blob: 27523fc9a13e4a088374f85ef2b31a4edfed9054 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2016-2019, The Linux Foundation. All rights reserved.
*/
#include <linux/dma-contiguous.h>
#include <linux/dma-mapping.h>
#include <linux/dma-mapping-fast.h>
#include <linux/io-pgtable-fast.h>
#include <linux/vmalloc.h>
#include <asm/cacheflush.h>
#include <asm/dma-iommu.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <linux/pci.h>
#include <linux/dma-iommu.h>
#include <linux/iova.h>
#include <trace/events/iommu.h>
#include "io-pgtable.h"
/* some redundant definitions... :( TODO: move to io-pgtable-fast.h */
#define FAST_PAGE_SHIFT 12
#define FAST_PAGE_SIZE (1UL << FAST_PAGE_SHIFT)
#define FAST_PAGE_MASK (~(PAGE_SIZE - 1))
static pgprot_t __get_dma_pgprot(unsigned long attrs, pgprot_t prot,
bool coherent)
{
if (attrs & DMA_ATTR_STRONGLY_ORDERED)
return pgprot_noncached(prot);
else if (!coherent || (attrs & DMA_ATTR_WRITE_COMBINE))
return pgprot_writecombine(prot);
return prot;
}
static bool is_dma_coherent(struct device *dev, unsigned long attrs)
{
bool is_coherent;
if (attrs & DMA_ATTR_FORCE_COHERENT)
is_coherent = true;
else if (attrs & DMA_ATTR_FORCE_NON_COHERENT)
is_coherent = false;
else if (is_device_dma_coherent(dev))
is_coherent = true;
else
is_coherent = false;
return is_coherent;
}
static struct dma_fast_smmu_mapping *dev_get_mapping(struct device *dev)
{
struct iommu_domain *domain;
domain = iommu_get_domain_for_dev(dev);
if (!domain)
return ERR_PTR(-EINVAL);
return domain->iova_cookie;
}
/*
* Checks if the allocated range (ending at @end) covered the upcoming
* stale bit. We don't need to know exactly where the range starts since
* we already know where the candidate search range started. If, starting
* from the beginning of the candidate search range, we had to step over
* (or landed directly on top of) the upcoming stale bit, then we return
* true.
*
* Due to wrapping, there are two scenarios we'll need to check: (1) if the
* range [search_start, upcoming_stale] spans 0 (i.e. search_start >
* upcoming_stale), and, (2) if the range: [search_start, upcoming_stale]
* does *not* span 0 (i.e. search_start <= upcoming_stale). And for each
* of those two scenarios we need to handle three cases: (1) the bit was
* found before wrapping or
*/
static bool __bit_covered_stale(unsigned long upcoming_stale,
unsigned long search_start,
unsigned long end)
{
if (search_start > upcoming_stale) {
if (end >= search_start) {
/*
* We started searching above upcoming_stale and we
* didn't wrap, so we couldn't have crossed
* upcoming_stale.
*/
return false;
}
/*
* We wrapped. Did we cross (or land on top of)
* upcoming_stale?
*/
return end >= upcoming_stale;
}
if (search_start <= upcoming_stale) {
if (end >= search_start) {
/*
* We didn't wrap. Did we cross (or land on top
* of) upcoming_stale?
*/
return end >= upcoming_stale;
}
/*
* We wrapped. So we must have crossed upcoming_stale
* (since we started searching below it).
*/
return true;
}
/* we should have covered all logical combinations... */
WARN_ON(1);
return true;
}
static dma_addr_t __fast_smmu_alloc_iova(struct dma_fast_smmu_mapping *mapping,
unsigned long attrs,
size_t size)
{
unsigned long bit, prev_search_start, nbits = size >> FAST_PAGE_SHIFT;
unsigned long align = (1 << get_order(size)) - 1;
bit = bitmap_find_next_zero_area(
mapping->bitmap, mapping->num_4k_pages, mapping->next_start,
nbits, align);
if (unlikely(bit > mapping->num_4k_pages)) {
/* try wrapping */
mapping->next_start = 0; /* TODO: SHOULD I REALLY DO THIS?!? */
bit = bitmap_find_next_zero_area(
mapping->bitmap, mapping->num_4k_pages, 0, nbits,
align);
if (unlikely(bit > mapping->num_4k_pages))
return DMA_ERROR_CODE;
}
bitmap_set(mapping->bitmap, bit, nbits);
prev_search_start = mapping->next_start;
mapping->next_start = bit + nbits;
if (unlikely(mapping->next_start >= mapping->num_4k_pages))
mapping->next_start = 0;
/*
* If we just re-allocated a VA whose TLB hasn't been invalidated
* since it was last used and unmapped, we need to invalidate it
* here. We actually invalidate the entire TLB so that we don't
* have to invalidate the TLB again until we wrap back around.
