| /* |
| * Compressed RAM block device |
| * |
| * Copyright (C) 2008, 2009, 2010 Nitin Gupta |
| * 2012, 2013 Minchan Kim |
| * |
| * This code is released using a dual license strategy: BSD/GPL |
| * You can choose the licence that better fits your requirements. |
| * |
| * Released under the terms of 3-clause BSD License |
| * Released under the terms of GNU General Public License Version 2.0 |
| * |
| */ |
| |
| #define KMSG_COMPONENT "zram" |
| #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt |
| |
| #ifdef CONFIG_ZRAM_DEBUG |
| #define DEBUG |
| #endif |
| |
| #include <linux/module.h> |
| #include <linux/kernel.h> |
| #include <linux/bio.h> |
| #include <linux/bitops.h> |
| #include <linux/blkdev.h> |
| #include <linux/buffer_head.h> |
| #include <linux/device.h> |
| #include <linux/genhd.h> |
| #include <linux/highmem.h> |
| #include <linux/slab.h> |
| #include <linux/string.h> |
| #include <linux/vmalloc.h> |
| #include <linux/err.h> |
| |
| #include "zram_drv.h" |
| |
| /* Globals */ |
| static int zram_major; |
| static struct zram *zram_devices; |
| static const char *default_compressor = "lzo"; |
| |
| /* Module params (documentation at end) */ |
| static unsigned int num_devices = 1; |
| |
| #define ZRAM_ATTR_RO(name) \ |
| static ssize_t zram_attr_##name##_show(struct device *d, \ |
| struct device_attribute *attr, char *b) \ |
| { \ |
| struct zram *zram = dev_to_zram(d); \ |
| return scnprintf(b, PAGE_SIZE, "%llu\n", \ |
| (u64)atomic64_read(&zram->stats.name)); \ |
| } \ |
| static struct device_attribute dev_attr_##name = \ |
| __ATTR(name, S_IRUGO, zram_attr_##name##_show, NULL); |
| |
| static inline int init_done(struct zram *zram) |
| { |
| return zram->meta != NULL; |
| } |
| |
| static inline struct zram *dev_to_zram(struct device *dev) |
| { |
| return (struct zram *)dev_to_disk(dev)->private_data; |
| } |
| |
| static ssize_t disksize_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct zram *zram = dev_to_zram(dev); |
| |
| return scnprintf(buf, PAGE_SIZE, "%llu\n", zram->disksize); |
| } |
| |
| static ssize_t initstate_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| u32 val; |
| struct zram *zram = dev_to_zram(dev); |
| |
| down_read(&zram->init_lock); |
| val = init_done(zram); |
| up_read(&zram->init_lock); |
| |
| return scnprintf(buf, PAGE_SIZE, "%u\n", val); |
| } |
| |
| static ssize_t orig_data_size_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct zram *zram = dev_to_zram(dev); |
| |
| return scnprintf(buf, PAGE_SIZE, "%llu\n", |
| (u64)(atomic64_read(&zram->stats.pages_stored)) << PAGE_SHIFT); |
| } |
| |
| static ssize_t mem_used_total_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| u64 val = 0; |
| struct zram *zram = dev_to_zram(dev); |
| struct zram_meta *meta = zram->meta; |
| |
| down_read(&zram->init_lock); |
| if (init_done(zram)) |
| val = zs_get_total_size_bytes(meta->mem_pool); |
| up_read(&zram->init_lock); |
| |
| return scnprintf(buf, PAGE_SIZE, "%llu\n", val); |
| } |
| |
| static ssize_t max_comp_streams_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| int val; |
| struct zram *zram = dev_to_zram(dev); |
| |
| down_read(&zram->init_lock); |
| val = zram->max_comp_streams; |
| up_read(&zram->init_lock); |
| |
| return scnprintf(buf, PAGE_SIZE, "%d\n", val); |
| } |
| |
| static ssize_t max_comp_streams_store(struct device *dev, |
| struct device_attribute *attr, const char *buf, size_t len) |
| { |
| int num; |
| struct zram *zram = dev_to_zram(dev); |
| int ret; |
| |
| ret = kstrtoint(buf, 0, &num); |
