| /* |
| * srmmu.c: SRMMU specific routines for memory management. |
| * |
| * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu) |
| * Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com) |
| * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be) |
| * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz) |
| * Copyright (C) 1999,2000 Anton Blanchard (anton@samba.org) |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/mm.h> |
| #include <linux/slab.h> |
| #include <linux/vmalloc.h> |
| #include <linux/pagemap.h> |
| #include <linux/init.h> |
| #include <linux/spinlock.h> |
| #include <linux/bootmem.h> |
| #include <linux/fs.h> |
| #include <linux/seq_file.h> |
| #include <linux/kdebug.h> |
| |
| #include <asm/bitext.h> |
| #include <asm/page.h> |
| #include <asm/pgalloc.h> |
| #include <asm/pgtable.h> |
| #include <asm/io.h> |
| #include <asm/vaddrs.h> |
| #include <asm/traps.h> |
| #include <asm/smp.h> |
| #include <asm/mbus.h> |
| #include <asm/cache.h> |
| #include <asm/oplib.h> |
| #include <asm/sbus.h> |
| #include <asm/asi.h> |
| #include <asm/msi.h> |
| #include <asm/a.out.h> |
| #include <asm/mmu_context.h> |
| #include <asm/io-unit.h> |
| #include <asm/cacheflush.h> |
| #include <asm/tlbflush.h> |
| |
| /* Now the cpu specific definitions. */ |
| #include <asm/viking.h> |
| #include <asm/mxcc.h> |
| #include <asm/ross.h> |
| #include <asm/tsunami.h> |
| #include <asm/swift.h> |
| #include <asm/turbosparc.h> |
| |
| #include <asm/btfixup.h> |
| |
| enum mbus_module srmmu_modtype; |
| unsigned int hwbug_bitmask; |
| int vac_cache_size; |
| int vac_line_size; |
| |
| extern struct resource sparc_iomap; |
| |
| extern unsigned long last_valid_pfn; |
| |
| extern unsigned long page_kernel; |
| |
| pgd_t *srmmu_swapper_pg_dir; |
| |
| #ifdef CONFIG_SMP |
| #define FLUSH_BEGIN(mm) |
| #define FLUSH_END |
| #else |
| #define FLUSH_BEGIN(mm) if((mm)->context != NO_CONTEXT) { |
| #define FLUSH_END } |
| #endif |
| |
| BTFIXUPDEF_CALL(void, flush_page_for_dma, unsigned long) |
| #define flush_page_for_dma(page) BTFIXUP_CALL(flush_page_for_dma)(page) |
| |
| int flush_page_for_dma_global = 1; |
| |
| #ifdef CONFIG_SMP |
| BTFIXUPDEF_CALL(void, local_flush_page_for_dma, unsigned long) |
| #define local_flush_page_for_dma(page) BTFIXUP_CALL(local_flush_page_for_dma)(page) |
| #endif |
| |
| char *srmmu_name; |
| |
| ctxd_t *srmmu_ctx_table_phys; |
| ctxd_t *srmmu_context_table; |
| |
| int viking_mxcc_present; |
| static DEFINE_SPINLOCK(srmmu_context_spinlock); |
| |
| int is_hypersparc; |
| |
| /* |
| * In general all page table modifications should use the V8 atomic |
| * swap instruction. This insures the mmu and the cpu are in sync |
| * with respect to ref/mod bits in the page tables. |
| */ |
| static inline unsigned long srmmu_swap(unsigned long *addr, unsigned long value) |
| { |
| __asm__ __volatile__("swap [%2], %0" : "=&r" (value) : "0" (value), "r" (addr)); |
| return value; |
| } |
| |
| static inline void srmmu_set_pte(pte_t *ptep, pte_t pteval) |
| { |
| srmmu_swap((unsigned long *)ptep, pte_val(pteval)); |
| } |
| |
| /* The very generic SRMMU page table operations. */ |
| static inline int srmmu_device_memory(unsigned long x) |
| { |
| return ((x & 0xF0000000) != 0); |
| } |
| |
| int srmmu_cache_pagetables; |
| |
| /* these will be initialized in srmmu_nocache_calcsize() */ |
| unsigned long srmmu_nocache_size; |
| unsigned long srmmu_nocache_end; |
| |
| /* 1 bit <=> 256 bytes of nocache <=> 64 PTEs */ |
| #define SRMMU_NOCACHE_BITMAP_SHIFT (PAGE_SHIFT - 4) |
| |
| /* The context table is a nocache user with the biggest alignment needs. */ |
| #define SRMMU_NOCACHE_ALIGN_MAX (sizeof(ctxd_t)*SRMMU_MAX_CONTEXTS) |
| |
| void *srmmu_nocache_pool; |
| void *srmmu_nocache_bitmap; |
| static struct bit_map srmmu_nocache_map; |
| |
| static unsigned long srmmu_pte_pfn(pte_t pte) |
| { |
| if (srmmu_device_memory(pte_val(pte))) { |
| /* Just return something that will cause |
| * pfn_valid() to return false. This makes |
| * copy_one_pte() to just directly copy to |
| * PTE over. |
| */ |
| return ~0UL; |
| } |
| return (pte_val(pte) & SRMMU_PTE_PMASK) >> (PAGE_SHIFT-4); |
| } |
| |
| static struct page *srmmu_pmd_page(pmd_t pmd) |
| { |
| |
| if (srmmu_device_memory(pmd_val(pmd))) |
| BUG(); |
| return pfn_to_page((pmd_val(pmd) & SRMMU_PTD_PMASK) >> (PAGE_SHIFT-4)); |
| } |
| |
| static inline unsigned long srmmu_pgd_page(pgd_t pgd) |
| { return srmmu_device_memory(pgd_val(pgd))?~0:(unsigned long)__nocache_va((pgd_val(pgd) & SRMMU_PTD_PMASK) << 4); } |
| |
| |
| static inline int srmmu_pte_none(pte_t pte) |
| { return !(pte_val(pte) & 0xFFFFFFF); } |
| |
| static inline int srmmu_pte_present(pte_t pte) |
| { return ((pte_val(pte) & SRMMU_ET_MASK) == SRMMU_ET_PTE); } |
| |
| static inline void srmmu_pte_clear(pte_t *ptep) |
| { srmmu_set_pte(ptep, __pte(0)); } |
| |
| static inline int srmmu_pmd_none(pmd_t pmd) |
| { return !(pmd_val(pmd) & 0xFFFFFFF); } |
| |
| static inline int srmmu_pmd_bad(pmd_t pmd) |
| { return (pmd_val(pmd) & SRMMU_ET_MASK) != SRMMU_ET_PTD; } |
| |
| static inline int srmmu_pmd_present(pmd_t pmd) |
| { return ((pmd_val(pmd) & SRMMU_ET_MASK) == SRMMU_ET_PTD); } |
| |
| static inline void srmmu_pmd_clear(pmd_t *pmdp) { |
| int i; |
| for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) |
| srmmu_set_pte((pte_t *)&pmdp->pmdv[i], __pte(0)); |
| } |
| |
| static inline int srmmu_pgd_none(pgd_t pgd) |
| { return !(pgd_val(pgd) & 0xFFFFFFF); } |
| |
| static inline int srmmu_pgd_bad(pgd_t pgd) |
| { return (pgd_val(pgd) & SRMMU_ET_MASK) != SRMMU_ET_PTD; } |
| |
| static inline int srmmu_pgd_present(pgd_t pgd) |
| { return ((pgd_val(pgd) & SRMMU_ET_MASK) == SRMMU_ET_PTD); } |
| |
| static inline void srmmu_pgd_clear(pgd_t * pgdp) |
| { srmmu_set_pte((pte_t *)pgdp, __pte(0)); } |
| |
| static inline pte_t srmmu_pte_wrprotect(pte_t pte) |
| { return __pte(pte_val(pte) & ~SRMMU_WRITE);} |
| |
| static inline pte_t srmmu_pte_mkclean(pte_t pte) |
| { return __pte(pte_val(pte) & ~SRMMU_DIRTY);} |
| |
| static inline pte_t srmmu_pte_mkold(pte_t pte) |
| { return __pte(pte_val(pte) & ~SRMMU_REF);} |
| |
| static inline pte_t srmmu_pte_mkwrite(pte_t pte) |
| { return __pte(pte_val(pte) | SRMMU_WRITE);} |
| |
| static inline pte_t srmmu_pte_mkdirty(pte_t pte) |
| { return __pte(pte_val(pte) | SRMMU_DIRTY);} |
| |
| static inline pte_t srmmu_pte_mkyoung(pte_t pte) |
| { return __pte(pte_val(pte) | SRMMU_REF);} |
| |
| /* |
| * Conversion functions: convert a page and protection to a page entry, |
| * and a page entry and page directory to the page they refer to. |
| */ |
| static pte_t srmmu_mk_pte(struct page *page, pgprot_t pgprot) |
| { return __pte((page_to_pfn(page) << (PAGE_SHIFT-4)) | pgprot_val(pgprot)); } |
| |
| static pte_t srmmu_mk_pte_phys(unsigned long page, pgprot_t pgprot) |
| { return __pte(((page) >> 4) | pgprot_val(pgprot)); } |
| |
| static pte_t srmmu_mk_pte_io(unsigned long page, pgprot_t pgprot, int space) |
| { return __pte(((page) >> 4) | (space << 28) | pgprot_val(pgprot)); } |
| |
| /* XXX should we hyper_flush_whole_icache here - Anton */ |
| static inline void srmmu_ctxd_set(ctxd_t *ctxp, pgd_t *pgdp) |
| { srmmu_set_pte((pte_t *)ctxp, (SRMMU_ET_PTD | (__nocache_pa((unsigned long) pgdp) >> 4))); } |
| |
| static inline void srmmu_pgd_set(pgd_t * pgdp, pmd_t * pmdp) |
| { srmmu_set_pte((pte_t *)pgdp, (SRMMU_ET_PTD | (__nocache_pa((unsigned long) pmdp) >> 4))); } |
| |
| static void srmmu_pmd_set(pmd_t *pmdp, pte_t *ptep) |
| { |
| unsigned long ptp; /* Physical address, shifted right by 4 */ |
| int i; |
| |
| ptp = __nocache_pa((unsigned long) ptep) >> 4; |
| for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) { |
| srmmu_set_pte((pte_t *)&pmdp->pmdv[i], SRMMU_ET_PTD | ptp); |
| ptp += (SRMMU_REAL_PTRS_PER_PTE*sizeof(pte_t) >> 4); |
| } |
| } |
| |
| static void srmmu_pmd_populate(pmd_t *pmdp, struct page *ptep) |
| { |
| unsigned long ptp; /* Physical address, shifted right by 4 */ |
| int i; |
| |
| ptp = page_to_pfn(ptep) << (PAGE_SHIFT-4); /* watch for overflow */ |
| for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) { |
| srmmu_set_pte((pte_t *)&pmdp->pmdv[i], SRMMU_ET_PTD | ptp); |
| ptp += (SRMMU_REAL_PTRS_PER_PTE*sizeof(pte_t) >> 4); |
| } |
| } |
| |
| static inline pte_t srmmu_pte_modify(pte_t pte, pgprot_t newprot) |
| { return __pte((pte_val(pte) & SRMMU_CHG_MASK) | pgprot_val(newprot)); } |
| |
| /* to find an entry in a top-level page table... */ |
| static inline pgd_t *srmmu_pgd_offset(struct mm_struct * mm, unsigned long address) |
| { return mm->pgd + (address >> SRMMU_PGDIR_SHIFT); } |
| |
| /* Find an entry in the second-level page table.. */ |
| static inline pmd_t *srmmu_pmd_offset(pgd_t * dir, unsigned long address) |
| { |
| return (pmd_t *) srmmu_pgd_page(*dir) + |
| ((address >> PMD_SHIFT) & (PTRS_PER_PMD - 1)); |
| } |
| |
| /* Find an entry in the third-level page table.. */ |
| static inline pte_t *srmmu_pte_offset(pmd_t * dir, unsigned long address) |
| { |
| void *pte; |
| |
| pte = __nocache_va((dir->pmdv[0] & SRMMU_PTD_PMASK) << 4); |
| return (pte_t *) pte + |
| ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)); |
| } |
| |
| static unsigned long srmmu_swp_type(swp_entry_t entry) |
| { |
| return (entry.val >> SRMMU_SWP_TYPE_SHIFT) & SRMMU_SWP_TYPE_MASK; |
