| /* |
| * S390 kdump implementation |
| * |
| * Copyright IBM Corp. 2011 |
| * Author(s): Michael Holzheu <holzheu@linux.vnet.ibm.com> |
| */ |
| |
| #include <linux/crash_dump.h> |
| #include <asm/lowcore.h> |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/gfp.h> |
| #include <linux/slab.h> |
| #include <linux/bootmem.h> |
| #include <linux/elf.h> |
| #include <linux/memblock.h> |
| #include <asm/os_info.h> |
| #include <asm/elf.h> |
| #include <asm/ipl.h> |
| #include <asm/sclp.h> |
| |
| #define PTR_ADD(x, y) (((char *) (x)) + ((unsigned long) (y))) |
| #define PTR_SUB(x, y) (((char *) (x)) - ((unsigned long) (y))) |
| #define PTR_DIFF(x, y) ((unsigned long)(((char *) (x)) - ((unsigned long) (y)))) |
| |
| static struct memblock_region oldmem_region; |
| |
| static struct memblock_type oldmem_type = { |
| .cnt = 1, |
| .max = 1, |
| .total_size = 0, |
| .regions = &oldmem_region, |
| }; |
| |
| #define for_each_dump_mem_range(i, nid, p_start, p_end, p_nid) \ |
| for (i = 0, __next_mem_range(&i, nid, &memblock.physmem, \ |
| &oldmem_type, p_start, \ |
| p_end, p_nid); \ |
| i != (u64)ULLONG_MAX; \ |
| __next_mem_range(&i, nid, &memblock.physmem, \ |
| &oldmem_type, \ |
| p_start, p_end, p_nid)) |
| |
| struct dump_save_areas dump_save_areas; |
| |
| /* |
| * Allocate and add a save area for a CPU |
| */ |
| struct save_area_ext *dump_save_area_create(int cpu) |
| { |
| struct save_area_ext **save_areas, *save_area; |
| |
| save_area = kmalloc(sizeof(*save_area), GFP_KERNEL); |
| if (!save_area) |
| return NULL; |
| if (cpu + 1 > dump_save_areas.count) { |
| dump_save_areas.count = cpu + 1; |
| save_areas = krealloc(dump_save_areas.areas, |
| dump_save_areas.count * sizeof(void *), |
| GFP_KERNEL | __GFP_ZERO); |
| if (!save_areas) { |
| kfree(save_area); |
| return NULL; |
| } |
| dump_save_areas.areas = save_areas; |
| } |
| dump_save_areas.areas[cpu] = save_area; |
| return save_area; |
| } |
| |
| /* |
| * Return physical address for virtual address |
| */ |
| static inline void *load_real_addr(void *addr) |
| { |
| unsigned long real_addr; |
| |
| asm volatile( |
| " lra %0,0(%1)\n" |
| " jz 0f\n" |
| " la %0,0\n" |
| "0:" |
| : "=a" (real_addr) : "a" (addr) : "cc"); |
| return (void *)real_addr; |
| } |
| |
| /* |
| * Copy real to virtual or real memory |
| */ |
| static int copy_from_realmem(void *dest, void *src, size_t count) |
| { |
| unsigned long size; |
| |
| if (!count) |
| return 0; |
| if (!is_vmalloc_or_module_addr(dest)) |
| return memcpy_real(dest, src, count); |
| do { |
| size = min(count, PAGE_SIZE - (__pa(dest) & ~PAGE_MASK)); |
| if (memcpy_real(load_real_addr(dest), src, size)) |
| return -EFAULT; |
| count -= size; |
| dest += size; |
| src += size; |
| } while (count); |
| return 0; |
| } |
| |
| /* |
| * Pointer to ELF header in new kernel |
| */ |
| static void *elfcorehdr_newmem; |
| |
| /* |
| * Copy one page from zfcpdump "oldmem" |
| * |
| * For pages below HSA size memory from the HSA is copied. Otherwise |
| * real memory copy is used. |
| */ |