| if (ret < 0) |
| return ret; |
| if (num < 1) |
| return -EINVAL; |
| |
| down_write(&zram->init_lock); |
| if (init_done(zram)) { |
| if (!zcomp_set_max_streams(zram->comp, num)) { |
| pr_info("Cannot change max compression streams\n"); |
| ret = -EINVAL; |
| goto out; |
| } |
| } |
| |
| zram->max_comp_streams = num; |
| ret = len; |
| out: |
| up_write(&zram->init_lock); |
| return ret; |
| } |
| |
| static ssize_t comp_algorithm_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| size_t sz; |
| struct zram *zram = dev_to_zram(dev); |
| |
| down_read(&zram->init_lock); |
| sz = zcomp_available_show(zram->compressor, buf); |
| up_read(&zram->init_lock); |
| |
| return sz; |
| } |
| |
| static ssize_t comp_algorithm_store(struct device *dev, |
| struct device_attribute *attr, const char *buf, size_t len) |
| { |
| struct zram *zram = dev_to_zram(dev); |
| down_write(&zram->init_lock); |
| if (init_done(zram)) { |
| up_write(&zram->init_lock); |
| pr_info("Can't change algorithm for initialized device\n"); |
| return -EBUSY; |
| } |
| strlcpy(zram->compressor, buf, sizeof(zram->compressor)); |
| up_write(&zram->init_lock); |
| return len; |
| } |
| |
| /* flag operations needs meta->tb_lock */ |
| static int zram_test_flag(struct zram_meta *meta, u32 index, |
| enum zram_pageflags flag) |
| { |
| return meta->table[index].value & BIT(flag); |
| } |
| |
| static void zram_set_flag(struct zram_meta *meta, u32 index, |
| enum zram_pageflags flag) |
| { |
| meta->table[index].value |= BIT(flag); |
| } |
| |
| static void zram_clear_flag(struct zram_meta *meta, u32 index, |
| enum zram_pageflags flag) |
| { |
| meta->table[index].value &= ~BIT(flag); |
| } |
| |
| static size_t zram_get_obj_size(struct zram_meta *meta, u32 index) |
| { |
| return meta->table[index].value & (BIT(ZRAM_FLAG_SHIFT) - 1); |
| } |
| |
| static void zram_set_obj_size(struct zram_meta *meta, |
| u32 index, size_t size) |
| { |
| unsigned long flags = meta->table[index].value >> ZRAM_FLAG_SHIFT; |
| |
| meta->table[index].value = (flags << ZRAM_FLAG_SHIFT) | size; |
| } |
| |
| static inline int is_partial_io(struct bio_vec *bvec) |
| { |
| return bvec->bv_len != PAGE_SIZE; |
| } |
| |
| /* |
| * Check if request is within bounds and aligned on zram logical blocks. |
| */ |
| static inline int valid_io_request(struct zram *zram, struct bio *bio) |
| { |
| u64 start, end, bound; |
| |
| /* unaligned request */ |
| if (unlikely(bio->bi_iter.bi_sector & |
| (ZRAM_SECTOR_PER_LOGICAL_BLOCK - 1))) |
| return 0; |
| if (unlikely(bio->bi_iter.bi_size & (ZRAM_LOGICAL_BLOCK_SIZE - 1))) |
| return 0; |
| |
| start = bio->bi_iter.bi_sector; |
| end = start + (bio->bi_iter.bi_size >> SECTOR_SHIFT); |
| bound = zram->disksize >> SECTOR_SHIFT; |
| /* out of range range */ |
| if (unlikely(start >= bound || end > bound || start > end)) |
| return 0; |
| |
| /* I/O request is valid */ |
| return 1; |
| } |
| |
| static void zram_meta_free(struct zram_meta *meta) |
| { |
| zs_destroy_pool(meta->mem_pool); |
| vfree(meta->table); |
| kfree(meta); |
| } |
| |
| static struct zram_meta *zram_meta_alloc(u64 disksize) |
| { |
| size_t num_pages; |
| struct zram_meta *meta = kmalloc(sizeof(*meta), GFP_KERNEL); |
| if (!meta) |
| goto out; |
| |
| num_pages = disksize >> PAGE_SHIFT; |
| meta->table = vzalloc(num_pages * sizeof(*meta->table)); |
| if (!meta->table) { |
| pr_err("Error allocating zram address table\n"); |
| goto free_meta; |
| } |
| |
| meta->mem_pool = zs_create_pool(GFP_NOIO | __GFP_HIGHMEM); |
| if (!meta->mem_pool) { |
