |
| */ |
| list_for_each_entry_safe(mnt, next, mounts, mnt_expire) { |
| if (!xchg(&mnt->mnt_expiry_mark, 1) || |
| propagate_mount_busy(mnt, 1)) |
| continue; |
| list_move(&mnt->mnt_expire, &graveyard); |
| } |
| while (!list_empty(&graveyard)) { |
| mnt = list_first_entry(&graveyard, struct vfsmount, mnt_expire); |
| touch_mnt_namespace(mnt->mnt_ns); |
| umount_tree(mnt, 1, &umounts); |
| } |
| spin_unlock(&vfsmount_lock); |
| up_write(&namespace_sem); |
| |
| release_mounts(&umounts); |
| } |
| |
| EXPORT_SYMBOL_GPL(mark_mounts_for_expiry); |
| |
| /* |
| * Ripoff of 'select_parent()' |
| * |
| * search the list of submounts for a given mountpoint, and move any |
| * shrinkable submounts to the 'graveyard' list. |
| */ |
| static int select_submounts(struct vfsmount *parent, struct list_head *graveyard) |
| { |
| struct vfsmount *this_parent = parent; |
| struct list_head *next; |
| int found = 0; |
| |
| repeat: |
| next = this_parent->mnt_mounts.next; |
| resume: |
| while (next != &this_parent->mnt_mounts) { |
| struct list_head *tmp = next; |
| struct vfsmount *mnt = list_entry(tmp, struct vfsmount, mnt_child); |
| |
| next = tmp->next; |
| if (!(mnt->mnt_flags & MNT_SHRINKABLE)) |
| continue; |
| /* |
| * Descend a level if the d_mounts list is non-empty. |
| */ |
| if (!list_empty(&mnt->mnt_mounts)) { |
| this_parent = mnt; |
| goto repeat; |
| } |
| |
| if (!propagate_mount_busy(mnt, 1)) { |
| list_move_tail(&mnt->mnt_expire, graveyard); |
| found++; |
| } |
| } |
| /* |
| * All done at this level ... ascend and resume the search |
| */ |
| if (this_parent != parent) { |
| next = this_parent->mnt_child.next; |
| this_parent = this_parent->mnt_parent; |
| goto resume; |
| } |
| return found; |
| } |
| |
| /* |
| * process a list of expirable mountpoints with the intent of discarding any |
| * submounts of a specific parent mountpoint |
| */ |
| static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts) |
| { |
| LIST_HEAD(graveyard); |
| struct vfsmount *m; |
| |
| /* extract submounts of 'mountpoint' from the expiration list */ |
| while (select_submounts(mnt, &graveyard)) { |
| while (!list_empty(&graveyard)) { |
| m = list_first_entry(&graveyard, struct vfsmount, |
| mnt_expire); |
| touch_mnt_namespace(mnt->mnt_ns); |
| umount_tree(mnt, 1, umounts); |
| } |
| } |
| } |
| |
| /* |
| * Some copy_from_user() implementations do not return the exact number of |
| * bytes remaining to copy on a fault. But copy_mount_options() requires that. |
| * Note that this function differs from copy_from_user() in that it will oops |
| * on bad values of `to', rather than returning a short copy. |
| */ |
| static long exact_copy_from_user(void *to, const void __user * from, |
| unsigned long n) |
| { |
| char *t = to; |
| const char __user *f = from; |
| char c; |
| |
| if (!access_ok(VERIFY_READ, from, n)) |
| return n; |
| |
| while (n) { |
| if (__get_user(c, f)) { |
| memset(t, 0, n); |
| break; |
| } |
| *t++ = c; |
| f++; |
| n--; |
| } |
| return n; |
| } |
| |
| int copy_mount_options(const void __user * data, unsigned long *where) |
| { |
| int i; |
| unsigned long page; |
| unsigned long size; |
| |
| *where = 0; |
| if (!data) |
| return 0; |
| |
| if (!(page = __get_free_page(GFP_KERNEL))) |
| return -ENOMEM; |
| |
| /* We only care that *some* data at the address the user |
| * gave us is valid. Just in case, we'll zero |