| static ssize_t copy_oldmem_page_zfcpdump(char *buf, size_t csize, |
| unsigned long src, int userbuf) |
| { |
| int rc; |
| |
| if (src < sclp.hsa_size) { |
| rc = memcpy_hsa(buf, src, csize, userbuf); |
| } else { |
| if (userbuf) |
| rc = copy_to_user_real((void __force __user *) buf, |
| (void *) src, csize); |
| else |
| rc = memcpy_real(buf, (void *) src, csize); |
| } |
| return rc ? rc : csize; |
| } |
| |
| /* |
| * Copy one page from kdump "oldmem" |
| * |
| * For the kdump reserved memory this functions performs a swap operation: |
| * - [OLDMEM_BASE - OLDMEM_BASE + OLDMEM_SIZE] is mapped to [0 - OLDMEM_SIZE]. |
| * - [0 - OLDMEM_SIZE] is mapped to [OLDMEM_BASE - OLDMEM_BASE + OLDMEM_SIZE] |
| */ |
| static ssize_t copy_oldmem_page_kdump(char *buf, size_t csize, |
| unsigned long src, int userbuf) |
| |
| { |
| int rc; |
| |
| if (src < OLDMEM_SIZE) |
| src += OLDMEM_BASE; |
| else if (src > OLDMEM_BASE && |
| src < OLDMEM_BASE + OLDMEM_SIZE) |
| src -= OLDMEM_BASE; |
| if (userbuf) |
| rc = copy_to_user_real((void __force __user *) buf, |
| (void *) src, csize); |
| else |
| rc = copy_from_realmem(buf, (void *) src, csize); |
| return (rc == 0) ? rc : csize; |
| } |
| |
| /* |
| * Copy one page from "oldmem" |
| */ |
| ssize_t copy_oldmem_page(unsigned long pfn, char *buf, size_t csize, |
| unsigned long offset, int userbuf) |
| { |
| unsigned long src; |
| |
| if (!csize) |
| return 0; |
| src = (pfn << PAGE_SHIFT) + offset; |
| if (OLDMEM_BASE) |
| return copy_oldmem_page_kdump(buf, csize, src, userbuf); |
| else |
| return copy_oldmem_page_zfcpdump(buf, csize, src, userbuf); |
| } |
| |
| /* |
| * Remap "oldmem" for kdump |
| * |
| * For the kdump reserved memory this functions performs a swap operation: |
| * [0 - OLDMEM_SIZE] is mapped to [OLDMEM_BASE - OLDMEM_BASE + OLDMEM_SIZE] |
| */ |
| static int remap_oldmem_pfn_range_kdump(struct vm_area_struct *vma, |
| unsigned long from, unsigned long pfn, |
| unsigned long size, pgprot_t prot) |
| { |
| unsigned long size_old; |
| int rc; |
| |
| if (pfn < OLDMEM_SIZE >> PAGE_SHIFT) { |
| size_old = min(size, OLDMEM_SIZE - (pfn << PAGE_SHIFT)); |
| rc = remap_pfn_range(vma, from, |
| pfn + (OLDMEM_BASE >> PAGE_SHIFT), |
| size_old, prot); |
| if (rc || size == size_old) |
| return rc; |
| size -= size_old; |
| from += size_old; |
| pfn += size_old >> PAGE_SHIFT; |
| } |
| return remap_pfn_range(vma, from, pfn, size, prot); |
| } |
| |
| /* |
| * Remap "oldmem" for zfcpdump |
| * |
| * We only map available memory above HSA size. Memory below HSA size |
| * is read on demand using the copy_oldmem_page() function. |
| */ |
| static int remap_oldmem_pfn_range_zfcpdump(struct vm_area_struct *vma, |
| unsigned long from, |
| unsigned long pfn, |
| unsigned long size, pgprot_t prot) |
| { |
| unsigned long hsa_end = sclp.hsa_size; |
| unsigned long size_hsa; |
| |
| if (pfn < hsa_end >> PAGE_SHIFT) { |
| size_hsa = min(size, hsa_end - (pfn << PAGE_SHIFT)); |
| if (size == size_hsa) |
| return 0; |
| size -= size_hsa; |
| from += size_hsa; |
| pfn += size_hsa >> PAGE_SHIFT; |