| pr_err("Error creating memory pool\n"); |
| goto free_table; |
| } |
| |
| return meta; |
| |
| free_table: |
| vfree(meta->table); |
| free_meta: |
| kfree(meta); |
| meta = NULL; |
| out: |
| return meta; |
| } |
| |
| static void update_position(u32 *index, int *offset, struct bio_vec *bvec) |
| { |
| if (*offset + bvec->bv_len >= PAGE_SIZE) |
| (*index)++; |
| *offset = (*offset + bvec->bv_len) % PAGE_SIZE; |
| } |
| |
| static int page_zero_filled(void *ptr) |
| { |
| unsigned int pos; |
| unsigned long *page; |
| |
| page = (unsigned long *)ptr; |
| |
| for (pos = 0; pos != PAGE_SIZE / sizeof(*page); pos++) { |
| if (page[pos]) |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| static void handle_zero_page(struct bio_vec *bvec) |
| { |
| struct page *page = bvec->bv_page; |
| void *user_mem; |
| |
| user_mem = kmap_atomic(page); |
| if (is_partial_io(bvec)) |
| memset(user_mem + bvec->bv_offset, 0, bvec->bv_len); |
| else |
| clear_page(user_mem); |
| kunmap_atomic(user_mem); |
| |
| flush_dcache_page(page); |
| } |
| |
| |
| /* |
| * To protect concurrent access to the same index entry, |
| * caller should hold this table index entry's bit_spinlock to |
| * indicate this index entry is accessing. |
| */ |
| static void zram_free_page(struct zram *zram, size_t index) |
| { |
| struct zram_meta *meta = zram->meta; |
| unsigned long handle = meta->table[index].handle; |
| |
| if (unlikely(!handle)) { |
| /* |
| * No memory is allocated for zero filled pages. |
| * Simply clear zero page flag. |
| */ |
| if (zram_test_flag(meta, index, ZRAM_ZERO)) { |
| zram_clear_flag(meta, index, ZRAM_ZERO); |
| atomic64_dec(&zram->stats.zero_pages); |
| } |
| return; |
| } |
| |
| zs_free(meta->mem_pool, handle); |
| |
| atomic64_sub(zram_get_obj_size(meta, index), |
| &zram->stats.compr_data_size); |
| atomic64_dec(&zram->stats.pages_stored); |
| |
| meta->table[index].handle = 0; |
| zram_set_obj_size(meta, index, 0); |
| } |
| |
| static int zram_decompress_page(struct zram *zram, char *mem, u32 index) |
| { |
| int ret = 0; |
| unsigned char *cmem; |
| struct zram_meta *meta = zram->meta; |
| unsigned long handle; |
| size_t size; |
| |
| bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value); |
| handle = meta->table[index].handle; |
| size = zram_get_obj_size(meta, index); |
| |
| if (!handle || zram_test_flag(meta, index, ZRAM_ZERO)) { |
| bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value); |
| clear_page(mem); |
| return 0; |
| } |
| |
| cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_RO); |
| if (size == PAGE_SIZE) |
| copy_page(mem, cmem); |
| else |
| ret = zcomp_decompress(zram->comp, cmem, size, mem); |
| zs_unmap_object(meta->mem_pool, handle); |
| bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value); |
| |
| /* Should NEVER happen. Return bio error if it does. */ |
| if (unlikely(ret)) { |
| pr_err("Decompression failed! err=%d, page=%u\n", ret, index); |
| atomic64_inc(&zram->stats.failed_reads); |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec, |
| u32 index, int offset, struct bio *bio) |
| { |
| int ret; |
| struct page *page; |
| unsigned char *user_mem, *uncmem = NULL; |
| struct zram_meta *meta = zram->meta; |
| page = bvec->bv_page; |
| |
| bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value); |
| if (unlikely(!meta->table[index].handle) || |
| zram_test_flag(meta, index, ZRAM_ZERO)) { |
| bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value); |
| handle_zero_page(bvec); |
| return 0; |
| } |
| bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value); |
| |
| if (is_partial_io(bvec)) |
| /* Use a temporary buffer to decompress the page */ |
| uncmem = kmalloc(PAGE_SIZE, GFP_NOIO); |
| |
| user_mem = kmap_atomic(page); |
| if (!is_partial_io(bvec)) |
| uncmem = user_mem; |
| |
| if (!uncmem) { |
| pr_info("Unable to allocate temp memory\n"); |
| ret = -ENOMEM; |
| goto out_cleanup; |
| } |
| |
| ret = zram_decompress_page(zram, uncmem, index); |
| /* Should NEVER happen. Return bio error if it does. */ |
| if (unlikely(ret)) |
| goto out_cleanup; |
| |
| if (is_partial_io(bvec)) |
| memcpy(user_mem + bvec->bv_offset, uncmem + offset, |
| bvec->bv_len); |
| |
| flush_dcache_page(page); |
| ret = 0; |
| out_cleanup: |
| kunmap_atomic(user_mem); |
| if (is_partial_io(bvec)) |
| kfree(uncmem); |
| return ret; |
| } |
| |
| static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec, u32 index, |
| int offset) |
| { |
| int ret = 0; |
| size_t clen; |
| unsigned long handle; |
| struct page *page; |
| unsigned char *user_mem, *cmem, *src, *uncmem = NULL; |
| struct zram_meta *meta = zram->meta; |
| struct zcomp_strm *zstrm; |
| bool locked = false; |
| |
| page = bvec->bv_page; |
| if (is_partial_io(bvec)) { |
| /* |
| * This is a partial IO. We need to read the full page |
| * before to write the changes. |
| */ |
| uncmem = kmalloc(PAGE_SIZE, GFP_NOIO); |
| if (!uncmem) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| ret = zram_decompress_page(zram, uncmem, index); |
| if (ret) |
| goto out; |
| } |
| |
| zstrm = zcomp_strm_find(zram->comp); |
| locked = true; |
| user_mem = kmap_atomic(page); |
| |
| if (is_partial_io(bvec)) { |
| memcpy(uncmem + offset, user_mem + bvec->bv_offset, |
| bvec->bv_len); |
| kunmap_atomic(user_mem); |
| user_mem = NULL; |
| } else { |
| uncmem = user_mem; |
| } |
| |
| if (page_zero_filled(uncmem)) { |
| kunmap_atomic(user_mem); |
| /* Free memory associated with this sector now. */ |
| bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value); |
| zram_free_page(zram, index); |
| zram_set_flag(meta, index, ZRAM_ZERO); |
| bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value); |
| |
| atomic64_inc(&zram->stats.zero_pages); |
| ret = 0; |
| goto out; |
| } |
| |
| ret = zcomp_compress(zram->comp, zstrm, uncmem, &clen); |
| if (!is_partial_io(bvec)) { |
| kunmap_atomic(user_mem); |
| user_mem = NULL; |
| uncmem = NULL; |
| } |
| |
| if (unlikely(ret)) { |
| pr_err("Compression failed! err=%d\n", ret); |
| goto out; |
| } |
| src = zstrm->buffer; |
| if (unlikely(clen > max_zpage_size)) { |
| clen = PAGE_SIZE; |
| if (is_partial_io(bvec)) |
| src = uncmem; |
| } |
| |
| handle = zs_malloc(meta->mem_pool, clen); |
| if (!handle) { |
| pr_info("Error allocating memory for compressed page: %u, size=%zu\n", |
| index, clen); |
| ret = -ENOMEM; |
| goto out; |
| } |
| cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_WO); |
| |
| if ((clen == PAGE_SIZE) && !is_partial_io(bvec)) { |
| src = kmap_atomic(page); |
| copy_page(cmem, src); |
| kunmap_atomic(src); |
| } else { |
| memcpy(cmem, src, clen); |
| } |
| |
| zcomp_strm_release(zram->comp, zstrm); |
| locked = false; |
| zs_unmap_object(meta->mem_pool, handle); |
| |
| /* |
| * Free memory associated with this sector |
| * before overwriting unused sectors. |
| */ |
| bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value); |
| zram_free_page(zram, index); |
| |
| meta->table[index].handle = handle; |
| zram_set_obj_size(meta, index, clen); |
| bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value); |