*/
if (mapping->have_stale_tlbs &&
__bit_covered_stale(mapping->upcoming_stale_bit,
prev_search_start,
bit + nbits - 1)) {
bool skip_sync = (attrs & DMA_ATTR_SKIP_CPU_SYNC);
iommu_tlbiall(mapping->domain);
mapping->have_stale_tlbs = false;
av8l_fast_clear_stale_ptes(mapping->pgtbl_ops, skip_sync);
}
return (bit << FAST_PAGE_SHIFT) + mapping->base;
}
/*
* Checks whether the candidate bit will be allocated sooner than the
* current upcoming stale bit. We can say candidate will be upcoming
* sooner than the current upcoming stale bit if it lies between the
* starting bit of the next search range and the upcoming stale bit
* (allowing for wrap-around).
*
* Stated differently, we're checking the relative ordering of three
* unsigned numbers. So we need to check all 6 (i.e. 3!) permutations,
* namely:
*
* 0 |---A---B---C---| TOP (Case 1)
* 0 |---A---C---B---| TOP (Case 2)
* 0 |---B---A---C---| TOP (Case 3)
* 0 |---B---C---A---| TOP (Case 4)
* 0 |---C---A---B---| TOP (Case 5)
* 0 |---C---B---A---| TOP (Case 6)
*
* Note that since we're allowing numbers to wrap, the following three
* scenarios are all equivalent for Case 1:
*
* 0 |---A---B---C---| TOP
* 0 |---C---A---B---| TOP (C has wrapped. This is Case 5.)
* 0 |---B---C---A---| TOP (C and B have wrapped. This is Case 4.)
*
* In any of these cases, if we start searching from A, we will find B
* before we find C.
*
* We can also find two equivalent cases for Case 2:
*
* 0 |---A---C---B---| TOP
* 0 |---B---A---C---| TOP (B has wrapped. This is Case 3.)
* 0 |---C---B---A---| TOP (B and C have wrapped. This is Case 6.)
*
* In any of these cases, if we start searching from A, we will find C
* before we find B.
*/
static bool __bit_is_sooner(unsigned long candidate,
struct dma_fast_smmu_mapping *mapping)
{
unsigned long A = mapping->next_start;
unsigned long B = candidate;
unsigned long C = mapping->upcoming_stale_bit;
if ((A < B && B < C) || /* Case 1 */
(C < A && A < B) || /* Case 5 */
(B < C && C < A)) /* Case 4 */
return true;
if ((A < C && C < B) || /* Case 2 */
(B < A && A < C) || /* Case 3 */
(C < B && B < A)) /* Case 6 */
return false;
/*
* For simplicity, we've been ignoring the possibility of any of
* our three numbers being equal. Handle those cases here (they
* shouldn't happen very often, (I think?)).
*/
/*
* If candidate is the next bit to be searched then it's definitely
* sooner.
*/
if (A == B)
return true;
/*
* If candidate is the next upcoming stale bit we'll return false
* to avoid doing `upcoming = candidate' in the caller (which would
* be useless since they're already equal)
*/
if (B == C)
return false;
/*
* If next start is the upcoming stale bit then candidate can't
* possibly be sooner. The "soonest" bit is already selected.
*/
if (A == C)
return false;
/* We should have covered all logical combinations. */
WARN(1, "Well, that's awkward. A=%ld, B=%ld, C=%ld\n", A, B, C);
return true;
}
static void __fast_smmu_free_iova(struct dma_fast_smmu_mapping *mapping,
dma_addr_t iova, size_t size)
{
unsigned long start_bit = (iova - mapping->base) >> FAST_PAGE_SHIFT;
unsigned long nbits = size >> FAST_PAGE_SHIFT;
/*
* We don't invalidate TLBs on unmap. We invalidate TLBs on map
* when we're about to re-allocate a VA that was previously
* unmapped but hasn't yet been invalidated. So we need to keep
* track of which bit is the closest to being re-allocated here.
