| /* |
| * srmmu.c: SRMMU specific routines for memory management. |
| * |
| * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu) |
| * Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com) |
| * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be) |
| * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz) |
| * Copyright (C) 1999,2000 Anton Blanchard (anton@samba.org) |
| */ |
| |
| #include <linux/seq_file.h> |
| #include <linux/spinlock.h> |
| #include <linux/bootmem.h> |
| #include <linux/pagemap.h> |
| #include <linux/vmalloc.h> |
| #include <linux/kdebug.h> |
| #include <linux/export.h> |
| #include <linux/kernel.h> |
| #include <linux/init.h> |
| #include <linux/log2.h> |
| #include <linux/gfp.h> |
| #include <linux/fs.h> |
| #include <linux/mm.h> |
| |
| #include <asm/mmu_context.h> |
| #include <asm/cacheflush.h> |
| #include <asm/tlbflush.h> |
| #include <asm/io-unit.h> |
| #include <asm/pgalloc.h> |
| #include <asm/pgtable.h> |
| #include <asm/bitext.h> |
| #include <asm/vaddrs.h> |
| #include <asm/cache.h> |
| #include <asm/traps.h> |
| #include <asm/oplib.h> |
| #include <asm/mbus.h> |
| #include <asm/page.h> |
| #include <asm/asi.h> |
| #include <asm/msi.h> |
| #include <asm/smp.h> |
| #include <asm/io.h> |
| |
| /* Now the cpu specific definitions. */ |
| #include <asm/turbosparc.h> |
| #include <asm/tsunami.h> |
| #include <asm/viking.h> |
| #include <asm/swift.h> |
| #include <asm/leon.h> |
| #include <asm/mxcc.h> |
| #include <asm/ross.h> |
| |
| #include "mm_32.h" |
| |
| enum mbus_module srmmu_modtype; |
| static unsigned int hwbug_bitmask; |
| int vac_cache_size; |
| int vac_line_size; |
| |
| extern struct resource sparc_iomap; |
| |
| extern unsigned long last_valid_pfn; |
| |
| static pgd_t *srmmu_swapper_pg_dir; |
| |
| const struct sparc32_cachetlb_ops *sparc32_cachetlb_ops; |
| EXPORT_SYMBOL(sparc32_cachetlb_ops); |
| |
| #ifdef CONFIG_SMP |
| const struct sparc32_cachetlb_ops *local_ops; |
| |
| #define FLUSH_BEGIN(mm) |
| #define FLUSH_END |
| #else |
| #define FLUSH_BEGIN(mm) if ((mm)->context != NO_CONTEXT) { |
| #define FLUSH_END } |
| #endif |
| |
| int flush_page_for_dma_global = 1; |
| |
| char *srmmu_name; |
| |
| ctxd_t *srmmu_ctx_table_phys; |
| static ctxd_t *srmmu_context_table; |
| |
| int viking_mxcc_present; |
| static DEFINE_SPINLOCK(srmmu_context_spinlock); |
| |
| static int is_hypersparc; |
| |
| static int srmmu_cache_pagetables; |
| |
| /* these will be initialized in srmmu_nocache_calcsize() */ |
| static unsigned long srmmu_nocache_size; |
| static unsigned long srmmu_nocache_end; |
| |
| /* 1 bit <=> 256 bytes of nocache <=> 64 PTEs */ |
| #define SRMMU_NOCACHE_BITMAP_SHIFT (PAGE_SHIFT - 4) |
| |
| /* The context table is a nocache user with the biggest alignment needs. */ |
| #define SRMMU_NOCACHE_ALIGN_MAX (sizeof(ctxd_t)*SRMMU_MAX_CONTEXTS) |
| |
| void *srmmu_nocache_pool; |
| static struct bit_map srmmu_nocache_map; |
| |
| static inline int srmmu_pmd_none(pmd_t pmd) |
| { return !(pmd_val(pmd) & 0xFFFFFFF); } |
| |
| /* XXX should we hyper_flush_whole_icache here - Anton */ |
| static inline void srmmu_ctxd_set(ctxd_t *ctxp, pgd_t *pgdp) |
| { |
| pte_t pte; |
| |
| pte = __pte((SRMMU_ET_PTD | (__nocache_pa(pgdp) >> 4))); |
| set_pte((pte_t *)ctxp, pte); |
| } |
| |
| void pmd_set(pmd_t *pmdp, pte_t *ptep) |
| { |
| unsigned long ptp; /* Physical address, shifted right by 4 */ |
| int i; |
| |
| ptp = __nocache_pa(ptep) >> 4; |
| for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) { |
| set_pte((pte_t *)&pmdp->pmdv[i], __pte(SRMMU_ET_PTD | ptp)); |
| ptp += (SRMMU_REAL_PTRS_PER_PTE * sizeof(pte_t) >> 4); |
| } |
| } |
| |
| void pmd_populate(struct mm_struct *mm, pmd_t *pmdp, struct page *ptep) |
| { |
| unsigned long ptp; /* Physical address, shifted right by 4 */ |
| int i; |
| |
| ptp = page_to_pfn(ptep) << (PAGE_SHIFT-4); /* watch for overflow */ |
| for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) { |
| set_pte((pte_t *)&pmdp->pmdv[i], __pte(SRMMU_ET_PTD | ptp)); |
| ptp += (SRMMU_REAL_PTRS_PER_PTE * sizeof(pte_t) >> 4); |
| } |
| } |
| |
| /* Find an entry in the third-level page table.. */ |
| pte_t *pte_offset_kernel(pmd_t *dir, unsigned long address) |
| { |
| void *pte; |
| |
| pte = __nocache_va((dir->pmdv[0] & SRMMU_PTD_PMASK) << 4); |
| return (pte_t *) pte + |
| ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)); |
| } |
| |
| /* |
| * size: bytes to allocate in the nocache area. |
| * align: bytes, number to align at. |
| * Returns the virtual address of the allocated area. |
| */ |
| static void *__srmmu_get_nocache(int size, int align) |
| { |
| int offset; |
| unsigned long addr; |
| |
| if (size < SRMMU_NOCACHE_BITMAP_SHIFT) { |
| printk(KERN_ERR "Size 0x%x too small for nocache request\n", |
| size); |
| size = SRMMU_NOCACHE_BITMAP_SHIFT; |
| } |
| if (size & (SRMMU_NOCACHE_BITMAP_SHIFT - 1)) { |
| printk(KERN_ERR "Size 0x%x unaligned int nocache request\n", |
| size); |
| size += SRMMU_NOCACHE_BITMAP_SHIFT - 1; |
| } |
| BUG_ON(align > SRMMU_NOCACHE_ALIGN_MAX); |
| |
| offset = bit_map_string_get(&srmmu_nocache_map, |
| size >> SRMMU_NOCACHE_BITMAP_SHIFT, |
| align >> SRMMU_NOCACHE_BITMAP_SHIFT); |
| if (offset == -1) { |
| printk(KERN_ERR "srmmu: out of nocache %d: %d/%d\n", |
| size, (int) srmmu_nocache_size, |
| srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT); |
| return NULL; |
| } |
| |
| addr = SRMMU_NOCACHE_VADDR + (offset << SRMMU_NOCACHE_BITMAP_SHIFT); |
| return (void *)addr; |
| } |
| |
| void *srmmu_get_nocache(int size, int align) |
| { |
| void *tmp; |
| |
| tmp = __srmmu_get_nocache(size, align); |
| |
| if (tmp) |
| memset(tmp, 0, size); |
| |
| return tmp; |
| } |
| |
| void srmmu_free_nocache(void *addr, int size) |
| { |
| unsigned long vaddr; |
| int offset; |
| |
| vaddr = (unsigned long)addr; |
| if (vaddr < SRMMU_NOCACHE_VADDR) { |
| printk("Vaddr %lx is smaller than nocache base 0x%lx\n", |
| vaddr, (unsigned long)SRMMU_NOCACHE_VADDR); |
| BUG(); |
| } |
| if (vaddr + size > srmmu_nocache_end) { |
| printk("Vaddr %lx is bigger than nocache end 0x%lx\n", |
| vaddr, srmmu_nocache_end); |
| BUG(); |
| } |
| if (!is_power_of_2(size)) { |
| printk("Size 0x%x is not a power of 2\n", size); |
| BUG(); |
| } |
| if (size < SRMMU_NOCACHE_BITMAP_SHIFT) { |
| printk("Size 0x%x is too small\n", size); |
| BUG(); |
| } |
| if (vaddr & (size - 1)) { |
| printk("Vaddr %lx is not aligned to size 0x%x\n", vaddr, size); |
| BUG(); |
| } |
| |
| offset = (vaddr - SRMMU_NOCACHE_VADDR) >> SRMMU_NOCACHE_BITMAP_SHIFT; |
| size = size >> SRMMU_NOCACHE_BITMAP_SHIFT; |
| |
| bit_map_clear(&srmmu_nocache_map, offset, size); |
| } |
| |
| static void srmmu_early_allocate_ptable_skeleton(unsigned long start, |
| unsigned long end); |
| |
| /* Return how much physical memory we have. */ |
| static unsigned long __init probe_memory(void) |