| } |
| return remap_pfn_range(vma, from, pfn, size, prot); |
| } |
| |
| /* |
| * Remap "oldmem" for kdump or zfcpdump |
| */ |
| int remap_oldmem_pfn_range(struct vm_area_struct *vma, unsigned long from, |
| unsigned long pfn, unsigned long size, pgprot_t prot) |
| { |
| if (OLDMEM_BASE) |
| return remap_oldmem_pfn_range_kdump(vma, from, pfn, size, prot); |
| else |
| return remap_oldmem_pfn_range_zfcpdump(vma, from, pfn, size, |
| prot); |
| } |
| |
| /* |
| * Copy memory from old kernel |
| */ |
| int copy_from_oldmem(void *dest, void *src, size_t count) |
| { |
| unsigned long copied = 0; |
| int rc; |
| |
| if (OLDMEM_BASE) { |
| if ((unsigned long) src < OLDMEM_SIZE) { |
| copied = min(count, OLDMEM_SIZE - (unsigned long) src); |
| rc = copy_from_realmem(dest, src + OLDMEM_BASE, copied); |
| if (rc) |
| return rc; |
| } |
| } else { |
| unsigned long hsa_end = sclp.hsa_size; |
| if ((unsigned long) src < hsa_end) { |
| copied = min(count, hsa_end - (unsigned long) src); |
| rc = memcpy_hsa(dest, (unsigned long) src, copied, 0); |
| if (rc) |
| return rc; |
| } |
| } |
| return copy_from_realmem(dest + copied, src + copied, count - copied); |
| } |
| |
| /* |
| * Alloc memory and panic in case of ENOMEM |
| */ |
| static void *kzalloc_panic(int len) |
| { |
| void *rc; |
| |
| rc = kzalloc(len, GFP_KERNEL); |
| if (!rc) |
| panic("s390 kdump kzalloc (%d) failed", len); |
| return rc; |
| } |
| |
| /* |
| * Initialize ELF note |
| */ |
| static void *nt_init(void *buf, Elf64_Word type, void *desc, int d_len, |
| const char *name) |
| { |
| Elf64_Nhdr *note; |
| u64 len; |
| |
| note = (Elf64_Nhdr *)buf; |
| note->n_namesz = strlen(name) + 1; |
| note->n_descsz = d_len; |
| note->n_type = type; |
| len = sizeof(Elf64_Nhdr); |
| |
| memcpy(buf + len, name, note->n_namesz); |
| len = roundup(len + note->n_namesz, 4); |
| |
| memcpy(buf + len, desc, note->n_descsz); |
| len = roundup(len + note->n_descsz, 4); |
| |
| return PTR_ADD(buf, len); |
| } |
| |
| /* |
| * Initialize prstatus note |
| */ |
| static void *nt_prstatus(void *ptr, struct save_area *sa) |
| { |
| struct elf_prstatus nt_prstatus; |
| static int cpu_nr = 1; |
| |
| memset(&nt_prstatus, 0, sizeof(nt_prstatus)); |
| memcpy(&nt_prstatus.pr_reg.gprs, sa->gp_regs, sizeof(sa->gp_regs)); |
| memcpy(&nt_prstatus.pr_reg.psw, sa->psw, sizeof(sa->psw)); |
| memcpy(&nt_prstatus.pr_reg.acrs, sa->acc_regs, sizeof(sa->acc_regs)); |
| nt_prstatus.pr_pid = cpu_nr; |
| cpu_nr++; |
| |
| return nt_init(ptr, NT_PRSTATUS, &nt_prstatus, sizeof(nt_prstatus), |
| "CORE"); |
| } |
| |
| /* |
| * Initialize fpregset (floating point) note |
| */ |
| static void *nt_fpregset(void *ptr, struct save_area *sa) |
| { |
| elf_fpregset_t nt_fpregset; |
| |
| memset(&nt_fpregset, 0, sizeof(nt_fpregset)); |
| memcpy(&nt_fpregset.fpc, &sa->fp_ctrl_reg, sizeof(sa->fp_ctrl_reg)); |
| memcpy(&nt_fpregset.fprs, &sa->fp_regs, sizeof(sa->fp_regs)); |
| |
| return nt_init(ptr, NT_PRFPREG, &nt_fpregset, sizeof(nt_fpregset), |
| "CORE"); |
| } |
| |
| /* |