| * the remainder of the page. |
| */ |
| /* copy_from_user cannot cross TASK_SIZE ! */ |
| size = TASK_SIZE - (unsigned long)data; |
| if (size > PAGE_SIZE) |
| size = PAGE_SIZE; |
| |
| i = size - exact_copy_from_user((void *)page, data, size); |
| if (!i) { |
| free_page(page); |
| return -EFAULT; |
| } |
| if (i != PAGE_SIZE) |
| memset((char *)page + i, 0, PAGE_SIZE - i); |
| *where = page; |
| return 0; |
| } |
| |
| /* |
| * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to |
| * be given to the mount() call (ie: read-only, no-dev, no-suid etc). |
| * |
| * data is a (void *) that can point to any structure up to |
| * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent |
| * information (or be NULL). |
| * |
| * Pre-0.97 versions of mount() didn't have a flags word. |
| * When the flags word was introduced its top half was required |
| * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9. |
| * Therefore, if this magic number is present, it carries no information |
| * and must be discarded. |
| */ |
| long do_mount(char *dev_name, char *dir_name, char *type_page, |
| unsigned long flags, void *data_page) |
| { |
| struct path path; |
| int retval = 0; |
| int mnt_flags = 0; |
| |
| /* Discard magic */ |
| if ((flags & MS_MGC_MSK) == MS_MGC_VAL) |
| flags &= ~MS_MGC_MSK; |
| |
| /* Basic sanity checks */ |
| |
| if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE)) |
| return -EINVAL; |
| if (dev_name && !memchr(dev_name, 0, PAGE_SIZE)) |
| return -EINVAL; |
| |
| if (data_page) |
| ((char *)data_page)[PAGE_SIZE - 1] = 0; |
| |
| /* Separate the per-mountpoint flags */ |
| if (flags & MS_NOSUID) |
| mnt_flags |= MNT_NOSUID; |
| if (flags & MS_NODEV) |
| mnt_flags |= MNT_NODEV; |
| if (flags & MS_NOEXEC) |
| mnt_flags |= MNT_NOEXEC; |
| if (flags & MS_NOATIME) |
| mnt_flags |= MNT_NOATIME; |
| if (flags & MS_NODIRATIME) |
| mnt_flags |= MNT_NODIRATIME; |
| if (flags & MS_RELATIME) |
| mnt_flags |= MNT_RELATIME; |
| if (flags & MS_RDONLY) |
| mnt_flags |= MNT_READONLY; |
| |
| flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | |
| MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT); |
| |
| /* ... and get the mountpoint */ |
| retval = kern_path(dir_name, LOOKUP_FOLLOW, &path); |
| if (retval) |
| return retval; |
| |
| retval = security_sb_mount(dev_name, &path, |
| type_page, flags, data_page); |
| if (retval) |
| goto dput_out; |
| |
| if (flags & MS_REMOUNT) |
| retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags, |
| data_page); |
| else if (flags & MS_BIND) |
| retval = do_loopback(&path, dev_name, flags & MS_REC); |
| else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) |
| retval = do_change_type(&path, flags); |
| else if (flags & MS_MOVE) |
| retval = do_move_mount(&path, dev_name); |
| else |
| retval = do_new_mount(&path, type_page, flags, mnt_flags, |
| dev_name, data_page); |
| dput_out: |
| path_put(&path); |
| return retval; |
| } |
| |
| /* |
| * Allocate a new namespace structure and populate it with contents |
| * copied from the namespace of the passed in task structure. |
| */ |
| static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns, |
| struct fs_struct *fs) |
| { |
| struct mnt_namespace *new_ns; |
| struct vfsmount *rootmnt = NULL, *pwdmnt = NULL; |
| struct vfsmount *p, *q; |
| |
| new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL); |
