blob: c9c574e2ee050bc887295bd152b1a73732ba0cd5 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2016-2019, The Linux Foundation. All rights reserved.
*/
#include <asm/dma-iommu.h>
#include <linux/clk.h>
#include <linux/dma-mapping.h>
#include <linux/ipc_logging.h>
#include <linux/io.h>
#include <linux/list.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/msm-bus.h>
#include <linux/msm-bus-board.h>
#include <linux/of.h>
#include <linux/of_platform.h>
#include <linux/pm_runtime.h>
#include <linux/qcom-geni-se.h>
#include <linux/spinlock.h>
#include <linux/pinctrl/consumer.h>
#define GENI_SE_IOMMU_VA_START (0x40000000)
#define GENI_SE_IOMMU_VA_SIZE (0xC0000000)
#ifdef CONFIG_ARM64
#define GENI_SE_DMA_PTR_L(ptr) ((u32)ptr)
#define GENI_SE_DMA_PTR_H(ptr) ((u32)(ptr >> 32))
#else
#define GENI_SE_DMA_PTR_L(ptr) ((u32)ptr)
#define GENI_SE_DMA_PTR_H(ptr) 0
#endif
#define NUM_LOG_PAGES 2
#define MAX_CLK_PERF_LEVEL 32
static unsigned long default_bus_bw_set[] = {0, 19200000, 50000000,
100000000, 150000000, 200000000, 236000000};
struct bus_vectors {
int src;
int dst;
};
/**
* @struct geni_se_device - Data structure to represent the QUPv3 Core
* @dev: Device pointer of the QUPv3 core.
* @cb_dev: Device pointer of the context bank in the IOMMU.
* @iommu_lock: Lock to protect IOMMU Mapping & attachment.
* @iommu_map: IOMMU map of the memory space supported by this core.
* @iommu_s1_bypass: Bypass IOMMU stage 1 translation.
* @base: Base address of this instance of QUPv3 core.
* @bus_bw: Client handle to the bus bandwidth request.
* @bus_bw_noc: Client handle to the QUP clock and DDR path bus
bandwidth request.
* @bus_mas_id: Master Endpoint ID for bus BW request.
* @bus_slv_id: Slave Endpoint ID for bus BW request.
* @geni_dev_lock: Lock to protect the bus ab & ib values, list.
* @ab_list_head: Sorted resource list based on average bus BW.
* @ib_list_head: Sorted resource list based on instantaneous bus BW.
* @ab_list_head_noc: Sorted resource list based on average DDR path bus BW.
* @ib_list_head_noc: Sorted resource list based on instantaneous DDR path
bus BW.
* @cur_ab: Current Bus Average BW request value.
* @cur_ib: Current Bus Instantaneous BW request value.
* @cur_ab_noc: Current DDR Bus Average BW request value.
* @cur_ib_noc: Current DDR Bus Instantaneous BW request value.
* @bus_bw_set: Clock plan for the bus driver.
* @bus_bw_set_noc: Clock plan for DDR path.
* @cur_bus_bw_idx: Current index within the bus clock plan.
* @cur_bus_bw_idx_noc: Current index within the DDR path clock plan.
* @num_clk_levels: Number of valid clock levels in clk_perf_tbl.
* @clk_perf_tbl: Table of clock frequency input to Serial Engine clock.
* @log_ctx: Logging context to hold the debug information.
* @vectors: Structure to store Master End and Slave End IDs for
QUPv3 clock and DDR path bus BW request.
* @num_paths: Two paths. QUPv3 clock and DDR paths.
* @num_usecases: One usecase to vote for both QUPv3 clock and DDR paths.
* @pdata: To register our client handle with the ICB driver.
*/
struct geni_se_device {
struct device *dev;
struct device *cb_dev;
struct mutex iommu_lock;
struct dma_iommu_mapping *iommu_map;
bool iommu_s1_bypass;
void __iomem *base;
struct msm_bus_client_handle *bus_bw;
uint32_t bus_bw_noc;
u32 bus_mas_id;
u32 bus_slv_id;
struct mutex geni_dev_lock;
struct list_head ab_list_head;
struct list_head ib_list_head;
struct list_head ab_list_head_noc;
struct list_head ib_list_head_noc;
unsigned long cur_ab;
unsigned long cur_ib;
unsigned long cur_ab_noc;
unsigned long cur_ib_noc;
int bus_bw_set_size;
int bus_bw_set_size_noc;
unsigned long *bus_bw_set;
unsigned long *bus_bw_set_noc;
int cur_bus_bw_idx;
int cur_bus_bw_idx_noc;
unsigned int num_clk_levels;
unsigned long *clk_perf_tbl;
void *log_ctx;
struct bus_vectors *vectors;
int num_paths;
int num_usecases;
struct msm_bus_scale_pdata *pdata;
};
/* Offset of QUPV3 Hardware Version Register */
#define QUPV3_HW_VER (0x4)
#define HW_VER_MAJOR_MASK GENMASK(31, 28)
#define HW_VER_MAJOR_SHFT 28
#define HW_VER_MINOR_MASK GENMASK(27, 16)
#define HW_VER_MINOR_SHFT 16
#define HW_VER_STEP_MASK GENMASK(15, 0)
static int geni_se_iommu_map_and_attach(struct geni_se_device *geni_se_dev);
/**
* geni_read_reg_nolog() - Helper function to read from a GENI register
* @base: Base address of the serial engine's register block.
* @offset: Offset within the serial engine's register block.
*
* Return: Return the contents of the register.
*/
unsigned int geni_read_reg_nolog(void __iomem *base, int offset)
{
return readl_relaxed_no_log(base + offset);
}
EXPORT_SYMBOL(geni_read_reg_nolog);
/**
* geni_write_reg_nolog() - Helper function to write into a GENI register
* @value: Value to be written into the register.
* @base: Base address of the serial engine's register block.
* @offset: Offset within the serial engine's register block.
*/
void geni_write_reg_nolog(unsigned int value, void __iomem *base, int offset)
{
return writel_relaxed_no_log(value, (base + offset));
}
EXPORT_SYMBOL(geni_write_reg_nolog);
/**
* geni_read_reg() - Helper function to read from a GENI register
* @base: Base address of the serial engine's register block.
* @offset: Offset within the serial engine's register block.
*
* Return: Return the contents of the register.
*/
unsigned int geni_read_reg(void __iomem *base, int offset)
{
return readl_relaxed(base + offset);
}
EXPORT_SYMBOL(geni_read_reg);
/**
* geni_write_reg() - Helper function to write into a GENI register
* @value: Value to be written into the register.
* @base: Base address of the serial engine's register block.
* @offset: Offset within the serial engine's register block.
*/
void geni_write_reg(unsigned int value, void __iomem *base, int offset)
{
return writel_relaxed(value, (base + offset));
}
EXPORT_SYMBOL(geni_write_reg);
/**
* get_se_proto() - Read the protocol configured for a serial engine
* @base: Base address of the serial engine's register block.
*
* Return: Protocol value as configured in the serial engine.
*/
int get_se_proto(void __iomem *base)
{
int proto;
proto = ((geni_read_reg(base, GENI_FW_REVISION_RO)
& FW_REV_PROTOCOL_MSK) >> FW_REV_PROTOCOL_SHFT);
return proto;
}
EXPORT_SYMBOL(get_se_proto);
/**
* get_se_m_fw() - Read the Firmware ver for the Main sequencer engine
* @base: Base address of the serial engine's register block.
*
* Return: Firmware version for the Main sequencer engine
*/
int get_se_m_fw(void __iomem *base)
{
int fw_ver_m;
fw_ver_m = ((geni_read_reg(base, GENI_FW_REVISION_RO)
& FW_REV_VERSION_MSK));
return fw_ver_m;
}
EXPORT_SYMBOL(get_se_m_fw);
/**
* get_se_s_fw() - Read the Firmware ver for the Secondry sequencer engine
* @base: Base address of the serial engine's register block.
