| /* |
| * PowerPC version derived from arch/arm/mm/consistent.c |
| * Copyright (C) 2001 Dan Malek (dmalek@jlc.net) |
| * |
| * Copyright (C) 2000 Russell King |
| * |
| * Consistent memory allocators. Used for DMA devices that want to |
| * share uncached memory with the processor core. The function return |
| * is the virtual address and 'dma_handle' is the physical address. |
| * Mostly stolen from the ARM port, with some changes for PowerPC. |
| * -- Dan |
| * |
| * Reorganized to get rid of the arch-specific consistent_* functions |
| * and provide non-coherent implementations for the DMA API. -Matt |
| * |
| * Added in_interrupt() safe dma_alloc_coherent()/dma_free_coherent() |
| * implementation. This is pulled straight from ARM and barely |
| * modified. -Matt |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| */ |
| |
| #include <linux/sched.h> |
| #include <linux/kernel.h> |
| #include <linux/errno.h> |
| #include <linux/string.h> |
| #include <linux/types.h> |
| #include <linux/highmem.h> |
| #include <linux/dma-mapping.h> |
| |
| #include <asm/tlbflush.h> |
| |
| /* |
| * This address range defaults to a value that is safe for all |
| * platforms which currently set CONFIG_NOT_COHERENT_CACHE. It |
| * can be further configured for specific applications under |
| * the "Advanced Setup" menu. -Matt |
| */ |
| #define CONSISTENT_BASE (CONFIG_CONSISTENT_START) |
| #define CONSISTENT_END (CONFIG_CONSISTENT_START + CONFIG_CONSISTENT_SIZE) |
| #define CONSISTENT_OFFSET(x) (((unsigned long)(x) - CONSISTENT_BASE) >> PAGE_SHIFT) |
| |
| /* |
| * This is the page table (2MB) covering uncached, DMA consistent allocations |
| */ |
| static pte_t *consistent_pte; |
| static DEFINE_SPINLOCK(consistent_lock); |
| |
| /* |
| * VM region handling support. |
| * |
| * This should become something generic, handling VM region allocations for |
| * vmalloc and similar (ioremap, module space, etc). |
| * |
| * I envisage vmalloc()'s supporting vm_struct becoming: |
| * |
| * struct vm_struct { |
| * struct vm_region region; |
| * unsigned long flags; |
| * struct page **pages; |
| * unsigned int nr_pages; |
| * unsigned long phys_addr; |
| * }; |
| * |
| * get_vm_area() would then call vm_region_alloc with an appropriate |
| * struct vm_region head (eg): |
| * |
| * struct vm_region vmalloc_head = { |
| * .vm_list = LIST_HEAD_INIT(vmalloc_head.vm_list), |
| * .vm_start = VMALLOC_START, |
| * .vm_end = VMALLOC_END, |
| * }; |
| * |
| * However, vmalloc_head.vm_start is variable (typically, it is dependent on |
| * the amount of RAM found at boot time.) I would imagine that get_vm_area() |
| * would have to initialise this each time prior to calling vm_region_alloc(). |
| */ |
| struct ppc_vm_region { |
| struct list_head vm_list; |
| unsigned long vm_start; |
| unsigned long vm_end; |
| }; |
| |
| static struct ppc_vm_region consistent_head = { |
| .vm_list = LIST_HEAD_INIT(consistent_head.vm_list), |
| .vm_start = CONSISTENT_BASE, |
| .vm_end = CONSISTENT_END, |
| }; |
| |
| static struct ppc_vm_region * |
| ppc_vm_region_alloc(struct ppc_vm_region *head, size_t size, gfp_t gfp) |
| { |
| unsigned long addr = head->vm_start, end = head->vm_end - size; |
| unsigned long flags; |
| struct ppc_vm_region *c, *new; |
| |
| new = kmalloc(sizeof(struct ppc_vm_region), gfp); |
| if (!new) |
| goto out; |
| |
| spin_lock_irqsave(&consistent_lock, flags); |
| |
| list_for_each_entry(c, &head->vm_list, vm_list) { |
| if ((addr + size) < addr) |
| goto nospc; |
| if ((addr + size) <= c->vm_start) |
| goto found; |
| addr = c->vm_end; |
| if (addr > end) |
| goto nospc; |
| } |
| |
| found: |
| /* |
| * Insert this entry _before_ the one we found. |
| */ |
| list_add_tail(&new->vm_list, &c->vm_list); |
| new->vm_start = addr; |
| new->vm_end = addr + size; |
| |