*/
if (__bit_is_sooner(start_bit, mapping))
mapping->upcoming_stale_bit = start_bit;
bitmap_clear(mapping->bitmap, start_bit, nbits);
mapping->have_stale_tlbs = true;
}
static void __fast_dma_page_cpu_to_dev(struct page *page, unsigned long off,
size_t size, enum dma_data_direction dir)
{
__dma_map_area(page_address(page) + off, size, dir);
}
static void __fast_dma_page_dev_to_cpu(struct page *page, unsigned long off,
size_t size, enum dma_data_direction dir)
{
__dma_unmap_area(page_address(page) + off, size, dir);
/* TODO: WHAT IS THIS? */
/*
* Mark the D-cache clean for this page to avoid extra flushing.
*/
if (dir != DMA_TO_DEVICE && off == 0 && size >= PAGE_SIZE)
set_bit(PG_dcache_clean, &page->flags);
}
static dma_addr_t fast_smmu_map_page(struct device *dev, struct page *page,
unsigned long offset, size_t size,
enum dma_data_direction dir,
unsigned long attrs)
{
struct dma_fast_smmu_mapping *mapping = dev_get_mapping(dev);
dma_addr_t iova;
unsigned long flags;
phys_addr_t phys_plus_off = page_to_phys(page) + offset;
phys_addr_t phys_to_map = round_down(phys_plus_off, FAST_PAGE_SIZE);
unsigned long offset_from_phys_to_map = phys_plus_off & ~FAST_PAGE_MASK;
size_t len = ALIGN(size + offset_from_phys_to_map, FAST_PAGE_SIZE);
bool skip_sync = (attrs & DMA_ATTR_SKIP_CPU_SYNC);
bool is_coherent = is_dma_coherent(dev, attrs);
int prot = dma_info_to_prot(dir, is_coherent, attrs);
if (!skip_sync && !is_coherent)
__fast_dma_page_cpu_to_dev(phys_to_page(phys_to_map),
offset_from_phys_to_map, size, dir);
spin_lock_irqsave(&mapping->lock, flags);
iova = __fast_smmu_alloc_iova(mapping, attrs, len);
if (unlikely(iova == DMA_ERROR_CODE))
goto fail;
if (unlikely(av8l_fast_map_public(mapping->pgtbl_ops, iova,
phys_to_map, len, prot)))
goto fail_free_iova;
spin_unlock_irqrestore(&mapping->lock, flags);
trace_map(mapping->domain, iova, phys_to_map, len, prot);
return iova + offset_from_phys_to_map;
fail_free_iova:
__fast_smmu_free_iova(mapping, iova, size);
fail:
spin_unlock_irqrestore(&mapping->lock, flags);
return DMA_ERROR_CODE;
}
static void fast_smmu_unmap_page(struct device *dev, dma_addr_t iova,
size_t size, enum dma_data_direction dir,
unsigned long attrs)
{
struct dma_fast_smmu_mapping *mapping = dev_get_mapping(dev);
unsigned long flags;
unsigned long offset = iova & ~FAST_PAGE_MASK;
size_t len = ALIGN(size + offset, FAST_PAGE_SIZE);
bool skip_sync = (attrs & DMA_ATTR_SKIP_CPU_SYNC);
bool is_coherent = is_dma_coherent(dev, attrs);
if (!skip_sync && !is_coherent) {
phys_addr_t phys;
phys = av8l_fast_iova_to_phys_public(mapping->pgtbl_ops, iova);
WARN_ON(!phys);
__fast_dma_page_dev_to_cpu(phys_to_page(phys), offset,
size, dir);
}
spin_lock_irqsave(&mapping->lock, flags);
av8l_fast_unmap_public(mapping->pgtbl_ops, iova, len);
__fast_smmu_free_iova(mapping, iova, len);
spin_unlock_irqrestore(&mapping->lock, flags);
trace_unmap(mapping->domain, iova - offset, len, len);
}
static void fast_smmu_sync_single_for_cpu(struct device *dev,
dma_addr_t iova, size_t size, enum dma_data_direction dir)
{