| * Initialize timer note |
| */ |
| static void *nt_s390_timer(void *ptr, struct save_area *sa) |
| { |
| return nt_init(ptr, NT_S390_TIMER, &sa->timer, sizeof(sa->timer), |
| KEXEC_CORE_NOTE_NAME); |
| } |
| |
| /* |
| * Initialize TOD clock comparator note |
| */ |
| static void *nt_s390_tod_cmp(void *ptr, struct save_area *sa) |
| { |
| return nt_init(ptr, NT_S390_TODCMP, &sa->clk_cmp, |
| sizeof(sa->clk_cmp), KEXEC_CORE_NOTE_NAME); |
| } |
| |
| /* |
| * Initialize TOD programmable register note |
| */ |
| static void *nt_s390_tod_preg(void *ptr, struct save_area *sa) |
| { |
| return nt_init(ptr, NT_S390_TODPREG, &sa->tod_reg, |
| sizeof(sa->tod_reg), KEXEC_CORE_NOTE_NAME); |
| } |
| |
| /* |
| * Initialize control register note |
| */ |
| static void *nt_s390_ctrs(void *ptr, struct save_area *sa) |
| { |
| return nt_init(ptr, NT_S390_CTRS, &sa->ctrl_regs, |
| sizeof(sa->ctrl_regs), KEXEC_CORE_NOTE_NAME); |
| } |
| |
| /* |
| * Initialize prefix register note |
| */ |
| static void *nt_s390_prefix(void *ptr, struct save_area *sa) |
| { |
| return nt_init(ptr, NT_S390_PREFIX, &sa->pref_reg, |
| sizeof(sa->pref_reg), KEXEC_CORE_NOTE_NAME); |
| } |
| |
| /* |
| * Initialize vxrs high note (full 128 bit VX registers 16-31) |
| */ |
| static void *nt_s390_vx_high(void *ptr, __vector128 *vx_regs) |
| { |
| return nt_init(ptr, NT_S390_VXRS_HIGH, &vx_regs[16], |
| 16 * sizeof(__vector128), KEXEC_CORE_NOTE_NAME); |
| } |
| |
| /* |
| * Initialize vxrs low note (lower halves of VX registers 0-15) |
| */ |
| static void *nt_s390_vx_low(void *ptr, __vector128 *vx_regs) |
| { |
| Elf64_Nhdr *note; |
| u64 len; |
| int i; |
| |
| note = (Elf64_Nhdr *)ptr; |
| note->n_namesz = strlen(KEXEC_CORE_NOTE_NAME) + 1; |
| note->n_descsz = 16 * 8; |
| note->n_type = NT_S390_VXRS_LOW; |
| len = sizeof(Elf64_Nhdr); |
| |
| memcpy(ptr + len, KEXEC_CORE_NOTE_NAME, note->n_namesz); |
| len = roundup(len + note->n_namesz, 4); |
| |
| ptr += len; |
| /* Copy lower halves of SIMD registers 0-15 */ |
| for (i = 0; i < 16; i++) { |
| memcpy(ptr, &vx_regs[i], 8); |
| ptr += 8; |
| } |
| return ptr; |
| } |
| |
| /* |
| * Fill ELF notes for one CPU with save area registers |
| */ |
| void *fill_cpu_elf_notes(void *ptr, struct save_area *sa, __vector128 *vx_regs) |
| { |
| ptr = nt_prstatus(ptr, sa); |
| ptr = nt_fpregset(ptr, sa); |
| ptr = nt_s390_timer(ptr, sa); |
| ptr = nt_s390_tod_cmp(ptr, sa); |
| ptr = nt_s390_tod_preg(ptr, sa); |
| ptr = nt_s390_ctrs(ptr, sa); |
| ptr = nt_s390_prefix(ptr, sa); |
| if (MACHINE_HAS_VX && vx_regs) { |
| ptr = nt_s390_vx_low(ptr, vx_regs); |
| ptr = nt_s390_vx_high(ptr, vx_regs); |
| } |
| return ptr; |
| } |
| |
| /* |
| * Initialize prpsinfo note (new kernel) |
| */ |
| static void *nt_prpsinfo(void *ptr) |
| { |
| struct elf_prpsinfo prpsinfo; |
| |
| memset(&prpsinfo, 0, sizeof(prpsinfo)); |
| prpsinfo.pr_sname = 'R'; |
| strcpy(prpsinfo.pr_fname, "vmlinux"); |
| return nt_init(ptr, NT_PRPSINFO, &prpsinfo, sizeof(prpsinfo), |
| KEXEC_CORE_NOTE_NAME); |
| } |
| |
| /* |