| { |
| unsigned long total = 0; |
| int i; |
| |
| for (i = 0; sp_banks[i].num_bytes; i++) |
| total += sp_banks[i].num_bytes; |
| |
| return total; |
| } |
| |
| /* |
| * Reserve nocache dynamically proportionally to the amount of |
| * system RAM. -- Tomas Szepe <szepe@pinerecords.com>, June 2002 |
| */ |
| static void __init srmmu_nocache_calcsize(void) |
| { |
| unsigned long sysmemavail = probe_memory() / 1024; |
| int srmmu_nocache_npages; |
| |
| srmmu_nocache_npages = |
| sysmemavail / SRMMU_NOCACHE_ALCRATIO / 1024 * 256; |
| |
| /* P3 XXX The 4x overuse: corroborated by /proc/meminfo. */ |
| // if (srmmu_nocache_npages < 256) srmmu_nocache_npages = 256; |
| if (srmmu_nocache_npages < SRMMU_MIN_NOCACHE_PAGES) |
| srmmu_nocache_npages = SRMMU_MIN_NOCACHE_PAGES; |
| |
| /* anything above 1280 blows up */ |
| if (srmmu_nocache_npages > SRMMU_MAX_NOCACHE_PAGES) |
| srmmu_nocache_npages = SRMMU_MAX_NOCACHE_PAGES; |
| |
| srmmu_nocache_size = srmmu_nocache_npages * PAGE_SIZE; |
| srmmu_nocache_end = SRMMU_NOCACHE_VADDR + srmmu_nocache_size; |
| } |
| |
| static void __init srmmu_nocache_init(void) |
| { |
| void *srmmu_nocache_bitmap; |
| unsigned int bitmap_bits; |
| pgd_t *pgd; |
| pmd_t *pmd; |
| pte_t *pte; |
| unsigned long paddr, vaddr; |
| unsigned long pteval; |
| |
| bitmap_bits = srmmu_nocache_size >> SRMMU_NOCACHE_BITMAP_SHIFT; |
| |
| srmmu_nocache_pool = __alloc_bootmem(srmmu_nocache_size, |
| SRMMU_NOCACHE_ALIGN_MAX, 0UL); |
| memset(srmmu_nocache_pool, 0, srmmu_nocache_size); |
| |
| srmmu_nocache_bitmap = |
| __alloc_bootmem(BITS_TO_LONGS(bitmap_bits) * sizeof(long), |
| SMP_CACHE_BYTES, 0UL); |
| bit_map_init(&srmmu_nocache_map, srmmu_nocache_bitmap, bitmap_bits); |
| |
| srmmu_swapper_pg_dir = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE); |
| memset(__nocache_fix(srmmu_swapper_pg_dir), 0, SRMMU_PGD_TABLE_SIZE); |
| init_mm.pgd = srmmu_swapper_pg_dir; |
| |
| srmmu_early_allocate_ptable_skeleton(SRMMU_NOCACHE_VADDR, srmmu_nocache_end); |
| |
| paddr = __pa((unsigned long)srmmu_nocache_pool); |
| vaddr = SRMMU_NOCACHE_VADDR; |
| |
| while (vaddr < srmmu_nocache_end) { |
| pgd = pgd_offset_k(vaddr); |
| pmd = pmd_offset(__nocache_fix(pgd), vaddr); |
| pte = pte_offset_kernel(__nocache_fix(pmd), vaddr); |
| |
| pteval = ((paddr >> 4) | SRMMU_ET_PTE | SRMMU_PRIV); |
| |
| if (srmmu_cache_pagetables) |
| pteval |= SRMMU_CACHE; |
| |
| set_pte(__nocache_fix(pte), __pte(pteval)); |
| |
| vaddr += PAGE_SIZE; |
| paddr += PAGE_SIZE; |
| } |
| |
| flush_cache_all(); |
| flush_tlb_all(); |
| } |
| |
| pgd_t *get_pgd_fast(void) |
| { |
| pgd_t *pgd = NULL; |
| |
| pgd = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE); |
| if (pgd) { |
| pgd_t *init = pgd_offset_k(0); |
| memset(pgd, 0, USER_PTRS_PER_PGD * sizeof(pgd_t)); |
| memcpy(pgd + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD, |
| (PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t)); |
| } |
| |
| return pgd; |
| } |
| |
| /* |
| * Hardware needs alignment to 256 only, but we align to whole page size |
| * to reduce fragmentation problems due to the buddy principle. |
| * XXX Provide actual fragmentation statistics in /proc. |
| * |
| * Alignments up to the page size are the same for physical and virtual |
| * addresses of the nocache area. |
| */ |
| pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address) |
| { |
| unsigned long pte; |
| struct page *page; |
| |
| if ((pte = (unsigned long)pte_alloc_one_kernel(mm, address)) == 0) |
| return NULL; |
| page = pfn_to_page(__nocache_pa(pte) >> PAGE_SHIFT); |
| if (!pgtable_page_ctor(page)) { |
| __free_page(page); |
| return NULL; |
| } |
| return page; |
| } |
| |
| void pte_free(struct mm_struct *mm, pgtable_t pte) |
| { |
| unsigned long p; |
| |
| pgtable_page_dtor(pte); |
| p = (unsigned long)page_address(pte); /* Cached address (for test) */ |
| if (p == 0) |
| BUG(); |
| p = page_to_pfn(pte) << PAGE_SHIFT; /* Physical address */ |
| |
| /* free non cached virtual address*/ |
| srmmu_free_nocache(__nocache_va(p), PTE_SIZE); |
| } |
| |
| /* context handling - a dynamically sized pool is used */ |
| #define NO_CONTEXT -1 |
| |
| struct ctx_list { |
| struct ctx_list *next; |
| struct ctx_list *prev; |
| unsigned int ctx_number; |
| struct mm_struct *ctx_mm; |
| }; |
| |
| static struct ctx_list *ctx_list_pool; |
| static struct ctx_list ctx_free; |
| static struct ctx_list ctx_used; |
| |
| /* At boot time we determine the number of contexts */ |
| static int num_contexts; |
| |
| static inline void remove_from_ctx_list(struct ctx_list *entry) |
| { |
| entry->next->prev = entry->prev; |
| entry->prev->next = entry->next; |
| } |
| |
| static inline void add_to_ctx_list(struct ctx_list *head, struct ctx_list *entry) |
| { |
| entry->next = head; |
| (entry->prev = head->prev)->next = entry; |
| head->prev = entry; |
| } |
| #define add_to_free_ctxlist(entry) add_to_ctx_list(&ctx_free, entry) |
| #define add_to_used_ctxlist(entry) add_to_ctx_list(&ctx_used, entry) |
| |
| |
| static inline void alloc_context(struct mm_struct *old_mm, struct mm_struct *mm) |
| { |
| struct ctx_list *ctxp; |
| |
| ctxp = ctx_free.next; |
| if (ctxp != &ctx_free) { |
| remove_from_ctx_list(ctxp); |
| add_to_used_ctxlist(ctxp); |
| mm->context = ctxp->ctx_number; |
| ctxp->ctx_mm = mm; |
| return; |
| } |
| ctxp = ctx_used.next; |
| if (ctxp->ctx_mm == old_mm) |
| ctxp = ctxp->next; |
| if (ctxp == &ctx_used) |
| panic("out of mmu contexts"); |
| flush_cache_mm(ctxp->ctx_mm); |
| flush_tlb_mm(ctxp->ctx_mm); |
| remove_from_ctx_list(ctxp); |
| add_to_used_ctxlist(ctxp); |
| ctxp->ctx_mm->context = NO_CONTEXT; |
| ctxp->ctx_mm = mm; |
| mm->context = ctxp->ctx_number; |
| } |
| |
| static inline void free_context(int context) |
| { |
| struct ctx_list *ctx_old; |
| |
| ctx_old = ctx_list_pool + context; |
| remove_from_ctx_list(ctx_old); |
| add_to_free_ctxlist(ctx_old); |
| } |
| |
| static void __init sparc_context_init(int numctx) |
| { |
| int ctx; |
| unsigned long size; |
| |
| size = numctx * sizeof(struct ctx_list); |
| ctx_list_pool = __alloc_bootmem(size, SMP_CACHE_BYTES, 0UL); |
| |
| for (ctx = 0; ctx < numctx; ctx++) { |
| struct ctx_list *clist; |
| |
| clist = (ctx_list_pool + ctx); |
| clist->ctx_number = ctx; |
| clist->ctx_mm = NULL; |
| } |
| ctx_free.next = ctx_free.prev = &ctx_free; |
| ctx_used.next = ctx_used.prev = &ctx_used; |
| for (ctx = 0; ctx < numctx; ctx++) |
| add_to_free_ctxlist(ctx_list_pool + ctx); |
| } |
| |
| void switch_mm(struct mm_struct *old_mm, struct mm_struct *mm, |
| struct task_struct *tsk) |
| { |
| unsigned long flags; |
| |
| if (mm->context == NO_CONTEXT) { |
| spin_lock_irqsave(&srmmu_context_spinlock, flags); |
| alloc_context(old_mm, mm); |
| spin_unlock_irqrestore(&srmmu_context_spinlock, flags); |
| srmmu_ctxd_set(&srmmu_context_table[mm->context], mm->pgd); |
| } |