struct dma_fast_smmu_mapping *mapping = dev_get_mapping(dev);
unsigned long offset = iova & ~FAST_PAGE_MASK;
if (!av8l_fast_iova_coherent_public(mapping->pgtbl_ops, iova)) {
phys_addr_t phys;
phys = av8l_fast_iova_to_phys_public(mapping->pgtbl_ops, iova);
WARN_ON(!phys);
__fast_dma_page_dev_to_cpu(phys_to_page(phys), offset,
size, dir);
}
}
static void fast_smmu_sync_single_for_device(struct device *dev,
dma_addr_t iova, size_t size, enum dma_data_direction dir)
{
struct dma_fast_smmu_mapping *mapping = dev_get_mapping(dev);
unsigned long offset = iova & ~FAST_PAGE_MASK;
if (!av8l_fast_iova_coherent_public(mapping->pgtbl_ops, iova)) {
phys_addr_t phys;
phys = av8l_fast_iova_to_phys_public(mapping->pgtbl_ops, iova);
WARN_ON(!phys);
__fast_dma_page_cpu_to_dev(phys_to_page(phys), offset,
size, dir);
}
}
static void fast_smmu_sync_sg_for_cpu(struct device *dev,
struct scatterlist *sgl, int nelems,
enum dma_data_direction dir)
{
struct scatterlist *sg;
dma_addr_t iova = sg_dma_address(sgl);
struct dma_fast_smmu_mapping *mapping = dev->archdata.mapping->fast;
int i;
if (av8l_fast_iova_coherent_public(mapping->pgtbl_ops, iova))
return;
for_each_sg(sgl, sg, nelems, i)
__dma_unmap_area(sg_virt(sg), sg->length, dir);
}
static void fast_smmu_sync_sg_for_device(struct device *dev,
struct scatterlist *sgl, int nelems,
enum dma_data_direction dir)
{
struct scatterlist *sg;
dma_addr_t iova = sg_dma_address(sgl);
struct dma_fast_smmu_mapping *mapping = dev->archdata.mapping->fast;
int i;
if (av8l_fast_iova_coherent_public(mapping->pgtbl_ops, iova))
return;
for_each_sg(sgl, sg, nelems, i)
__dma_map_area(sg_virt(sg), sg->length, dir);
}
static int fast_smmu_map_sg(struct device *dev, struct scatterlist *sg,
int nents, enum dma_data_direction dir,
unsigned long attrs)
{
struct dma_fast_smmu_mapping *mapping = dev_get_mapping(dev);
size_t iova_len;
bool is_coherent = is_dma_coherent(dev, attrs);
int prot = dma_info_to_prot(dir, is_coherent, attrs);
int ret;
dma_addr_t iova;
unsigned long flags;
size_t unused;
iova_len = iommu_dma_prepare_map_sg(dev, mapping->iovad, sg, nents);
spin_lock_irqsave(&mapping->lock, flags);
iova = __fast_smmu_alloc_iova(mapping, attrs, iova_len);
spin_unlock_irqrestore(&mapping->lock, flags);
if (unlikely(iova == DMA_ERROR_CODE))
goto fail;
av8l_fast_map_sg_public(mapping->pgtbl_ops, iova, sg, nents, prot,
&unused);
ret = iommu_dma_finalise_sg(dev, sg, nents, iova);
if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
fast_smmu_sync_sg_for_device(dev, sg, nents, dir);
return ret;
fail:
iommu_dma_invalidate_sg(sg, nents);
return 0;
}
static void fast_smmu_unmap_sg(struct device *dev,
struct scatterlist *sg, int nelems,
enum dma_data_direction dir,
unsigned long attrs)
{
struct dma_fast_smmu_mapping *mapping = dev_get_mapping(dev);
unsigned long flags;
dma_addr_t start;
size_t len;
struct scatterlist *tmp;
int i;
if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
fast_smmu_sync_sg_for_cpu(dev, sg, nelems, dir);
/*
* The scatterlist segments are mapped into a single
* contiguous IOVA allocation, so this is incredibly easy.