*
* Return: Firmware version for the Secondry sequencer engine
*/
int get_se_s_fw(void __iomem *base)
{
int fw_ver_s;
fw_ver_s = ((geni_read_reg(base, GENI_FW_S_REVISION_RO)
& FW_REV_VERSION_MSK));
return fw_ver_s;
}
EXPORT_SYMBOL(get_se_s_fw);
static int se_geni_irq_en(void __iomem *base)
{
unsigned int common_geni_m_irq_en;
unsigned int common_geni_s_irq_en;
common_geni_m_irq_en = geni_read_reg(base, SE_GENI_M_IRQ_EN);
common_geni_s_irq_en = geni_read_reg(base, SE_GENI_S_IRQ_EN);
/* Common to all modes */
common_geni_m_irq_en |= M_COMMON_GENI_M_IRQ_EN;
common_geni_s_irq_en |= S_COMMON_GENI_S_IRQ_EN;
geni_write_reg(common_geni_m_irq_en, base, SE_GENI_M_IRQ_EN);
geni_write_reg(common_geni_s_irq_en, base, SE_GENI_S_IRQ_EN);
return 0;
}
static void se_set_rx_rfr_wm(void __iomem *base, unsigned int rx_wm,
unsigned int rx_rfr)
{
geni_write_reg(rx_wm, base, SE_GENI_RX_WATERMARK_REG);
geni_write_reg(rx_rfr, base, SE_GENI_RX_RFR_WATERMARK_REG);
}
static int se_io_set_mode(void __iomem *base)
{
unsigned int io_mode;
unsigned int geni_dma_mode;
io_mode = geni_read_reg(base, SE_IRQ_EN);
geni_dma_mode = geni_read_reg(base, SE_GENI_DMA_MODE_EN);
io_mode |= (GENI_M_IRQ_EN | GENI_S_IRQ_EN);
io_mode |= (DMA_TX_IRQ_EN | DMA_RX_IRQ_EN);
geni_dma_mode &= ~GENI_DMA_MODE_EN;
geni_write_reg(io_mode, base, SE_IRQ_EN);
geni_write_reg(geni_dma_mode, base, SE_GENI_DMA_MODE_EN);
geni_write_reg(0, base, SE_GSI_EVENT_EN);
return 0;
}
static void se_io_init(void __iomem *base)
{
unsigned int io_op_ctrl;
unsigned int geni_cgc_ctrl;
unsigned int dma_general_cfg;
geni_cgc_ctrl = geni_read_reg(base, GENI_CGC_CTRL);
dma_general_cfg = geni_read_reg(base, SE_DMA_GENERAL_CFG);
geni_cgc_ctrl |= DEFAULT_CGC_EN;
dma_general_cfg |= (AHB_SEC_SLV_CLK_CGC_ON | DMA_AHB_SLV_CFG_ON |
DMA_TX_CLK_CGC_ON | DMA_RX_CLK_CGC_ON);
io_op_ctrl = DEFAULT_IO_OUTPUT_CTRL_MSK;
geni_write_reg(geni_cgc_ctrl, base, GENI_CGC_CTRL);
geni_write_reg(dma_general_cfg, base, SE_DMA_GENERAL_CFG);
geni_write_reg(io_op_ctrl, base, GENI_OUTPUT_CTRL);
geni_write_reg(FORCE_DEFAULT, base, GENI_FORCE_DEFAULT_REG);
}
/**
* geni_se_init() - Initialize the GENI Serial Engine
* @base: Base address of the serial engine's register block.
* @rx_wm: Receive watermark to be configured.
* @rx_rfr_wm: Ready-for-receive watermark to be configured.
*
* This function is used to initialize the GENI serial engine, configure
* receive watermark and ready-for-receive watermarks.
*
* Return: 0 on success, standard Linux error codes on failure/error.
*/
int geni_se_init(void __iomem *base, unsigned int rx_wm, unsigned int rx_rfr)
{
int ret;
se_io_init(base);
ret = se_io_set_mode(base);
if (ret)
return ret;
se_set_rx_rfr_wm(base, rx_wm, rx_rfr);
ret = se_geni_irq_en(base);
return ret;
}
EXPORT_SYMBOL(geni_se_init);
static int geni_se_select_fifo_mode(void __iomem *base)
{
int proto = get_se_proto(base);
unsigned int common_geni_m_irq_en;
unsigned int common_geni_s_irq_en;
unsigned int geni_dma_mode;
geni_write_reg(0, base, SE_GSI_EVENT_EN);
geni_write_reg(0xFFFFFFFF, base, SE_GENI_M_IRQ_CLEAR);
geni_write_reg(0xFFFFFFFF, base, SE_GENI_S_IRQ_CLEAR);
geni_write_reg(0xFFFFFFFF, base, SE_DMA_TX_IRQ_CLR);
geni_write_reg(0xFFFFFFFF, base, SE_DMA_RX_IRQ_CLR);
geni_write_reg(0xFFFFFFFF, base, SE_IRQ_EN);
/* Clearing registers before reading */
geni_write_reg(0x00000000, base, SE_GENI_M_IRQ_EN);
geni_write_reg(0x00000000, base, SE_GENI_S_IRQ_EN);
common_geni_m_irq_en = geni_read_reg(base, SE_GENI_M_IRQ_EN);
common_geni_s_irq_en = geni_read_reg(base, SE_GENI_S_IRQ_EN);
geni_dma_mode = geni_read_reg(base, SE_GENI_DMA_MODE_EN);
if (proto != UART) {
common_geni_m_irq_en |=
(M_CMD_DONE_EN | M_TX_FIFO_WATERMARK_EN |
M_RX_FIFO_WATERMARK_EN | M_RX_FIFO_LAST_EN);
common_geni_s_irq_en |= S_CMD_DONE_EN;
}
geni_dma_mode &= ~GENI_DMA_MODE_EN;
geni_write_reg(common_geni_m_irq_en, base, SE_GENI_M_IRQ_EN);
geni_write_reg(common_geni_s_irq_en, base, SE_GENI_S_IRQ_EN);
geni_write_reg(geni_dma_mode, base, SE_GENI_DMA_MODE_EN);
return 0;
}
static int geni_se_select_dma_mode(void __iomem *base)
{
unsigned int geni_dma_mode = 0;
geni_write_reg(0, base, SE_GSI_EVENT_EN);
geni_write_reg(0xFFFFFFFF, base, SE_GENI_M_IRQ_CLEAR);
geni_write_reg(0xFFFFFFFF, base, SE_GENI_S_IRQ_CLEAR);
geni_write_reg(0xFFFFFFFF, base, SE_DMA_TX_IRQ_CLR);
geni_write_reg(0xFFFFFFFF, base, SE_DMA_RX_IRQ_CLR);
geni_write_reg(0xFFFFFFFF, base, SE_IRQ_EN);
geni_write_reg(0x00000000, base, SE_GENI_M_IRQ_EN);
geni_write_reg(0x00000000, base, SE_GENI_S_IRQ_EN);
geni_dma_mode = geni_read_reg(base, SE_GENI_DMA_MODE_EN);
geni_dma_mode |= GENI_DMA_MODE_EN;
geni_write_reg(geni_dma_mode, base, SE_GENI_DMA_MODE_EN);
return 0;
}
static int geni_se_select_gsi_mode(void __iomem *base)
{
unsigned int geni_dma_mode = 0;
unsigned int gsi_event_en = 0;
unsigned int common_geni_m_irq_en = 0;
unsigned int common_geni_s_irq_en = 0;
common_geni_m_irq_en = geni_read_reg(base, SE_GENI_M_IRQ_EN);
common_geni_s_irq_en = geni_read_reg(base, SE_GENI_S_IRQ_EN);
common_geni_m_irq_en &=
~(M_CMD_DONE_EN | M_TX_FIFO_WATERMARK_EN |
M_RX_FIFO_WATERMARK_EN | M_RX_FIFO_LAST_EN);
common_geni_s_irq_en &= ~S_CMD_DONE_EN;
geni_dma_mode = geni_read_reg(base, SE_GENI_DMA_MODE_EN);
gsi_event_en = geni_read_reg(base, SE_GSI_EVENT_EN);
geni_dma_mode |= GENI_DMA_MODE_EN;
gsi_event_en |= (DMA_RX_EVENT_EN | DMA_TX_EVENT_EN |
GENI_M_EVENT_EN | GENI_S_EVENT_EN);
geni_write_reg(0, base, SE_IRQ_EN);
geni_write_reg(common_geni_s_irq_en, base, SE_GENI_S_IRQ_EN);
geni_write_reg(common_geni_m_irq_en, base, SE_GENI_M_IRQ_EN);
geni_write_reg(0xFFFFFFFF, base, SE_GENI_M_IRQ_CLEAR);
geni_write_reg(0xFFFFFFFF, base, SE_GENI_S_IRQ_CLEAR);
geni_write_reg(0xFFFFFFFF, base, SE_DMA_TX_IRQ_CLR);
geni_write_reg(0xFFFFFFFF, base, SE_DMA_RX_IRQ_CLR);
geni_write_reg(geni_dma_mode, base, SE_GENI_DMA_MODE_EN);
geni_write_reg(gsi_event_en, base, SE_GSI_EVENT_EN);
return 0;
}
/**
* geni_se_select_mode() - Select the serial engine transfer mode
* @base: Base address of the serial engine's register block.
* @mode: Transfer mode to be selected.
*
* Return: 0 on success, standard Linux error codes on failure.
*/
int geni_se_select_mode(void __iomem *base, int mode)
{
int ret = 0;
switch (mode) {
case FIFO_MODE:
geni_se_select_fifo_mode(base);
break;
case SE_DMA:
geni_se_select_dma_mode(base);
break;
case GSI_DMA:
geni_se_select_gsi_mode(base);
break;
default:
ret = -EINVAL;
break;
}
return ret;
}
EXPORT_SYMBOL(geni_se_select_mode);
/**
* geni_setup_m_cmd() - Setup the primary sequencer
* @base: Base address of the serial engine's register block.