| |
| /* Update stats */ |
| atomic64_add(clen, &zram->stats.compr_data_size); |
| atomic64_inc(&zram->stats.pages_stored); |
| out: |
| if (locked) |
| zcomp_strm_release(zram->comp, zstrm); |
| if (is_partial_io(bvec)) |
| kfree(uncmem); |
| if (ret) |
| atomic64_inc(&zram->stats.failed_writes); |
| return ret; |
| } |
| |
| static int zram_bvec_rw(struct zram *zram, struct bio_vec *bvec, u32 index, |
| int offset, struct bio *bio) |
| { |
| int ret; |
| int rw = bio_data_dir(bio); |
| |
| if (rw == READ) { |
| atomic64_inc(&zram->stats.num_reads); |
| ret = zram_bvec_read(zram, bvec, index, offset, bio); |
| } else { |
| atomic64_inc(&zram->stats.num_writes); |
| ret = zram_bvec_write(zram, bvec, index, offset); |
| } |
| |
| return ret; |
| } |
| |
| /* |
| * zram_bio_discard - handler on discard request |
| * @index: physical block index in PAGE_SIZE units |
| * @offset: byte offset within physical block |
| */ |
| static void zram_bio_discard(struct zram *zram, u32 index, |
| int offset, struct bio *bio) |
| { |
| size_t n = bio->bi_iter.bi_size; |
| struct zram_meta *meta = zram->meta; |
| |
| /* |
| * zram manages data in physical block size units. Because logical block |
| * size isn't identical with physical block size on some arch, we |
| * could get a discard request pointing to a specific offset within a |
| * certain physical block. Although we can handle this request by |
| * reading that physiclal block and decompressing and partially zeroing |
| * and re-compressing and then re-storing it, this isn't reasonable |
| * because our intent with a discard request is to save memory. So |
| * skipping this logical block is appropriate here. |
| */ |
| if (offset) { |
| if (n <= (PAGE_SIZE - offset)) |
| return; |
| |
| n -= (PAGE_SIZE - offset); |
| index++; |
| } |
| |
| while (n >= PAGE_SIZE) { |
| bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value); |
| zram_free_page(zram, index); |
| bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value); |
| index++; |
| n -= PAGE_SIZE; |
| } |
| } |
| |
| static void zram_reset_device(struct zram *zram, bool reset_capacity) |
| { |
| size_t index; |
| struct zram_meta *meta; |
| |
| down_write(&zram->init_lock); |
| if (!init_done(zram)) { |
| up_write(&zram->init_lock); |
| return; |
| } |
| |
| meta = zram->meta; |
| /* Free all pages that are still in this zram device */ |
| for (index = 0; index < zram->disksize >> PAGE_SHIFT; index++) { |
| unsigned long handle = meta->table[index].handle; |
| if (!handle) |
| continue; |
| |
| zs_free(meta->mem_pool, handle); |
| } |
| |
| zcomp_destroy(zram->comp); |
| zram->max_comp_streams = 1; |
| |
| zram_meta_free(zram->meta); |
| zram->meta = NULL; |
| /* Reset stats */ |
| memset(&zram->stats, 0, sizeof(zram->stats)); |
| |
| zram->disksize = 0; |
| if (reset_capacity) |
| set_capacity(zram->disk, 0); |
| |
| up_write(&zram->init_lock); |
| |
| /* |
| * Revalidate disk out of the init_lock to avoid lockdep splat. |
| * It's okay because disk's capacity is protected by init_lock |
| * so that revalidate_disk always sees up-to-date capacity. |
| */ |
| if (reset_capacity) |
| revalidate_disk(zram->disk); |
| } |
| |
| static ssize_t disksize_store(struct device *dev, |
| struct device_attribute *attr, const char *buf, size_t len) |
| { |
| u64 disksize; |
| struct zcomp *comp; |
| struct zram_meta *meta; |
| struct zram *zram = dev_to_zram(dev); |
| int err; |
| |
| disksize = memparse(buf, NULL); |
| if (!disksize) |
| return -EINVAL; |
| |
| disksize = PAGE_ALIGN(disksize); |