*/
start = sg_dma_address(sg);
for_each_sg(sg_next(sg), tmp, nelems - 1, i) {
if (sg_dma_len(tmp) == 0)
break;
sg = tmp;
}
len = sg_dma_address(sg) + sg_dma_len(sg) - start;
av8l_fast_unmap_public(mapping->pgtbl_ops, start, len);
spin_lock_irqsave(&mapping->lock, flags);
__fast_smmu_free_iova(mapping, start, len);
spin_unlock_irqrestore(&mapping->lock, flags);
}
static void __fast_smmu_free_pages(struct page **pages, int count)
{
int i;
for (i = 0; i < count; i++)
__free_page(pages[i]);
kvfree(pages);
}
static struct page **__fast_smmu_alloc_pages(unsigned int count, gfp_t gfp)
{
struct page **pages;
unsigned int i = 0, array_size = count * sizeof(*pages);
if (array_size <= PAGE_SIZE)
pages = kzalloc(array_size, GFP_KERNEL);
else
pages = vzalloc(array_size);
if (!pages)
return NULL;
/* IOMMU can map any pages, so himem can also be used here */
gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
for (i = 0; i < count; ++i) {
struct page *page = alloc_page(gfp);
if (!page) {
__fast_smmu_free_pages(pages, i);
return NULL;
}
pages[i] = page;
}
return pages;
}
static void *fast_smmu_alloc(struct device *dev, size_t size,
dma_addr_t *handle, gfp_t gfp,
unsigned long attrs)
{
struct dma_fast_smmu_mapping *mapping = dev_get_mapping(dev);
struct sg_table sgt;
dma_addr_t dma_addr, iova_iter;
void *addr;
unsigned long flags;
struct sg_mapping_iter miter;
size_t count = ALIGN(size, SZ_4K) >> PAGE_SHIFT;
bool is_coherent = is_dma_coherent(dev, attrs);
int prot = dma_info_to_prot(DMA_BIDIRECTIONAL, is_coherent, attrs);
pgprot_t remap_prot = __get_dma_pgprot(attrs, PAGE_KERNEL, is_coherent);
struct page **pages;
/*
* sg_alloc_table_from_pages accepts unsigned int value for count
* so check count doesn't exceed UINT_MAX.
*/
if (count > UINT_MAX) {
dev_err(dev, "count: %zx exceeds UNIT_MAX\n", count);
return NULL;
}
*handle = DMA_ERROR_CODE;
pages = __fast_smmu_alloc_pages(count, gfp);
if (!pages) {
dev_err(dev, "no pages\n");
return NULL;
}
size = ALIGN(size, SZ_4K);
if (sg_alloc_table_from_pages(&sgt, pages, count, 0, size, gfp)) {
dev_err(dev, "no sg tablen\n");
goto out_free_pages;
}
if (!is_coherent) {
/*
* The CPU-centric flushing implied by SG_MITER_TO_SG isn't
* sufficient here, so skip it by using the "wrong" direction.