| if (!new_ns) |
| return ERR_PTR(-ENOMEM); |
| |
| atomic_set(&new_ns->count, 1); |
| INIT_LIST_HEAD(&new_ns->list); |
| init_waitqueue_head(&new_ns->poll); |
| new_ns->event = 0; |
| |
| down_write(&namespace_sem); |
| /* First pass: copy the tree topology */ |
| new_ns->root = copy_tree(mnt_ns->root, mnt_ns->root->mnt_root, |
| CL_COPY_ALL | CL_EXPIRE); |
| if (!new_ns->root) { |
| up_write(&namespace_sem); |
| kfree(new_ns); |
| return ERR_PTR(-ENOMEM);; |
| } |
| spin_lock(&vfsmount_lock); |
| list_add_tail(&new_ns->list, &new_ns->root->mnt_list); |
| spin_unlock(&vfsmount_lock); |
| |
| /* |
| * Second pass: switch the tsk->fs->* elements and mark new vfsmounts |
| * as belonging to new namespace. We have already acquired a private |
| * fs_struct, so tsk->fs->lock is not needed. |
| */ |
| p = mnt_ns->root; |
| q = new_ns->root; |
| while (p) { |
| q->mnt_ns = new_ns; |
| if (fs) { |
| if (p == fs->root.mnt) { |
| rootmnt = p; |
| fs->root.mnt = mntget(q); |
| } |
| if (p == fs->pwd.mnt) { |
| pwdmnt = p; |
| fs->pwd.mnt = mntget(q); |
| } |
| } |
| p = next_mnt(p, mnt_ns->root); |
| q = next_mnt(q, new_ns->root); |
| } |
| up_write(&namespace_sem); |
| |
| if (rootmnt) |
| mntput(rootmnt); |
| if (pwdmnt) |
| mntput(pwdmnt); |
| |
| return new_ns; |
| } |
| |
| struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns, |
| struct fs_struct *new_fs) |
| { |
| struct mnt_namespace *new_ns; |
| |
| BUG_ON(!ns); |
| get_mnt_ns(ns); |
| |
| if (!(flags & CLONE_NEWNS)) |
| return ns; |
| |
| new_ns = dup_mnt_ns(ns, new_fs); |
| |
| put_mnt_ns(ns); |
| return new_ns; |
| } |
| |
| asmlinkage long sys_mount(char __user * dev_name, char __user * dir_name, |
| char __user * type, unsigned long flags, |
| void __user * data) |
| { |
| int retval; |
| unsigned long data_page; |
| unsigned long type_page; |
| unsigned long dev_page; |
| char *dir_page; |
| |
| retval = copy_mount_options(type, &type_page); |
| if (retval < 0) |
| return retval; |
| |
| dir_page = getname(dir_name); |
| retval = PTR_ERR(dir_page); |
| if (IS_ERR(dir_page)) |
| goto out1; |
| |
| retval = copy_mount_options(dev_name, &dev_page); |
| if (retval < 0) |
| goto out2; |
| |
| retval = copy_mount_options(data, &data_page); |
| if (retval < 0) |
| goto out3; |
| |
| lock_kernel(); |
| retval = do_mount((char *)dev_page, dir_page, (char *)type_page, |
| flags, (void *)data_page); |
| unlock_kernel(); |
| free_page(data_page); |
| |
| out3: |
| free_page(dev_page); |
| out2: |
| putname(dir_page); |
| out1: |
| free_page(type_page); |
| return retval; |
| } |
| |
| /* |
| * Replace the fs->{rootmnt,root} with {mnt,dentry}. Put the old values. |
| * It can block. Requires the big lock held. |
| */ |
| void set_fs_root(struct fs_struct *fs, struct path *path) |
| { |
| struct path old_root; |
| |
| write_lock(&fs->lock); |
| old_root = fs->root; |
| fs->root = *path; |
| path_get(path); |
| write_unlock(&fs->lock); |
| if (old_root.dentry) |
| path_put(&old_root); |
| } |
| |
| /* |
| * Replace the fs->{pwdmnt,pwd} with {mnt,dentry}. Put the old values. |
| * It can block. Requires the big lock held. |
| */ |
| void set_fs_pwd(struct fs_struct *fs, struct path *path) |
| { |
| struct path old_pwd; |
| |
| write_lock(&fs->lock); |
| old_pwd = fs->pwd; |
| fs->pwd = *path; |
| path_get(path); |
| write_unlock(&fs->lock); |
| |