| * Get vmcoreinfo using lowcore->vmcore_info (new kernel) |
| */ |
| static void *get_vmcoreinfo_old(unsigned long *size) |
| { |
| char nt_name[11], *vmcoreinfo; |
| Elf64_Nhdr note; |
| void *addr; |
| |
| if (copy_from_oldmem(&addr, &S390_lowcore.vmcore_info, sizeof(addr))) |
| return NULL; |
| memset(nt_name, 0, sizeof(nt_name)); |
| if (copy_from_oldmem(¬e, addr, sizeof(note))) |
| return NULL; |
| if (copy_from_oldmem(nt_name, addr + sizeof(note), sizeof(nt_name) - 1)) |
| return NULL; |
| if (strcmp(nt_name, "VMCOREINFO") != 0) |
| return NULL; |
| vmcoreinfo = kzalloc_panic(note.n_descsz); |
| if (copy_from_oldmem(vmcoreinfo, addr + 24, note.n_descsz)) |
| return NULL; |
| *size = note.n_descsz; |
| return vmcoreinfo; |
| } |
| |
| /* |
| * Initialize vmcoreinfo note (new kernel) |
| */ |
| static void *nt_vmcoreinfo(void *ptr) |
| { |
| unsigned long size; |
| void *vmcoreinfo; |
| |
| vmcoreinfo = os_info_old_entry(OS_INFO_VMCOREINFO, &size); |
| if (!vmcoreinfo) |
| vmcoreinfo = get_vmcoreinfo_old(&size); |
| if (!vmcoreinfo) |
| return ptr; |
| return nt_init(ptr, 0, vmcoreinfo, size, "VMCOREINFO"); |
| } |
| |
| /* |
| * Initialize ELF header (new kernel) |
| */ |
| static void *ehdr_init(Elf64_Ehdr *ehdr, int mem_chunk_cnt) |
| { |
| memset(ehdr, 0, sizeof(*ehdr)); |
| memcpy(ehdr->e_ident, ELFMAG, SELFMAG); |
| ehdr->e_ident[EI_CLASS] = ELFCLASS64; |
| ehdr->e_ident[EI_DATA] = ELFDATA2MSB; |
| ehdr->e_ident[EI_VERSION] = EV_CURRENT; |
| memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD); |
| ehdr->e_type = ET_CORE; |
| ehdr->e_machine = EM_S390; |
| ehdr->e_version = EV_CURRENT; |
| ehdr->e_phoff = sizeof(Elf64_Ehdr); |
| ehdr->e_ehsize = sizeof(Elf64_Ehdr); |
| ehdr->e_phentsize = sizeof(Elf64_Phdr); |
| ehdr->e_phnum = mem_chunk_cnt + 1; |
| return ehdr + 1; |
| } |
| |
| /* |
| * Return CPU count for ELF header (new kernel) |
| */ |
| static int get_cpu_cnt(void) |
| { |
| int i, cpus = 0; |
| |
| for (i = 0; i < dump_save_areas.count; i++) { |
| if (dump_save_areas.areas[i]->sa.pref_reg == 0) |
| continue; |
| cpus++; |
| } |
| return cpus; |
| } |
| |
| /* |
| * Return memory chunk count for ELF header (new kernel) |
| */ |
| static int get_mem_chunk_cnt(void) |
| { |
| int cnt = 0; |
| u64 idx; |
| |
| for_each_dump_mem_range(idx, NUMA_NO_NODE, NULL, NULL, NULL) |
| cnt++; |
| return cnt; |
| } |
| |
| /* |
| * Initialize ELF loads (new kernel) |
| */ |
| static void loads_init(Elf64_Phdr *phdr, u64 loads_offset) |
| { |
| phys_addr_t start, end; |
| u64 idx; |
| |
| for_each_dump_mem_range(idx, NUMA_NO_NODE, &start, &end, NULL) { |
| phdr->p_filesz = end - start; |
| phdr->p_type = PT_LOAD; |
| phdr->p_offset = start; |
| phdr->p_vaddr = start; |
| phdr->p_paddr = start; |
| phdr->p_memsz = end - start; |
| phdr->p_flags = PF_R | PF_W | PF_X; |
| phdr->p_align = PAGE_SIZE; |
| phdr++; |
| } |
| } |
| |
| /* |
| * Initialize notes (new kernel) |
| */ |
| static void *notes_init(Elf64_Phdr *phdr, void *ptr, u64 notes_offset) |
| { |
| struct save_area_ext *sa_ext; |
| void *ptr_start = ptr; |
| int i; |