* @cmd: Command/Operation to setup in the primary sequencer.
* @params: Parameter for the sequencer command.
*
* This function is used to configure the primary sequencer with the
* command and its assoicated parameters.
*/
void geni_setup_m_cmd(void __iomem *base, u32 cmd, u32 params)
{
u32 m_cmd = (cmd << M_OPCODE_SHFT);
m_cmd |= (params & M_PARAMS_MSK);
geni_write_reg(m_cmd, base, SE_GENI_M_CMD0);
}
EXPORT_SYMBOL(geni_setup_m_cmd);
/**
* geni_setup_s_cmd() - Setup the secondary sequencer
* @base: Base address of the serial engine's register block.
* @cmd: Command/Operation to setup in the secondary sequencer.
* @params: Parameter for the sequencer command.
*
* This function is used to configure the secondary sequencer with the
* command and its assoicated parameters.
*/
void geni_setup_s_cmd(void __iomem *base, u32 cmd, u32 params)
{
u32 s_cmd = geni_read_reg(base, SE_GENI_S_CMD0);
s_cmd &= ~(S_OPCODE_MSK | S_PARAMS_MSK);
s_cmd |= (cmd << S_OPCODE_SHFT);
s_cmd |= (params & S_PARAMS_MSK);
geni_write_reg(s_cmd, base, SE_GENI_S_CMD0);
}
EXPORT_SYMBOL(geni_setup_s_cmd);
/**
* geni_cancel_m_cmd() - Cancel the command configured in the primary sequencer
* @base: Base address of the serial engine's register block.
*
* This function is used to cancel the currently configured command in the
* primary sequencer.
*/
void geni_cancel_m_cmd(void __iomem *base)
{
geni_write_reg(M_GENI_CMD_CANCEL, base, SE_GENI_M_CMD_CTRL_REG);
}
EXPORT_SYMBOL(geni_cancel_m_cmd);
/**
* geni_cancel_s_cmd() - Cancel the command configured in the secondary
* sequencer
* @base: Base address of the serial engine's register block.
*
* This function is used to cancel the currently configured command in the
* secondary sequencer.
*/
void geni_cancel_s_cmd(void __iomem *base)
{
geni_write_reg(S_GENI_CMD_CANCEL, base, SE_GENI_S_CMD_CTRL_REG);
}
EXPORT_SYMBOL(geni_cancel_s_cmd);
/**
* geni_abort_m_cmd() - Abort the command configured in the primary sequencer
* @base: Base address of the serial engine's register block.
*
* This function is used to force abort the currently configured command in the
* primary sequencer.
*/
void geni_abort_m_cmd(void __iomem *base)
{
geni_write_reg(M_GENI_CMD_ABORT, base, SE_GENI_M_CMD_CTRL_REG);
}
EXPORT_SYMBOL(geni_abort_m_cmd);
/**
* geni_abort_s_cmd() - Abort the command configured in the secondary
* sequencer
* @base: Base address of the serial engine's register block.
*
* This function is used to force abort the currently configured command in the
* secondary sequencer.
*/
void geni_abort_s_cmd(void __iomem *base)
{
geni_write_reg(S_GENI_CMD_ABORT, base, SE_GENI_S_CMD_CTRL_REG);
}
EXPORT_SYMBOL(geni_abort_s_cmd);
/**
* get_tx_fifo_depth() - Get the TX fifo depth of the serial engine
* @base: Base address of the serial engine's register block.
*
* This function is used to get the depth i.e. number of elements in the
* TX fifo of the serial engine.
*
* Return: TX fifo depth in units of FIFO words.
*/
int get_tx_fifo_depth(void __iomem *base)
{
int tx_fifo_depth;
tx_fifo_depth = ((geni_read_reg(base, SE_HW_PARAM_0)
& TX_FIFO_DEPTH_MSK) >> TX_FIFO_DEPTH_SHFT);
return tx_fifo_depth;
}
EXPORT_SYMBOL(get_tx_fifo_depth);
/**
* get_tx_fifo_width() - Get the TX fifo width of the serial engine
* @base: Base address of the serial engine's register block.
*
* This function is used to get the width i.e. word size per element in the
* TX fifo of the serial engine.
*
* Return: TX fifo width in bits
*/
int get_tx_fifo_width(void __iomem *base)
{
int tx_fifo_width;
tx_fifo_width = ((geni_read_reg(base, SE_HW_PARAM_0)
& TX_FIFO_WIDTH_MSK) >> TX_FIFO_WIDTH_SHFT);
return tx_fifo_width;
}
EXPORT_SYMBOL(get_tx_fifo_width);
/**
* get_rx_fifo_depth() - Get the RX fifo depth of the serial engine
* @base: Base address of the serial engine's register block.
*
* This function is used to get the depth i.e. number of elements in the
* RX fifo of the serial engine.
*
* Return: RX fifo depth in units of FIFO words
*/
int get_rx_fifo_depth(void __iomem *base)
{
int rx_fifo_depth;
rx_fifo_depth = ((geni_read_reg(base, SE_HW_PARAM_1)
& RX_FIFO_DEPTH_MSK) >> RX_FIFO_DEPTH_SHFT);
return rx_fifo_depth;
}
EXPORT_SYMBOL(get_rx_fifo_depth);
/**
* se_get_packing_config() - Get the packing configuration based on input
* @bpw: Bits of data per transfer word.
* @pack_words: Number of words per fifo element.
* @msb_to_lsb: Transfer from MSB to LSB or vice-versa.
* @cfg0: Output buffer to hold the first half of configuration.
* @cfg1: Output buffer to hold the second half of configuration.
*
* This function is used to calculate the packing configuration based on
* the input packing requirement and the configuration logic.
*/
void se_get_packing_config(int bpw, int pack_words, bool msb_to_lsb,
unsigned long *cfg0, unsigned long *cfg1)
{
u32 cfg[4] = {0};
int len;
int temp_bpw = bpw;
int idx_start = (msb_to_lsb ? (bpw - 1) : 0);
int idx = idx_start;
int idx_delta = (msb_to_lsb ? -BITS_PER_BYTE : BITS_PER_BYTE);
int ceil_bpw = ((bpw & (BITS_PER_BYTE - 1)) ?
((bpw & ~(BITS_PER_BYTE - 1)) + BITS_PER_BYTE) : bpw);
int iter = (ceil_bpw * pack_words) >> 3;
int i;
if (unlikely(iter <= 0 || iter > 4)) {
*cfg0 = 0;
*cfg1 = 0;
return;
}
for (i = 0; i < iter; i++) {
len = (temp_bpw < BITS_PER_BYTE) ?
(temp_bpw - 1) : BITS_PER_BYTE - 1;
cfg[i] = ((idx << 5) | (msb_to_lsb << 4) | (len << 1));
idx = ((temp_bpw - BITS_PER_BYTE) <= 0) ?
((i + 1) * BITS_PER_BYTE) + idx_start :
idx + idx_delta;
temp_bpw = ((temp_bpw - BITS_PER_BYTE) <= 0) ?
bpw : (temp_bpw - BITS_PER_BYTE);
}
cfg[iter - 1] |= 1;
*cfg0 = cfg[0] | (cfg[1] << 10);
*cfg1 = cfg[2] | (cfg[3] << 10);
}
EXPORT_SYMBOL(se_get_packing_config);
/**
* se_config_packing() - Packing configuration of the serial engine
* @base: Base address of the serial engine's register block.
* @bpw: Bits of data per transfer word.
* @pack_words: Number of words per fifo element.
* @msb_to_lsb: Transfer from MSB to LSB or vice-versa.
*
* This function is used to configure the packing rules for the current
* transfer.