*/
sg_miter_start(&miter, sgt.sgl, sgt.orig_nents,
SG_MITER_FROM_SG);
while (sg_miter_next(&miter))
__dma_flush_area(miter.addr, miter.length);
sg_miter_stop(&miter);
}
spin_lock_irqsave(&mapping->lock, flags);
dma_addr = __fast_smmu_alloc_iova(mapping, attrs, size);
if (dma_addr == DMA_ERROR_CODE) {
dev_err(dev, "no iova\n");
spin_unlock_irqrestore(&mapping->lock, flags);
goto out_free_sg;
}
iova_iter = dma_addr;
sg_miter_start(&miter, sgt.sgl, sgt.orig_nents,
SG_MITER_FROM_SG | SG_MITER_ATOMIC);
while (sg_miter_next(&miter)) {
if (unlikely(av8l_fast_map_public(
mapping->pgtbl_ops, iova_iter,
page_to_phys(miter.page),
miter.length, prot))) {
dev_err(dev, "no map public\n");
/* TODO: unwind previously successful mappings */
goto out_free_iova;
}
iova_iter += miter.length;
}
sg_miter_stop(&miter);
spin_unlock_irqrestore(&mapping->lock, flags);
addr = dma_common_pages_remap(pages, size, VM_USERMAP, remap_prot,
__builtin_return_address(0));
if (!addr) {
dev_err(dev, "no common pages\n");
goto out_unmap;
}
*handle = dma_addr;
sg_free_table(&sgt);
return addr;
out_unmap:
/* need to take the lock again for page tables and iova */
spin_lock_irqsave(&mapping->lock, flags);
av8l_fast_unmap_public(mapping->pgtbl_ops, dma_addr, size);
out_free_iova:
__fast_smmu_free_iova(mapping, dma_addr, size);
spin_unlock_irqrestore(&mapping->lock, flags);
out_free_sg:
sg_free_table(&sgt);
out_free_pages:
__fast_smmu_free_pages(pages, count);
return NULL;
}
static void fast_smmu_free(struct device *dev, size_t size,
void *vaddr, dma_addr_t dma_handle,
unsigned long attrs)
{
struct dma_fast_smmu_mapping *mapping = dev_get_mapping(dev);
struct vm_struct *area;
struct page **pages;
size_t count = ALIGN(size, SZ_4K) >> FAST_PAGE_SHIFT;
unsigned long flags;
size = ALIGN(size, SZ_4K);
area = find_vm_area(vaddr);
if (WARN_ON_ONCE(!area))
return;
pages = area->pages;
dma_common_free_remap(vaddr, size, VM_USERMAP, false);
spin_lock_irqsave(&mapping->lock, flags);
av8l_fast_unmap_public(mapping->pgtbl_ops, dma_handle, size);
__fast_smmu_free_iova(mapping, dma_handle, size);
spin_unlock_irqrestore(&mapping->lock, flags);
__fast_smmu_free_pages(pages, count);
}
static int fast_smmu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
void *cpu_addr, dma_addr_t dma_addr,
size_t size, unsigned long attrs)
{
struct vm_struct *area;
unsigned long uaddr = vma->vm_start;
struct page **pages;
int i, nr_pages, ret = 0;
bool coherent = is_dma_coherent(dev, attrs);
vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot,
coherent);
area = find_vm_area(cpu_addr);
if (!area)
return -EINVAL;
pages = area->pages;
nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
for (i = vma->vm_pgoff; i < nr_pages && uaddr < vma->vm_end; i++) {
ret = vm_insert_page(vma, uaddr, pages[i]);
if (ret)
break;
uaddr += PAGE_SIZE;
}
return ret;
}
static int fast_smmu_get_sgtable(struct device *dev, struct sg_table *sgt,
void *cpu_addr, dma_addr_t dma_addr,
size_t size, unsigned long attrs)
{
unsigned int n_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
struct vm_struct *area;
area = find_vm_area(cpu_addr);
if (!area || !area->pages)
return -EINVAL;
return sg_alloc_table_from_pages(sgt, area->pages, n_pages, 0, size,
GFP_KERNEL);
}
static dma_addr_t fast_smmu_dma_map_resource(
struct device *dev, phys_addr_t phys_addr,
size_t size, enum dma_data_direction dir,
unsigned long attrs)
{
struct dma_fast_smmu_mapping *mapping = dev_get_mapping(dev);