| } |
| |
| static unsigned long srmmu_swp_offset(swp_entry_t entry) |
| { |
| return (entry.val >> SRMMU_SWP_OFF_SHIFT) & SRMMU_SWP_OFF_MASK; |
| } |
| |
| static swp_entry_t srmmu_swp_entry(unsigned long type, unsigned long offset) |
| { |
| return (swp_entry_t) { |
| (type & SRMMU_SWP_TYPE_MASK) << SRMMU_SWP_TYPE_SHIFT |
| | (offset & SRMMU_SWP_OFF_MASK) << SRMMU_SWP_OFF_SHIFT }; |
| } |
| |
| /* |
| * size: bytes to allocate in the nocache area. |
| * align: bytes, number to align at. |
| * Returns the virtual address of the allocated area. |
| */ |
| static unsigned long __srmmu_get_nocache(int size, int align) |
| { |
| int offset; |
| |
| if (size < SRMMU_NOCACHE_BITMAP_SHIFT) { |
| printk("Size 0x%x too small for nocache request\n", size); |
| size = SRMMU_NOCACHE_BITMAP_SHIFT; |
| } |
| if (size & (SRMMU_NOCACHE_BITMAP_SHIFT-1)) { |
| printk("Size 0x%x unaligned int nocache request\n", size); |
| size += SRMMU_NOCACHE_BITMAP_SHIFT-1; |
| } |
| BUG_ON(align > SRMMU_NOCACHE_ALIGN_MAX); |
| |
| offset = bit_map_string_get(&srmmu_nocache_map, |
| size >> SRMMU_NOCACHE_BITMAP_SHIFT, |
| align >> SRMMU_NOCACHE_BITMAP_SHIFT); |
| if (offset == -1) { |
| printk("srmmu: out of nocache %d: %d/%d\n", |
| size, (int) srmmu_nocache_size, |
| srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT); |
| return 0; |
| } |
| |
| return (SRMMU_NOCACHE_VADDR + (offset << SRMMU_NOCACHE_BITMAP_SHIFT)); |
| } |
| |
| unsigned inline long srmmu_get_nocache(int size, int align) |
| { |
| unsigned long tmp; |
| |
| tmp = __srmmu_get_nocache(size, align); |
| |
| if (tmp) |
| memset((void *)tmp, 0, size); |
| |
| return tmp; |
| } |
| |
| void srmmu_free_nocache(unsigned long vaddr, int size) |
| { |
| int offset; |
| |
| if (vaddr < SRMMU_NOCACHE_VADDR) { |
| printk("Vaddr %lx is smaller than nocache base 0x%lx\n", |
| vaddr, (unsigned long)SRMMU_NOCACHE_VADDR); |
| BUG(); |
| } |
| if (vaddr+size > srmmu_nocache_end) { |
| printk("Vaddr %lx is bigger than nocache end 0x%lx\n", |
| vaddr, srmmu_nocache_end); |
| BUG(); |
| } |
| if (size & (size-1)) { |
| printk("Size 0x%x is not a power of 2\n", size); |
| BUG(); |
| } |
| if (size < SRMMU_NOCACHE_BITMAP_SHIFT) { |
| printk("Size 0x%x is too small\n", size); |
| BUG(); |
| } |
| if (vaddr & (size-1)) { |
| printk("Vaddr %lx is not aligned to size 0x%x\n", vaddr, size); |
| BUG(); |
| } |
| |
| offset = (vaddr - SRMMU_NOCACHE_VADDR) >> SRMMU_NOCACHE_BITMAP_SHIFT; |
| size = size >> SRMMU_NOCACHE_BITMAP_SHIFT; |
| |
| bit_map_clear(&srmmu_nocache_map, offset, size); |
| } |
| |
| void srmmu_early_allocate_ptable_skeleton(unsigned long start, unsigned long end); |
| |
| extern unsigned long probe_memory(void); /* in fault.c */ |
| |
| /* |
| * Reserve nocache dynamically proportionally to the amount of |
| * system RAM. -- Tomas Szepe <szepe@pinerecords.com>, June 2002 |
| */ |
| void srmmu_nocache_calcsize(void) |
| { |
| unsigned long sysmemavail = probe_memory() / 1024; |
| int srmmu_nocache_npages; |
| |
| srmmu_nocache_npages = |
| sysmemavail / SRMMU_NOCACHE_ALCRATIO / 1024 * 256; |
| |
| /* P3 XXX The 4x overuse: corroborated by /proc/meminfo. */ |
| // if (srmmu_nocache_npages < 256) srmmu_nocache_npages = 256; |
| if (srmmu_nocache_npages < SRMMU_MIN_NOCACHE_PAGES) |
| srmmu_nocache_npages = SRMMU_MIN_NOCACHE_PAGES; |
| |
| /* anything above 1280 blows up */ |
| if (srmmu_nocache_npages > SRMMU_MAX_NOCACHE_PAGES) |
| srmmu_nocache_npages = SRMMU_MAX_NOCACHE_PAGES; |
| |
| srmmu_nocache_size = srmmu_nocache_npages * PAGE_SIZE; |
| srmmu_nocache_end = SRMMU_NOCACHE_VADDR + srmmu_nocache_size; |
| } |
| |
| void __init srmmu_nocache_init(void) |
| { |
| unsigned int bitmap_bits; |
| pgd_t *pgd; |
| pmd_t *pmd; |
| pte_t *pte; |
| unsigned long paddr, vaddr; |
| unsigned long pteval; |
| |
| bitmap_bits = srmmu_nocache_size >> SRMMU_NOCACHE_BITMAP_SHIFT; |
| |
| srmmu_nocache_pool = __alloc_bootmem(srmmu_nocache_size, |
| SRMMU_NOCACHE_ALIGN_MAX, 0UL); |
| memset(srmmu_nocache_pool, 0, srmmu_nocache_size); |
| |
| srmmu_nocache_bitmap = __alloc_bootmem(bitmap_bits >> 3, SMP_CACHE_BYTES, 0UL); |
| bit_map_init(&srmmu_nocache_map, srmmu_nocache_bitmap, bitmap_bits); |
| |
| srmmu_swapper_pg_dir = (pgd_t *)__srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE); |
| memset(__nocache_fix(srmmu_swapper_pg_dir), 0, SRMMU_PGD_TABLE_SIZE); |
| init_mm.pgd = srmmu_swapper_pg_dir; |
| |
| srmmu_early_allocate_ptable_skeleton(SRMMU_NOCACHE_VADDR, srmmu_nocache_end); |
| |
| paddr = __pa((unsigned long)srmmu_nocache_pool); |
| vaddr = SRMMU_NOCACHE_VADDR; |
| |
| while (vaddr < srmmu_nocache_end) { |
| pgd = pgd_offset_k(vaddr); |
| pmd = srmmu_pmd_offset(__nocache_fix(pgd), vaddr); |
| pte = srmmu_pte_offset(__nocache_fix(pmd), vaddr); |
| |
| pteval = ((paddr >> 4) | SRMMU_ET_PTE | SRMMU_PRIV); |
| |
| if (srmmu_cache_pagetables) |
| pteval |= SRMMU_CACHE; |
| |
| srmmu_set_pte(__nocache_fix(pte), __pte(pteval)); |
| |
| vaddr += PAGE_SIZE; |
| paddr += PAGE_SIZE; |
| } |
| |
| flush_cache_all(); |
| flush_tlb_all(); |
| } |
| |
| static inline pgd_t *srmmu_get_pgd_fast(void) |
| { |
| pgd_t *pgd = NULL; |
| |
| pgd = (pgd_t *)__srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE); |
| if (pgd) { |
| pgd_t *init = pgd_offset_k(0); |
| memset(pgd, 0, USER_PTRS_PER_PGD * sizeof(pgd_t)); |
| memcpy(pgd + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD, |
| (PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t)); |
| } |
| |
| return pgd; |
| } |
| |
| static void srmmu_free_pgd_fast(pgd_t *pgd) |
| { |
| srmmu_free_nocache((unsigned long)pgd, SRMMU_PGD_TABLE_SIZE); |
| } |
| |
| static pmd_t *srmmu_pmd_alloc_one(struct mm_struct *mm, unsigned long address) |
| { |
| return (pmd_t *)srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE); |
| } |
| |
| static void srmmu_pmd_free(pmd_t * pmd) |
| { |
| srmmu_free_nocache((unsigned long)pmd, SRMMU_PMD_TABLE_SIZE); |
| } |
| |
| /* |
| * Hardware needs alignment to 256 only, but we align to whole page size |
| * to reduce fragmentation problems due to the buddy principle. |
| * XXX Provide actual fragmentation statistics in /proc. |
| * |
| * Alignments up to the page size are the same for physical and virtual |
| * addresses of the nocache area. |
| */ |
| static pte_t * |
| srmmu_pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address) |
| { |
| return (pte_t *)srmmu_get_nocache(PTE_SIZE, PTE_SIZE); |
| } |
| |
| static struct page * |
| srmmu_pte_alloc_one(struct mm_struct *mm, unsigned long address) |
| { |
| unsigned long pte; |
| |
| if ((pte = (unsigned long)srmmu_pte_alloc_one_kernel(mm, address)) == 0) |
| return NULL; |
| return pfn_to_page( __nocache_pa(pte) >> PAGE_SHIFT ); |
| } |
| |
| static void srmmu_free_pte_fast(pte_t *pte) |
| { |
| srmmu_free_nocache((unsigned long)pte, PTE_SIZE); |
| } |
| |
| static void srmmu_pte_free(struct page *pte) |
| { |
| unsigned long p; |
| |
| p = (unsigned long)page_address(pte); /* Cached address (for test) */ |
| if (p == 0) |
| BUG(); |
| p = page_to_pfn(pte) << PAGE_SHIFT; /* Physical address */ |
| p = (unsigned long) __nocache_va(p); /* Nocached virtual */ |
| srmmu_free_nocache(p, PTE_SIZE); |
| } |
| |
| /* |
| */ |
| static inline void alloc_context(struct mm_struct *old_mm, struct mm_struct *mm) |
| { |
| struct ctx_list *ctxp; |
| |
| ctxp = ctx_free.next; |
| if(ctxp != &ctx_free) { |
| remove_from_ctx_list(ctxp); |
| add_to_used_ctxlist(ctxp); |
| mm->context = ctxp->ctx_number; |
| ctxp->ctx_mm = mm; |
| return; |
| } |
| ctxp = ctx_used.next; |
| if(ctxp->ctx_mm == old_mm) |
| ctxp = ctxp->next; |
| if(ctxp == &ctx_used) |
| panic("out of mmu contexts"); |
| flush_cache_mm(ctxp->ctx_mm); |
| flush_tlb_mm(ctxp->ctx_mm); |
| remove_from_ctx_list(ctxp); |
| add_to_used_ctxlist(ctxp); |
| ctxp->ctx_mm->context = NO_CONTEXT; |
| ctxp->ctx_mm = mm; |
| mm->context = ctxp->ctx_number; |
| } |
| |
| static inline void free_context(int context) |
| { |
| struct ctx_list *ctx_old; |
| |
| ctx_old = ctx_list_pool + context; |
| remove_from_ctx_list(ctx_old); |
| add_to_free_ctxlist(ctx_old); |
| } |
| |
| |
| static void srmmu_switch_mm(struct mm_struct *old_mm, struct mm_struct *mm, |
| struct task_struct *tsk, int cpu) |
| { |
| if(mm->context == NO_CONTEXT) { |
| spin_lock(&srmmu_context_spinlock); |
| alloc_context(old_mm, mm); |
| spin_unlock(&srmmu_context_spinlock); |
| srmmu_ctxd_set(&srmmu_context_table[mm->context], mm->pgd); |
| } |
| |
| if (is_hypersparc) |
| hyper_flush_whole_icache(); |
| |
| srmmu_set_context(mm->context); |
| } |
| |
| /* Low level IO area allocation on the SRMMU. */ |
| static inline void srmmu_mapioaddr(unsigned long physaddr, |
| unsigned long virt_addr, int bus_type) |
| { |
| pgd_t *pgdp; |
| pmd_t *pmdp; |
| pte_t *ptep; |
| unsigned long tmp; |
| |
| physaddr &= PAGE_MASK; |
| pgdp = pgd_offset_k(virt_addr); |
| pmdp = srmmu_pmd_offset(pgdp, virt_addr); |
| ptep = srmmu_pte_offset(pmdp, virt_addr); |
| tmp = (physaddr >> 4) | SRMMU_ET_PTE; |
| |
| /* |
| * I need to test whether this is consistent over all |
| * sun4m's. The bus_type represents the upper 4 bits of |
| * 36-bit physical address on the I/O space lines... |
| */ |
| tmp |= (bus_type << 28); |
| tmp |= SRMMU_PRIV; |
| __flush_page_to_ram(virt_addr); |