| |
| if (sparc_cpu_model == sparc_leon) |
| leon_switch_mm(); |
| |
| if (is_hypersparc) |
| hyper_flush_whole_icache(); |
| |
| srmmu_set_context(mm->context); |
| } |
| |
| /* Low level IO area allocation on the SRMMU. */ |
| static inline void srmmu_mapioaddr(unsigned long physaddr, |
| unsigned long virt_addr, int bus_type) |
| { |
| pgd_t *pgdp; |
| pmd_t *pmdp; |
| pte_t *ptep; |
| unsigned long tmp; |
| |
| physaddr &= PAGE_MASK; |
| pgdp = pgd_offset_k(virt_addr); |
| pmdp = pmd_offset(pgdp, virt_addr); |
| ptep = pte_offset_kernel(pmdp, virt_addr); |
| tmp = (physaddr >> 4) | SRMMU_ET_PTE; |
| |
| /* I need to test whether this is consistent over all |
| * sun4m's. The bus_type represents the upper 4 bits of |
| * 36-bit physical address on the I/O space lines... |
| */ |
| tmp |= (bus_type << 28); |
| tmp |= SRMMU_PRIV; |
| __flush_page_to_ram(virt_addr); |
| set_pte(ptep, __pte(tmp)); |
| } |
| |
| void srmmu_mapiorange(unsigned int bus, unsigned long xpa, |
| unsigned long xva, unsigned int len) |
| { |
| while (len != 0) { |
| len -= PAGE_SIZE; |
| srmmu_mapioaddr(xpa, xva, bus); |
| xva += PAGE_SIZE; |
| xpa += PAGE_SIZE; |
| } |
| flush_tlb_all(); |
| } |
| |
| static inline void srmmu_unmapioaddr(unsigned long virt_addr) |
| { |
| pgd_t *pgdp; |
| pmd_t *pmdp; |
| pte_t *ptep; |
| |
| pgdp = pgd_offset_k(virt_addr); |
| pmdp = pmd_offset(pgdp, virt_addr); |
| ptep = pte_offset_kernel(pmdp, virt_addr); |
| |
| /* No need to flush uncacheable page. */ |
| __pte_clear(ptep); |
| } |
| |
| void srmmu_unmapiorange(unsigned long virt_addr, unsigned int len) |
| { |
| while (len != 0) { |
| len -= PAGE_SIZE; |
| srmmu_unmapioaddr(virt_addr); |
| virt_addr += PAGE_SIZE; |
| } |
| flush_tlb_all(); |
| } |
| |
| /* tsunami.S */ |
| extern void tsunami_flush_cache_all(void); |
| extern void tsunami_flush_cache_mm(struct mm_struct *mm); |
| extern void tsunami_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end); |
| extern void tsunami_flush_cache_page(struct vm_area_struct *vma, unsigned long page); |
| extern void tsunami_flush_page_to_ram(unsigned long page); |
| extern void tsunami_flush_page_for_dma(unsigned long page); |
| extern void tsunami_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr); |
| extern void tsunami_flush_tlb_all(void); |
| extern void tsunami_flush_tlb_mm(struct mm_struct *mm); |
| extern void tsunami_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end); |
| extern void tsunami_flush_tlb_page(struct vm_area_struct *vma, unsigned long page); |
| extern void tsunami_setup_blockops(void); |
| |
| /* swift.S */ |
| extern void swift_flush_cache_all(void); |
| extern void swift_flush_cache_mm(struct mm_struct *mm); |
| extern void swift_flush_cache_range(struct vm_area_struct *vma, |
| unsigned long start, unsigned long end); |
| extern void swift_flush_cache_page(struct vm_area_struct *vma, unsigned long page); |
| extern void swift_flush_page_to_ram(unsigned long page); |
| extern void swift_flush_page_for_dma(unsigned long page); |
| extern void swift_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr); |
| extern void swift_flush_tlb_all(void); |
| extern void swift_flush_tlb_mm(struct mm_struct *mm); |
| extern void swift_flush_tlb_range(struct vm_area_struct *vma, |
| unsigned long start, unsigned long end); |
| extern void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page); |
| |
| #if 0 /* P3: deadwood to debug precise flushes on Swift. */ |
| void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page) |
| { |
| int cctx, ctx1; |
| |
| page &= PAGE_MASK; |
| if ((ctx1 = vma->vm_mm->context) != -1) { |
| cctx = srmmu_get_context(); |
| /* Is context # ever different from current context? P3 */ |
| if (cctx != ctx1) { |
| printk("flush ctx %02x curr %02x\n", ctx1, cctx); |
| srmmu_set_context(ctx1); |
| swift_flush_page(page); |
| __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : : |
| "r" (page), "i" (ASI_M_FLUSH_PROBE)); |
| srmmu_set_context(cctx); |
| } else { |
| /* Rm. prot. bits from virt. c. */ |
| /* swift_flush_cache_all(); */ |
| /* swift_flush_cache_page(vma, page); */ |
| swift_flush_page(page); |
| |
| __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : : |
| "r" (page), "i" (ASI_M_FLUSH_PROBE)); |
| /* same as above: srmmu_flush_tlb_page() */ |
| } |
| } |
| } |
| #endif |
| |
| /* |
| * The following are all MBUS based SRMMU modules, and therefore could |
| * be found in a multiprocessor configuration. On the whole, these |
| * chips seems to be much more touchy about DVMA and page tables |
| * with respect to cache coherency. |
| */ |
| |
| /* viking.S */ |
| extern void viking_flush_cache_all(void); |
| extern void viking_flush_cache_mm(struct mm_struct *mm); |
| extern void viking_flush_cache_range(struct vm_area_struct *vma, unsigned long start, |
| unsigned long end); |
| extern void viking_flush_cache_page(struct vm_area_struct *vma, unsigned long page); |
| extern void viking_flush_page_to_ram(unsigned long page); |
| extern void viking_flush_page_for_dma(unsigned long page); |
| extern void viking_flush_sig_insns(struct mm_struct *mm, unsigned long addr); |
| extern void viking_flush_page(unsigned long page); |
| extern void viking_mxcc_flush_page(unsigned long page); |
| extern void viking_flush_tlb_all(void); |
| extern void viking_flush_tlb_mm(struct mm_struct *mm); |
| extern void viking_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, |
| unsigned long end); |
| extern void viking_flush_tlb_page(struct vm_area_struct *vma, |
| unsigned long page); |
| extern void sun4dsmp_flush_tlb_all(void); |
| extern void sun4dsmp_flush_tlb_mm(struct mm_struct *mm); |
| extern void sun4dsmp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, |
| unsigned long end); |
| extern void sun4dsmp_flush_tlb_page(struct vm_area_struct *vma, |
| unsigned long page); |
| |
| /* hypersparc.S */ |
| extern void hypersparc_flush_cache_all(void); |
| extern void hypersparc_flush_cache_mm(struct mm_struct *mm); |
| extern void hypersparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end); |
| extern void hypersparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page); |
| extern void hypersparc_flush_page_to_ram(unsigned long page); |
| extern void hypersparc_flush_page_for_dma(unsigned long page); |
| extern void hypersparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr); |
| extern void hypersparc_flush_tlb_all(void); |
| extern void hypersparc_flush_tlb_mm(struct mm_struct *mm); |
| extern void hypersparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end); |
| extern void hypersparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page); |
| extern void hypersparc_setup_blockops(void); |
| |
| /* |
| * NOTE: All of this startup code assumes the low 16mb (approx.) of |
| * kernel mappings are done with one single contiguous chunk of |