*/
void se_config_packing(void __iomem *base, int bpw,
int pack_words, bool msb_to_lsb)
{
unsigned long cfg0, cfg1;
se_get_packing_config(bpw, pack_words, msb_to_lsb, &cfg0, &cfg1);
geni_write_reg(cfg0, base, SE_GENI_TX_PACKING_CFG0);
geni_write_reg(cfg1, base, SE_GENI_TX_PACKING_CFG1);
geni_write_reg(cfg0, base, SE_GENI_RX_PACKING_CFG0);
geni_write_reg(cfg1, base, SE_GENI_RX_PACKING_CFG1);
if (pack_words || bpw == 32)
geni_write_reg((bpw >> 4), base, SE_GENI_BYTE_GRAN);
}
EXPORT_SYMBOL(se_config_packing);
static bool geni_se_check_bus_bw(struct geni_se_device *geni_se_dev)
{
int i;
int new_bus_bw_idx = geni_se_dev->bus_bw_set_size - 1;
unsigned long new_bus_bw;
bool bus_bw_update = false;
/* Convert agg ab into bytes per second */
unsigned long new_ab_in_hz = DEFAULT_BUS_WIDTH *
((2*geni_se_dev->cur_ab)*10000);
new_bus_bw = max(geni_se_dev->cur_ib, new_ab_in_hz) /
DEFAULT_BUS_WIDTH;
for (i = 0; i < geni_se_dev->bus_bw_set_size; i++) {
if (geni_se_dev->bus_bw_set[i] >= new_bus_bw) {
new_bus_bw_idx = i;
break;
}
}
if (geni_se_dev->cur_bus_bw_idx != new_bus_bw_idx) {
geni_se_dev->cur_bus_bw_idx = new_bus_bw_idx;
bus_bw_update = true;
}
return bus_bw_update;
}
static bool geni_se_check_bus_bw_noc(struct geni_se_device *geni_se_dev)
{
int i;
int new_bus_bw_idx = geni_se_dev->bus_bw_set_size_noc - 1;
unsigned long new_bus_bw;
bool bus_bw_update = false;
new_bus_bw = max(geni_se_dev->cur_ib_noc, geni_se_dev->cur_ab_noc) /
DEFAULT_BUS_WIDTH;
for (i = 0; i < geni_se_dev->bus_bw_set_size_noc; i++) {
if (geni_se_dev->bus_bw_set_noc[i] >= new_bus_bw) {
new_bus_bw_idx = i;
break;
}
}
if (geni_se_dev->cur_bus_bw_idx_noc != new_bus_bw_idx) {
geni_se_dev->cur_bus_bw_idx_noc = new_bus_bw_idx;
bus_bw_update = true;
}
return bus_bw_update;
}
static int geni_se_rmv_ab_ib(struct geni_se_device *geni_se_dev,
struct se_geni_rsc *rsc)
{
struct se_geni_rsc *tmp;
bool bus_bw_update = false;
bool bus_bw_update_noc = false;
int ret = 0;
if (unlikely(list_empty(&rsc->ab_list) || list_empty(&rsc->ib_list)))
return -EINVAL;
mutex_lock(&geni_se_dev->geni_dev_lock);
list_del_init(&rsc->ab_list);
geni_se_dev->cur_ab -= rsc->ab;
list_del_init(&rsc->ib_list);
tmp = list_first_entry_or_null(&geni_se_dev->ib_list_head,
struct se_geni_rsc, ib_list);
if (tmp && tmp->ib != geni_se_dev->cur_ib)
geni_se_dev->cur_ib = tmp->ib;
else if (!tmp && geni_se_dev->cur_ib)
geni_se_dev->cur_ib = 0;
bus_bw_update = geni_se_check_bus_bw(geni_se_dev);
if (geni_se_dev->num_paths == 2) {
geni_se_dev->pdata->usecase[1].vectors[0].ab =
geni_se_dev->cur_ab;
geni_se_dev->pdata->usecase[1].vectors[0].ib =
geni_se_dev->cur_ib;
}
if (bus_bw_update && geni_se_dev->num_paths != 2) {
ret = msm_bus_scale_update_bw(geni_se_dev->bus_bw,
geni_se_dev->cur_ab,
geni_se_dev->cur_ib);
GENI_SE_DBG(geni_se_dev->log_ctx, false, NULL,
"%s: %s: cur_ab_ib(%lu:%lu) req_ab_ib(%lu:%lu) %d\n",
__func__, dev_name(rsc->ctrl_dev), geni_se_dev->cur_ab,
geni_se_dev->cur_ib, rsc->ab, rsc->ib, bus_bw_update);
}
if (geni_se_dev->num_paths == 2) {
if (unlikely(list_empty(&rsc->ab_list_noc) ||
list_empty(&rsc->ib_list_noc)))
return -EINVAL;
list_del_init(&rsc->ab_list_noc);
geni_se_dev->cur_ab_noc -= rsc->ab_noc;
list_del_init(&rsc->ib_list_noc);
tmp = list_first_entry_or_null(&geni_se_dev->ib_list_head_noc,
struct se_geni_rsc, ib_list_noc);
if (tmp && tmp->ib_noc != geni_se_dev->cur_ib_noc)
geni_se_dev->cur_ib_noc = tmp->ib_noc;
else if (!tmp && geni_se_dev->cur_ib_noc)
geni_se_dev->cur_ib_noc = 0;
bus_bw_update_noc = geni_se_check_bus_bw_noc(geni_se_dev);
geni_se_dev->pdata->usecase[1].vectors[1].ab =
geni_se_dev->cur_ab_noc;
geni_se_dev->pdata->usecase[1].vectors[1].ib =
geni_se_dev->cur_ib_noc;
if (bus_bw_update_noc || bus_bw_update)
ret = msm_bus_scale_client_update_request
(geni_se_dev->bus_bw_noc, 1);
}
mutex_unlock(&geni_se_dev->geni_dev_lock);
return ret;
}
/**
* se_geni_clks_off() - Turn off clocks associated with the serial
* engine
* @rsc: Handle to resources associated with the serial engine.
*
* Return: 0 on success, standard Linux error codes on failure/error.
*/
int se_geni_clks_off(struct se_geni_rsc *rsc)
{
int ret = 0;
struct geni_se_device *geni_se_dev;
if (unlikely(!rsc || !rsc->wrapper_dev))
return -EINVAL;
geni_se_dev = dev_get_drvdata(rsc->wrapper_dev);
if (unlikely(!geni_se_dev || !(geni_se_dev->bus_bw ||
geni_se_dev->bus_bw_noc)))
return -ENODEV;
clk_disable_unprepare(rsc->se_clk);
clk_disable_unprepare(rsc->s_ahb_clk);
clk_disable_unprepare(rsc->m_ahb_clk);
ret = geni_se_rmv_ab_ib(geni_se_dev, rsc);
if (ret)
GENI_SE_ERR(geni_se_dev->log_ctx, false, NULL,
"%s: Error %d during bus_bw_update\n", __func__, ret);
return ret;
}
EXPORT_SYMBOL(se_geni_clks_off);
/**
* se_geni_resources_off() - Turn off resources associated with the serial
* engine
* @rsc: Handle to resources associated with the serial engine.
*
* Return: 0 on success, standard Linux error codes on failure/error.
*/
int se_geni_resources_off(struct se_geni_rsc *rsc)
{
int ret = 0;
struct geni_se_device *geni_se_dev;
if (unlikely(!rsc || !rsc->wrapper_dev))
return -EINVAL;
geni_se_dev = dev_get_drvdata(rsc->wrapper_dev);
if (unlikely(!geni_se_dev ||
!(geni_se_dev->bus_bw ||
geni_se_dev->bus_bw_noc)))
return -ENODEV;
ret = se_geni_clks_off(rsc);
if (ret)
GENI_SE_ERR(geni_se_dev->log_ctx, false, NULL,
"%s: Error %d turning off clocks\n", __func__, ret);
ret = pinctrl_select_state(rsc->geni_pinctrl, rsc->geni_gpio_sleep);
if (ret)
GENI_SE_ERR(geni_se_dev->log_ctx, false, NULL,
"%s: Error %d pinctrl_select_state\n", __func__, ret);
return ret;
}
EXPORT_SYMBOL(se_geni_resources_off);
static int geni_se_add_ab_ib(struct geni_se_device *geni_se_dev,
struct se_geni_rsc *rsc)
{
struct se_geni_rsc *tmp = NULL;
struct list_head *ins_list_head;
struct list_head *ins_list_head_noc;
bool bus_bw_update = false;
bool bus_bw_update_noc = false;
int ret = 0;
mutex_lock(&geni_se_dev->geni_dev_lock);
list_add(&rsc->ab_list, &geni_se_dev->ab_list_head);
geni_se_dev->cur_ab += rsc->ab;
ins_list_head = &geni_se_dev->ib_list_head;
list_for_each_entry(tmp, &geni_se_dev->ib_list_head, ib_list) {
if (tmp->ib < rsc->ib)
break;
ins_list_head = &tmp->ib_list;
}
list_add(&rsc->ib_list, ins_list_head);
/* Currently inserted node has greater average BW value */
if (ins_list_head == &geni_se_dev->ib_list_head)
geni_se_dev->cur_ib = rsc->ib;
bus_bw_update = geni_se_check_bus_bw(geni_se_dev);
if (geni_se_dev->num_paths == 2) {
geni_se_dev->pdata->usecase[1].vectors[0].ab =
geni_se_dev->cur_ab;
geni_se_dev->pdata->usecase[1].vectors[0].ib =
geni_se_dev->cur_ib;
}
if (bus_bw_update && geni_se_dev->num_paths != 2) {
ret = msm_bus_scale_update_bw(geni_se_dev->bus_bw,
geni_se_dev->cur_ab,
geni_se_dev->cur_ib);
GENI_SE_DBG(geni_se_dev->log_ctx, false, NULL,
"%s: %lu:%lu (%lu:%lu) %d\n", __func__,
geni_se_dev->cur_ab, geni_se_dev->cur_ib,
rsc->ab, rsc->ib, bus_bw_update);
}
if (geni_se_dev->num_paths == 2) {
list_add(&rsc->ab_list_noc, &geni_se_dev->ab_list_head_noc);
geni_se_dev->cur_ab_noc += rsc->ab_noc;
ins_list_head_noc = &geni_se_dev->ib_list_head_noc;
list_for_each_entry(tmp, &geni_se_dev->ib_list_head_noc,
ib_list_noc) {
if (tmp->ib < rsc->ib)
break;
ins_list_head_noc = &tmp->ib_list_noc;
}
list_add(&rsc->ib_list_noc, ins_list_head_noc);
if (ins_list_head_noc == &geni_se_dev->ib_list_head_noc)
geni_se_dev->cur_ib_noc = rsc->ib_noc;
bus_bw_update_noc = geni_se_check_bus_bw_noc(geni_se_dev);
geni_se_dev->pdata->usecase[1].vectors[1].ab =
geni_se_dev->cur_ab_noc;
geni_se_dev->pdata->usecase[1].vectors[1].ib =
geni_se_dev->cur_ib_noc;
if (bus_bw_update_noc || bus_bw_update)
ret = msm_bus_scale_client_update_request
(geni_se_dev->bus_bw_noc, 1);
}
mutex_unlock(&geni_se_dev->geni_dev_lock);
return ret;
}
/**
* se_geni_clks_on() - Turn on clocks associated with the serial
* engine
* @rsc: Handle to resources associated with the serial engine.