| srmmu_set_pte(ptep, __pte(tmp)); |
| } |
| |
| static void srmmu_mapiorange(unsigned int bus, unsigned long xpa, |
| unsigned long xva, unsigned int len) |
| { |
| while (len != 0) { |
| len -= PAGE_SIZE; |
| srmmu_mapioaddr(xpa, xva, bus); |
| xva += PAGE_SIZE; |
| xpa += PAGE_SIZE; |
| } |
| flush_tlb_all(); |
| } |
| |
| static inline void srmmu_unmapioaddr(unsigned long virt_addr) |
| { |
| pgd_t *pgdp; |
| pmd_t *pmdp; |
| pte_t *ptep; |
| |
| pgdp = pgd_offset_k(virt_addr); |
| pmdp = srmmu_pmd_offset(pgdp, virt_addr); |
| ptep = srmmu_pte_offset(pmdp, virt_addr); |
| |
| /* No need to flush uncacheable page. */ |
| srmmu_pte_clear(ptep); |
| } |
| |
| static void srmmu_unmapiorange(unsigned long virt_addr, unsigned int len) |
| { |
| while (len != 0) { |
| len -= PAGE_SIZE; |
| srmmu_unmapioaddr(virt_addr); |
| virt_addr += PAGE_SIZE; |
| } |
| flush_tlb_all(); |
| } |
| |
| /* |
| * On the SRMMU we do not have the problems with limited tlb entries |
| * for mapping kernel pages, so we just take things from the free page |
| * pool. As a side effect we are putting a little too much pressure |
| * on the gfp() subsystem. This setup also makes the logic of the |
| * iommu mapping code a lot easier as we can transparently handle |
| * mappings on the kernel stack without any special code as we did |
| * need on the sun4c. |
| */ |
| struct thread_info *srmmu_alloc_thread_info(void) |
| { |
| struct thread_info *ret; |
| |
| ret = (struct thread_info *)__get_free_pages(GFP_KERNEL, |
| THREAD_INFO_ORDER); |
| #ifdef CONFIG_DEBUG_STACK_USAGE |
| if (ret) |
| memset(ret, 0, PAGE_SIZE << THREAD_INFO_ORDER); |
| #endif /* DEBUG_STACK_USAGE */ |
| |
| return ret; |
| } |
| |
| static void srmmu_free_thread_info(struct thread_info *ti) |
| { |
| free_pages((unsigned long)ti, THREAD_INFO_ORDER); |
| } |
| |
| /* tsunami.S */ |
| extern void tsunami_flush_cache_all(void); |
| extern void tsunami_flush_cache_mm(struct mm_struct *mm); |
| extern void tsunami_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end); |
| extern void tsunami_flush_cache_page(struct vm_area_struct *vma, unsigned long page); |
| extern void tsunami_flush_page_to_ram(unsigned long page); |
| extern void tsunami_flush_page_for_dma(unsigned long page); |
| extern void tsunami_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr); |
| extern void tsunami_flush_tlb_all(void); |
| extern void tsunami_flush_tlb_mm(struct mm_struct *mm); |
| extern void tsunami_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end); |
| extern void tsunami_flush_tlb_page(struct vm_area_struct *vma, unsigned long page); |
| extern void tsunami_setup_blockops(void); |
| |
| /* |
| * Workaround, until we find what's going on with Swift. When low on memory, |
| * it sometimes loops in fault/handle_mm_fault incl. flush_tlb_page to find |
| * out it is already in page tables/ fault again on the same instruction. |
| * I really don't understand it, have checked it and contexts |
| * are right, flush_tlb_all is done as well, and it faults again... |
| * Strange. -jj |
| * |
| * The following code is a deadwood that may be necessary when |
| * we start to make precise page flushes again. --zaitcev |
| */ |
| static void swift_update_mmu_cache(struct vm_area_struct * vma, unsigned long address, pte_t pte) |
| { |
| #if 0 |
| static unsigned long last; |
| unsigned int val; |
| /* unsigned int n; */ |
| |
| if (address == last) { |
| val = srmmu_hwprobe(address); |
| if (val != 0 && pte_val(pte) != val) { |
| printk("swift_update_mmu_cache: " |
| "addr %lx put %08x probed %08x from %p\n", |
| address, pte_val(pte), val, |
| __builtin_return_address(0)); |
| srmmu_flush_whole_tlb(); |
| } |
| } |
| last = address; |
| #endif |
| } |
| |
| /* swift.S */ |
| extern void swift_flush_cache_all(void); |
| extern void swift_flush_cache_mm(struct mm_struct *mm); |
| extern void swift_flush_cache_range(struct vm_area_struct *vma, |
| unsigned long start, unsigned long end); |
| extern void swift_flush_cache_page(struct vm_area_struct *vma, unsigned long page); |
| extern void swift_flush_page_to_ram(unsigned long page); |
| extern void swift_flush_page_for_dma(unsigned long page); |
| extern void swift_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr); |
| extern void swift_flush_tlb_all(void); |
| extern void swift_flush_tlb_mm(struct mm_struct *mm); |
| extern void swift_flush_tlb_range(struct vm_area_struct *vma, |
| unsigned long start, unsigned long end); |
| extern void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page); |
| |
| #if 0 /* P3: deadwood to debug precise flushes on Swift. */ |
| void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page) |
| { |
| int cctx, ctx1; |
| |
| page &= PAGE_MASK; |
| if ((ctx1 = vma->vm_mm->context) != -1) { |
| cctx = srmmu_get_context(); |
| /* Is context # ever different from current context? P3 */ |
| if (cctx != ctx1) { |
| printk("flush ctx %02x curr %02x\n", ctx1, cctx); |
| srmmu_set_context(ctx1); |
| swift_flush_page(page); |
| __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : : |
| "r" (page), "i" (ASI_M_FLUSH_PROBE)); |
| srmmu_set_context(cctx); |
| } else { |
| /* Rm. prot. bits from virt. c. */ |
| /* swift_flush_cache_all(); */ |
| /* swift_flush_cache_page(vma, page); */ |
| swift_flush_page(page); |
| |
| __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : : |
| "r" (page), "i" (ASI_M_FLUSH_PROBE)); |
| /* same as above: srmmu_flush_tlb_page() */ |
| } |
| } |
| } |
| #endif |
| |
| /* |
| * The following are all MBUS based SRMMU modules, and therefore could |
| * be found in a multiprocessor configuration. On the whole, these |
| * chips seems to be much more touchy about DVMA and page tables |
| * with respect to cache coherency. |
| */ |
| |
| /* Cypress flushes. */ |
| static void cypress_flush_cache_all(void) |
| { |
| volatile unsigned long cypress_sucks; |
| unsigned long faddr, tagval; |
| |
| flush_user_windows(); |
| for(faddr = 0; faddr < 0x10000; faddr += 0x20) { |
| __asm__ __volatile__("lda [%1 + %2] %3, %0\n\t" : |
| "=r" (tagval) : |
| "r" (faddr), "r" (0x40000), |
| "i" (ASI_M_DATAC_TAG)); |
| |
| /* If modified and valid, kick it. */ |
| if((tagval & 0x60) == 0x60) |
| cypress_sucks = *(unsigned long *)(0xf0020000 + faddr); |
| } |
| } |
| |
| static void cypress_flush_cache_mm(struct mm_struct *mm) |
| { |
| register unsigned long a, b, c, d, e, f, g; |
| unsigned long flags, faddr; |
| int octx; |
| |
| FLUSH_BEGIN(mm) |
| flush_user_windows(); |
| local_irq_save(flags); |
| octx = srmmu_get_context(); |
| srmmu_set_context(mm->context); |
| a = 0x20; b = 0x40; c = 0x60; |
| d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0; |
| |
| faddr = (0x10000 - 0x100); |
| goto inside; |
| do { |
| faddr -= 0x100; |
| inside: |
| __asm__ __volatile__("sta %%g0, [%0] %1\n\t" |
| "sta %%g0, [%0 + %2] %1\n\t" |
| "sta %%g0, [%0 + %3] %1\n\t" |
| "sta %%g0, [%0 + %4] %1\n\t" |
| "sta %%g0, [%0 + %5] %1\n\t" |
| "sta %%g0, [%0 + %6] %1\n\t" |
| "sta %%g0, [%0 + %7] %1\n\t" |
| "sta %%g0, [%0 + %8] %1\n\t" : : |
| "r" (faddr), "i" (ASI_M_FLUSH_CTX), |
| "r" (a), "r" (b), "r" (c), "r" (d), |
| "r" (e), "r" (f), "r" (g)); |
| } while(faddr); |
| srmmu_set_context(octx); |
| local_irq_restore(flags); |
| FLUSH_END |
| } |
| |
| static void cypress_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) |
| { |
| struct mm_struct *mm = vma->vm_mm; |
| register unsigned long a, b, c, d, e, f, g; |
| unsigned long flags, faddr; |
| int octx; |
| |
| FLUSH_BEGIN(mm) |
| flush_user_windows(); |
| local_irq_save(flags); |
| octx = srmmu_get_context(); |
| srmmu_set_context(mm->context); |
| a = 0x20; b = 0x40; c = 0x60; |
| d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0; |
| |
| start &= SRMMU_REAL_PMD_MASK; |
| while(start < end) { |
| faddr = (start + (0x10000 - 0x100)); |
| goto inside; |
| do { |
| faddr -= 0x100; |
| inside: |
| __asm__ __volatile__("sta %%g0, [%0] %1\n\t" |
| "sta %%g0, [%0 + %2] %1\n\t" |
| "sta %%g0, [%0 + %3] %1\n\t" |
| "sta %%g0, [%0 + %4] %1\n\t" |
| "sta %%g0, [%0 + %5] %1\n\t" |
| "sta %%g0, [%0 + %6] %1\n\t" |
| "sta %%g0, [%0 + %7] %1\n\t" |
| "sta %%g0, [%0 + %8] %1\n\t" : : |
| "r" (faddr), |
| "i" (ASI_M_FLUSH_SEG), |
| "r" (a), "r" (b), "r" (c), "r" (d), |
| "r" (e), "r" (f), "r" (g)); |
| } while (faddr != start); |
| start += SRMMU_REAL_PMD_SIZE; |
| } |
| srmmu_set_context(octx); |
| local_irq_restore(flags); |
| FLUSH_END |
| } |
| |
| static void cypress_flush_cache_page(struct vm_area_struct *vma, unsigned long page) |
| { |
| register unsigned long a, b, c, d, e, f, g; |
| struct mm_struct *mm = vma->vm_mm; |
| unsigned long flags, line; |
| int octx; |
| |
| FLUSH_BEGIN(mm) |
| flush_user_windows(); |
| local_irq_save(flags); |
| octx = srmmu_get_context(); |
| srmmu_set_context(mm->context); |
| a = 0x20; b = 0x40; c = 0x60; |
| d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0; |
| |
| page &= PAGE_MASK; |
| line = (page + PAGE_SIZE) - 0x100; |
| goto inside; |
| do { |
| line -= 0x100; |
| inside: |
| __asm__ __volatile__("sta %%g0, [%0] %1\n\t" |
| "sta %%g0, [%0 + %2] %1\n\t" |
| "sta %%g0, [%0 + %3] %1\n\t" |
| "sta %%g0, [%0 + %4] %1\n\t" |
| "sta %%g0, [%0 + %5] %1\n\t" |
| "sta %%g0, [%0 + %6] %1\n\t" |
| "sta %%g0, [%0 + %7] %1\n\t" |
| "sta %%g0, [%0 + %8] %1\n\t" : : |