| |
| ptr = nt_prpsinfo(ptr); |
| |
| for (i = 0; i < dump_save_areas.count; i++) { |
| sa_ext = dump_save_areas.areas[i]; |
| if (sa_ext->sa.pref_reg == 0) |
| continue; |
| ptr = fill_cpu_elf_notes(ptr, &sa_ext->sa, sa_ext->vx_regs); |
| } |
| ptr = nt_vmcoreinfo(ptr); |
| memset(phdr, 0, sizeof(*phdr)); |
| phdr->p_type = PT_NOTE; |
| phdr->p_offset = notes_offset; |
| phdr->p_filesz = (unsigned long) PTR_SUB(ptr, ptr_start); |
| phdr->p_memsz = phdr->p_filesz; |
| return ptr; |
| } |
| |
| /* |
| * Create ELF core header (new kernel) |
| */ |
| int elfcorehdr_alloc(unsigned long long *addr, unsigned long long *size) |
| { |
| Elf64_Phdr *phdr_notes, *phdr_loads; |
| int mem_chunk_cnt; |
| void *ptr, *hdr; |
| u32 alloc_size; |
| u64 hdr_off; |
| |
| /* If we are not in kdump or zfcpdump mode return */ |
| if (!OLDMEM_BASE && ipl_info.type != IPL_TYPE_FCP_DUMP) |
| return 0; |
| /* If elfcorehdr= has been passed via cmdline, we use that one */ |
| if (elfcorehdr_addr != ELFCORE_ADDR_MAX) |
| return 0; |
| /* If we cannot get HSA size for zfcpdump return error */ |
| if (ipl_info.type == IPL_TYPE_FCP_DUMP && !sclp.hsa_size) |
| return -ENODEV; |
| |
| /* For kdump, exclude previous crashkernel memory */ |
| if (OLDMEM_BASE) { |
| oldmem_region.base = OLDMEM_BASE; |
| oldmem_region.size = OLDMEM_SIZE; |
| oldmem_type.total_size = OLDMEM_SIZE; |
| } |
| |
| mem_chunk_cnt = get_mem_chunk_cnt(); |
| |
| alloc_size = 0x1000 + get_cpu_cnt() * 0x4a0 + |
| mem_chunk_cnt * sizeof(Elf64_Phdr); |
| hdr = kzalloc_panic(alloc_size); |
| /* Init elf header */ |
| ptr = ehdr_init(hdr, mem_chunk_cnt); |
| /* Init program headers */ |
| phdr_notes = ptr; |
| ptr = PTR_ADD(ptr, sizeof(Elf64_Phdr)); |
| phdr_loads = ptr; |
| ptr = PTR_ADD(ptr, sizeof(Elf64_Phdr) * mem_chunk_cnt); |
| /* Init notes */ |
| hdr_off = PTR_DIFF(ptr, hdr); |
| ptr = notes_init(phdr_notes, ptr, ((unsigned long) hdr) + hdr_off); |
| /* Init loads */ |
| hdr_off = PTR_DIFF(ptr, hdr); |
| loads_init(phdr_loads, hdr_off); |
| *addr = (unsigned long long) hdr; |
| elfcorehdr_newmem = hdr; |
| *size = (unsigned long long) hdr_off; |
| BUG_ON(elfcorehdr_size > alloc_size); |
| return 0; |
| } |
| |
| /* |
| * Free ELF core header (new kernel) |
| */ |
| void elfcorehdr_free(unsigned long long addr) |
| { |
| if (!elfcorehdr_newmem) |
| return; |
| kfree((void *)(unsigned long)addr); |
| } |
| |
| /* |
| * Read from ELF header |
| */ |
| ssize_t elfcorehdr_read(char *buf, size_t count, u64 *ppos) |
| { |
| void *src = (void *)(unsigned long)*ppos; |
| |
| src = elfcorehdr_newmem ? src : src - OLDMEM_BASE; |
| memcpy(buf, src, count); |
| *ppos += count; |
| return count; |
| } |
| |
| /* |
| * Read from ELF notes data |
| */ |
| ssize_t elfcorehdr_read_notes(char *buf, size_t count, u64 *ppos) |
| { |
| void *src = (void *)(unsigned long)*ppos; |
| int rc; |
| |
| if (elfcorehdr_newmem) { |
| memcpy(buf, src, count); |
| } else { |
| rc = copy_from_oldmem(buf, src, count); |
| if (rc) |
| return rc; |
| } |
| *ppos += count; |
| return count; |
| } |