*
* Return: 0 on success, standard Linux error codes on failure/error.
*/
int se_geni_clks_on(struct se_geni_rsc *rsc)
{
int ret = 0;
struct geni_se_device *geni_se_dev;
if (unlikely(!rsc || !rsc->wrapper_dev))
return -EINVAL;
geni_se_dev = dev_get_drvdata(rsc->wrapper_dev);
if (unlikely(!geni_se_dev))
return -EPROBE_DEFER;
ret = geni_se_add_ab_ib(geni_se_dev, rsc);
if (ret) {
GENI_SE_ERR(geni_se_dev->log_ctx, false, NULL,
"%s: Error %d during bus_bw_update\n", __func__, ret);
return ret;
}
ret = clk_prepare_enable(rsc->m_ahb_clk);
if (ret)
goto clks_on_err1;
ret = clk_prepare_enable(rsc->s_ahb_clk);
if (ret)
goto clks_on_err2;
ret = clk_prepare_enable(rsc->se_clk);
if (ret)
goto clks_on_err3;
return 0;
clks_on_err3:
clk_disable_unprepare(rsc->s_ahb_clk);
clks_on_err2:
clk_disable_unprepare(rsc->m_ahb_clk);
clks_on_err1:
geni_se_rmv_ab_ib(geni_se_dev, rsc);
return ret;
}
EXPORT_SYMBOL(se_geni_clks_on);
/**
* se_geni_resources_on() - Turn on resources associated with the serial
* engine
* @rsc: Handle to resources associated with the serial engine.
*
* Return: 0 on success, standard Linux error codes on failure/error.
*/
int se_geni_resources_on(struct se_geni_rsc *rsc)
{
int ret = 0;
struct geni_se_device *geni_se_dev;
if (unlikely(!rsc || !rsc->wrapper_dev))
return -EINVAL;
geni_se_dev = dev_get_drvdata(rsc->wrapper_dev);
if (unlikely(!geni_se_dev))
return -EPROBE_DEFER;
ret = pinctrl_select_state(rsc->geni_pinctrl, rsc->geni_gpio_active);
if (ret) {
GENI_SE_ERR(geni_se_dev->log_ctx, false, NULL,
"%s: Error %d pinctrl_select_state\n", __func__, ret);
return ret;
}
ret = se_geni_clks_on(rsc);
if (ret) {
GENI_SE_ERR(geni_se_dev->log_ctx, false, NULL,
"%s: Error %d during clks_on\n", __func__, ret);
pinctrl_select_state(rsc->geni_pinctrl, rsc->geni_gpio_sleep);
}
return ret;
}
EXPORT_SYMBOL(se_geni_resources_on);
/**
* geni_se_resources_init() - Init the SE resource structure
* @rsc: SE resource structure to be initialized.
* @ab: Initial Average bus bandwidth request value.
* @ib: Initial Instantaneous bus bandwidth request value.
*
* Return: 0 on success, standard Linux error codes on failure.
*/
int geni_se_resources_init(struct se_geni_rsc *rsc,
unsigned long ab, unsigned long ib)
{
struct geni_se_device *geni_se_dev;
int ret = 0;
const char *mode = NULL;
if (unlikely(!rsc || !rsc->wrapper_dev))
return -EINVAL;
geni_se_dev = dev_get_drvdata(rsc->wrapper_dev);
if (unlikely(!geni_se_dev))
return -EPROBE_DEFER;
if (geni_se_dev->num_paths == 2) {
if (unlikely(!(geni_se_dev->bus_bw_noc))) {
geni_se_dev->bus_bw_noc =
msm_bus_scale_register_client(geni_se_dev->pdata);
if (!(geni_se_dev->bus_bw_noc)) {
GENI_SE_ERR(geni_se_dev->log_ctx,
false, NULL,
"%s: Error creating bus client\n", __func__);
return -EFAULT;
}
}
rsc->ab = ab;
rsc->ib = ab;
rsc->ab_noc = 0;
rsc->ib_noc = ib;
INIT_LIST_HEAD(&rsc->ab_list_noc);
INIT_LIST_HEAD(&rsc->ib_list_noc);
} else {
if (unlikely(IS_ERR_OR_NULL(geni_se_dev->bus_bw))) {
geni_se_dev->bus_bw = msm_bus_scale_register(
geni_se_dev->bus_mas_id,
geni_se_dev->bus_slv_id,
(char *)dev_name(geni_se_dev->dev),
false);
if (IS_ERR_OR_NULL(geni_se_dev->bus_bw)) {
GENI_SE_ERR(geni_se_dev->log_ctx,
false, NULL,
"%s: Error creating bus client\n", __func__);
return (int)PTR_ERR(geni_se_dev->bus_bw);
}
}
rsc->ab = ab;
rsc->ib = ib;
}
INIT_LIST_HEAD(&rsc->ab_list);
INIT_LIST_HEAD(&rsc->ib_list);
ret = of_property_read_string(geni_se_dev->dev->of_node,
"qcom,iommu-dma", &mode);
if ((ret == 0) && (strcmp(mode, "disabled") == 0))
geni_se_iommu_map_and_attach(geni_se_dev);
return 0;
}
EXPORT_SYMBOL(geni_se_resources_init);
/**
* geni_se_clk_tbl_get() - Get the clock table to program DFS
* @rsc: Resource for which the clock table is requested.
* @tbl: Table in which the output is returned.
*
* This function is called by the protocol drivers to determine the different
* clock frequencies supported by Serail Engine Core Clock. The protocol
* drivers use the output to determine the clock frequency index to be
* programmed into DFS.
*
* Return: number of valid performance levels in the table on success,
* standard Linux error codes on failure.
*/
int geni_se_clk_tbl_get(struct se_geni_rsc *rsc, unsigned long **tbl)
{
struct geni_se_device *geni_se_dev;
int i;
unsigned long prev_freq = 0;
int ret = 0;
if (unlikely(!rsc || !rsc->wrapper_dev || !rsc->se_clk || !tbl))
return -EINVAL;
geni_se_dev = dev_get_drvdata(rsc->wrapper_dev);
if (unlikely(!geni_se_dev))
return -EPROBE_DEFER;
mutex_lock(&geni_se_dev->geni_dev_lock);
*tbl = NULL;
if (geni_se_dev->clk_perf_tbl) {
*tbl = geni_se_dev->clk_perf_tbl;
ret = geni_se_dev->num_clk_levels;
goto exit_se_clk_tbl_get;
}
geni_se_dev->clk_perf_tbl = kzalloc(sizeof(*geni_se_dev->clk_perf_tbl) *
MAX_CLK_PERF_LEVEL, GFP_KERNEL);
if (!geni_se_dev->clk_perf_tbl) {
ret = -ENOMEM;
goto exit_se_clk_tbl_get;
}
for (i = 0; i < MAX_CLK_PERF_LEVEL; i++) {
geni_se_dev->clk_perf_tbl[i] = clk_round_rate(rsc->se_clk,
prev_freq + 1);
if (geni_se_dev->clk_perf_tbl[i] == prev_freq) {
geni_se_dev->clk_perf_tbl[i] = 0;
break;
}
prev_freq = geni_se_dev->clk_perf_tbl[i];
}
geni_se_dev->num_clk_levels = i;
*tbl = geni_se_dev->clk_perf_tbl;
ret = geni_se_dev->num_clk_levels;
exit_se_clk_tbl_get:
mutex_unlock(&geni_se_dev->geni_dev_lock);
return ret;
}
EXPORT_SYMBOL(geni_se_clk_tbl_get);
/**
* geni_se_clk_freq_match() - Get the matching or closest SE clock frequency
* @rsc: Resource for which the clock frequency is requested.