size_t offset = phys_addr & ~FAST_PAGE_MASK;
size_t len = round_up(size + offset, FAST_PAGE_SIZE);
dma_addr_t dma_addr;
int prot;
unsigned long flags;
spin_lock_irqsave(&mapping->lock, flags);
dma_addr = __fast_smmu_alloc_iova(mapping, attrs, len);
spin_unlock_irqrestore(&mapping->lock, flags);
if (dma_addr == DMA_ERROR_CODE)
return dma_addr;
prot = dma_info_to_prot(dir, false, attrs);
prot |= IOMMU_MMIO;
if (iommu_map(mapping->domain, dma_addr, phys_addr - offset,
len, prot)) {
spin_lock_irqsave(&mapping->lock, flags);
__fast_smmu_free_iova(mapping, dma_addr, len);
spin_unlock_irqrestore(&mapping->lock, flags);
return DMA_ERROR_CODE;
}
return dma_addr + offset;
}
static void fast_smmu_dma_unmap_resource(
struct device *dev, dma_addr_t addr,
size_t size, enum dma_data_direction dir,
unsigned long attrs)
{
struct dma_fast_smmu_mapping *mapping = dev_get_mapping(dev);
size_t offset = addr & ~FAST_PAGE_MASK;
size_t len = round_up(size + offset, FAST_PAGE_SIZE);
unsigned long flags;
iommu_unmap(mapping->domain, addr - offset, len);
spin_lock_irqsave(&mapping->lock, flags);
__fast_smmu_free_iova(mapping, addr, len);
spin_unlock_irqrestore(&mapping->lock, flags);
}
static int fast_smmu_mapping_error(struct device *dev,
dma_addr_t dma_addr)
{
return dma_addr == DMA_ERROR_CODE;
}
static void __fast_smmu_mapped_over_stale(struct dma_fast_smmu_mapping *fast,
void *data)
{
av8l_fast_iopte *pmds, *ptep = data;
dma_addr_t iova;
unsigned long bitmap_idx;
struct io_pgtable *tbl;
tbl = container_of(fast->pgtbl_ops, struct io_pgtable, ops);
pmds = tbl->cfg.av8l_fast_cfg.pmds;
bitmap_idx = (unsigned long)(ptep - pmds);
iova = bitmap_idx << FAST_PAGE_SHIFT;
dev_err(fast->dev, "Mapped over stale tlb at %pa\n", &iova);
dev_err(fast->dev, "bitmap (failure at idx %lu):\n", bitmap_idx);
dev_err(fast->dev, "ptep: %p pmds: %p diff: %lu\n", ptep,
pmds, bitmap_idx);
print_hex_dump(KERN_ERR, "bmap: ", DUMP_PREFIX_ADDRESS,
32, 8, fast->bitmap, fast->bitmap_size, false);
}
static int fast_smmu_notify(struct notifier_block *self,
unsigned long action, void *data)
{
struct dma_fast_smmu_mapping *fast = container_of(
self, struct dma_fast_smmu_mapping, notifier);
switch (action) {
case MAPPED_OVER_STALE_TLB:
__fast_smmu_mapped_over_stale(fast, data);
return NOTIFY_OK;
default:
WARN(1, "Unhandled notifier action");
return NOTIFY_DONE;
}
}
static const struct dma_map_ops fast_smmu_dma_ops = {
.alloc = fast_smmu_alloc,
.free = fast_smmu_free,
.mmap = fast_smmu_mmap_attrs,
.get_sgtable = fast_smmu_get_sgtable,
.map_page = fast_smmu_map_page,
.unmap_page = fast_smmu_unmap_page,
.sync_single_for_cpu = fast_smmu_sync_single_for_cpu,
.sync_single_for_device = fast_smmu_sync_single_for_device,
.map_sg = fast_smmu_map_sg,
.unmap_sg = fast_smmu_unmap_sg,
.sync_sg_for_cpu = fast_smmu_sync_sg_for_cpu,
.sync_sg_for_device = fast_smmu_sync_sg_for_device,
.map_resource = fast_smmu_dma_map_resource,
.unmap_resource = fast_smmu_dma_unmap_resource,
.mapping_error = fast_smmu_mapping_error,
};
/**
* __fast_smmu_create_mapping_sized
* @base: bottom of the VA range
* @size: size of the VA range in bytes
*
* Creates a mapping structure which holds information about used/unused IO
* address ranges, which is required to perform mapping with IOMMU aware
* functions. The only VA range supported is [0, 4GB).
*
* The client device need to be attached to the mapping with
* fast_smmu_attach_device function.