| * ram. On small ram machines (classics mainly) we only get |
| * around 8mb mapped for us. |
| */ |
| |
| static void __init early_pgtable_allocfail(char *type) |
| { |
| prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type); |
| prom_halt(); |
| } |
| |
| static void __init srmmu_early_allocate_ptable_skeleton(unsigned long start, |
| unsigned long end) |
| { |
| pgd_t *pgdp; |
| pmd_t *pmdp; |
| pte_t *ptep; |
| |
| while (start < end) { |
| pgdp = pgd_offset_k(start); |
| if (pgd_none(*(pgd_t *)__nocache_fix(pgdp))) { |
| pmdp = __srmmu_get_nocache( |
| SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE); |
| if (pmdp == NULL) |
| early_pgtable_allocfail("pmd"); |
| memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE); |
| pgd_set(__nocache_fix(pgdp), pmdp); |
| } |
| pmdp = pmd_offset(__nocache_fix(pgdp), start); |
| if (srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) { |
| ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE); |
| if (ptep == NULL) |
| early_pgtable_allocfail("pte"); |
| memset(__nocache_fix(ptep), 0, PTE_SIZE); |
| pmd_set(__nocache_fix(pmdp), ptep); |
| } |
| if (start > (0xffffffffUL - PMD_SIZE)) |
| break; |
| start = (start + PMD_SIZE) & PMD_MASK; |
| } |
| } |
| |
| static void __init srmmu_allocate_ptable_skeleton(unsigned long start, |
| unsigned long end) |
| { |
| pgd_t *pgdp; |
| pmd_t *pmdp; |
| pte_t *ptep; |
| |
| while (start < end) { |
| pgdp = pgd_offset_k(start); |
| if (pgd_none(*pgdp)) { |
| pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE); |
| if (pmdp == NULL) |
| early_pgtable_allocfail("pmd"); |
| memset(pmdp, 0, SRMMU_PMD_TABLE_SIZE); |
| pgd_set(pgdp, pmdp); |
| } |
| pmdp = pmd_offset(pgdp, start); |
| if (srmmu_pmd_none(*pmdp)) { |
| ptep = __srmmu_get_nocache(PTE_SIZE, |
| PTE_SIZE); |
| if (ptep == NULL) |
| early_pgtable_allocfail("pte"); |
| memset(ptep, 0, PTE_SIZE); |
| pmd_set(pmdp, ptep); |
| } |
| if (start > (0xffffffffUL - PMD_SIZE)) |
| break; |
| start = (start + PMD_SIZE) & PMD_MASK; |
| } |
| } |
| |
| /* These flush types are not available on all chips... */ |
| static inline unsigned long srmmu_probe(unsigned long vaddr) |
| { |
| unsigned long retval; |
| |
| if (sparc_cpu_model != sparc_leon) { |
| |
| vaddr &= PAGE_MASK; |
| __asm__ __volatile__("lda [%1] %2, %0\n\t" : |
| "=r" (retval) : |
| "r" (vaddr | 0x400), "i" (ASI_M_FLUSH_PROBE)); |
| } else { |
| retval = leon_swprobe(vaddr, NULL); |
| } |
| return retval; |
| } |
| |
| /* |
| * This is much cleaner than poking around physical address space |
| * looking at the prom's page table directly which is what most |
| * other OS's do. Yuck... this is much better. |
| */ |
| static void __init srmmu_inherit_prom_mappings(unsigned long start, |
| unsigned long end) |
| { |
| unsigned long probed; |
| unsigned long addr; |
| pgd_t *pgdp; |
| pmd_t *pmdp; |
| pte_t *ptep; |
| int what; /* 0 = normal-pte, 1 = pmd-level pte, 2 = pgd-level pte */ |
| |
| while (start <= end) { |
| if (start == 0) |
| break; /* probably wrap around */ |
| if (start == 0xfef00000) |
| start = KADB_DEBUGGER_BEGVM; |
| probed = srmmu_probe(start); |
| if (!probed) { |
| /* continue probing until we find an entry */ |
| start += PAGE_SIZE; |
| continue; |
| } |
| |
| /* A red snapper, see what it really is. */ |
| what = 0; |
| addr = start - PAGE_SIZE; |
| |
| if (!(start & ~(SRMMU_REAL_PMD_MASK))) { |
| if (srmmu_probe(addr + SRMMU_REAL_PMD_SIZE) == probed) |
| what = 1; |
| } |
| |
| if (!(start & ~(SRMMU_PGDIR_MASK))) { |
| if (srmmu_probe(addr + SRMMU_PGDIR_SIZE) == probed) |
| what = 2; |
| } |
| |
| pgdp = pgd_offset_k(start); |
| if (what == 2) { |
| *(pgd_t *)__nocache_fix(pgdp) = __pgd(probed); |
| start += SRMMU_PGDIR_SIZE; |
| continue; |
| } |
| if (pgd_none(*(pgd_t *)__nocache_fix(pgdp))) { |
| pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, |
| SRMMU_PMD_TABLE_SIZE); |
| if (pmdp == NULL) |
| early_pgtable_allocfail("pmd"); |
| memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE); |
| pgd_set(__nocache_fix(pgdp), pmdp); |
| } |
| pmdp = pmd_offset(__nocache_fix(pgdp), start); |
| if (srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) { |
| ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE); |
| if (ptep == NULL) |
| early_pgtable_allocfail("pte"); |
| memset(__nocache_fix(ptep), 0, PTE_SIZE); |
| pmd_set(__nocache_fix(pmdp), ptep); |
| } |
| if (what == 1) { |
| /* We bend the rule where all 16 PTPs in a pmd_t point |
| * inside the same PTE page, and we leak a perfectly |
| * good hardware PTE piece. Alternatives seem worse. |
| */ |
| unsigned int x; /* Index of HW PMD in soft cluster */ |
| unsigned long *val; |
| x = (start >> PMD_SHIFT) & 15; |
| val = &pmdp->pmdv[x]; |
| *(unsigned long *)__nocache_fix(val) = probed; |
| start += SRMMU_REAL_PMD_SIZE; |
| continue; |
| } |
| ptep = pte_offset_kernel(__nocache_fix(pmdp), start); |
| *(pte_t *)__nocache_fix(ptep) = __pte(probed); |
| start += PAGE_SIZE; |
| } |
| } |
| |
| #define KERNEL_PTE(page_shifted) ((page_shifted)|SRMMU_CACHE|SRMMU_PRIV|SRMMU_VALID) |
| |
| /* Create a third-level SRMMU 16MB page mapping. */ |
| static void __init do_large_mapping(unsigned long vaddr, unsigned long phys_base) |
| { |
| pgd_t *pgdp = pgd_offset_k(vaddr); |
| unsigned long big_pte; |
| |
| big_pte = KERNEL_PTE(phys_base >> 4); |
| *(pgd_t *)__nocache_fix(pgdp) = __pgd(big_pte); |
| } |
| |
| /* Map sp_bank entry SP_ENTRY, starting at virtual address VBASE. */ |
| static unsigned long __init map_spbank(unsigned long vbase, int sp_entry) |
| { |
| unsigned long pstart = (sp_banks[sp_entry].base_addr & SRMMU_PGDIR_MASK); |
| unsigned long vstart = (vbase & SRMMU_PGDIR_MASK); |
| unsigned long vend = SRMMU_PGDIR_ALIGN(vbase + sp_banks[sp_entry].num_bytes); |
| /* Map "low" memory only */ |
| const unsigned long min_vaddr = PAGE_OFFSET; |
| const unsigned long max_vaddr = PAGE_OFFSET + SRMMU_MAXMEM; |
| |
| if (vstart < min_vaddr || vstart >= max_vaddr) |
| return vstart; |
| |
| if (vend > max_vaddr || vend < min_vaddr) |
| vend = max_vaddr; |
| |
| while (vstart < vend) { |
| do_large_mapping(vstart, pstart); |
| vstart += SRMMU_PGDIR_SIZE; pstart += SRMMU_PGDIR_SIZE; |
| } |
| return vstart; |
| } |
| |
| static void __init map_kernel(void) |
| { |
| int i; |
| |
| if (phys_base > 0) { |
| do_large_mapping(PAGE_OFFSET, phys_base); |
| } |
| |
| for (i = 0; sp_banks[i].num_bytes != 0; i++) { |
| map_spbank((unsigned long)__va(sp_banks[i].base_addr), i); |
| } |
| } |
| |
| void (*poke_srmmu)(void) = NULL; |
| |
| void __init srmmu_paging_init(void) |
| { |
| int i; |
| phandle cpunode; |
| char node_str[128]; |
| pgd_t *pgd; |
| pmd_t *pmd; |
| pte_t *pte; |
| unsigned long pages_avail; |
| |
| init_mm.context = (unsigned long) NO_CONTEXT; |
| sparc_iomap.start = SUN4M_IOBASE_VADDR; /* 16MB of IOSPACE on all sun4m's. */ |
| |
| if (sparc_cpu_model == sun4d) |