| meta = zram_meta_alloc(disksize); |
| if (!meta) |
| return -ENOMEM; |
| |
| comp = zcomp_create(zram->compressor, zram->max_comp_streams); |
| if (IS_ERR(comp)) { |
| pr_info("Cannot initialise %s compressing backend\n", |
| zram->compressor); |
| err = PTR_ERR(comp); |
| goto out_free_meta; |
| } |
| |
| down_write(&zram->init_lock); |
| if (init_done(zram)) { |
| pr_info("Cannot change disksize for initialized device\n"); |
| err = -EBUSY; |
| goto out_destroy_comp; |
| } |
| |
| zram->meta = meta; |
| zram->comp = comp; |
| zram->disksize = disksize; |
| set_capacity(zram->disk, zram->disksize >> SECTOR_SHIFT); |
| up_write(&zram->init_lock); |
| |
| /* |
| * Revalidate disk out of the init_lock to avoid lockdep splat. |
| * It's okay because disk's capacity is protected by init_lock |
| * so that revalidate_disk always sees up-to-date capacity. |
| */ |
| revalidate_disk(zram->disk); |
| |
| return len; |
| |
| out_destroy_comp: |
| up_write(&zram->init_lock); |
| zcomp_destroy(comp); |
| out_free_meta: |
| zram_meta_free(meta); |
| return err; |
| } |
| |
| static ssize_t reset_store(struct device *dev, |
| struct device_attribute *attr, const char *buf, size_t len) |
| { |
| int ret; |
| unsigned short do_reset; |
| struct zram *zram; |
| struct block_device *bdev; |
| |
| zram = dev_to_zram(dev); |
| bdev = bdget_disk(zram->disk, 0); |
| |
| if (!bdev) |
| return -ENOMEM; |
| |
| /* Do not reset an active device! */ |
| if (bdev->bd_holders) { |
| ret = -EBUSY; |
| goto out; |
| } |
| |
| ret = kstrtou16(buf, 10, &do_reset); |
| if (ret) |
| goto out; |
| |
| if (!do_reset) { |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| /* Make sure all pending I/O is finished */ |
| fsync_bdev(bdev); |
| bdput(bdev); |
| |
| zram_reset_device(zram, true); |
| return len; |
| |
| out: |
| bdput(bdev); |
| return ret; |
| } |
| |
| static void __zram_make_request(struct zram *zram, struct bio *bio) |
| { |
| int offset; |
| u32 index; |
| struct bio_vec bvec; |
| struct bvec_iter iter; |
| |
| index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT; |
| offset = (bio->bi_iter.bi_sector & |
| (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT; |
| |
| if (unlikely(bio->bi_rw & REQ_DISCARD)) { |
| zram_bio_discard(zram, index, offset, bio); |
| bio_endio(bio, 0); |
| return; |
| } |
| |
| bio_for_each_segment(bvec, bio, iter) { |
| int max_transfer_size = PAGE_SIZE - offset; |
| |
| if (bvec.bv_len > max_transfer_size) { |
| /* |
| * zram_bvec_rw() can only make operation on a single |
| * zram page. Split the bio vector. |
| */ |
| struct bio_vec bv; |
| |
| bv.bv_page = bvec.bv_page; |
| bv.bv_len = max_transfer_size; |
| bv.bv_offset = bvec.bv_offset; |
| |
| if (zram_bvec_rw(zram, &bv, index, offset, bio) < 0) |
| goto out; |
| |
| bv.bv_len = bvec.bv_len - max_transfer_size; |
| bv.bv_offset += max_transfer_size; |
| if (zram_bvec_rw(zram, &bv, index + 1, 0, bio) < 0) |
| goto out; |
| } else |
| if (zram_bvec_rw(zram, &bvec, index, offset, bio) < 0) |
| goto out; |
| |
| update_position(&index, &offset, &bvec); |
| } |
| |
| set_bit(BIO_UPTODATE, &bio->bi_flags); |
| bio_endio(bio, 0); |
| return; |
| |
| out: |
| bio_io_error(bio); |
| } |
| |
| /* |
| * Handler function for all zram I/O requests. |
| */ |
| static void zram_make_request(struct request_queue *queue, struct bio *bio) |
| { |
| struct zram *zram = queue->queuedata; |
| |
| down_read(&zram->init_lock); |
| if (unlikely(!init_done(zram))) |
| goto error; |
| |
| if (!valid_io_request(zram, bio)) { |