| if (old_pwd.dentry) |
| path_put(&old_pwd); |
| } |
| |
| static void chroot_fs_refs(struct path *old_root, struct path *new_root) |
| { |
| struct task_struct *g, *p; |
| struct fs_struct *fs; |
| |
| read_lock(&tasklist_lock); |
| do_each_thread(g, p) { |
| task_lock(p); |
| fs = p->fs; |
| if (fs) { |
| atomic_inc(&fs->count); |
| task_unlock(p); |
| if (fs->root.dentry == old_root->dentry |
| && fs->root.mnt == old_root->mnt) |
| set_fs_root(fs, new_root); |
| if (fs->pwd.dentry == old_root->dentry |
| && fs->pwd.mnt == old_root->mnt) |
| set_fs_pwd(fs, new_root); |
| put_fs_struct(fs); |
| } else |
| task_unlock(p); |
| } while_each_thread(g, p); |
| read_unlock(&tasklist_lock); |
| } |
| |
| /* |
| * pivot_root Semantics: |
| * Moves the root file system of the current process to the directory put_old, |
| * makes new_root as the new root file system of the current process, and sets |
| * root/cwd of all processes which had them on the current root to new_root. |
| * |
| * Restrictions: |
| * The new_root and put_old must be directories, and must not be on the |
| * same file system as the current process root. The put_old must be |
| * underneath new_root, i.e. adding a non-zero number of /.. to the string |
| * pointed to by put_old must yield the same directory as new_root. No other |
| * file system may be mounted on put_old. After all, new_root is a mountpoint. |
| * |
| * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem. |
| * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives |
| * in this situation. |
| * |
| * Notes: |
| * - we don't move root/cwd if they are not at the root (reason: if something |
| * cared enough to change them, it's probably wrong to force them elsewhere) |
| * - it's okay to pick a root that isn't the root of a file system, e.g. |
| * /nfs/my_root where /nfs is the mount point. It must be a mountpoint, |
| * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root |
| * first. |
| */ |
| asmlinkage long sys_pivot_root(const char __user * new_root, |
| const char __user * put_old) |
| { |
| struct vfsmount *tmp; |
| struct path new, old, parent_path, root_parent, root; |
| int error; |
| |
| if (!capable(CAP_SYS_ADMIN)) |
| return -EPERM; |
| |
| error = user_path_dir(new_root, &new); |
| if (error) |
| goto out0; |
| error = -EINVAL; |
| if (!check_mnt(new.mnt)) |
| goto out1; |
| |
| error = user_path_dir(put_old, &old); |
| if (error) |
| goto out1; |
| |
| error = security_sb_pivotroot(&old, &new); |
| if (error) { |
| path_put(&old); |
| goto out1; |
| } |
| |
| read_lock(¤t->fs->lock); |
| root = current->fs->root; |
| path_get(¤t->fs->root); |
| read_unlock(¤t->fs->lock); |
| down_write(&namespace_sem); |
| mutex_lock(&old.dentry->d_inode->i_mutex); |
| error = -EINVAL; |
| if (IS_MNT_SHARED(old.mnt) || |
| IS_MNT_SHARED(new.mnt->mnt_parent) || |
| IS_MNT_SHARED(root.mnt->mnt_parent)) |
| goto out2; |
| if (!check_mnt(root.mnt)) |
| goto out2; |
| error = -ENOENT; |
| if (IS_DEADDIR(new.dentry->d_inode)) |
| goto out2; |
| if (d_unhashed(new.dentry) && !IS_ROOT(new.dentry)) |
| goto out2; |
| if (d_unhashed(old.dentry) && !IS_ROOT(old.dentry)) |
| goto out2; |
| error = -EBUSY; |
| if (new.mnt == root.mnt || |
| old.mnt == root.mnt) |
| goto out2; /* loop, on the same file system */ |
| error = -EINVAL; |
| if (root.mnt->mnt_root != root.dentry) |