| num_contexts = 65536; /* We know it is Viking */ |
| else { |
| /* Find the number of contexts on the srmmu. */ |
| cpunode = prom_getchild(prom_root_node); |
| num_contexts = 0; |
| while (cpunode != 0) { |
| prom_getstring(cpunode, "device_type", node_str, sizeof(node_str)); |
| if (!strcmp(node_str, "cpu")) { |
| num_contexts = prom_getintdefault(cpunode, "mmu-nctx", 0x8); |
| break; |
| } |
| cpunode = prom_getsibling(cpunode); |
| } |
| } |
| |
| if (!num_contexts) { |
| prom_printf("Something wrong, can't find cpu node in paging_init.\n"); |
| prom_halt(); |
| } |
| |
| pages_avail = 0; |
| last_valid_pfn = bootmem_init(&pages_avail); |
| |
| srmmu_nocache_calcsize(); |
| srmmu_nocache_init(); |
| srmmu_inherit_prom_mappings(0xfe400000, (LINUX_OPPROM_ENDVM - PAGE_SIZE)); |
| map_kernel(); |
| |
| /* ctx table has to be physically aligned to its size */ |
| srmmu_context_table = __srmmu_get_nocache(num_contexts * sizeof(ctxd_t), num_contexts * sizeof(ctxd_t)); |
| srmmu_ctx_table_phys = (ctxd_t *)__nocache_pa(srmmu_context_table); |
| |
| for (i = 0; i < num_contexts; i++) |
| srmmu_ctxd_set((ctxd_t *)__nocache_fix(&srmmu_context_table[i]), srmmu_swapper_pg_dir); |
| |
| flush_cache_all(); |
| srmmu_set_ctable_ptr((unsigned long)srmmu_ctx_table_phys); |
| #ifdef CONFIG_SMP |
| /* Stop from hanging here... */ |
| local_ops->tlb_all(); |
| #else |
| flush_tlb_all(); |
| #endif |
| poke_srmmu(); |
| |
| srmmu_allocate_ptable_skeleton(sparc_iomap.start, IOBASE_END); |
| srmmu_allocate_ptable_skeleton(DVMA_VADDR, DVMA_END); |
| |
| srmmu_allocate_ptable_skeleton( |
| __fix_to_virt(__end_of_fixed_addresses - 1), FIXADDR_TOP); |
| srmmu_allocate_ptable_skeleton(PKMAP_BASE, PKMAP_END); |
| |
| pgd = pgd_offset_k(PKMAP_BASE); |
| pmd = pmd_offset(pgd, PKMAP_BASE); |
| pte = pte_offset_kernel(pmd, PKMAP_BASE); |
| pkmap_page_table = pte; |
| |
| flush_cache_all(); |
| flush_tlb_all(); |
| |
| sparc_context_init(num_contexts); |
| |
| kmap_init(); |
| |
| { |
| unsigned long zones_size[MAX_NR_ZONES]; |
| unsigned long zholes_size[MAX_NR_ZONES]; |
| unsigned long npages; |
| int znum; |
| |
| for (znum = 0; znum < MAX_NR_ZONES; znum++) |
| zones_size[znum] = zholes_size[znum] = 0; |
| |
| npages = max_low_pfn - pfn_base; |
| |
| zones_size[ZONE_DMA] = npages; |
| zholes_size[ZONE_DMA] = npages - pages_avail; |
| |
| npages = highend_pfn - max_low_pfn; |
| zones_size[ZONE_HIGHMEM] = npages; |
| zholes_size[ZONE_HIGHMEM] = npages - calc_highpages(); |
| |
| free_area_init_node(0, zones_size, pfn_base, zholes_size); |
| } |
| } |
| |
| void mmu_info(struct seq_file *m) |
| { |
| seq_printf(m, |
| "MMU type\t: %s\n" |
| "contexts\t: %d\n" |
| "nocache total\t: %ld\n" |
| "nocache used\t: %d\n", |
| srmmu_name, |
| num_contexts, |
| srmmu_nocache_size, |
| srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT); |
| } |
| |
| int init_new_context(struct task_struct *tsk, struct mm_struct *mm) |
| { |
| mm->context = NO_CONTEXT; |
| return 0; |
| } |
| |
| void destroy_context(struct mm_struct *mm) |
| { |
| unsigned long flags; |
| |
| if (mm->context != NO_CONTEXT) { |
| flush_cache_mm(mm); |
| srmmu_ctxd_set(&srmmu_context_table[mm->context], srmmu_swapper_pg_dir); |
| flush_tlb_mm(mm); |
| spin_lock_irqsave(&srmmu_context_spinlock, flags); |
| free_context(mm->context); |
| spin_unlock_irqrestore(&srmmu_context_spinlock, flags); |
| mm->context = NO_CONTEXT; |
| } |
| } |
| |
| /* Init various srmmu chip types. */ |
| static void __init srmmu_is_bad(void) |
| { |
| prom_printf("Could not determine SRMMU chip type.\n"); |
| prom_halt(); |
| } |
| |
| static void __init init_vac_layout(void) |
| { |
| phandle nd; |
| int cache_lines; |
| char node_str[128]; |
| #ifdef CONFIG_SMP |
| int cpu = 0; |
| unsigned long max_size = 0; |
| unsigned long min_line_size = 0x10000000; |
| #endif |
| |
| nd = prom_getchild(prom_root_node); |
| while ((nd = prom_getsibling(nd)) != 0) { |
| prom_getstring(nd, "device_type", node_str, sizeof(node_str)); |
| if (!strcmp(node_str, "cpu")) { |
| vac_line_size = prom_getint(nd, "cache-line-size"); |
| if (vac_line_size == -1) { |
| prom_printf("can't determine cache-line-size, halting.\n"); |
| prom_halt(); |
| } |
| cache_lines = prom_getint(nd, "cache-nlines"); |
| if (cache_lines == -1) { |
| prom_printf("can't determine cache-nlines, halting.\n"); |
| prom_halt(); |
| } |
| |
| vac_cache_size = cache_lines * vac_line_size; |
| #ifdef CONFIG_SMP |
| if (vac_cache_size > max_size) |
| max_size = vac_cache_size; |
| if (vac_line_size < min_line_size) |
| min_line_size = vac_line_size; |
| //FIXME: cpus not contiguous!! |
| cpu++; |
| if (cpu >= nr_cpu_ids || !cpu_online(cpu)) |
| break; |
| #else |
| break; |
| #endif |
| } |
| } |
| if (nd == 0) { |
| prom_printf("No CPU nodes found, halting.\n"); |
| prom_halt(); |
| } |
| #ifdef CONFIG_SMP |
| vac_cache_size = max_size; |
| vac_line_size = min_line_size; |
| #endif |
| printk("SRMMU: Using VAC size of %d bytes, line size %d bytes.\n", |
| (int)vac_cache_size, (int)vac_line_size); |
| } |
| |
| static void poke_hypersparc(void) |
| { |
| volatile unsigned long clear; |
| unsigned long mreg = srmmu_get_mmureg(); |
| |
| hyper_flush_unconditional_combined(); |
| |
| mreg &= ~(HYPERSPARC_CWENABLE); |
| mreg |= (HYPERSPARC_CENABLE | HYPERSPARC_WBENABLE); |
| mreg |= (HYPERSPARC_CMODE); |
| |
| srmmu_set_mmureg(mreg); |
| |
| #if 0 /* XXX I think this is bad news... -DaveM */ |
| hyper_clear_all_tags(); |
| #endif |
| |
| put_ross_icr(HYPERSPARC_ICCR_FTD | HYPERSPARC_ICCR_ICE); |
| hyper_flush_whole_icache(); |
| clear = srmmu_get_faddr(); |
| clear = srmmu_get_fstatus(); |
| } |
| |
| static const struct sparc32_cachetlb_ops hypersparc_ops = { |
| .cache_all = hypersparc_flush_cache_all, |
| .cache_mm = hypersparc_flush_cache_mm, |
| .cache_page = hypersparc_flush_cache_page, |
| .cache_range = hypersparc_flush_cache_range, |
| .tlb_all = hypersparc_flush_tlb_all, |
| .tlb_mm = hypersparc_flush_tlb_mm, |
| .tlb_page = hypersparc_flush_tlb_page, |
| .tlb_range = hypersparc_flush_tlb_range, |
| .page_to_ram = hypersparc_flush_page_to_ram, |
| .sig_insns = hypersparc_flush_sig_insns, |
| .page_for_dma = hypersparc_flush_page_for_dma, |
| }; |
| |
| static void __init init_hypersparc(void) |
| { |
| srmmu_name = "ROSS HyperSparc"; |
| srmmu_modtype = HyperSparc; |
| |
| init_vac_layout(); |
| |
| is_hypersparc = 1; |
| sparc32_cachetlb_ops = &hypersparc_ops; |
| |
| poke_srmmu = poke_hypersparc; |
| |
| hypersparc_setup_blockops(); |
| } |
| |
| static void poke_swift(void) |
| { |
| unsigned long mreg; |
| |
| /* Clear any crap from the cache or else... */ |
| swift_flush_cache_all(); |
| |
| /* Enable I & D caches */ |
| mreg = srmmu_get_mmureg(); |
| mreg |= (SWIFT_IE | SWIFT_DE); |
| /* |
| * The Swift branch folding logic is completely broken. At |
| * trap time, if things are just right, if can mistakenly |