| "r" (line), |
| "i" (ASI_M_FLUSH_PAGE), |
| "r" (a), "r" (b), "r" (c), "r" (d), |
| "r" (e), "r" (f), "r" (g)); |
| } while(line != page); |
| srmmu_set_context(octx); |
| local_irq_restore(flags); |
| FLUSH_END |
| } |
| |
| /* Cypress is copy-back, at least that is how we configure it. */ |
| static void cypress_flush_page_to_ram(unsigned long page) |
| { |
| register unsigned long a, b, c, d, e, f, g; |
| unsigned long line; |
| |
| a = 0x20; b = 0x40; c = 0x60; d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0; |
| page &= PAGE_MASK; |
| line = (page + PAGE_SIZE) - 0x100; |
| goto inside; |
| do { |
| line -= 0x100; |
| inside: |
| __asm__ __volatile__("sta %%g0, [%0] %1\n\t" |
| "sta %%g0, [%0 + %2] %1\n\t" |
| "sta %%g0, [%0 + %3] %1\n\t" |
| "sta %%g0, [%0 + %4] %1\n\t" |
| "sta %%g0, [%0 + %5] %1\n\t" |
| "sta %%g0, [%0 + %6] %1\n\t" |
| "sta %%g0, [%0 + %7] %1\n\t" |
| "sta %%g0, [%0 + %8] %1\n\t" : : |
| "r" (line), |
| "i" (ASI_M_FLUSH_PAGE), |
| "r" (a), "r" (b), "r" (c), "r" (d), |
| "r" (e), "r" (f), "r" (g)); |
| } while(line != page); |
| } |
| |
| /* Cypress is also IO cache coherent. */ |
| static void cypress_flush_page_for_dma(unsigned long page) |
| { |
| } |
| |
| /* Cypress has unified L2 VIPT, from which both instructions and data |
| * are stored. It does not have an onboard icache of any sort, therefore |
| * no flush is necessary. |
| */ |
| static void cypress_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr) |
| { |
| } |
| |
| static void cypress_flush_tlb_all(void) |
| { |
| srmmu_flush_whole_tlb(); |
| } |
| |
| static void cypress_flush_tlb_mm(struct mm_struct *mm) |
| { |
| FLUSH_BEGIN(mm) |
| __asm__ __volatile__( |
| "lda [%0] %3, %%g5\n\t" |
| "sta %2, [%0] %3\n\t" |
| "sta %%g0, [%1] %4\n\t" |
| "sta %%g5, [%0] %3\n" |
| : /* no outputs */ |
| : "r" (SRMMU_CTX_REG), "r" (0x300), "r" (mm->context), |
| "i" (ASI_M_MMUREGS), "i" (ASI_M_FLUSH_PROBE) |
| : "g5"); |
| FLUSH_END |
| } |
| |
| static void cypress_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) |
| { |
| struct mm_struct *mm = vma->vm_mm; |
| unsigned long size; |
| |
| FLUSH_BEGIN(mm) |
| start &= SRMMU_PGDIR_MASK; |
| size = SRMMU_PGDIR_ALIGN(end) - start; |
| __asm__ __volatile__( |
| "lda [%0] %5, %%g5\n\t" |
| "sta %1, [%0] %5\n" |
| "1:\n\t" |
| "subcc %3, %4, %3\n\t" |
| "bne 1b\n\t" |
| " sta %%g0, [%2 + %3] %6\n\t" |
| "sta %%g5, [%0] %5\n" |
| : /* no outputs */ |
| : "r" (SRMMU_CTX_REG), "r" (mm->context), "r" (start | 0x200), |
| "r" (size), "r" (SRMMU_PGDIR_SIZE), "i" (ASI_M_MMUREGS), |
| "i" (ASI_M_FLUSH_PROBE) |
| : "g5", "cc"); |
| FLUSH_END |
| } |
| |
| static void cypress_flush_tlb_page(struct vm_area_struct *vma, unsigned long page) |
| { |
| struct mm_struct *mm = vma->vm_mm; |
| |
| FLUSH_BEGIN(mm) |
| __asm__ __volatile__( |
| "lda [%0] %3, %%g5\n\t" |
| "sta %1, [%0] %3\n\t" |
| "sta %%g0, [%2] %4\n\t" |
| "sta %%g5, [%0] %3\n" |
| : /* no outputs */ |
| : "r" (SRMMU_CTX_REG), "r" (mm->context), "r" (page & PAGE_MASK), |
| "i" (ASI_M_MMUREGS), "i" (ASI_M_FLUSH_PROBE) |
| : "g5"); |
| FLUSH_END |
| } |
| |
| /* viking.S */ |
| extern void viking_flush_cache_all(void); |
| extern void viking_flush_cache_mm(struct mm_struct *mm); |
| extern void viking_flush_cache_range(struct vm_area_struct *vma, unsigned long start, |
| unsigned long end); |
| extern void viking_flush_cache_page(struct vm_area_struct *vma, unsigned long page); |
| extern void viking_flush_page_to_ram(unsigned long page); |
| extern void viking_flush_page_for_dma(unsigned long page); |
| extern void viking_flush_sig_insns(struct mm_struct *mm, unsigned long addr); |
| extern void viking_flush_page(unsigned long page); |
| extern void viking_mxcc_flush_page(unsigned long page); |
| extern void viking_flush_tlb_all(void); |
| extern void viking_flush_tlb_mm(struct mm_struct *mm); |
| extern void viking_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, |
| unsigned long end); |
| extern void viking_flush_tlb_page(struct vm_area_struct *vma, |
| unsigned long page); |
| extern void sun4dsmp_flush_tlb_all(void); |
| extern void sun4dsmp_flush_tlb_mm(struct mm_struct *mm); |
| extern void sun4dsmp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, |
| unsigned long end); |
| extern void sun4dsmp_flush_tlb_page(struct vm_area_struct *vma, |
| unsigned long page); |
| |
| /* hypersparc.S */ |
| extern void hypersparc_flush_cache_all(void); |
| extern void hypersparc_flush_cache_mm(struct mm_struct *mm); |
| extern void hypersparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end); |
| extern void hypersparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page); |
| extern void hypersparc_flush_page_to_ram(unsigned long page); |
| extern void hypersparc_flush_page_for_dma(unsigned long page); |
| extern void hypersparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr); |
| extern void hypersparc_flush_tlb_all(void); |
| extern void hypersparc_flush_tlb_mm(struct mm_struct *mm); |
| extern void hypersparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end); |
| extern void hypersparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page); |
| extern void hypersparc_setup_blockops(void); |
| |
| /* |
| * NOTE: All of this startup code assumes the low 16mb (approx.) of |
| * kernel mappings are done with one single contiguous chunk of |
| * ram. On small ram machines (classics mainly) we only get |
| * around 8mb mapped for us. |
| */ |
| |
| void __init early_pgtable_allocfail(char *type) |
| { |
| prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type); |
| prom_halt(); |
| } |
| |
| void __init srmmu_early_allocate_ptable_skeleton(unsigned long start, unsigned long end) |
| { |
| pgd_t *pgdp; |
| pmd_t *pmdp; |
| pte_t *ptep; |
| |
| while(start < end) { |
| pgdp = pgd_offset_k(start); |
| if(srmmu_pgd_none(*(pgd_t *)__nocache_fix(pgdp))) { |
| pmdp = (pmd_t *) __srmmu_get_nocache( |
| SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE); |
| if (pmdp == NULL) |
| early_pgtable_allocfail("pmd"); |
| memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE); |
| srmmu_pgd_set(__nocache_fix(pgdp), pmdp); |
| } |
| pmdp = srmmu_pmd_offset(__nocache_fix(pgdp), start); |
| if(srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) { |
| ptep = (pte_t *)__srmmu_get_nocache(PTE_SIZE, PTE_SIZE); |
| if (ptep == NULL) |
| early_pgtable_allocfail("pte"); |
| memset(__nocache_fix(ptep), 0, PTE_SIZE); |
| srmmu_pmd_set(__nocache_fix(pmdp), ptep); |
| } |
| if (start > (0xffffffffUL - PMD_SIZE)) |
| break; |
| start = (start + PMD_SIZE) & PMD_MASK; |
| } |
| } |
| |
| void __init srmmu_allocate_ptable_skeleton(unsigned long start, unsigned long end) |
| { |
| pgd_t *pgdp; |
| pmd_t *pmdp; |
| pte_t *ptep; |
| |
| while(start < end) { |
| pgdp = pgd_offset_k(start); |
| if(srmmu_pgd_none(*pgdp)) { |
| pmdp = (pmd_t *)__srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE); |
| if (pmdp == NULL) |
| early_pgtable_allocfail("pmd"); |
| memset(pmdp, 0, SRMMU_PMD_TABLE_SIZE); |
| srmmu_pgd_set(pgdp, pmdp); |
| } |
| pmdp = srmmu_pmd_offset(pgdp, start); |
| if(srmmu_pmd_none(*pmdp)) { |
| ptep = (pte_t *) __srmmu_get_nocache(PTE_SIZE, |
| PTE_SIZE); |
| if (ptep == NULL) |
| early_pgtable_allocfail("pte"); |
| memset(ptep, 0, PTE_SIZE); |
| srmmu_pmd_set(pmdp, ptep); |
| } |
| if (start > (0xffffffffUL - PMD_SIZE)) |
| break; |
| start = (start + PMD_SIZE) & PMD_MASK; |
| } |
| } |
| |
| /* |
| * This is much cleaner than poking around physical address space |
| * looking at the prom's page table directly which is what most |
| * other OS's do. Yuck... this is much better. |
| */ |
| void __init srmmu_inherit_prom_mappings(unsigned long start,unsigned long end) |
| { |
| pgd_t *pgdp; |
| pmd_t *pmdp; |
| pte_t *ptep; |
| int what = 0; /* 0 = normal-pte, 1 = pmd-level pte, 2 = pgd-level pte */ |
| unsigned long prompte; |
| |
| while(start <= end) { |
| if (start == 0) |
| break; /* probably wrap around */ |
| if(start == 0xfef00000) |
| start = KADB_DEBUGGER_BEGVM; |
| if(!(prompte = srmmu_hwprobe(start))) { |
| start += PAGE_SIZE; |
| continue; |
| } |
| |
| /* A red snapper, see what it really is. */ |
| what = 0; |
| |
| if(!(start & ~(SRMMU_REAL_PMD_MASK))) { |
| if(srmmu_hwprobe((start-PAGE_SIZE) + SRMMU_REAL_PMD_SIZE) == prompte) |
| what = 1; |
| } |
| |
| if(!(start & ~(SRMMU_PGDIR_MASK))) { |
| if(srmmu_hwprobe((start-PAGE_SIZE) + SRMMU_PGDIR_SIZE) == |
| prompte) |
| what = 2; |
| } |
| |
| pgdp = pgd_offset_k(start); |
| if(what == 2) { |
| *(pgd_t *)__nocache_fix(pgdp) = __pgd(prompte); |
| start += SRMMU_PGDIR_SIZE; |
| continue; |
| } |
| if(srmmu_pgd_none(*(pgd_t *)__nocache_fix(pgdp))) { |
| pmdp = (pmd_t *)__srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE); |
| if (pmdp == NULL) |
| early_pgtable_allocfail("pmd"); |
| memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE); |
| srmmu_pgd_set(__nocache_fix(pgdp), pmdp); |
| } |
| pmdp = srmmu_pmd_offset(__nocache_fix(pgdp), start); |
| if(srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) { |
| ptep = (pte_t *) __srmmu_get_nocache(PTE_SIZE, |
| PTE_SIZE); |
| if (ptep == NULL) |
| early_pgtable_allocfail("pte"); |
| memset(__nocache_fix(ptep), 0, PTE_SIZE); |
| srmmu_pmd_set(__nocache_fix(pmdp), ptep); |
| } |
| if(what == 1) { |