* @req_freq: Requested clock frequency.
* @index: Index of the resultant frequency in the table.
* @res_freq: Resultant frequency which matches or is closer to the
* requested frequency.
* @exact: Flag to indicate exact multiple requirement of the requested
* frequency .
*
* This function is called by the protocol drivers to determine the matching
* or closest frequency of the Serial Engine clock to be selected in order
* to meet the performance requirements.
*
* Return: 0 on success, standard Linux error codes on failure.
*/
int geni_se_clk_freq_match(struct se_geni_rsc *rsc, unsigned long req_freq,
unsigned int *index, unsigned long *res_freq,
bool exact)
{
unsigned long *tbl;
int num_clk_levels;
int i;
unsigned long best_delta = 0;
unsigned long new_delta;
unsigned int divider;
num_clk_levels = geni_se_clk_tbl_get(rsc, &tbl);
if (num_clk_levels < 0)
return num_clk_levels;
if (num_clk_levels == 0)
return -EFAULT;
*res_freq = 0;
for (i = 0; i < num_clk_levels; i++) {
divider = DIV_ROUND_UP(tbl[i], req_freq);
new_delta = req_freq - (tbl[i] / divider);
if (!best_delta || new_delta < best_delta) {
/* We have a new best! */
*index = i;
*res_freq = tbl[i];
/*If the new best is exact then we're done*/
if (new_delta == 0)
return 0;
best_delta = new_delta;
}
}
if (exact || !(*res_freq))
return -ENOKEY;
return 0;
}
EXPORT_SYMBOL(geni_se_clk_freq_match);
/**
* geni_se_tx_dma_prep() - Prepare the Serial Engine for TX DMA transfer
* @wrapper_dev: QUPv3 Wrapper Device to which the TX buffer is mapped.
* @base: Base address of the SE register block.
* @tx_buf: Pointer to the TX buffer.
* @tx_len: Length of the TX buffer.
* @tx_dma: Pointer to store the mapped DMA address.
*
* This function is used to prepare the buffers for DMA TX.
*
* Return: 0 on success, standard Linux error codes on error/failure.
*/
int geni_se_tx_dma_prep(struct device *wrapper_dev, void __iomem *base,
void *tx_buf, int tx_len, dma_addr_t *tx_dma)
{
int ret;
if (unlikely(!wrapper_dev || !base || !tx_buf || !tx_len || !tx_dma))
return -EINVAL;
ret = geni_se_iommu_map_buf(wrapper_dev, tx_dma, tx_buf, tx_len,
DMA_TO_DEVICE);
if (ret)
return ret;
geni_write_reg(7, base, SE_DMA_TX_IRQ_EN_SET);
geni_write_reg(GENI_SE_DMA_PTR_L(*tx_dma), base, SE_DMA_TX_PTR_L);
geni_write_reg(GENI_SE_DMA_PTR_H(*tx_dma), base, SE_DMA_TX_PTR_H);
geni_write_reg(1, base, SE_DMA_TX_ATTR);
geni_write_reg(tx_len, base, SE_DMA_TX_LEN);
return 0;
}
EXPORT_SYMBOL(geni_se_tx_dma_prep);
/**
* geni_se_rx_dma_prep() - Prepare the Serial Engine for RX DMA transfer
* @wrapper_dev: QUPv3 Wrapper Device to which the RX buffer is mapped.
* @base: Base address of the SE register block.
* @rx_buf: Pointer to the RX buffer.
* @rx_len: Length of the RX buffer.
* @rx_dma: Pointer to store the mapped DMA address.
*
* This function is used to prepare the buffers for DMA RX.
*
* Return: 0 on success, standard Linux error codes on error/failure.
*/
int geni_se_rx_dma_prep(struct device *wrapper_dev, void __iomem *base,
void *rx_buf, int rx_len, dma_addr_t *rx_dma)
{
int ret;
if (unlikely(!wrapper_dev || !base || !rx_buf || !rx_len || !rx_dma))
return -EINVAL;
ret = geni_se_iommu_map_buf(wrapper_dev, rx_dma, rx_buf, rx_len,
DMA_FROM_DEVICE);
if (ret)
return ret;
geni_write_reg(7, base, SE_DMA_RX_IRQ_EN_SET);
geni_write_reg(GENI_SE_DMA_PTR_L(*rx_dma), base, SE_DMA_RX_PTR_L);
geni_write_reg(GENI_SE_DMA_PTR_H(*rx_dma), base, SE_DMA_RX_PTR_H);
/* RX does not have EOT bit */
geni_write_reg(0, base, SE_DMA_RX_ATTR);
geni_write_reg(rx_len, base, SE_DMA_RX_LEN);
return 0;
}
EXPORT_SYMBOL(geni_se_rx_dma_prep);
/**
* geni_se_tx_dma_unprep() - Unprepare the Serial Engine after TX DMA transfer
* @wrapper_dev: QUPv3 Wrapper Device to which the RX buffer is mapped.
* @tx_dma: DMA address of the TX buffer.
* @tx_len: Length of the TX buffer.
*
* This function is used to unprepare the DMA buffers after DMA TX.
*/
void geni_se_tx_dma_unprep(struct device *wrapper_dev,
dma_addr_t tx_dma, int tx_len)
{
if (tx_dma)
geni_se_iommu_unmap_buf(wrapper_dev, &tx_dma, tx_len,
DMA_TO_DEVICE);
}
EXPORT_SYMBOL(geni_se_tx_dma_unprep);
/**
* geni_se_rx_dma_unprep() - Unprepare the Serial Engine after RX DMA transfer
* @wrapper_dev: QUPv3 Wrapper Device to which the RX buffer is mapped.
* @rx_dma: DMA address of the RX buffer.
* @rx_len: Length of the RX buffer.
*
* This function is used to unprepare the DMA buffers after DMA RX.
*/
void geni_se_rx_dma_unprep(struct device *wrapper_dev,
dma_addr_t rx_dma, int rx_len)
{
if (rx_dma)
geni_se_iommu_unmap_buf(wrapper_dev, &rx_dma, rx_len,
DMA_FROM_DEVICE);
}
EXPORT_SYMBOL(geni_se_rx_dma_unprep);
/**
* geni_se_qupv3_hw_version() - Read the QUPv3 Hardware version
* @wrapper_dev: Pointer to the corresponding QUPv3 wrapper core.
* @major: Buffer for Major Version field.
* @minor: Buffer for Minor Version field.
* @step: Buffer for Step Version field.
*
* Return: 0 on success, standard Linux error codes on failure/error.
*/
int geni_se_qupv3_hw_version(struct device *wrapper_dev, unsigned int *major,
unsigned int *minor, unsigned int *step)
{
unsigned int version;
struct geni_se_device *geni_se_dev;
if (!wrapper_dev || !major || !minor || !step)
return -EINVAL;
geni_se_dev = dev_get_drvdata(wrapper_dev);
if (unlikely(!geni_se_dev))
return -ENODEV;
version = geni_read_reg(geni_se_dev->base, QUPV3_HW_VER);
*major = (version & HW_VER_MAJOR_MASK) >> HW_VER_MAJOR_SHFT;
*minor = (version & HW_VER_MINOR_MASK) >> HW_VER_MINOR_SHFT;
*step = version & HW_VER_STEP_MASK;
return 0;
}
EXPORT_SYMBOL(geni_se_qupv3_hw_version);
static int geni_se_iommu_map_and_attach(struct geni_se_device *geni_se_dev)
{
dma_addr_t va_start = GENI_SE_IOMMU_VA_START;
size_t va_size = GENI_SE_IOMMU_VA_SIZE;
int bypass = 1;
struct device *cb_dev = geni_se_dev->cb_dev;
mutex_lock(&geni_se_dev->iommu_lock);
if (likely(geni_se_dev->iommu_map)) {
mutex_unlock(&geni_se_dev->iommu_lock);
return 0;
}
geni_se_dev->iommu_map =
__depr_arm_iommu_create_mapping(&platform_bus_type,
va_start, va_size);
if (IS_ERR(geni_se_dev->iommu_map)) {
GENI_SE_ERR(geni_se_dev->log_ctx, false, NULL,
"%s:%s iommu_create_mapping failure\n",
__func__, dev_name(cb_dev));
mutex_unlock(&geni_se_dev->iommu_lock);
return PTR_ERR(geni_se_dev->iommu_map);
}
if (geni_se_dev->iommu_s1_bypass &&
iommu_domain_set_attr(geni_se_dev->iommu_map->domain,
DOMAIN_ATTR_S1_BYPASS, &bypass)) {
GENI_SE_ERR(geni_se_dev->log_ctx, false, NULL,
"%s:%s Couldn't bypass s1 translation\n",
__func__, dev_name(cb_dev));
__depr_arm_iommu_release_mapping(geni_se_dev->iommu_map);
geni_se_dev->iommu_map = NULL;
mutex_unlock(&geni_se_dev->iommu_lock);
return -EIO;
}
if (__depr_arm_iommu_attach_device(cb_dev, geni_se_dev->iommu_map)) {
GENI_SE_ERR(geni_se_dev->log_ctx, false, NULL,
"%s:%s couldn't arm_iommu_attach_device\n",
__func__, dev_name(cb_dev));
__depr_arm_iommu_release_mapping(geni_se_dev->iommu_map);
geni_se_dev->iommu_map = NULL;
mutex_unlock(&geni_se_dev->iommu_lock);
return -EIO;
}
mutex_unlock(&geni_se_dev->iommu_lock);
GENI_SE_DBG(geni_se_dev->log_ctx, false, NULL, "%s:%s successful\n",
__func__, dev_name(cb_dev));
return 0;
}
/**
* geni_se_iommu_map_buf() - Map a single buffer into QUPv3 context bank
* @wrapper_dev: Pointer to the corresponding QUPv3 wrapper core.