| * think that a trap is coming from kernel mode when in fact |
| * it is coming from user mode (it mis-executes the branch in |
| * the trap code). So you see things like crashme completely |
| * hosing your machine which is completely unacceptable. Turn |
| * this shit off... nice job Fujitsu. |
| */ |
| mreg &= ~(SWIFT_BF); |
| srmmu_set_mmureg(mreg); |
| } |
| |
| static const struct sparc32_cachetlb_ops swift_ops = { |
| .cache_all = swift_flush_cache_all, |
| .cache_mm = swift_flush_cache_mm, |
| .cache_page = swift_flush_cache_page, |
| .cache_range = swift_flush_cache_range, |
| .tlb_all = swift_flush_tlb_all, |
| .tlb_mm = swift_flush_tlb_mm, |
| .tlb_page = swift_flush_tlb_page, |
| .tlb_range = swift_flush_tlb_range, |
| .page_to_ram = swift_flush_page_to_ram, |
| .sig_insns = swift_flush_sig_insns, |
| .page_for_dma = swift_flush_page_for_dma, |
| }; |
| |
| #define SWIFT_MASKID_ADDR 0x10003018 |
| static void __init init_swift(void) |
| { |
| unsigned long swift_rev; |
| |
| __asm__ __volatile__("lda [%1] %2, %0\n\t" |
| "srl %0, 0x18, %0\n\t" : |
| "=r" (swift_rev) : |
| "r" (SWIFT_MASKID_ADDR), "i" (ASI_M_BYPASS)); |
| srmmu_name = "Fujitsu Swift"; |
| switch (swift_rev) { |
| case 0x11: |
| case 0x20: |
| case 0x23: |
| case 0x30: |
| srmmu_modtype = Swift_lots_o_bugs; |
| hwbug_bitmask |= (HWBUG_KERN_ACCBROKEN | HWBUG_KERN_CBITBROKEN); |
| /* |
| * Gee george, I wonder why Sun is so hush hush about |
| * this hardware bug... really braindamage stuff going |
| * on here. However I think we can find a way to avoid |
| * all of the workaround overhead under Linux. Basically, |
| * any page fault can cause kernel pages to become user |
| * accessible (the mmu gets confused and clears some of |
| * the ACC bits in kernel ptes). Aha, sounds pretty |
| * horrible eh? But wait, after extensive testing it appears |
| * that if you use pgd_t level large kernel pte's (like the |
| * 4MB pages on the Pentium) the bug does not get tripped |
| * at all. This avoids almost all of the major overhead. |
| * Welcome to a world where your vendor tells you to, |
| * "apply this kernel patch" instead of "sorry for the |
| * broken hardware, send it back and we'll give you |
| * properly functioning parts" |
| */ |
| break; |
| case 0x25: |
| case 0x31: |
| srmmu_modtype = Swift_bad_c; |
| hwbug_bitmask |= HWBUG_KERN_CBITBROKEN; |
| /* |
| * You see Sun allude to this hardware bug but never |
| * admit things directly, they'll say things like, |
| * "the Swift chip cache problems" or similar. |
| */ |
| break; |
| default: |
| srmmu_modtype = Swift_ok; |
| break; |
| } |
| |
| sparc32_cachetlb_ops = &swift_ops; |
| flush_page_for_dma_global = 0; |
| |
| /* |
| * Are you now convinced that the Swift is one of the |
| * biggest VLSI abortions of all time? Bravo Fujitsu! |
| * Fujitsu, the !#?!%$'d up processor people. I bet if |
| * you examined the microcode of the Swift you'd find |
| * XXX's all over the place. |
| */ |
| poke_srmmu = poke_swift; |
| } |
| |
| static void turbosparc_flush_cache_all(void) |
| { |
| flush_user_windows(); |
| turbosparc_idflash_clear(); |
| } |
| |
| static void turbosparc_flush_cache_mm(struct mm_struct *mm) |
| { |
| FLUSH_BEGIN(mm) |
| flush_user_windows(); |
| turbosparc_idflash_clear(); |
| FLUSH_END |
| } |
| |
| static void turbosparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) |
| { |
| FLUSH_BEGIN(vma->vm_mm) |
| flush_user_windows(); |
| turbosparc_idflash_clear(); |
| FLUSH_END |
| } |
| |
| static void turbosparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page) |
| { |
| FLUSH_BEGIN(vma->vm_mm) |
| flush_user_windows(); |
| if (vma->vm_flags & VM_EXEC) |
| turbosparc_flush_icache(); |
| turbosparc_flush_dcache(); |
| FLUSH_END |
| } |
| |
| /* TurboSparc is copy-back, if we turn it on, but this does not work. */ |
| static void turbosparc_flush_page_to_ram(unsigned long page) |
| { |
| #ifdef TURBOSPARC_WRITEBACK |
| volatile unsigned long clear; |
| |
| if (srmmu_probe(page)) |
| turbosparc_flush_page_cache(page); |
| clear = srmmu_get_fstatus(); |
| #endif |
| } |
| |
| static void turbosparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr) |
| { |
| } |
| |
| static void turbosparc_flush_page_for_dma(unsigned long page) |
| { |
| turbosparc_flush_dcache(); |
| } |
| |
| static void turbosparc_flush_tlb_all(void) |
| { |
| srmmu_flush_whole_tlb(); |
| } |
| |
| static void turbosparc_flush_tlb_mm(struct mm_struct *mm) |
| { |
| FLUSH_BEGIN(mm) |
| srmmu_flush_whole_tlb(); |
| FLUSH_END |
| } |
| |
| static void turbosparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) |
| { |
| FLUSH_BEGIN(vma->vm_mm) |
| srmmu_flush_whole_tlb(); |
| FLUSH_END |
| } |
| |
| static void turbosparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page) |
| { |
| FLUSH_BEGIN(vma->vm_mm) |
| srmmu_flush_whole_tlb(); |
| FLUSH_END |
| } |
| |
| |
| static void poke_turbosparc(void) |
| { |
| unsigned long mreg = srmmu_get_mmureg(); |
| unsigned long ccreg; |
| |
| /* Clear any crap from the cache or else... */ |
| turbosparc_flush_cache_all(); |
| /* Temporarily disable I & D caches */ |
| mreg &= ~(TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); |
| mreg &= ~(TURBOSPARC_PCENABLE); /* Don't check parity */ |
| srmmu_set_mmureg(mreg); |
| |
| ccreg = turbosparc_get_ccreg(); |
| |
| #ifdef TURBOSPARC_WRITEBACK |
| ccreg |= (TURBOSPARC_SNENABLE); /* Do DVMA snooping in Dcache */ |
| ccreg &= ~(TURBOSPARC_uS2 | TURBOSPARC_WTENABLE); |
| /* Write-back D-cache, emulate VLSI |
| * abortion number three, not number one */ |
| #else |
| /* For now let's play safe, optimize later */ |
| ccreg |= (TURBOSPARC_SNENABLE | TURBOSPARC_WTENABLE); |
| /* Do DVMA snooping in Dcache, Write-thru D-cache */ |
| ccreg &= ~(TURBOSPARC_uS2); |
| /* Emulate VLSI abortion number three, not number one */ |
| #endif |
| |
| switch (ccreg & 7) { |
| case 0: /* No SE cache */ |
| case 7: /* Test mode */ |
| break; |
| default: |
| ccreg |= (TURBOSPARC_SCENABLE); |
| } |
| turbosparc_set_ccreg(ccreg); |
| |
| mreg |= (TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* I & D caches on */ |
| mreg |= (TURBOSPARC_ICSNOOP); /* Icache snooping on */ |
| srmmu_set_mmureg(mreg); |
| } |
| |
| static const struct sparc32_cachetlb_ops turbosparc_ops = { |
| .cache_all = turbosparc_flush_cache_all, |
| .cache_mm = turbosparc_flush_cache_mm, |
| .cache_page = turbosparc_flush_cache_page, |
| .cache_range = turbosparc_flush_cache_range, |
| .tlb_all = turbosparc_flush_tlb_all, |
| .tlb_mm = turbosparc_flush_tlb_mm, |
| .tlb_page = turbosparc_flush_tlb_page, |
| .tlb_range = turbosparc_flush_tlb_range, |
| .page_to_ram = turbosparc_flush_page_to_ram, |
| .sig_insns = turbosparc_flush_sig_insns, |
| .page_for_dma = turbosparc_flush_page_for_dma, |
| }; |
| |
| static void __init init_turbosparc(void) |
| { |