| goto out2; /* not a mountpoint */ |
| if (root.mnt->mnt_parent == root.mnt) |
| goto out2; /* not attached */ |
| if (new.mnt->mnt_root != new.dentry) |
| goto out2; /* not a mountpoint */ |
| if (new.mnt->mnt_parent == new.mnt) |
| goto out2; /* not attached */ |
| /* make sure we can reach put_old from new_root */ |
| tmp = old.mnt; |
| spin_lock(&vfsmount_lock); |
| if (tmp != new.mnt) { |
| for (;;) { |
| if (tmp->mnt_parent == tmp) |
| goto out3; /* already mounted on put_old */ |
| if (tmp->mnt_parent == new.mnt) |
| break; |
| tmp = tmp->mnt_parent; |
| } |
| if (!is_subdir(tmp->mnt_mountpoint, new.dentry)) |
| goto out3; |
| } else if (!is_subdir(old.dentry, new.dentry)) |
| goto out3; |
| detach_mnt(new.mnt, &parent_path); |
| detach_mnt(root.mnt, &root_parent); |
| /* mount old root on put_old */ |
| attach_mnt(root.mnt, &old); |
| /* mount new_root on / */ |
| attach_mnt(new.mnt, &root_parent); |
| touch_mnt_namespace(current->nsproxy->mnt_ns); |
| spin_unlock(&vfsmount_lock); |
| chroot_fs_refs(&root, &new); |
| security_sb_post_pivotroot(&root, &new); |
| error = 0; |
| path_put(&root_parent); |
| path_put(&parent_path); |
| out2: |
| mutex_unlock(&old.dentry->d_inode->i_mutex); |
| up_write(&namespace_sem); |
| path_put(&root); |
| path_put(&old); |
| out1: |
| path_put(&new); |
| out0: |
| return error; |
| out3: |
| spin_unlock(&vfsmount_lock); |
| goto out2; |
| } |
| |
| static void __init init_mount_tree(void) |
| { |
| struct vfsmount *mnt; |
| struct mnt_namespace *ns; |
| struct path root; |
| |
| mnt = do_kern_mount("rootfs", 0, "rootfs", NULL); |
| if (IS_ERR(mnt)) |
| panic("Can't create rootfs"); |
| ns = kmalloc(sizeof(*ns), GFP_KERNEL); |
| if (!ns) |
| panic("Can't allocate initial namespace"); |
| atomic_set(&ns->count, 1); |
| INIT_LIST_HEAD(&ns->list); |
| init_waitqueue_head(&ns->poll); |
| ns->event = 0; |
| list_add(&mnt->mnt_list, &ns->list); |
| ns->root = mnt; |
| mnt->mnt_ns = ns; |
| |
| init_task.nsproxy->mnt_ns = ns; |
| get_mnt_ns(ns); |
| |
| root.mnt = ns->root; |
| root.dentry = ns->root->mnt_root; |
| |
| set_fs_pwd(current->fs, &root); |
| set_fs_root(current->fs, &root); |
| } |
| |
| void __init mnt_init(void) |
| { |
| unsigned u; |
| int err; |
| |
| init_rwsem(&namespace_sem); |
| |
| mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct vfsmount), |
| 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL); |
| |
| mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC); |
| |
| if (!mount_hashtable) |
| panic("Failed to allocate mount hash table\n"); |
| |
| printk("Mount-cache hash table entries: %lu\n", HASH_SIZE); |
| |
| for (u = 0; u < HASH_SIZE; u++) |
| INIT_LIST_HEAD(&mount_hashtable[u]); |
| |
| err = sysfs_init(); |
| if (err) |
| printk(KERN_WARNING "%s: sysfs_init error: %d\n", |
| __func__, err); |
| fs_kobj = kobject_create_and_add("fs", NULL); |
| if (!fs_kobj) |
| printk(KERN_WARNING "%s: kobj create error\n", __func__); |
| init_rootfs(); |
| init_mount_tree(); |
| } |
| |
| void __put_mnt_ns(struct mnt_namespace *ns) |
| { |
| struct vfsmount *root = ns->root; |
| LIST_HEAD(umount_list); |
| ns->root = NULL; |
| spin_unlock(&vfsmount_lock); |
| down_write(&namespace_sem); |
| spin_lock(&vfsmount_lock); |
| umount_tree(root, 0, &umount_list); |
| spin_unlock(&vfsmount_lock); |
| up_write(&namespace_sem); |
| release_mounts(&umount_list); |
| kfree(ns); |
| } |