| atomic64_inc(&zram->stats.invalid_io); |
| goto error; |
| } |
| |
| __zram_make_request(zram, bio); |
| up_read(&zram->init_lock); |
| |
| return; |
| |
| error: |
| up_read(&zram->init_lock); |
| bio_io_error(bio); |
| } |
| |
| static void zram_slot_free_notify(struct block_device *bdev, |
| unsigned long index) |
| { |
| struct zram *zram; |
| struct zram_meta *meta; |
| |
| zram = bdev->bd_disk->private_data; |
| meta = zram->meta; |
| |
| bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value); |
| zram_free_page(zram, index); |
| bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value); |
| atomic64_inc(&zram->stats.notify_free); |
| } |
| |
| static const struct block_device_operations zram_devops = { |
| .swap_slot_free_notify = zram_slot_free_notify, |
| .owner = THIS_MODULE |
| }; |
| |
| static DEVICE_ATTR(disksize, S_IRUGO | S_IWUSR, |
| disksize_show, disksize_store); |
| static DEVICE_ATTR(initstate, S_IRUGO, initstate_show, NULL); |
| static DEVICE_ATTR(reset, S_IWUSR, NULL, reset_store); |
| static DEVICE_ATTR(orig_data_size, S_IRUGO, orig_data_size_show, NULL); |
| static DEVICE_ATTR(mem_used_total, S_IRUGO, mem_used_total_show, NULL); |
| static DEVICE_ATTR(max_comp_streams, S_IRUGO | S_IWUSR, |
| max_comp_streams_show, max_comp_streams_store); |
| static DEVICE_ATTR(comp_algorithm, S_IRUGO | S_IWUSR, |
| comp_algorithm_show, comp_algorithm_store); |
| |
| ZRAM_ATTR_RO(num_reads); |
| ZRAM_ATTR_RO(num_writes); |
| ZRAM_ATTR_RO(failed_reads); |
| ZRAM_ATTR_RO(failed_writes); |
| ZRAM_ATTR_RO(invalid_io); |
| ZRAM_ATTR_RO(notify_free); |
| ZRAM_ATTR_RO(zero_pages); |
| ZRAM_ATTR_RO(compr_data_size); |
| |
| static struct attribute *zram_disk_attrs[] = { |
| &dev_attr_disksize.attr, |
| &dev_attr_initstate.attr, |
| &dev_attr_reset.attr, |
| &dev_attr_num_reads.attr, |
| &dev_attr_num_writes.attr, |
| &dev_attr_failed_reads.attr, |
| &dev_attr_failed_writes.attr, |
| &dev_attr_invalid_io.attr, |
| &dev_attr_notify_free.attr, |
| &dev_attr_zero_pages.attr, |
| &dev_attr_orig_data_size.attr, |
| &dev_attr_compr_data_size.attr, |
| &dev_attr_mem_used_total.attr, |
| &dev_attr_max_comp_streams.attr, |
| &dev_attr_comp_algorithm.attr, |
| NULL, |
| }; |
| |
| static struct attribute_group zram_disk_attr_group = { |
| .attrs = zram_disk_attrs, |
| }; |
| |
| static int create_device(struct zram *zram, int device_id) |
| { |
| int ret = -ENOMEM; |
| |
| init_rwsem(&zram->init_lock); |
| |
| zram->queue = blk_alloc_queue(GFP_KERNEL); |
| if (!zram->queue) { |
| pr_err("Error allocating disk queue for device %d\n", |
| device_id); |
| goto out; |
| } |
| |
| blk_queue_make_request(zram->queue, zram_make_request); |
| zram->queue->queuedata = zram; |
| |
| /* gendisk structure */ |
| zram->disk = alloc_disk(1); |
| if (!zram->disk) { |
| pr_warn("Error allocating disk structure for device %d\n", |
| device_id); |
| goto out_free_queue; |
| } |
| |
| zram->disk->major = zram_major; |
| zram->disk->first_minor = device_id; |
| zram->disk->fops = &zram_devops; |
| zram->disk->queue = zram->queue; |
| zram->disk->private_data = zram; |
| snprintf(zram->disk->disk_name, 16, "zram%d", device_id); |
| |
| /* Actual capacity set using syfs (/sys/block/zram<id>/disksize */ |
| set_capacity(zram->disk, 0); |
| /* zram devices sort of resembles non-rotational disks */ |
| queue_flag_set_unlocked(QUEUE_FLAG_NONROT, zram->disk->queue); |
| /* |
| * To ensure that we always get PAGE_SIZE aligned |
| * and n*PAGE_SIZED sized I/O requests. |
| */ |
| blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE); |