| spin_unlock_irqrestore(&consistent_lock, flags); |
| return new; |
| |
| nospc: |
| spin_unlock_irqrestore(&consistent_lock, flags); |
| kfree(new); |
| out: |
| return NULL; |
| } |
| |
| static struct ppc_vm_region *ppc_vm_region_find(struct ppc_vm_region *head, unsigned long addr) |
| { |
| struct ppc_vm_region *c; |
| |
| list_for_each_entry(c, &head->vm_list, vm_list) { |
| if (c->vm_start == addr) |
| goto out; |
| } |
| c = NULL; |
| out: |
| return c; |
| } |
| |
| /* |
| * Allocate DMA-coherent memory space and return both the kernel remapped |
| * virtual and bus address for that space. |
| */ |
| void * |
| __dma_alloc_coherent(size_t size, dma_addr_t *handle, gfp_t gfp) |
| { |
| struct page *page; |
| struct ppc_vm_region *c; |
| unsigned long order; |
| u64 mask = 0x00ffffff, limit; /* ISA default */ |
| |
| if (!consistent_pte) { |
| printk(KERN_ERR "%s: not initialised\n", __func__); |
| dump_stack(); |
| return NULL; |
| } |
| |
| size = PAGE_ALIGN(size); |
| limit = (mask + 1) & ~mask; |
| if ((limit && size >= limit) || size >= (CONSISTENT_END - CONSISTENT_BASE)) { |
| printk(KERN_WARNING "coherent allocation too big (requested %#x mask %#Lx)\n", |
| size, mask); |
| return NULL; |
| } |
| |
| order = get_order(size); |
| |
| if (mask != 0xffffffff) |
| gfp |= GFP_DMA; |
| |
| page = alloc_pages(gfp, order); |
| if (!page) |
| goto no_page; |
| |
| /* |
| * Invalidate any data that might be lurking in the |
| * kernel direct-mapped region for device DMA. |
| */ |
| { |
| unsigned long kaddr = (unsigned long)page_address(page); |
| memset(page_address(page), 0, size); |
| flush_dcache_range(kaddr, kaddr + size); |
| } |
| |
| /* |
| * Allocate a virtual address in the consistent mapping region. |
| */ |
| c = ppc_vm_region_alloc(&consistent_head, size, |
| gfp & ~(__GFP_DMA | __GFP_HIGHMEM)); |
| if (c) { |
| unsigned long vaddr = c->vm_start; |
| pte_t *pte = consistent_pte + CONSISTENT_OFFSET(vaddr); |
| struct page *end = page + (1 << order); |
| |
| split_page(page, order); |
| |
| /* |
| * Set the "dma handle" |
| */ |
| *handle = page_to_phys(page); |
| |
| do { |
| BUG_ON(!pte_none(*pte)); |
| |
| SetPageReserved(page); |
| set_pte_at(&init_mm, vaddr, |
| pte, mk_pte(page, pgprot_noncached(PAGE_KERNEL))); |
| page++; |
| pte++; |
| vaddr += PAGE_SIZE; |
| } while (size -= PAGE_SIZE); |
| |
| /* |
| * Free the otherwise unused pages. |
| */ |
| while (page < end) { |
| __free_page(page); |
| page++; |
| } |
| |
| return (void *)c->vm_start; |
| } |
| |
| if (page) |
| __free_pages(page, order); |
| no_page: |
| return NULL; |
| } |
| EXPORT_SYMBOL(__dma_alloc_coherent); |
| |
| /* |
| * free a page as defined by the above mapping. |
| */ |
| void __dma_free_coherent(size_t size, void *vaddr) |
| { |
| struct ppc_vm_region *c; |
| unsigned long flags, addr; |
| pte_t *ptep; |
| |
| size = PAGE_ALIGN(size); |
| |
| spin_lock_irqsave(&consistent_lock, flags); |
| |
| c = ppc_vm_region_find(&consistent_head, (unsigned long)vaddr); |
| if (!c) |
| goto no_area; |
| |
| if ((c->vm_end - c->vm_start) != size) { |
| printk(KERN_ERR "%s: freeing wrong coherent size (%ld != %d)\n", |
| __func__, c->vm_end - c->vm_start, size); |
| dump_stack(); |
| size = c->vm_end - c->vm_start; |
| } |
| |
| ptep = consistent_pte + CONSISTENT_OFFSET(c->vm_start); |
| addr = c->vm_start; |
| do { |
| pte_t pte = ptep_get_and_clear(&init_mm, addr, ptep); |
| unsigned long pfn; |
| |
| ptep++; |
| addr += PAGE_SIZE; |
| |
| if (!pte_none(pte) && pte_present(pte)) { |
| pfn = pte_pfn(pte); |
| |
| if (pfn_valid(pfn)) { |
| struct page *page = pfn_to_page(pfn); |
| ClearPageReserved(page); |
| |
| __free_page(page); |
| continue; |
| } |
| } |
| |
| printk(KERN_CRIT "%s: bad page in kernel page table\n", |
| __func__); |
| } while (size -= PAGE_SIZE); |
| |
| flush_tlb_kernel_range(c->vm_start, c->vm_end); |