| /* |
| * We bend the rule where all 16 PTPs in a pmd_t point |
| * inside the same PTE page, and we leak a perfectly |
| * good hardware PTE piece. Alternatives seem worse. |
| */ |
| unsigned int x; /* Index of HW PMD in soft cluster */ |
| x = (start >> PMD_SHIFT) & 15; |
| *(unsigned long *)__nocache_fix(&pmdp->pmdv[x]) = prompte; |
| start += SRMMU_REAL_PMD_SIZE; |
| continue; |
| } |
| ptep = srmmu_pte_offset(__nocache_fix(pmdp), start); |
| *(pte_t *)__nocache_fix(ptep) = __pte(prompte); |
| start += PAGE_SIZE; |
| } |
| } |
| |
| #define KERNEL_PTE(page_shifted) ((page_shifted)|SRMMU_CACHE|SRMMU_PRIV|SRMMU_VALID) |
| |
| /* Create a third-level SRMMU 16MB page mapping. */ |
| static void __init do_large_mapping(unsigned long vaddr, unsigned long phys_base) |
| { |
| pgd_t *pgdp = pgd_offset_k(vaddr); |
| unsigned long big_pte; |
| |
| big_pte = KERNEL_PTE(phys_base >> 4); |
| *(pgd_t *)__nocache_fix(pgdp) = __pgd(big_pte); |
| } |
| |
| /* Map sp_bank entry SP_ENTRY, starting at virtual address VBASE. */ |
| static unsigned long __init map_spbank(unsigned long vbase, int sp_entry) |
| { |
| unsigned long pstart = (sp_banks[sp_entry].base_addr & SRMMU_PGDIR_MASK); |
| unsigned long vstart = (vbase & SRMMU_PGDIR_MASK); |
| unsigned long vend = SRMMU_PGDIR_ALIGN(vbase + sp_banks[sp_entry].num_bytes); |
| /* Map "low" memory only */ |
| const unsigned long min_vaddr = PAGE_OFFSET; |
| const unsigned long max_vaddr = PAGE_OFFSET + SRMMU_MAXMEM; |
| |
| if (vstart < min_vaddr || vstart >= max_vaddr) |
| return vstart; |
| |
| if (vend > max_vaddr || vend < min_vaddr) |
| vend = max_vaddr; |
| |
| while(vstart < vend) { |
| do_large_mapping(vstart, pstart); |
| vstart += SRMMU_PGDIR_SIZE; pstart += SRMMU_PGDIR_SIZE; |
| } |
| return vstart; |
| } |
| |
| static inline void memprobe_error(char *msg) |
| { |
| prom_printf(msg); |
| prom_printf("Halting now...\n"); |
| prom_halt(); |
| } |
| |
| static inline void map_kernel(void) |
| { |
| int i; |
| |
| if (phys_base > 0) { |
| do_large_mapping(PAGE_OFFSET, phys_base); |
| } |
| |
| for (i = 0; sp_banks[i].num_bytes != 0; i++) { |
| map_spbank((unsigned long)__va(sp_banks[i].base_addr), i); |
| } |
| |
| BTFIXUPSET_SIMM13(user_ptrs_per_pgd, PAGE_OFFSET / SRMMU_PGDIR_SIZE); |
| } |
| |
| /* Paging initialization on the Sparc Reference MMU. */ |
| extern void sparc_context_init(int); |
| |
| void (*poke_srmmu)(void) __initdata = NULL; |
| |
| extern unsigned long bootmem_init(unsigned long *pages_avail); |
| |
| void __init srmmu_paging_init(void) |
| { |
| int i, cpunode; |
| char node_str[128]; |
| pgd_t *pgd; |
| pmd_t *pmd; |
| pte_t *pte; |
| unsigned long pages_avail; |
| |
| sparc_iomap.start = SUN4M_IOBASE_VADDR; /* 16MB of IOSPACE on all sun4m's. */ |
| |
| if (sparc_cpu_model == sun4d) |
| num_contexts = 65536; /* We know it is Viking */ |
| else { |
| /* Find the number of contexts on the srmmu. */ |
| cpunode = prom_getchild(prom_root_node); |
| num_contexts = 0; |
| while(cpunode != 0) { |
| prom_getstring(cpunode, "device_type", node_str, sizeof(node_str)); |
| if(!strcmp(node_str, "cpu")) { |
| num_contexts = prom_getintdefault(cpunode, "mmu-nctx", 0x8); |
| break; |
| } |
| cpunode = prom_getsibling(cpunode); |
| } |
| } |
| |
| if(!num_contexts) { |
| prom_printf("Something wrong, can't find cpu node in paging_init.\n"); |
| prom_halt(); |
| } |
| |
| pages_avail = 0; |
| last_valid_pfn = bootmem_init(&pages_avail); |
| |
| srmmu_nocache_calcsize(); |
| srmmu_nocache_init(); |
| srmmu_inherit_prom_mappings(0xfe400000,(LINUX_OPPROM_ENDVM-PAGE_SIZE)); |
| map_kernel(); |
| |
| /* ctx table has to be physically aligned to its size */ |
| srmmu_context_table = (ctxd_t *)__srmmu_get_nocache(num_contexts*sizeof(ctxd_t), num_contexts*sizeof(ctxd_t)); |
| srmmu_ctx_table_phys = (ctxd_t *)__nocache_pa((unsigned long)srmmu_context_table); |
| |
| for(i = 0; i < num_contexts; i++) |
| srmmu_ctxd_set((ctxd_t *)__nocache_fix(&srmmu_context_table[i]), srmmu_swapper_pg_dir); |
| |
| flush_cache_all(); |
| srmmu_set_ctable_ptr((unsigned long)srmmu_ctx_table_phys); |
| #ifdef CONFIG_SMP |
| /* Stop from hanging here... */ |
| local_flush_tlb_all(); |
| #else |
| flush_tlb_all(); |
| #endif |
| poke_srmmu(); |
| |
| #ifdef CONFIG_SUN_IO |
| srmmu_allocate_ptable_skeleton(sparc_iomap.start, IOBASE_END); |
| srmmu_allocate_ptable_skeleton(DVMA_VADDR, DVMA_END); |
| #endif |
| |
| srmmu_allocate_ptable_skeleton( |
| __fix_to_virt(__end_of_fixed_addresses - 1), FIXADDR_TOP); |
| srmmu_allocate_ptable_skeleton(PKMAP_BASE, PKMAP_END); |
| |
| pgd = pgd_offset_k(PKMAP_BASE); |
| pmd = srmmu_pmd_offset(pgd, PKMAP_BASE); |
| pte = srmmu_pte_offset(pmd, PKMAP_BASE); |
| pkmap_page_table = pte; |
| |
| flush_cache_all(); |
| flush_tlb_all(); |
| |
| sparc_context_init(num_contexts); |
| |
| kmap_init(); |
| |
| { |
| unsigned long zones_size[MAX_NR_ZONES]; |
| unsigned long zholes_size[MAX_NR_ZONES]; |
| unsigned long npages; |
| int znum; |
| |
| for (znum = 0; znum < MAX_NR_ZONES; znum++) |
| zones_size[znum] = zholes_size[znum] = 0; |
| |
| npages = max_low_pfn - pfn_base; |
| |
| zones_size[ZONE_DMA] = npages; |
| zholes_size[ZONE_DMA] = npages - pages_avail; |
| |
| npages = highend_pfn - max_low_pfn; |
| zones_size[ZONE_HIGHMEM] = npages; |
| zholes_size[ZONE_HIGHMEM] = npages - calc_highpages(); |
| |
| free_area_init_node(0, &contig_page_data, zones_size, |
| pfn_base, zholes_size); |
| } |
| } |
| |
| static void srmmu_mmu_info(struct seq_file *m) |
| { |
| seq_printf(m, |
| "MMU type\t: %s\n" |
| "contexts\t: %d\n" |
| "nocache total\t: %ld\n" |
| "nocache used\t: %d\n", |
| srmmu_name, |
| num_contexts, |
| srmmu_nocache_size, |
| srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT); |
| } |
| |
| static void srmmu_update_mmu_cache(struct vm_area_struct * vma, unsigned long address, pte_t pte) |
| { |
| } |
| |
| static void srmmu_destroy_context(struct mm_struct *mm) |
| { |
| |
| if(mm->context != NO_CONTEXT) { |
| flush_cache_mm(mm); |
| srmmu_ctxd_set(&srmmu_context_table[mm->context], srmmu_swapper_pg_dir); |
| flush_tlb_mm(mm); |
| spin_lock(&srmmu_context_spinlock); |
| free_context(mm->context); |
| spin_unlock(&srmmu_context_spinlock); |
| mm->context = NO_CONTEXT; |
| } |
| } |
| |
| /* Init various srmmu chip types. */ |
| static void __init srmmu_is_bad(void) |
| { |
| prom_printf("Could not determine SRMMU chip type.\n"); |
| prom_halt(); |
| } |
| |
| static void __init init_vac_layout(void) |
| { |
| int nd, cache_lines; |
| char node_str[128]; |
| #ifdef CONFIG_SMP |
| int cpu = 0; |
| unsigned long max_size = 0; |
| unsigned long min_line_size = 0x10000000; |
| #endif |
| |
| nd = prom_getchild(prom_root_node); |
| while((nd = prom_getsibling(nd)) != 0) { |
| prom_getstring(nd, "device_type", node_str, sizeof(node_str)); |
| if(!strcmp(node_str, "cpu")) { |
| vac_line_size = prom_getint(nd, "cache-line-size"); |
| if (vac_line_size == -1) { |
| prom_printf("can't determine cache-line-size, " |
| "halting.\n"); |
| prom_halt(); |
| } |
| cache_lines = prom_getint(nd, "cache-nlines"); |
| if (cache_lines == -1) { |
| prom_printf("can't determine cache-nlines, halting.\n"); |
| prom_halt(); |
| } |
| |
| vac_cache_size = cache_lines * vac_line_size; |
| #ifdef CONFIG_SMP |
| if(vac_cache_size > max_size) |
| max_size = vac_cache_size; |
| if(vac_line_size < min_line_size) |
| min_line_size = vac_line_size; |
| //FIXME: cpus not contiguous!! |
| cpu++; |
| if (cpu >= NR_CPUS || !cpu_online(cpu)) |
| break; |
| #else |
| break; |
| #endif |
| } |
| } |
| if(nd == 0) { |
| prom_printf("No CPU nodes found, halting.\n"); |
| prom_halt(); |
| } |
| #ifdef CONFIG_SMP |
| vac_cache_size = max_size; |
| vac_line_size = min_line_size; |
| #endif |
| printk("SRMMU: Using VAC size of %d bytes, line size %d bytes.\n", |
| (int)vac_cache_size, (int)vac_line_size); |
| } |
| |
| static void __init poke_hypersparc(void) |
| { |
| volatile unsigned long clear; |
| unsigned long mreg = srmmu_get_mmureg(); |
| |
| hyper_flush_unconditional_combined(); |
| |
| mreg &= ~(HYPERSPARC_CWENABLE); |
| mreg |= (HYPERSPARC_CENABLE | HYPERSPARC_WBENABLE); |
| mreg |= (HYPERSPARC_CMODE); |
| |
| srmmu_set_mmureg(mreg); |
| |
| #if 0 /* XXX I think this is bad news... -DaveM */ |
| hyper_clear_all_tags(); |
| #endif |
| |
| put_ross_icr(HYPERSPARC_ICCR_FTD | HYPERSPARC_ICCR_ICE); |
| hyper_flush_whole_icache(); |
| clear = srmmu_get_faddr(); |
| clear = srmmu_get_fstatus(); |
| } |
| |
| static void __init init_hypersparc(void) |
| { |
| srmmu_name = "ROSS HyperSparc"; |
| srmmu_modtype = HyperSparc; |
| |
| init_vac_layout(); |
| |
| is_hypersparc = 1; |
| |
| BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_NORM); |
| BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_NORM); |
| BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_NORM); |
| BTFIXUPSET_CALL(flush_cache_all, hypersparc_flush_cache_all, BTFIXUPCALL_NORM); |
| BTFIXUPSET_CALL(flush_cache_mm, hypersparc_flush_cache_mm, BTFIXUPCALL_NORM); |
| BTFIXUPSET_CALL(flush_cache_range, hypersparc_flush_cache_range, BTFIXUPCALL_NORM); |
| BTFIXUPSET_CALL(flush_cache_page, hypersparc_flush_cache_page, BTFIXUPCALL_NORM); |
| |
| BTFIXUPSET_CALL(flush_tlb_all, hypersparc_flush_tlb_all, BTFIXUPCALL_NORM); |