| srmmu_name = "Fujitsu TurboSparc"; |
| srmmu_modtype = TurboSparc; |
| sparc32_cachetlb_ops = &turbosparc_ops; |
| poke_srmmu = poke_turbosparc; |
| } |
| |
| static void poke_tsunami(void) |
| { |
| unsigned long mreg = srmmu_get_mmureg(); |
| |
| tsunami_flush_icache(); |
| tsunami_flush_dcache(); |
| mreg &= ~TSUNAMI_ITD; |
| mreg |= (TSUNAMI_IENAB | TSUNAMI_DENAB); |
| srmmu_set_mmureg(mreg); |
| } |
| |
| static const struct sparc32_cachetlb_ops tsunami_ops = { |
| .cache_all = tsunami_flush_cache_all, |
| .cache_mm = tsunami_flush_cache_mm, |
| .cache_page = tsunami_flush_cache_page, |
| .cache_range = tsunami_flush_cache_range, |
| .tlb_all = tsunami_flush_tlb_all, |
| .tlb_mm = tsunami_flush_tlb_mm, |
| .tlb_page = tsunami_flush_tlb_page, |
| .tlb_range = tsunami_flush_tlb_range, |
| .page_to_ram = tsunami_flush_page_to_ram, |
| .sig_insns = tsunami_flush_sig_insns, |
| .page_for_dma = tsunami_flush_page_for_dma, |
| }; |
| |
| static void __init init_tsunami(void) |
| { |
| /* |
| * Tsunami's pretty sane, Sun and TI actually got it |
| * somewhat right this time. Fujitsu should have |
| * taken some lessons from them. |
| */ |
| |
| srmmu_name = "TI Tsunami"; |
| srmmu_modtype = Tsunami; |
| sparc32_cachetlb_ops = &tsunami_ops; |
| poke_srmmu = poke_tsunami; |
| |
| tsunami_setup_blockops(); |
| } |
| |
| static void poke_viking(void) |
| { |
| unsigned long mreg = srmmu_get_mmureg(); |
| static int smp_catch; |
| |
| if (viking_mxcc_present) { |
| unsigned long mxcc_control = mxcc_get_creg(); |
| |
| mxcc_control |= (MXCC_CTL_ECE | MXCC_CTL_PRE | MXCC_CTL_MCE); |
| mxcc_control &= ~(MXCC_CTL_RRC); |
| mxcc_set_creg(mxcc_control); |
| |
| /* |
| * We don't need memory parity checks. |
| * XXX This is a mess, have to dig out later. ecd. |
| viking_mxcc_turn_off_parity(&mreg, &mxcc_control); |
| */ |
| |
| /* We do cache ptables on MXCC. */ |
| mreg |= VIKING_TCENABLE; |
| } else { |
| unsigned long bpreg; |
| |
| mreg &= ~(VIKING_TCENABLE); |
| if (smp_catch++) { |
| /* Must disable mixed-cmd mode here for other cpu's. */ |
| bpreg = viking_get_bpreg(); |
| bpreg &= ~(VIKING_ACTION_MIX); |
| viking_set_bpreg(bpreg); |
| |
| /* Just in case PROM does something funny. */ |
| msi_set_sync(); |
| } |
| } |
| |
| mreg |= VIKING_SPENABLE; |
| mreg |= (VIKING_ICENABLE | VIKING_DCENABLE); |
| mreg |= VIKING_SBENABLE; |
| mreg &= ~(VIKING_ACENABLE); |
| srmmu_set_mmureg(mreg); |
| } |
| |
| static struct sparc32_cachetlb_ops viking_ops __ro_after_init = { |
| .cache_all = viking_flush_cache_all, |
| .cache_mm = viking_flush_cache_mm, |
| .cache_page = viking_flush_cache_page, |
| .cache_range = viking_flush_cache_range, |
| .tlb_all = viking_flush_tlb_all, |
| .tlb_mm = viking_flush_tlb_mm, |
| .tlb_page = viking_flush_tlb_page, |
| .tlb_range = viking_flush_tlb_range, |
| .page_to_ram = viking_flush_page_to_ram, |
| .sig_insns = viking_flush_sig_insns, |
| .page_for_dma = viking_flush_page_for_dma, |
| }; |
| |
| #ifdef CONFIG_SMP |
| /* On sun4d the cpu broadcasts local TLB flushes, so we can just |
| * perform the local TLB flush and all the other cpus will see it. |
| * But, unfortunately, there is a bug in the sun4d XBUS backplane |
| * that requires that we add some synchronization to these flushes. |
| * |
| * The bug is that the fifo which keeps track of all the pending TLB |
| * broadcasts in the system is an entry or two too small, so if we |
| * have too many going at once we'll overflow that fifo and lose a TLB |
| * flush resulting in corruption. |
| * |
| * Our workaround is to take a global spinlock around the TLB flushes, |
| * which guarentees we won't ever have too many pending. It's a big |
| * hammer, but a semaphore like system to make sure we only have N TLB |
| * flushes going at once will require SMP locking anyways so there's |
| * no real value in trying any harder than this. |
| */ |
| static struct sparc32_cachetlb_ops viking_sun4d_smp_ops __ro_after_init = { |
| .cache_all = viking_flush_cache_all, |
| .cache_mm = viking_flush_cache_mm, |
| .cache_page = viking_flush_cache_page, |
| .cache_range = viking_flush_cache_range, |
| .tlb_all = sun4dsmp_flush_tlb_all, |
| .tlb_mm = sun4dsmp_flush_tlb_mm, |
| .tlb_page = sun4dsmp_flush_tlb_page, |
| .tlb_range = sun4dsmp_flush_tlb_range, |
| .page_to_ram = viking_flush_page_to_ram, |
| .sig_insns = viking_flush_sig_insns, |
| .page_for_dma = viking_flush_page_for_dma, |
| }; |
| #endif |
| |
| static void __init init_viking(void) |
| { |
| unsigned long mreg = srmmu_get_mmureg(); |
| |
| /* Ahhh, the viking. SRMMU VLSI abortion number two... */ |
| if (mreg & VIKING_MMODE) { |
| srmmu_name = "TI Viking"; |
| viking_mxcc_present = 0; |
| msi_set_sync(); |
| |
| /* |
| * We need this to make sure old viking takes no hits |
| * on it's cache for dma snoops to workaround the |
| * "load from non-cacheable memory" interrupt bug. |
| * This is only necessary because of the new way in |
| * which we use the IOMMU. |
| */ |
| viking_ops.page_for_dma = viking_flush_page; |
| #ifdef CONFIG_SMP |
| viking_sun4d_smp_ops.page_for_dma = viking_flush_page; |
| #endif |
| flush_page_for_dma_global = 0; |
| } else { |
| srmmu_name = "TI Viking/MXCC"; |
| viking_mxcc_present = 1; |
| srmmu_cache_pagetables = 1; |
| } |
| |
| sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *) |
| &viking_ops; |
| #ifdef CONFIG_SMP |
| if (sparc_cpu_model == sun4d) |
| sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *) |
| &viking_sun4d_smp_ops; |
| #endif |
| |
| poke_srmmu = poke_viking; |
| } |
| |
| /* Probe for the srmmu chip version. */ |
| static void __init get_srmmu_type(void) |
| { |
| unsigned long mreg, psr; |
| unsigned long mod_typ, mod_rev, psr_typ, psr_vers; |
| |
| srmmu_modtype = SRMMU_INVAL_MOD; |
| hwbug_bitmask = 0; |
| |
| mreg = srmmu_get_mmureg(); psr = get_psr(); |
| mod_typ = (mreg & 0xf0000000) >> 28; |
| mod_rev = (mreg & 0x0f000000) >> 24; |
| psr_typ = (psr >> 28) & 0xf; |
| psr_vers = (psr >> 24) & 0xf; |
| |
| /* First, check for sparc-leon. */ |
| if (sparc_cpu_model == sparc_leon) { |
| init_leon(); |
| return; |
| } |
| |
| /* Second, check for HyperSparc or Cypress. */ |
| if (mod_typ == 1) { |
| switch (mod_rev) { |
| case 7: |
| /* UP or MP Hypersparc */ |
| init_hypersparc(); |
| break; |
| case 0: |
| case 2: |
| case 10: |
| case 11: |
| case 12: |
| case 13: |
| case 14: |
| case 15: |
| default: |
| prom_printf("Sparc-Linux Cypress support does not longer exit.\n"); |
| prom_halt(); |
| break; |
| } |
| return; |
| } |
| |
| /* Now Fujitsu TurboSparc. It might happen that it is |
| * in Swift emulation mode, so we will check later... |
| */ |
| if (psr_typ == 0 && psr_vers == 5) { |
| init_turbosparc(); |
| return; |
| } |
| |
| /* Next check for Fujitsu Swift. */ |
| if (psr_typ == 0 && psr_vers == 4) { |
| phandle cpunode; |
| char node_str[128]; |
| |