| |
| list_del(&c->vm_list); |
| |
| spin_unlock_irqrestore(&consistent_lock, flags); |
| |
| kfree(c); |
| return; |
| |
| no_area: |
| spin_unlock_irqrestore(&consistent_lock, flags); |
| printk(KERN_ERR "%s: trying to free invalid coherent area: %p\n", |
| __func__, vaddr); |
| dump_stack(); |
| } |
| EXPORT_SYMBOL(__dma_free_coherent); |
| |
| /* |
| * Initialise the consistent memory allocation. |
| */ |
| static int __init dma_alloc_init(void) |
| { |
| pgd_t *pgd; |
| pud_t *pud; |
| pmd_t *pmd; |
| pte_t *pte; |
| int ret = 0; |
| |
| do { |
| pgd = pgd_offset(&init_mm, CONSISTENT_BASE); |
| pud = pud_alloc(&init_mm, pgd, CONSISTENT_BASE); |
| pmd = pmd_alloc(&init_mm, pud, CONSISTENT_BASE); |
| if (!pmd) { |
| printk(KERN_ERR "%s: no pmd tables\n", __func__); |
| ret = -ENOMEM; |
| break; |
| } |
| |
| pte = pte_alloc_kernel(pmd, CONSISTENT_BASE); |
| if (!pte) { |
| printk(KERN_ERR "%s: no pte tables\n", __func__); |
| ret = -ENOMEM; |
| break; |
| } |
| |
| consistent_pte = pte; |
| } while (0); |
| |
| return ret; |
| } |
| |
| core_initcall(dma_alloc_init); |
| |
| /* |
| * make an area consistent. |
| */ |
| void __dma_sync(void *vaddr, size_t size, int direction) |
| { |
| unsigned long start = (unsigned long)vaddr; |
| unsigned long end = start + size; |
| |
| switch (direction) { |
| case DMA_NONE: |
| BUG(); |
| case DMA_FROM_DEVICE: |
| /* |
| * invalidate only when cache-line aligned otherwise there is |
| * the potential for discarding uncommitted data from the cache |
| */ |
| if ((start & (L1_CACHE_BYTES - 1)) || (size & (L1_CACHE_BYTES - 1))) |
| flush_dcache_range(start, end); |
| else |
| invalidate_dcache_range(start, end); |
| break; |
| case DMA_TO_DEVICE: /* writeback only */ |
| clean_dcache_range(start, end); |
| break; |
| case DMA_BIDIRECTIONAL: /* writeback and invalidate */ |
| flush_dcache_range(start, end); |
| break; |
| } |
| } |
| EXPORT_SYMBOL(__dma_sync); |
| |
| #ifdef CONFIG_HIGHMEM |
| /* |
| * __dma_sync_page() implementation for systems using highmem. |
| * In this case, each page of a buffer must be kmapped/kunmapped |
| * in order to have a virtual address for __dma_sync(). This must |
| * not sleep so kmap_atomic()/kunmap_atomic() are used. |
| * |
| * Note: yes, it is possible and correct to have a buffer extend |
| * beyond the first page. |
| */ |
| static inline void __dma_sync_page_highmem(struct page *page, |
| unsigned long offset, size_t size, int direction) |
| { |
| size_t seg_size = min((size_t)(PAGE_SIZE - offset), size); |
| size_t cur_size = seg_size; |
| unsigned long flags, start, seg_offset = offset; |
| int nr_segs = 1 + ((size - seg_size) + PAGE_SIZE - 1)/PAGE_SIZE; |
| int seg_nr = 0; |
| |
| local_irq_save(flags); |
| |
| do { |
| start = (unsigned long)kmap_atomic(page + seg_nr, |
| KM_PPC_SYNC_PAGE) + seg_offset; |
| |
| /* Sync this buffer segment */ |
| __dma_sync((void *)start, seg_size, direction); |
| kunmap_atomic((void *)start, KM_PPC_SYNC_PAGE); |
| seg_nr++; |
| |
| /* Calculate next buffer segment size */ |
| seg_size = min((size_t)PAGE_SIZE, size - cur_size); |
| |
| /* Add the segment size to our running total */ |
| cur_size += seg_size; |
| seg_offset = 0; |
| } while (seg_nr < nr_segs); |
| |
| local_irq_restore(flags); |
| } |
| #endif /* CONFIG_HIGHMEM */ |
| |
| /* |
| * __dma_sync_page makes memory consistent. identical to __dma_sync, but |
| * takes a struct page instead of a virtual address |
| */ |
| void __dma_sync_page(struct page *page, unsigned long offset, |
| size_t size, int direction) |
| { |
| #ifdef CONFIG_HIGHMEM |
| __dma_sync_page_highmem(page, offset, size, direction); |
| #else |
| unsigned long start = (unsigned long)page_address(page) + offset; |
| __dma_sync((void *)start, size, direction); |
| #endif |
| } |
| EXPORT_SYMBOL(__dma_sync_page); |