| BTFIXUPSET_CALL(flush_tlb_mm, hypersparc_flush_tlb_mm, BTFIXUPCALL_NORM); |
| BTFIXUPSET_CALL(flush_tlb_range, hypersparc_flush_tlb_range, BTFIXUPCALL_NORM); |
| BTFIXUPSET_CALL(flush_tlb_page, hypersparc_flush_tlb_page, BTFIXUPCALL_NORM); |
| |
| BTFIXUPSET_CALL(__flush_page_to_ram, hypersparc_flush_page_to_ram, BTFIXUPCALL_NORM); |
| BTFIXUPSET_CALL(flush_sig_insns, hypersparc_flush_sig_insns, BTFIXUPCALL_NORM); |
| BTFIXUPSET_CALL(flush_page_for_dma, hypersparc_flush_page_for_dma, BTFIXUPCALL_NOP); |
| |
| |
| poke_srmmu = poke_hypersparc; |
| |
| hypersparc_setup_blockops(); |
| } |
| |
| static void __init poke_cypress(void) |
| { |
| unsigned long mreg = srmmu_get_mmureg(); |
| unsigned long faddr, tagval; |
| volatile unsigned long cypress_sucks; |
| volatile unsigned long clear; |
| |
| clear = srmmu_get_faddr(); |
| clear = srmmu_get_fstatus(); |
| |
| if (!(mreg & CYPRESS_CENABLE)) { |
| for(faddr = 0x0; faddr < 0x10000; faddr += 20) { |
| __asm__ __volatile__("sta %%g0, [%0 + %1] %2\n\t" |
| "sta %%g0, [%0] %2\n\t" : : |
| "r" (faddr), "r" (0x40000), |
| "i" (ASI_M_DATAC_TAG)); |
| } |
| } else { |
| for(faddr = 0; faddr < 0x10000; faddr += 0x20) { |
| __asm__ __volatile__("lda [%1 + %2] %3, %0\n\t" : |
| "=r" (tagval) : |
| "r" (faddr), "r" (0x40000), |
| "i" (ASI_M_DATAC_TAG)); |
| |
| /* If modified and valid, kick it. */ |
| if((tagval & 0x60) == 0x60) |
| cypress_sucks = *(unsigned long *) |
| (0xf0020000 + faddr); |
| } |
| } |
| |
| /* And one more, for our good neighbor, Mr. Broken Cypress. */ |
| clear = srmmu_get_faddr(); |
| clear = srmmu_get_fstatus(); |
| |
| mreg |= (CYPRESS_CENABLE | CYPRESS_CMODE); |
| srmmu_set_mmureg(mreg); |
| } |
| |
| static void __init init_cypress_common(void) |
| { |
| init_vac_layout(); |
| |
| BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_NORM); |
| BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_NORM); |
| BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_NORM); |
| BTFIXUPSET_CALL(flush_cache_all, cypress_flush_cache_all, BTFIXUPCALL_NORM); |
| BTFIXUPSET_CALL(flush_cache_mm, cypress_flush_cache_mm, BTFIXUPCALL_NORM); |
| BTFIXUPSET_CALL(flush_cache_range, cypress_flush_cache_range, BTFIXUPCALL_NORM); |
| BTFIXUPSET_CALL(flush_cache_page, cypress_flush_cache_page, BTFIXUPCALL_NORM); |
| |
| BTFIXUPSET_CALL(flush_tlb_all, cypress_flush_tlb_all, BTFIXUPCALL_NORM); |
| BTFIXUPSET_CALL(flush_tlb_mm, cypress_flush_tlb_mm, BTFIXUPCALL_NORM); |
| BTFIXUPSET_CALL(flush_tlb_page, cypress_flush_tlb_page, BTFIXUPCALL_NORM); |
| BTFIXUPSET_CALL(flush_tlb_range, cypress_flush_tlb_range, BTFIXUPCALL_NORM); |
| |
| |
| BTFIXUPSET_CALL(__flush_page_to_ram, cypress_flush_page_to_ram, BTFIXUPCALL_NORM); |
| BTFIXUPSET_CALL(flush_sig_insns, cypress_flush_sig_insns, BTFIXUPCALL_NOP); |
| BTFIXUPSET_CALL(flush_page_for_dma, cypress_flush_page_for_dma, BTFIXUPCALL_NOP); |
| |
| poke_srmmu = poke_cypress; |
| } |
| |
| static void __init init_cypress_604(void) |
| { |
| srmmu_name = "ROSS Cypress-604(UP)"; |
| srmmu_modtype = Cypress; |
| init_cypress_common(); |
| } |
| |
| static void __init init_cypress_605(unsigned long mrev) |
| { |
| srmmu_name = "ROSS Cypress-605(MP)"; |
| if(mrev == 0xe) { |
| srmmu_modtype = Cypress_vE; |
| hwbug_bitmask |= HWBUG_COPYBACK_BROKEN; |
| } else { |
| if(mrev == 0xd) { |
| srmmu_modtype = Cypress_vD; |
| hwbug_bitmask |= HWBUG_ASIFLUSH_BROKEN; |
| } else { |
| srmmu_modtype = Cypress; |
| } |
| } |
| init_cypress_common(); |
| } |
| |
| static void __init poke_swift(void) |
| { |
| unsigned long mreg; |
| |
| /* Clear any crap from the cache or else... */ |
| swift_flush_cache_all(); |
| |
| /* Enable I & D caches */ |
| mreg = srmmu_get_mmureg(); |
| mreg |= (SWIFT_IE | SWIFT_DE); |
| /* |
| * The Swift branch folding logic is completely broken. At |
| * trap time, if things are just right, if can mistakenly |
| * think that a trap is coming from kernel mode when in fact |
| * it is coming from user mode (it mis-executes the branch in |
| * the trap code). So you see things like crashme completely |
| * hosing your machine which is completely unacceptable. Turn |
| * this shit off... nice job Fujitsu. |
| */ |
| mreg &= ~(SWIFT_BF); |
| srmmu_set_mmureg(mreg); |
| } |
| |
| #define SWIFT_MASKID_ADDR 0x10003018 |
| static void __init init_swift(void) |
| { |
| unsigned long swift_rev; |
| |
| __asm__ __volatile__("lda [%1] %2, %0\n\t" |
| "srl %0, 0x18, %0\n\t" : |
| "=r" (swift_rev) : |
| "r" (SWIFT_MASKID_ADDR), "i" (ASI_M_BYPASS)); |
| srmmu_name = "Fujitsu Swift"; |
| switch(swift_rev) { |
| case 0x11: |
| case 0x20: |
| case 0x23: |
| case 0x30: |
| srmmu_modtype = Swift_lots_o_bugs; |
| hwbug_bitmask |= (HWBUG_KERN_ACCBROKEN | HWBUG_KERN_CBITBROKEN); |
| /* |
| * Gee george, I wonder why Sun is so hush hush about |
| * this hardware bug... really braindamage stuff going |
| * on here. However I think we can find a way to avoid |
| * all of the workaround overhead under Linux. Basically, |
| * any page fault can cause kernel pages to become user |
| * accessible (the mmu gets confused and clears some of |
| * the ACC bits in kernel ptes). Aha, sounds pretty |
| * horrible eh? But wait, after extensive testing it appears |
| * that if you use pgd_t level large kernel pte's (like the |
| * 4MB pages on the Pentium) the bug does not get tripped |
| * at all. This avoids almost all of the major overhead. |
| * Welcome to a world where your vendor tells you to, |
| * "apply this kernel patch" instead of "sorry for the |
| * broken hardware, send it back and we'll give you |
| * properly functioning parts" |
| */ |
| break; |
| case 0x25: |
| case 0x31: |
| srmmu_modtype = Swift_bad_c; |
| hwbug_bitmask |= HWBUG_KERN_CBITBROKEN; |
| /* |
| * You see Sun allude to this hardware bug but never |
| * admit things directly, they'll say things like, |
| * "the Swift chip cache problems" or similar. |
| */ |
| break; |
| default: |
| srmmu_modtype = Swift_ok; |
| break; |
| }; |
| |
| BTFIXUPSET_CALL(flush_cache_all, swift_flush_cache_all, BTFIXUPCALL_NORM); |
| BTFIXUPSET_CALL(flush_cache_mm, swift_flush_cache_mm, BTFIXUPCALL_NORM); |
| BTFIXUPSET_CALL(flush_cache_page, swift_flush_cache_page, BTFIXUPCALL_NORM); |
| BTFIXUPSET_CALL(flush_cache_range, swift_flush_cache_range, BTFIXUPCALL_NORM); |
| |
| |
| BTFIXUPSET_CALL(flush_tlb_all, swift_flush_tlb_all, BTFIXUPCALL_NORM); |
| BTFIXUPSET_CALL(flush_tlb_mm, swift_flush_tlb_mm, BTFIXUPCALL_NORM); |
| BTFIXUPSET_CALL(flush_tlb_page, swift_flush_tlb_page, BTFIXUPCALL_NORM); |
| BTFIXUPSET_CALL(flush_tlb_range, swift_flush_tlb_range, BTFIXUPCALL_NORM); |
| |
| BTFIXUPSET_CALL(__flush_page_to_ram, swift_flush_page_to_ram, BTFIXUPCALL_NORM); |
| BTFIXUPSET_CALL(flush_sig_insns, swift_flush_sig_insns, BTFIXUPCALL_NORM); |
| BTFIXUPSET_CALL(flush_page_for_dma, swift_flush_page_for_dma, BTFIXUPCALL_NORM); |
| |
| BTFIXUPSET_CALL(update_mmu_cache, swift_update_mmu_cache, BTFIXUPCALL_NORM); |
| |
| flush_page_for_dma_global = 0; |
| |
| /* |
| * Are you now convinced that the Swift is one of the |
| * biggest VLSI abortions of all time? Bravo Fujitsu! |
| * Fujitsu, the !#?!%$'d up processor people. I bet if |
| * you examined the microcode of the Swift you'd find |
| * XXX's all over the place. |
| */ |
| poke_srmmu = poke_swift; |
| } |
| |
| static void turbosparc_flush_cache_all(void) |
| { |
| flush_user_windows(); |
| turbosparc_idflash_clear(); |
| } |
| |
| static void turbosparc_flush_cache_mm(struct mm_struct *mm) |
| { |
| FLUSH_BEGIN(mm) |
| flush_user_windows(); |
| turbosparc_idflash_clear(); |
| FLUSH_END |
| } |
| |
| static void turbosparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) |
| { |
| FLUSH_BEGIN(vma->vm_mm) |
| flush_user_windows(); |
| turbosparc_idflash_clear(); |
| FLUSH_END |
| } |
| |
| static void turbosparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page) |
| { |
| FLUSH_BEGIN(vma->vm_mm) |
| flush_user_windows(); |
| if (vma->vm_flags & VM_EXEC) |
| turbosparc_flush_icache(); |
| turbosparc_flush_dcache(); |
| FLUSH_END |
| } |
| |
| /* TurboSparc is copy-back, if we turn it on, but this does not work. */ |
| static void turbosparc_flush_page_to_ram(unsigned long page) |
| { |
| #ifdef TURBOSPARC_WRITEBACK |
| volatile unsigned long clear; |
| |
| if (srmmu_hwprobe(page)) |
| turbosparc_flush_page_cache(page); |
| clear = srmmu_get_fstatus(); |
| #endif |
| } |
| |
| static void turbosparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr) |
| { |
| } |
| |
| static void turbosparc_flush_page_for_dma(unsigned long page) |
| { |
| turbosparc_flush_dcache(); |
| } |
| |
| static void turbosparc_flush_tlb_all(void) |
| { |
| srmmu_flush_whole_tlb(); |
| } |
| |
| static void turbosparc_flush_tlb_mm(struct mm_struct *mm) |
| { |
| FLUSH_BEGIN(mm) |
| srmmu_flush_whole_tlb(); |
| FLUSH_END |
| } |
| |
| static void turbosparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) |
| { |
| FLUSH_BEGIN(vma->vm_mm) |
| srmmu_flush_whole_tlb(); |
| FLUSH_END |
| } |
| |
| static void turbosparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page) |
| { |
| FLUSH_BEGIN(vma->vm_mm) |
| srmmu_flush_whole_tlb(); |
| FLUSH_END |
| } |
| |
| |
| static void __init poke_turbosparc(void) |
| { |
| unsigned long mreg = srmmu_get_mmureg(); |
| unsigned long ccreg; |
| |
| /* Clear any crap from the cache or else... */ |