| /* Look if it is not a TurboSparc emulating Swift... */ |
| cpunode = prom_getchild(prom_root_node); |
| while ((cpunode = prom_getsibling(cpunode)) != 0) { |
| prom_getstring(cpunode, "device_type", node_str, sizeof(node_str)); |
| if (!strcmp(node_str, "cpu")) { |
| if (!prom_getintdefault(cpunode, "psr-implementation", 1) && |
| prom_getintdefault(cpunode, "psr-version", 1) == 5) { |
| init_turbosparc(); |
| return; |
| } |
| break; |
| } |
| } |
| |
| init_swift(); |
| return; |
| } |
| |
| /* Now the Viking family of srmmu. */ |
| if (psr_typ == 4 && |
| ((psr_vers == 0) || |
| ((psr_vers == 1) && (mod_typ == 0) && (mod_rev == 0)))) { |
| init_viking(); |
| return; |
| } |
| |
| /* Finally the Tsunami. */ |
| if (psr_typ == 4 && psr_vers == 1 && (mod_typ || mod_rev)) { |
| init_tsunami(); |
| return; |
| } |
| |
| /* Oh well */ |
| srmmu_is_bad(); |
| } |
| |
| #ifdef CONFIG_SMP |
| /* Local cross-calls. */ |
| static void smp_flush_page_for_dma(unsigned long page) |
| { |
| xc1((smpfunc_t) local_ops->page_for_dma, page); |
| local_ops->page_for_dma(page); |
| } |
| |
| static void smp_flush_cache_all(void) |
| { |
| xc0((smpfunc_t) local_ops->cache_all); |
| local_ops->cache_all(); |
| } |
| |
| static void smp_flush_tlb_all(void) |
| { |
| xc0((smpfunc_t) local_ops->tlb_all); |
| local_ops->tlb_all(); |
| } |
| |
| static void smp_flush_cache_mm(struct mm_struct *mm) |
| { |
| if (mm->context != NO_CONTEXT) { |
| cpumask_t cpu_mask; |
| cpumask_copy(&cpu_mask, mm_cpumask(mm)); |
| cpumask_clear_cpu(smp_processor_id(), &cpu_mask); |
| if (!cpumask_empty(&cpu_mask)) |
| xc1((smpfunc_t) local_ops->cache_mm, (unsigned long) mm); |
| local_ops->cache_mm(mm); |
| } |
| } |
| |
| static void smp_flush_tlb_mm(struct mm_struct *mm) |
| { |
| if (mm->context != NO_CONTEXT) { |
| cpumask_t cpu_mask; |
| cpumask_copy(&cpu_mask, mm_cpumask(mm)); |
| cpumask_clear_cpu(smp_processor_id(), &cpu_mask); |
| if (!cpumask_empty(&cpu_mask)) { |
| xc1((smpfunc_t) local_ops->tlb_mm, (unsigned long) mm); |
| if (atomic_read(&mm->mm_users) == 1 && current->active_mm == mm) |
| cpumask_copy(mm_cpumask(mm), |
| cpumask_of(smp_processor_id())); |
| } |
| local_ops->tlb_mm(mm); |
| } |
| } |
| |
| static void smp_flush_cache_range(struct vm_area_struct *vma, |
| unsigned long start, |
| unsigned long end) |
| { |
| struct mm_struct *mm = vma->vm_mm; |
| |
| if (mm->context != NO_CONTEXT) { |
| cpumask_t cpu_mask; |
| cpumask_copy(&cpu_mask, mm_cpumask(mm)); |
| cpumask_clear_cpu(smp_processor_id(), &cpu_mask); |
| if (!cpumask_empty(&cpu_mask)) |
| xc3((smpfunc_t) local_ops->cache_range, |
| (unsigned long) vma, start, end); |
| local_ops->cache_range(vma, start, end); |
| } |
| } |
| |
| static void smp_flush_tlb_range(struct vm_area_struct *vma, |
| unsigned long start, |
| unsigned long end) |
| { |
| struct mm_struct *mm = vma->vm_mm; |
| |
| if (mm->context != NO_CONTEXT) { |
| cpumask_t cpu_mask; |
| cpumask_copy(&cpu_mask, mm_cpumask(mm)); |
| cpumask_clear_cpu(smp_processor_id(), &cpu_mask); |
| if (!cpumask_empty(&cpu_mask)) |
| xc3((smpfunc_t) local_ops->tlb_range, |
| (unsigned long) vma, start, end); |
| local_ops->tlb_range(vma, start, end); |
| } |
| } |
| |
| static void smp_flush_cache_page(struct vm_area_struct *vma, unsigned long page) |
| { |
| struct mm_struct *mm = vma->vm_mm; |
| |
| if (mm->context != NO_CONTEXT) { |
| cpumask_t cpu_mask; |
| cpumask_copy(&cpu_mask, mm_cpumask(mm)); |
| cpumask_clear_cpu(smp_processor_id(), &cpu_mask); |
| if (!cpumask_empty(&cpu_mask)) |
| xc2((smpfunc_t) local_ops->cache_page, |
| (unsigned long) vma, page); |
| local_ops->cache_page(vma, page); |
| } |
| } |
| |
| static void smp_flush_tlb_page(struct vm_area_struct *vma, unsigned long page) |
| { |
| struct mm_struct *mm = vma->vm_mm; |
| |
| if (mm->context != NO_CONTEXT) { |
| cpumask_t cpu_mask; |
| cpumask_copy(&cpu_mask, mm_cpumask(mm)); |
| cpumask_clear_cpu(smp_processor_id(), &cpu_mask); |
| if (!cpumask_empty(&cpu_mask)) |
| xc2((smpfunc_t) local_ops->tlb_page, |
| (unsigned long) vma, page); |
| local_ops->tlb_page(vma, page); |
| } |
| } |
| |
| static void smp_flush_page_to_ram(unsigned long page) |
| { |
| /* Current theory is that those who call this are the one's |
| * who have just dirtied their cache with the pages contents |
| * in kernel space, therefore we only run this on local cpu. |
| * |
| * XXX This experiment failed, research further... -DaveM |
| */ |
| #if 1 |
| xc1((smpfunc_t) local_ops->page_to_ram, page); |
| #endif |
| local_ops->page_to_ram(page); |
| } |
| |
| static void smp_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr) |
| { |
| cpumask_t cpu_mask; |
| cpumask_copy(&cpu_mask, mm_cpumask(mm)); |
| cpumask_clear_cpu(smp_processor_id(), &cpu_mask); |
| if (!cpumask_empty(&cpu_mask)) |
| xc2((smpfunc_t) local_ops->sig_insns, |
| (unsigned long) mm, insn_addr); |
| local_ops->sig_insns(mm, insn_addr); |
| } |
| |
| static struct sparc32_cachetlb_ops smp_cachetlb_ops __ro_after_init = { |
| .cache_all = smp_flush_cache_all, |
| .cache_mm = smp_flush_cache_mm, |
| .cache_page = smp_flush_cache_page, |
| .cache_range = smp_flush_cache_range, |
| .tlb_all = smp_flush_tlb_all, |
| .tlb_mm = smp_flush_tlb_mm, |
| .tlb_page = smp_flush_tlb_page, |
| .tlb_range = smp_flush_tlb_range, |
| .page_to_ram = smp_flush_page_to_ram, |
| .sig_insns = smp_flush_sig_insns, |
| .page_for_dma = smp_flush_page_for_dma, |
| }; |
| #endif |
| |
| /* Load up routines and constants for sun4m and sun4d mmu */ |
| void __init load_mmu(void) |
| { |
| /* Functions */ |
| get_srmmu_type(); |
| |
| #ifdef CONFIG_SMP |
| /* El switcheroo... */ |
| local_ops = sparc32_cachetlb_ops; |
| |
| if (sparc_cpu_model == sun4d || sparc_cpu_model == sparc_leon) { |
| smp_cachetlb_ops.tlb_all = local_ops->tlb_all; |
| smp_cachetlb_ops.tlb_mm = local_ops->tlb_mm; |
| smp_cachetlb_ops.tlb_range = local_ops->tlb_range; |
| smp_cachetlb_ops.tlb_page = local_ops->tlb_page; |
| } |
| |
| if (poke_srmmu == poke_viking) { |
| /* Avoid unnecessary cross calls. */ |
| smp_cachetlb_ops.cache_all = local_ops->cache_all; |
| smp_cachetlb_ops.cache_mm = local_ops->cache_mm; |
| smp_cachetlb_ops.cache_range = local_ops->cache_range; |
| smp_cachetlb_ops.cache_page = local_ops->cache_page; |
| |
| smp_cachetlb_ops.page_to_ram = local_ops->page_to_ram; |
| smp_cachetlb_ops.sig_insns = local_ops->sig_insns; |
| smp_cachetlb_ops.page_for_dma = local_ops->page_for_dma; |
| } |
| |
| /* It really is const after this point. */ |
| sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *) |
| &smp_cachetlb_ops; |
| #endif |
| |
| if (sparc_cpu_model == sun4d) |
| ld_mmu_iounit(); |
| else |
| ld_mmu_iommu(); |
| #ifdef CONFIG_SMP |
| if (sparc_cpu_model == sun4d) |
| sun4d_init_smp(); |
| else if (sparc_cpu_model == sparc_leon) |
| leon_init_smp(); |
| else |
| sun4m_init_smp(); |
| #endif |
| } |