*/
static struct dma_fast_smmu_mapping *__fast_smmu_create_mapping_sized(
dma_addr_t base, u64 size)
{
struct dma_fast_smmu_mapping *fast;
fast = kzalloc(sizeof(struct dma_fast_smmu_mapping), GFP_KERNEL);
if (!fast)
goto err;
fast->base = base;
fast->size = size;
fast->num_4k_pages = size >> FAST_PAGE_SHIFT;
fast->bitmap_size = BITS_TO_LONGS(fast->num_4k_pages) * sizeof(long);
fast->bitmap = kzalloc(fast->bitmap_size, GFP_KERNEL | __GFP_NOWARN |
__GFP_NORETRY);
if (!fast->bitmap)
fast->bitmap = vzalloc(fast->bitmap_size);
if (!fast->bitmap)
goto err2;
spin_lock_init(&fast->lock);
fast->iovad = kzalloc(sizeof(*fast->iovad), GFP_KERNEL);
if (!fast->iovad)
goto err_free_bitmap;
init_iova_domain(fast->iovad, FAST_PAGE_SIZE,
base >> FAST_PAGE_SHIFT);
return fast;
err_free_bitmap:
kvfree(fast->bitmap);
err2:
kfree(fast);
err:
return ERR_PTR(-ENOMEM);
}
/*
* Based off of similar code from dma-iommu.c, but modified to use a different
* iova allocator
*/
static void fast_smmu_reserve_pci_windows(struct device *dev,
struct dma_fast_smmu_mapping *mapping)
{
struct pci_host_bridge *bridge;
struct resource_entry *window;
phys_addr_t start, end;
struct pci_dev *pci_dev;
unsigned long flags;
if (!dev_is_pci(dev))
return;
pci_dev = to_pci_dev(dev);
bridge = pci_find_host_bridge(pci_dev->bus);
spin_lock_irqsave(&mapping->lock, flags);
resource_list_for_each_entry(window, &bridge->windows) {
if (resource_type(window->res) != IORESOURCE_MEM &&
resource_type(window->res) != IORESOURCE_IO)
continue;
start = round_down(window->res->start - window->offset,
FAST_PAGE_SIZE);
end = round_up(window->res->end - window->offset,
FAST_PAGE_SIZE);
start = max_t(unsigned long, mapping->base, start);
end = min_t(unsigned long, mapping->base + mapping->size, end);
if (start >= end)
continue;
dev_dbg(dev, "iova allocator reserved 0x%pa-0x%pa\n",
&start, &end);
start = (start - mapping->base) >> FAST_PAGE_SHIFT;
end = (end - mapping->base) >> FAST_PAGE_SHIFT;
bitmap_set(mapping->bitmap, start, end - start);
}
spin_unlock_irqrestore(&mapping->lock, flags);
}
void fast_smmu_put_dma_cookie(struct iommu_domain *domain)
{
struct dma_fast_smmu_mapping *fast = domain->iova_cookie;
if (!fast)
return;
if (fast->iovad) {
put_iova_domain(fast->iovad);
kfree(fast->iovad);
}
if (fast->bitmap)
kvfree(fast->bitmap);
kfree(fast);
domain->iova_cookie = NULL;
}
/**
* fast_smmu_init_mapping
* @dev: valid struct device pointer
* @mapping: io address space mapping structure (returned from
* arm_iommu_create_mapping)
*
* Called the first time a device is attached to this mapping.
* Not for dma client use.
*/
int fast_smmu_init_mapping(struct device *dev,
struct dma_iommu_mapping *mapping)
{
int err = 0;
struct iommu_domain *domain = mapping->domain;
struct iommu_pgtbl_info info;
u64 size = (u64)mapping->bits << PAGE_SHIFT;
struct dma_fast_smmu_mapping *fast;
if (domain->iova_cookie) {
fast = domain->iova_cookie;
goto finish;
}
if (mapping->base + size > (SZ_1G * 4ULL)) {
dev_err(dev, "Iova end address too large\n");
return -EINVAL;
}
fast = __fast_smmu_create_mapping_sized(mapping->base, size);
if (IS_ERR(fast))
return -ENOMEM;
fast->domain = domain;
fast->dev = dev;
domain->iova_cookie = fast;
if (iommu_domain_get_attr(domain, DOMAIN_ATTR_PGTBL_INFO,
&info)) {
dev_err(dev, "Couldn't get page table info\n");
err = -EINVAL;
goto release_mapping;
}
fast->pgtbl_ops = (struct io_pgtable_ops *)info.ops;
fast->notifier.notifier_call = fast_smmu_notify;
av8l_register_notify(&fast->notifier);
finish:
fast_smmu_reserve_pci_windows(dev, fast);
mapping->ops = &fast_smmu_dma_ops;
return 0;
release_mapping:
fast_smmu_put_dma_cookie(domain);
return err;
}