| turbosparc_flush_cache_all(); |
| mreg &= ~(TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* Temporarily disable I & D caches */ |
| mreg &= ~(TURBOSPARC_PCENABLE); /* Don't check parity */ |
| srmmu_set_mmureg(mreg); |
| |
| ccreg = turbosparc_get_ccreg(); |
| |
| #ifdef TURBOSPARC_WRITEBACK |
| ccreg |= (TURBOSPARC_SNENABLE); /* Do DVMA snooping in Dcache */ |
| ccreg &= ~(TURBOSPARC_uS2 | TURBOSPARC_WTENABLE); |
| /* Write-back D-cache, emulate VLSI |
| * abortion number three, not number one */ |
| #else |
| /* For now let's play safe, optimize later */ |
| ccreg |= (TURBOSPARC_SNENABLE | TURBOSPARC_WTENABLE); |
| /* Do DVMA snooping in Dcache, Write-thru D-cache */ |
| ccreg &= ~(TURBOSPARC_uS2); |
| /* Emulate VLSI abortion number three, not number one */ |
| #endif |
| |
| switch (ccreg & 7) { |
| case 0: /* No SE cache */ |
| case 7: /* Test mode */ |
| break; |
| default: |
| ccreg |= (TURBOSPARC_SCENABLE); |
| } |
| turbosparc_set_ccreg (ccreg); |
| |
| mreg |= (TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* I & D caches on */ |
| mreg |= (TURBOSPARC_ICSNOOP); /* Icache snooping on */ |
| srmmu_set_mmureg(mreg); |
| } |
| |
| static void __init init_turbosparc(void) |
| { |
| srmmu_name = "Fujitsu TurboSparc"; |
| srmmu_modtype = TurboSparc; |
| |
| BTFIXUPSET_CALL(flush_cache_all, turbosparc_flush_cache_all, BTFIXUPCALL_NORM); |
| BTFIXUPSET_CALL(flush_cache_mm, turbosparc_flush_cache_mm, BTFIXUPCALL_NORM); |
| BTFIXUPSET_CALL(flush_cache_page, turbosparc_flush_cache_page, BTFIXUPCALL_NORM); |
| BTFIXUPSET_CALL(flush_cache_range, turbosparc_flush_cache_range, BTFIXUPCALL_NORM); |
| |
| BTFIXUPSET_CALL(flush_tlb_all, turbosparc_flush_tlb_all, BTFIXUPCALL_NORM); |
| BTFIXUPSET_CALL(flush_tlb_mm, turbosparc_flush_tlb_mm, BTFIXUPCALL_NORM); |
| BTFIXUPSET_CALL(flush_tlb_page, turbosparc_flush_tlb_page, BTFIXUPCALL_NORM); |
| BTFIXUPSET_CALL(flush_tlb_range, turbosparc_flush_tlb_range, BTFIXUPCALL_NORM); |
| |
| BTFIXUPSET_CALL(__flush_page_to_ram, turbosparc_flush_page_to_ram, BTFIXUPCALL_NORM); |
| |
| BTFIXUPSET_CALL(flush_sig_insns, turbosparc_flush_sig_insns, BTFIXUPCALL_NOP); |
| BTFIXUPSET_CALL(flush_page_for_dma, turbosparc_flush_page_for_dma, BTFIXUPCALL_NORM); |
| |
| poke_srmmu = poke_turbosparc; |
| } |
| |
| static void __init poke_tsunami(void) |
| { |
| unsigned long mreg = srmmu_get_mmureg(); |
| |
| tsunami_flush_icache(); |
| tsunami_flush_dcache(); |
| mreg &= ~TSUNAMI_ITD; |
| mreg |= (TSUNAMI_IENAB | TSUNAMI_DENAB); |
| srmmu_set_mmureg(mreg); |
| } |
| |
| static void __init init_tsunami(void) |
| { |
| /* |
| * Tsunami's pretty sane, Sun and TI actually got it |
| * somewhat right this time. Fujitsu should have |
| * taken some lessons from them. |
| */ |
| |
| srmmu_name = "TI Tsunami"; |
| srmmu_modtype = Tsunami; |
| |
| BTFIXUPSET_CALL(flush_cache_all, tsunami_flush_cache_all, BTFIXUPCALL_NORM); |
| BTFIXUPSET_CALL(flush_cache_mm, tsunami_flush_cache_mm, BTFIXUPCALL_NORM); |
| BTFIXUPSET_CALL(flush_cache_page, tsunami_flush_cache_page, BTFIXUPCALL_NORM); |
| BTFIXUPSET_CALL(flush_cache_range, tsunami_flush_cache_range, BTFIXUPCALL_NORM); |
| |
| |
| BTFIXUPSET_CALL(flush_tlb_all, tsunami_flush_tlb_all, BTFIXUPCALL_NORM); |
| BTFIXUPSET_CALL(flush_tlb_mm, tsunami_flush_tlb_mm, BTFIXUPCALL_NORM); |
| BTFIXUPSET_CALL(flush_tlb_page, tsunami_flush_tlb_page, BTFIXUPCALL_NORM); |
| BTFIXUPSET_CALL(flush_tlb_range, tsunami_flush_tlb_range, BTFIXUPCALL_NORM); |
| |
| BTFIXUPSET_CALL(__flush_page_to_ram, tsunami_flush_page_to_ram, BTFIXUPCALL_NOP); |
| BTFIXUPSET_CALL(flush_sig_insns, tsunami_flush_sig_insns, BTFIXUPCALL_NORM); |
| BTFIXUPSET_CALL(flush_page_for_dma, tsunami_flush_page_for_dma, BTFIXUPCALL_NORM); |
| |
| poke_srmmu = poke_tsunami; |
| |
| tsunami_setup_blockops(); |
| } |
| |
| static void __init poke_viking(void) |
| { |
| unsigned long mreg = srmmu_get_mmureg(); |
| static int smp_catch; |
| |
| if(viking_mxcc_present) { |
| unsigned long mxcc_control = mxcc_get_creg(); |
| |
| mxcc_control |= (MXCC_CTL_ECE | MXCC_CTL_PRE | MXCC_CTL_MCE); |
| mxcc_control &= ~(MXCC_CTL_RRC); |
| mxcc_set_creg(mxcc_control); |
| |
| /* |
| * We don't need memory parity checks. |
| * XXX This is a mess, have to dig out later. ecd. |
| viking_mxcc_turn_off_parity(&mreg, &mxcc_control); |
| */ |
| |
| /* We do cache ptables on MXCC. */ |
| mreg |= VIKING_TCENABLE; |
| } else { |
| unsigned long bpreg; |
| |
| mreg &= ~(VIKING_TCENABLE); |
| if(smp_catch++) { |
| /* Must disable mixed-cmd mode here for other cpu's. */ |
| bpreg = viking_get_bpreg(); |
| bpreg &= ~(VIKING_ACTION_MIX); |
| viking_set_bpreg(bpreg); |
| |
| /* Just in case PROM does something funny. */ |
| msi_set_sync(); |
| } |
| } |
| |
| mreg |= VIKING_SPENABLE; |
| mreg |= (VIKING_ICENABLE | VIKING_DCENABLE); |
| mreg |= VIKING_SBENABLE; |
| mreg &= ~(VIKING_ACENABLE); |
| srmmu_set_mmureg(mreg); |
| |
| #ifdef CONFIG_SMP |
| /* Avoid unnecessary cross calls. */ |
| BTFIXUPCOPY_CALL(flush_cache_all, local_flush_cache_all); |
| BTFIXUPCOPY_CALL(flush_cache_mm, local_flush_cache_mm); |
| BTFIXUPCOPY_CALL(flush_cache_range, local_flush_cache_range); |
| BTFIXUPCOPY_CALL(flush_cache_page, local_flush_cache_page); |
| BTFIXUPCOPY_CALL(__flush_page_to_ram, local_flush_page_to_ram); |
| BTFIXUPCOPY_CALL(flush_sig_insns, local_flush_sig_insns); |
| BTFIXUPCOPY_CALL(flush_page_for_dma, local_flush_page_for_dma); |
| btfixup(); |
| #endif |
| } |
| |
| static void __init init_viking(void) |
| { |
| unsigned long mreg = srmmu_get_mmureg(); |
| |
| /* Ahhh, the viking. SRMMU VLSI abortion number two... */ |
| if(mreg & VIKING_MMODE) { |
| srmmu_name = "TI Viking"; |
| viking_mxcc_present = 0; |
| msi_set_sync(); |
| |
| BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_NORM); |
| BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_NORM); |
| BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_NORM); |
| |
| /* |
| * We need this to make sure old viking takes no hits |
| * on it's cache for dma snoops to workaround the |
| * "load from non-cacheable memory" interrupt bug. |
| * This is only necessary because of the new way in |
| * which we use the IOMMU. |
| */ |
| BTFIXUPSET_CALL(flush_page_for_dma, viking_flush_page, BTFIXUPCALL_NORM); |
| |
| flush_page_for_dma_global = 0; |
| } else { |
| srmmu_name = "TI Viking/MXCC"; |
| viking_mxcc_present = 1; |
| |
| srmmu_cache_pagetables = 1; |
| |
| /* MXCC vikings lack the DMA snooping bug. */ |
| BTFIXUPSET_CALL(flush_page_for_dma, viking_flush_page_for_dma, BTFIXUPCALL_NOP); |
| } |
| |
| BTFIXUPSET_CALL(flush_cache_all, viking_flush_cache_all, BTFIXUPCALL_NORM); |
| BTFIXUPSET_CALL(flush_cache_mm, viking_flush_cache_mm, BTFIXUPCALL_NORM); |
| BTFIXUPSET_CALL(flush_cache_page, viking_flush_cache_page, BTFIXUPCALL_NORM); |
| BTFIXUPSET_CALL(flush_cache_range, viking_flush_cache_range, BTFIXUPCALL_NORM); |
| |
| #ifdef CONFIG_SMP |
| if (sparc_cpu_model == sun4d) { |
| BTFIXUPSET_CALL(flush_tlb_all, sun4dsmp_flush_tlb_all, BTFIXUPCALL_NORM); |
| BTFIXUPSET_CALL(flush_tlb_mm, sun4dsmp_flush_tlb_mm, BTFIXUPCALL_NORM); |
| BTFIXUPSET_CALL(flush_tlb_page, sun4dsmp_flush_tlb_page, BTFIXUPCALL_NORM); |
| BTFIXUPSET_CALL(flush_tlb_range, sun4dsmp_flush_tlb_range, BTFIXUPCALL_NORM); |
| } else |
| #endif |
| { |
| BTFIXUPSET_CALL(flush_tlb_all, viking_flush_tlb_all, BTFIXUPCALL_NORM); |
| BTFIXUPSET_CALL(flush_tlb_mm, viking_flush_tlb_mm, BTFIXUPCALL_NORM); |
| BTFIXUPSET_CALL(flush_tlb_page, viking_flush_tlb_page, BTFIXUPCALL_NORM); |
| BTFIXUPSET_CALL(flush_tlb_range, viking_flush_tlb_range, BTFIXUPCALL_NORM); |
| } |
| |
| BTFIXUPSET_CALL(__flush_page_to_ram, viking_flush_page_to_ram, BTFIXUPCALL_NOP); |
| BTFIXUPSET_CALL(flush_sig_insns, viking_flush_sig_insns, BTFIXUPCALL_NOP); |
| |
| poke_srmmu = poke_viking; |
| } |
| |
| /* Probe for the srmmu chip version. */ |
| static void __init get_srmmu_type(void) |
| { |
| unsigned long mreg, psr; |
| unsigned long mod_typ, mod_rev, psr_typ, psr_vers; |
| |
| srmmu_modtype = SRMMU_INVAL_MOD; |
| hwbug_bitmask = 0; |
| |
| mreg = srmmu_get_mmureg(); psr = get_psr(); |
| mod_typ = (mreg & 0xf0000000) >> 28; |
| mod_rev = (mreg & 0x0f000000) >> 24; |
| psr_typ = (psr >> 28) & 0xf; |
| psr_vers = (psr >> 24) & 0xf; |
| |
| /* First, check for HyperSparc or Cypress. */ |
| if(mod_typ == 1) { |
| switch(mod_rev) { |
| case 7: |
| /* UP or MP Hypersparc */ |
| init_hypersparc(); |
| break; |
| case 0: |
| case 2: |
| /* Uniprocessor Cypress */ |
| init_cypress_604(); |
| break; |
| case 10: |
| case 11: |
| case 12: |
| /* _REALLY OLD_ Cypress MP chips... */ |
| case 13: |
| case 14: |
| case 15: |
| /* MP Cypress mmu/cache-controller */ |
| init_cypress_605(mod_rev); |
| break; |
| default: |
| /* Some other Cypress revision, assume a 605. */ |
| init_cypress_605(mod_rev); |
| break; |
| }; |
| return; |
| } |
| |
| /* |
| * Now Fujitsu TurboSparc. It might happen that it is |
| * in Swift emulation mode, so we will check later... |
| */ |
| if (psr_typ == 0 && psr_vers == 5) { |
| init_turbosparc(); |
| return; |
| } |
| |
| /* Next check for Fujitsu Swift. */ |
| if(psr_typ == 0 && psr_vers == 4) { |
| int cpunode; |
| char node_str[128]; |
| |
| /* Look if it is not a TurboSparc emulating Swift... */ |
| cpunode = prom_getchild(prom_root_node); |