| blk_queue_logical_block_size(zram->disk->queue, |
| ZRAM_LOGICAL_BLOCK_SIZE); |
| blk_queue_io_min(zram->disk->queue, PAGE_SIZE); |
| blk_queue_io_opt(zram->disk->queue, PAGE_SIZE); |
| zram->disk->queue->limits.discard_granularity = PAGE_SIZE; |
| zram->disk->queue->limits.max_discard_sectors = UINT_MAX; |
| /* |
| * zram_bio_discard() will clear all logical blocks if logical block |
| * size is identical with physical block size(PAGE_SIZE). But if it is |
| * different, we will skip discarding some parts of logical blocks in |
| * the part of the request range which isn't aligned to physical block |
| * size. So we can't ensure that all discarded logical blocks are |
| * zeroed. |
| */ |
| if (ZRAM_LOGICAL_BLOCK_SIZE == PAGE_SIZE) |
| zram->disk->queue->limits.discard_zeroes_data = 1; |
| else |
| zram->disk->queue->limits.discard_zeroes_data = 0; |
| queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, zram->disk->queue); |
| |
| add_disk(zram->disk); |
| |
| ret = sysfs_create_group(&disk_to_dev(zram->disk)->kobj, |
| &zram_disk_attr_group); |
| if (ret < 0) { |
| pr_warn("Error creating sysfs group"); |
| goto out_free_disk; |
| } |
| strlcpy(zram->compressor, default_compressor, sizeof(zram->compressor)); |
| zram->meta = NULL; |
| zram->max_comp_streams = 1; |
| return 0; |
| |
| out_free_disk: |
| del_gendisk(zram->disk); |
| put_disk(zram->disk); |
| out_free_queue: |
| blk_cleanup_queue(zram->queue); |
| out: |
| return ret; |
| } |
| |
| static void destroy_device(struct zram *zram) |
| { |
| sysfs_remove_group(&disk_to_dev(zram->disk)->kobj, |
| &zram_disk_attr_group); |
| |
| del_gendisk(zram->disk); |
| put_disk(zram->disk); |
| |
| blk_cleanup_queue(zram->queue); |
| } |
| |
| static int __init zram_init(void) |
| { |
| int ret, dev_id; |
| |
| if (num_devices > max_num_devices) { |
| pr_warn("Invalid value for num_devices: %u\n", |
| num_devices); |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| zram_major = register_blkdev(0, "zram"); |
| if (zram_major <= 0) { |
| pr_warn("Unable to get major number\n"); |
| ret = -EBUSY; |
| goto out; |
| } |
| |
| /* Allocate the device array and initialize each one */ |
| zram_devices = kzalloc(num_devices * sizeof(struct zram), GFP_KERNEL); |
| if (!zram_devices) { |
| ret = -ENOMEM; |
| goto unregister; |
| } |
| |
| for (dev_id = 0; dev_id < num_devices; dev_id++) { |
| ret = create_device(&zram_devices[dev_id], dev_id); |
| if (ret) |
| goto free_devices; |
| } |
| |
| pr_info("Created %u device(s) ...\n", num_devices); |
| |
| return 0; |
| |
| free_devices: |
| while (dev_id) |
| destroy_device(&zram_devices[--dev_id]); |
| kfree(zram_devices); |
| unregister: |
| unregister_blkdev(zram_major, "zram"); |
| out: |
| return ret; |
| } |
| |
| static void __exit zram_exit(void) |
| { |
| int i; |
| struct zram *zram; |
| |
| for (i = 0; i < num_devices; i++) { |
| zram = &zram_devices[i]; |
| |
| destroy_device(zram); |
| /* |
| * Shouldn't access zram->disk after destroy_device |
| * because destroy_device already released zram->disk. |
| */ |
| zram_reset_device(zram, false); |
| } |
| |
| unregister_blkdev(zram_major, "zram"); |
| |
| kfree(zram_devices); |
| pr_debug("Cleanup done!\n"); |
| } |
| |
| module_init(zram_init); |
| module_exit(zram_exit); |
| |
| module_param(num_devices, uint, 0); |
| MODULE_PARM_DESC(num_devices, "Number of zram devices"); |
| |
| MODULE_LICENSE("Dual BSD/GPL"); |
| MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>"); |
| MODULE_DESCRIPTION("Compressed RAM Block Device"); |