* @iova: Pointer in which the mapped virtual address is stored.
* @buf: Address of the buffer that needs to be mapped.
* @size: Size of the buffer.
* @dir: Direction of the DMA transfer.
*
* This function is used to map an already allocated buffer into the
* QUPv3 context bank device space.
*
* Return: 0 on success, standard Linux error codes on failure/error.
*/
int geni_se_iommu_map_buf(struct device *wrapper_dev, dma_addr_t *iova,
void *buf, size_t size, enum dma_data_direction dir)
{
struct device *cb_dev;
struct geni_se_device *geni_se_dev;
if (!wrapper_dev || !iova || !buf || !size)
return -EINVAL;
*iova = DMA_ERROR_CODE;
geni_se_dev = dev_get_drvdata(wrapper_dev);
if (!geni_se_dev || !geni_se_dev->cb_dev)
return -ENODEV;
cb_dev = geni_se_dev->cb_dev;
*iova = dma_map_single(cb_dev, buf, size, dir);
if (dma_mapping_error(cb_dev, *iova))
return -EIO;
return 0;
}
EXPORT_SYMBOL(geni_se_iommu_map_buf);
/**
* geni_se_iommu_alloc_buf() - Allocate & map a single buffer into QUPv3
* context bank
* @wrapper_dev: Pointer to the corresponding QUPv3 wrapper core.
* @iova: Pointer in which the mapped virtual address is stored.
* @size: Size of the buffer.
*
* This function is used to allocate a buffer and map it into the
* QUPv3 context bank device space.
*
* Return: address of the buffer on success, NULL or ERR_PTR on
* failure/error.
*/
void *geni_se_iommu_alloc_buf(struct device *wrapper_dev, dma_addr_t *iova,
size_t size)
{
struct device *cb_dev;
struct geni_se_device *geni_se_dev;
void *buf = NULL;
if (!wrapper_dev || !iova || !size)
return ERR_PTR(-EINVAL);
*iova = DMA_ERROR_CODE;
geni_se_dev = dev_get_drvdata(wrapper_dev);
if (!geni_se_dev || !geni_se_dev->cb_dev)
return ERR_PTR(-ENODEV);
cb_dev = geni_se_dev->cb_dev;
buf = dma_alloc_coherent(cb_dev, size, iova, GFP_KERNEL);
if (!buf)
GENI_SE_ERR(geni_se_dev->log_ctx, false, NULL,
"%s: Failed dma_alloc_coherent\n", __func__);
return buf;
}
EXPORT_SYMBOL(geni_se_iommu_alloc_buf);
/**
* geni_se_iommu_unmap_buf() - Unmap a single buffer from QUPv3 context bank
* @wrapper_dev: Pointer to the corresponding QUPv3 wrapper core.
* @iova: Pointer in which the mapped virtual address is stored.
* @size: Size of the buffer.
* @dir: Direction of the DMA transfer.
*
* This function is used to unmap an already mapped buffer from the
* QUPv3 context bank device space.
*
* Return: 0 on success, standard Linux error codes on failure/error.
*/
int geni_se_iommu_unmap_buf(struct device *wrapper_dev, dma_addr_t *iova,
size_t size, enum dma_data_direction dir)
{
struct device *cb_dev;
struct geni_se_device *geni_se_dev;
if (!wrapper_dev || !iova || !size)
return -EINVAL;
geni_se_dev = dev_get_drvdata(wrapper_dev);
if (!geni_se_dev || !geni_se_dev->cb_dev)
return -ENODEV;
cb_dev = geni_se_dev->cb_dev;
dma_unmap_single(cb_dev, *iova, size, dir);
return 0;
}
EXPORT_SYMBOL(geni_se_iommu_unmap_buf);
/**
* geni_se_iommu_free_buf() - Unmap & free a single buffer from QUPv3
* context bank
* @wrapper_dev: Pointer to the corresponding QUPv3 wrapper core.
* @iova: Pointer in which the mapped virtual address is stored.
* @buf: Address of the buffer.
* @size: Size of the buffer.
*
* This function is used to unmap and free a buffer from the
* QUPv3 context bank device space.
*
* Return: 0 on success, standard Linux error codes on failure/error.
*/
int geni_se_iommu_free_buf(struct device *wrapper_dev, dma_addr_t *iova,
void *buf, size_t size)
{
struct device *cb_dev;
struct geni_se_device *geni_se_dev;
if (!wrapper_dev || !iova || !buf || !size)
return -EINVAL;
geni_se_dev = dev_get_drvdata(wrapper_dev);
if (!geni_se_dev || !geni_se_dev->cb_dev)
return -ENODEV;
cb_dev = geni_se_dev->cb_dev;
dma_free_coherent(cb_dev, size, buf, *iova);
return 0;
}
EXPORT_SYMBOL(geni_se_iommu_free_buf);
/**
* geni_se_dump_dbg_regs() - Print relevant registers that capture most
* accurately the state of an SE.
* @_dev: Pointer to the SE's device.
* @iomem: Base address of the SE's register space.
* @ipc: IPC log context handle.
*
* This function is used to print out all the registers that capture the state
* of an SE to help debug any errors.
*
* Return: None
*/
void geni_se_dump_dbg_regs(struct se_geni_rsc *rsc, void __iomem *base,
void *ipc)
{
u32 m_cmd0 = 0;
u32 m_irq_status = 0;
u32 geni_status = 0;
u32 geni_ios = 0;
u32 dma_rx_irq = 0;
u32 dma_tx_irq = 0;
u32 rx_fifo_status = 0;
u32 tx_fifo_status = 0;
u32 se_dma_dbg = 0;
u32 m_cmd_ctrl = 0;
u32 se_dma_rx_len = 0;
u32 se_dma_rx_len_in = 0;
u32 se_dma_tx_len = 0;
u32 se_dma_tx_len_in = 0;
struct geni_se_device *geni_se_dev;
if (!ipc)
return;
geni_se_dev = dev_get_drvdata(rsc->wrapper_dev);
if (unlikely(!geni_se_dev || !geni_se_dev->bus_bw))
return;
if (unlikely(list_empty(&rsc->ab_list) || list_empty(&rsc->ib_list))) {
GENI_SE_DBG(ipc, false, NULL, "%s: Clocks not on\n", __func__);
return;
}
m_cmd0 = geni_read_reg(base, SE_GENI_M_CMD0);
m_irq_status = geni_read_reg(base, SE_GENI_M_IRQ_STATUS);
geni_status = geni_read_reg(base, SE_GENI_STATUS);
geni_ios = geni_read_reg(base, SE_GENI_IOS);
dma_rx_irq = geni_read_reg(base, SE_DMA_TX_IRQ_STAT);
dma_tx_irq = geni_read_reg(base, SE_DMA_RX_IRQ_STAT);
rx_fifo_status = geni_read_reg(base, SE_GENI_RX_FIFO_STATUS);
tx_fifo_status = geni_read_reg(base, SE_GENI_TX_FIFO_STATUS);
se_dma_dbg = geni_read_reg(base, SE_DMA_DEBUG_REG0);
m_cmd_ctrl = geni_read_reg(base, SE_GENI_M_CMD_CTRL_REG);
se_dma_rx_len = geni_read_reg(base, SE_DMA_RX_LEN);
se_dma_rx_len_in = geni_read_reg(base, SE_DMA_RX_LEN_IN);
se_dma_tx_len = geni_read_reg(base, SE_DMA_TX_LEN);
se_dma_tx_len_in = geni_read_reg(base, SE_DMA_TX_LEN_IN);
GENI_SE_DBG(ipc, false, NULL,
"%s: m_cmd0:0x%x, m_irq_status:0x%x, geni_status:0x%x, geni_ios:0x%x\n",
__func__, m_cmd0, m_irq_status, geni_status, geni_ios);
GENI_SE_DBG(ipc, false, NULL,
"dma_rx_irq:0x%x, dma_tx_irq:0x%x, rx_fifo_sts:0x%x, tx_fifo_sts:0x%x\n"
, dma_rx_irq, dma_tx_irq, rx_fifo_status, tx_fifo_status);
GENI_SE_DBG(ipc, false, NULL,
"se_dma_dbg:0x%x, m_cmd_ctrl:0x%x, dma_rxlen:0x%x, dma_rxlen_in:0x%x\n",
se_dma_dbg, m_cmd_ctrl, se_dma_rx_len, se_dma_rx_len_in);
GENI_SE_DBG(ipc, false, NULL,
"dma_txlen:0x%x, dma_txlen_in:0x%x\n", se_dma_tx_len, se_dma_tx_len_in);
}
EXPORT_SYMBOL(geni_se_dump_dbg_regs);