| while((cpunode = prom_getsibling(cpunode)) != 0) { |
| prom_getstring(cpunode, "device_type", node_str, sizeof(node_str)); |
| if(!strcmp(node_str, "cpu")) { |
| if (!prom_getintdefault(cpunode, "psr-implementation", 1) && |
| prom_getintdefault(cpunode, "psr-version", 1) == 5) { |
| init_turbosparc(); |
| return; |
| } |
| break; |
| } |
| } |
| |
| init_swift(); |
| return; |
| } |
| |
| /* Now the Viking family of srmmu. */ |
| if(psr_typ == 4 && |
| ((psr_vers == 0) || |
| ((psr_vers == 1) && (mod_typ == 0) && (mod_rev == 0)))) { |
| init_viking(); |
| return; |
| } |
| |
| /* Finally the Tsunami. */ |
| if(psr_typ == 4 && psr_vers == 1 && (mod_typ || mod_rev)) { |
| init_tsunami(); |
| return; |
| } |
| |
| /* Oh well */ |
| srmmu_is_bad(); |
| } |
| |
| /* don't laugh, static pagetables */ |
| static void srmmu_check_pgt_cache(int low, int high) |
| { |
| } |
| |
| extern unsigned long spwin_mmu_patchme, fwin_mmu_patchme, |
| tsetup_mmu_patchme, rtrap_mmu_patchme; |
| |
| extern unsigned long spwin_srmmu_stackchk, srmmu_fwin_stackchk, |
| tsetup_srmmu_stackchk, srmmu_rett_stackchk; |
| |
| extern unsigned long srmmu_fault; |
| |
| #define PATCH_BRANCH(insn, dest) do { \ |
| iaddr = &(insn); \ |
| daddr = &(dest); \ |
| *iaddr = SPARC_BRANCH((unsigned long) daddr, (unsigned long) iaddr); \ |
| } while(0) |
| |
| static void __init patch_window_trap_handlers(void) |
| { |
| unsigned long *iaddr, *daddr; |
| |
| PATCH_BRANCH(spwin_mmu_patchme, spwin_srmmu_stackchk); |
| PATCH_BRANCH(fwin_mmu_patchme, srmmu_fwin_stackchk); |
| PATCH_BRANCH(tsetup_mmu_patchme, tsetup_srmmu_stackchk); |
| PATCH_BRANCH(rtrap_mmu_patchme, srmmu_rett_stackchk); |
| PATCH_BRANCH(sparc_ttable[SP_TRAP_TFLT].inst_three, srmmu_fault); |
| PATCH_BRANCH(sparc_ttable[SP_TRAP_DFLT].inst_three, srmmu_fault); |
| PATCH_BRANCH(sparc_ttable[SP_TRAP_DACC].inst_three, srmmu_fault); |
| } |
| |
| #ifdef CONFIG_SMP |
| /* Local cross-calls. */ |
| static void smp_flush_page_for_dma(unsigned long page) |
| { |
| xc1((smpfunc_t) BTFIXUP_CALL(local_flush_page_for_dma), page); |
| local_flush_page_for_dma(page); |
| } |
| |
| #endif |
| |
| static pte_t srmmu_pgoff_to_pte(unsigned long pgoff) |
| { |
| return __pte((pgoff << SRMMU_PTE_FILE_SHIFT) | SRMMU_FILE); |
| } |
| |
| static unsigned long srmmu_pte_to_pgoff(pte_t pte) |
| { |
| return pte_val(pte) >> SRMMU_PTE_FILE_SHIFT; |
| } |
| |
| static pgprot_t srmmu_pgprot_noncached(pgprot_t prot) |
| { |
| prot &= ~__pgprot(SRMMU_CACHE); |
| |
| return prot; |
| } |
| |
| /* Load up routines and constants for sun4m and sun4d mmu */ |
| void __init ld_mmu_srmmu(void) |
| { |
| extern void ld_mmu_iommu(void); |
| extern void ld_mmu_iounit(void); |
| extern void ___xchg32_sun4md(void); |
| |
| BTFIXUPSET_SIMM13(pgdir_shift, SRMMU_PGDIR_SHIFT); |
| BTFIXUPSET_SETHI(pgdir_size, SRMMU_PGDIR_SIZE); |
| BTFIXUPSET_SETHI(pgdir_mask, SRMMU_PGDIR_MASK); |
| |
| BTFIXUPSET_SIMM13(ptrs_per_pmd, SRMMU_PTRS_PER_PMD); |
| BTFIXUPSET_SIMM13(ptrs_per_pgd, SRMMU_PTRS_PER_PGD); |
| |
| BTFIXUPSET_INT(page_none, pgprot_val(SRMMU_PAGE_NONE)); |
| BTFIXUPSET_INT(page_shared, pgprot_val(SRMMU_PAGE_SHARED)); |
| BTFIXUPSET_INT(page_copy, pgprot_val(SRMMU_PAGE_COPY)); |
| BTFIXUPSET_INT(page_readonly, pgprot_val(SRMMU_PAGE_RDONLY)); |
| BTFIXUPSET_INT(page_kernel, pgprot_val(SRMMU_PAGE_KERNEL)); |
| page_kernel = pgprot_val(SRMMU_PAGE_KERNEL); |
| |
| /* Functions */ |
| BTFIXUPSET_CALL(pgprot_noncached, srmmu_pgprot_noncached, BTFIXUPCALL_NORM); |
| #ifndef CONFIG_SMP |
| BTFIXUPSET_CALL(___xchg32, ___xchg32_sun4md, BTFIXUPCALL_SWAPG1G2); |
| #endif |
| BTFIXUPSET_CALL(do_check_pgt_cache, srmmu_check_pgt_cache, BTFIXUPCALL_NOP); |
| |
| BTFIXUPSET_CALL(set_pte, srmmu_set_pte, BTFIXUPCALL_SWAPO0O1); |
| BTFIXUPSET_CALL(switch_mm, srmmu_switch_mm, BTFIXUPCALL_NORM); |
| |
| BTFIXUPSET_CALL(pte_pfn, srmmu_pte_pfn, BTFIXUPCALL_NORM); |
| BTFIXUPSET_CALL(pmd_page, srmmu_pmd_page, BTFIXUPCALL_NORM); |
| BTFIXUPSET_CALL(pgd_page_vaddr, srmmu_pgd_page, BTFIXUPCALL_NORM); |
| |
| BTFIXUPSET_SETHI(none_mask, 0xF0000000); |
| |
| BTFIXUPSET_CALL(pte_present, srmmu_pte_present, BTFIXUPCALL_NORM); |
| BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_SWAPO0G0); |
| |
| BTFIXUPSET_CALL(pmd_bad, srmmu_pmd_bad, BTFIXUPCALL_NORM); |
| BTFIXUPSET_CALL(pmd_present, srmmu_pmd_present, BTFIXUPCALL_NORM); |
| BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_SWAPO0G0); |
| |
| BTFIXUPSET_CALL(pgd_none, srmmu_pgd_none, BTFIXUPCALL_NORM); |
| BTFIXUPSET_CALL(pgd_bad, srmmu_pgd_bad, BTFIXUPCALL_NORM); |
| BTFIXUPSET_CALL(pgd_present, srmmu_pgd_present, BTFIXUPCALL_NORM); |
| BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_SWAPO0G0); |
| |
| BTFIXUPSET_CALL(mk_pte, srmmu_mk_pte, BTFIXUPCALL_NORM); |
| BTFIXUPSET_CALL(mk_pte_phys, srmmu_mk_pte_phys, BTFIXUPCALL_NORM); |
| BTFIXUPSET_CALL(mk_pte_io, srmmu_mk_pte_io, BTFIXUPCALL_NORM); |
| BTFIXUPSET_CALL(pgd_set, srmmu_pgd_set, BTFIXUPCALL_NORM); |
| BTFIXUPSET_CALL(pmd_set, srmmu_pmd_set, BTFIXUPCALL_NORM); |
| BTFIXUPSET_CALL(pmd_populate, srmmu_pmd_populate, BTFIXUPCALL_NORM); |
| |
| BTFIXUPSET_INT(pte_modify_mask, SRMMU_CHG_MASK); |
| BTFIXUPSET_CALL(pmd_offset, srmmu_pmd_offset, BTFIXUPCALL_NORM); |
| BTFIXUPSET_CALL(pte_offset_kernel, srmmu_pte_offset, BTFIXUPCALL_NORM); |
| |
| BTFIXUPSET_CALL(free_pte_fast, srmmu_free_pte_fast, BTFIXUPCALL_NORM); |
| BTFIXUPSET_CALL(pte_free, srmmu_pte_free, BTFIXUPCALL_NORM); |
| BTFIXUPSET_CALL(pte_alloc_one_kernel, srmmu_pte_alloc_one_kernel, BTFIXUPCALL_NORM); |
| BTFIXUPSET_CALL(pte_alloc_one, srmmu_pte_alloc_one, BTFIXUPCALL_NORM); |
| BTFIXUPSET_CALL(free_pmd_fast, srmmu_pmd_free, BTFIXUPCALL_NORM); |
| BTFIXUPSET_CALL(pmd_alloc_one, srmmu_pmd_alloc_one, BTFIXUPCALL_NORM); |
| BTFIXUPSET_CALL(free_pgd_fast, srmmu_free_pgd_fast, BTFIXUPCALL_NORM); |
| BTFIXUPSET_CALL(get_pgd_fast, srmmu_get_pgd_fast, BTFIXUPCALL_NORM); |
| |
| BTFIXUPSET_HALF(pte_writei, SRMMU_WRITE); |
| BTFIXUPSET_HALF(pte_dirtyi, SRMMU_DIRTY); |
| BTFIXUPSET_HALF(pte_youngi, SRMMU_REF); |
| BTFIXUPSET_HALF(pte_filei, SRMMU_FILE); |
| BTFIXUPSET_HALF(pte_wrprotecti, SRMMU_WRITE); |
| BTFIXUPSET_HALF(pte_mkcleani, SRMMU_DIRTY); |
| BTFIXUPSET_HALF(pte_mkoldi, SRMMU_REF); |
| BTFIXUPSET_CALL(pte_mkwrite, srmmu_pte_mkwrite, BTFIXUPCALL_ORINT(SRMMU_WRITE)); |
| BTFIXUPSET_CALL(pte_mkdirty, srmmu_pte_mkdirty, BTFIXUPCALL_ORINT(SRMMU_DIRTY)); |
| BTFIXUPSET_CALL(pte_mkyoung, srmmu_pte_mkyoung, BTFIXUPCALL_ORINT(SRMMU_REF)); |
| BTFIXUPSET_CALL(update_mmu_cache, srmmu_update_mmu_cache, BTFIXUPCALL_NOP); |
| BTFIXUPSET_CALL(destroy_context, srmmu_destroy_context, BTFIXUPCALL_NORM); |
| |
| BTFIXUPSET_CALL(sparc_mapiorange, srmmu_mapiorange, BTFIXUPCALL_NORM); |
| BTFIXUPSET_CALL(sparc_unmapiorange, srmmu_unmapiorange, BTFIXUPCALL_NORM); |
| |
| BTFIXUPSET_CALL(__swp_type, srmmu_swp_type, BTFIXUPCALL_NORM); |
| BTFIXUPSET_CALL(__swp_offset, srmmu_swp_offset, BTFIXUPCALL_NORM); |
| BTFIXUPSET_CALL(__swp_entry, srmmu_swp_entry, BTFIXUPCALL_NORM); |
| |
| BTFIXUPSET_CALL(mmu_info, srmmu_mmu_info, BTFIXUPCALL_NORM); |
| |
| BTFIXUPSET_CALL(alloc_thread_info, srmmu_alloc_thread_info, BTFIXUPCALL_NORM); |
| BTFIXUPSET_CALL(free_thread_info, srmmu_free_thread_info, BTFIXUPCALL_NORM); |
| |
| BTFIXUPSET_CALL(pte_to_pgoff, srmmu_pte_to_pgoff, BTFIXUPCALL_NORM); |
| BTFIXUPSET_CALL(pgoff_to_pte, srmmu_pgoff_to_pte, BTFIXUPCALL_NORM); |
| |
| get_srmmu_type(); |
| patch_window_trap_handlers(); |
| |
| #ifdef CONFIG_SMP |
| /* El switcheroo... */ |
| |
| BTFIXUPCOPY_CALL(local_flush_cache_all, flush_cache_all); |
| BTFIXUPCOPY_CALL(local_flush_cache_mm, flush_cache_mm); |
| BTFIXUPCOPY_CALL(local_flush_cache_range, flush_cache_range); |
| BTFIXUPCOPY_CALL(local_flush_cache_page, flush_cache_page); |
| BTFIXUPCOPY_CALL(local_flush_tlb_all, flush_tlb_all); |
| BTFIXUPCOPY_CALL(local_flush_tlb_mm, flush_tlb_mm); |
| BTFIXUPCOPY_CALL(local_flush_tlb_range, flush_tlb_range); |
| BTFIXUPCOPY_CALL(local_flush_tlb_page, flush_tlb_page); |
| BTFIXUPCOPY_CALL(local_flush_page_to_ram, __flush_page_to_ram); |
| BTFIXUPCOPY_CALL(local_flush_sig_insns, flush_sig_insns); |
| BTFIXUPCOPY_CALL(local_flush_page_for_dma, flush_page_for_dma); |
| |
| BTFIXUPSET_CALL(flush_cache_all, smp_flush_cache_all, BTFIXUPCALL_NORM); |
| BTFIXUPSET_CALL(flush_cache_mm, smp_flush_cache_mm, BTFIXUPCALL_NORM); |
| BTFIXUPSET_CALL(flush_cache_range, smp_flush_cache_range, BTFIXUPCALL_NORM); |
| BTFIXUPSET_CALL(flush_cache_page, smp_flush_cache_page, BTFIXUPCALL_NORM); |
| if (sparc_cpu_model != sun4d) { |
| BTFIXUPSET_CALL(flush_tlb_all, smp_flush_tlb_all, BTFIXUPCALL_NORM); |
| BTFIXUPSET_CALL(flush_tlb_mm, smp_flush_tlb_mm, BTFIXUPCALL_NORM); |
| BTFIXUPSET_CALL(flush_tlb_range, smp_flush_tlb_range, BTFIXUPCALL_NORM); |
| BTFIXUPSET_CALL(flush_tlb_page, smp_flush_tlb_page, BTFIXUPCALL_NORM); |
| } |
| BTFIXUPSET_CALL(__flush_page_to_ram, smp_flush_page_to_ram, BTFIXUPCALL_NORM); |
| BTFIXUPSET_CALL(flush_sig_insns, smp_flush_sig_insns, BTFIXUPCALL_NORM); |
| BTFIXUPSET_CALL(flush_page_for_dma, smp_flush_page_for_dma, BTFIXUPCALL_NORM); |
| #endif |
| |
| if (sparc_cpu_model == sun4d) |
| ld_mmu_iounit(); |
| else |
| ld_mmu_iommu(); |
| #ifdef CONFIG_SMP |
| if (sparc_cpu_model == sun4d) |
| sun4d_init_smp(); |
| else |
| sun4m_init_smp(); |
| #endif |
| } |