static const struct of_device_id geni_se_dt_match[] = {
{ .compatible = "qcom,qupv3-geni-se", },
{ .compatible = "qcom,qupv3-geni-se-cb", },
{}
};
static struct msm_bus_scale_pdata *ab_ib_register(struct platform_device *pdev,
struct geni_se_device *host)
{
int rc = 0;
struct device *dev = &pdev->dev;
int i = 0, j, len;
bool mem_err = false;
const uint32_t *vec_arr = NULL;
struct msm_bus_scale_pdata *pdata = NULL;
struct msm_bus_paths *usecase = NULL;
vec_arr = of_get_property(dev->of_node,
"qcom,msm-bus,vectors-bus-ids", &len);
if (vec_arr == NULL) {
pr_err("Error: Vector array not found\n");
rc = 1;
goto out;
}
if (len != host->num_paths * sizeof(uint32_t) * 2) {
pr_err("Error: Length-error on getting vectors\n");
rc = 1;
goto out;
}
pdata = devm_kzalloc(dev, sizeof(struct msm_bus_scale_pdata),
GFP_KERNEL);
if (!pdata) {
mem_err = true;
goto out;
}
pdata->name = (char *)dev_name(host->dev);
pdata->num_usecases = 2;
pdata->active_only = 0;
usecase = devm_kzalloc(dev, (sizeof(struct msm_bus_paths) *
pdata->num_usecases), GFP_KERNEL);
if (!usecase) {
mem_err = true;
goto out;
}
for (i = 0; i < pdata->num_usecases; i++) {
usecase[i].num_paths = host->num_paths;
usecase[i].vectors = devm_kzalloc(dev, host->num_paths *
sizeof(struct msm_bus_vectors), GFP_KERNEL);
if (!usecase[i].vectors) {
mem_err = true;
pr_err("Error: Mem alloc failure in vectors\n");
goto out;
}
for (j = 0; j < host->num_paths; j++) {
int index = (j * 2);
usecase[i].vectors[j].src =
be32_to_cpu(vec_arr[index]);
usecase[i].vectors[j].dst =
be32_to_cpu(vec_arr[index + 1]);
usecase[i].vectors[j].ab = 0;
usecase[i].vectors[j].ib = 0;
}
}
pdata->usecase = usecase;
return pdata;
out:
if (mem_err) {
for ( ; i > 0; i--)
devm_kfree(dev, usecase[i-1].vectors);
devm_kfree(dev, usecase);
devm_kfree(dev, pdata);
}
return NULL;
}
static int geni_se_iommu_probe(struct device *dev)
{
struct geni_se_device *geni_se_dev;
if (unlikely(!dev->parent)) {
dev_err(dev, "%s no parent for this device\n", __func__);
return -EINVAL;
}
geni_se_dev = dev_get_drvdata(dev->parent);
if (unlikely(!geni_se_dev)) {
dev_err(dev, "%s geni_se_dev not found\n", __func__);
return -EINVAL;
}
geni_se_dev->cb_dev = dev;
GENI_SE_DBG(geni_se_dev->log_ctx, false, NULL,
"%s: Probe successful\n", __func__);
return 0;
}
static int geni_se_probe(struct platform_device *pdev)
{
int ret;
struct device *dev = &pdev->dev;
struct resource *res;
struct geni_se_device *geni_se_dev;
ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
if (ret) {
ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
if (ret) {
dev_err(&pdev->dev, "could not set DMA mask\n");
return ret;
}
}
if (of_device_is_compatible(dev->of_node, "qcom,qupv3-geni-se-cb"))
return geni_se_iommu_probe(dev);
geni_se_dev = devm_kzalloc(dev, sizeof(*geni_se_dev), GFP_KERNEL);
if (!geni_se_dev)
return -ENOMEM;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!res) {
dev_err(dev, "%s: Mandatory resource info not found\n",
__func__);
devm_kfree(dev, geni_se_dev);
return -EINVAL;
}
geni_se_dev->base = devm_ioremap_resource(dev, res);
if (IS_ERR_OR_NULL(geni_se_dev->base)) {
dev_err(dev, "%s: Error mapping the resource\n", __func__);
devm_kfree(dev, geni_se_dev);
return -EFAULT;
}
geni_se_dev->dev = dev;
ret = of_property_read_u32(dev->of_node, "qcom,msm-bus,num-paths",
&geni_se_dev->num_paths);
if (!ret) {
geni_se_dev->pdata = ab_ib_register(pdev, geni_se_dev);
if (geni_se_dev->pdata == NULL) {
dev_err(dev,
"%s: Error missing bus master and slave id\n",
__func__);
devm_iounmap(dev, geni_se_dev->base);
devm_kfree(dev, geni_se_dev);
}
}
else {
geni_se_dev->num_paths = 1;
ret = of_property_read_u32(dev->of_node, "qcom,bus-mas-id",
&geni_se_dev->bus_mas_id);
if (ret) {
dev_err(dev, "%s: Error missing bus master id\n",
__func__);
devm_iounmap(dev, geni_se_dev->base);
devm_kfree(dev, geni_se_dev);
}
ret = of_property_read_u32(dev->of_node, "qcom,bus-slv-id",
&geni_se_dev->bus_slv_id);
if (ret) {
dev_err(dev, "%s: Error missing bus slave id\n",
__func__);
devm_iounmap(dev, geni_se_dev->base);
devm_kfree(dev, geni_se_dev);
}
}
geni_se_dev->iommu_s1_bypass = of_property_read_bool(dev->of_node,
"qcom,iommu-s1-bypass");
geni_se_dev->bus_bw_set = default_bus_bw_set;
geni_se_dev->bus_bw_set_size =
ARRAY_SIZE(default_bus_bw_set);
if (geni_se_dev->num_paths == 2) {
geni_se_dev->bus_bw_set_noc = default_bus_bw_set;
geni_se_dev->bus_bw_set_size_noc =
ARRAY_SIZE(default_bus_bw_set);
}
mutex_init(&geni_se_dev->iommu_lock);
INIT_LIST_HEAD(&geni_se_dev->ab_list_head);
INIT_LIST_HEAD(&geni_se_dev->ib_list_head);
if (geni_se_dev->num_paths == 2) {
INIT_LIST_HEAD(&geni_se_dev->ab_list_head_noc);
INIT_LIST_HEAD(&geni_se_dev->ib_list_head_noc);
}
mutex_init(&geni_se_dev->geni_dev_lock);
geni_se_dev->log_ctx = ipc_log_context_create(NUM_LOG_PAGES,
dev_name(geni_se_dev->dev), 0);
if (!geni_se_dev->log_ctx)
dev_err(dev, "%s Failed to allocate log context\n", __func__);
dev_set_drvdata(dev, geni_se_dev);
ret = of_platform_populate(dev->of_node, geni_se_dt_match, NULL, dev);
if (ret) {
dev_err(dev, "%s: Error populating children\n", __func__);
devm_iounmap(dev, geni_se_dev->base);
devm_kfree(dev, geni_se_dev);
}
GENI_SE_DBG(geni_se_dev->log_ctx, false, NULL,
"%s: Probe successful\n", __func__);
return ret;
}
static int geni_se_remove(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct geni_se_device *geni_se_dev = dev_get_drvdata(dev);
if (likely(!IS_ERR_OR_NULL(geni_se_dev->iommu_map))) {
__depr_arm_iommu_detach_device(geni_se_dev->cb_dev);
__depr_arm_iommu_release_mapping(geni_se_dev->iommu_map);
}
ipc_log_context_destroy(geni_se_dev->log_ctx);
devm_iounmap(dev, geni_se_dev->base);
devm_kfree(dev, geni_se_dev);
return 0;
}
static struct platform_driver geni_se_driver = {
.driver = {
.name = "qupv3_geni_se",
.of_match_table = geni_se_dt_match,
},
.probe = geni_se_probe,
.remove = geni_se_remove,
};
static int __init geni_se_driver_init(void)
{
return platform_driver_register(&geni_se_driver);
}
arch_initcall(geni_se_driver_init);
static void __exit geni_se_driver_exit(void)
{
platform_driver_unregister(&geni_se_driver);
}
module_exit(geni_se_driver_exit);
MODULE_DESCRIPTION("GENI Serial Engine Driver");
MODULE_LICENSE("GPL v2");