| /* |
| * Coherency fabric (Aurora) support for Armada 370 and XP platforms. |
| * |
| * Copyright (C) 2012 Marvell |
| * |
| * Yehuda Yitschak <yehuday@marvell.com> |
| * Gregory Clement <gregory.clement@free-electrons.com> |
| * Thomas Petazzoni <thomas.petazzoni@free-electrons.com> |
| * |
| * This file is licensed under the terms of the GNU General Public |
| * License version 2. This program is licensed "as is" without any |
| * warranty of any kind, whether express or implied. |
| * |
| * The Armada 370 and Armada XP SOCs have a coherency fabric which is |
| * responsible for ensuring hardware coherency between all CPUs and between |
| * CPUs and I/O masters. This file initializes the coherency fabric and |
| * supplies basic routines for configuring and controlling hardware coherency |
| */ |
| |
| #define pr_fmt(fmt) "mvebu-coherency: " fmt |
| |
| #include <linux/kernel.h> |
| #include <linux/init.h> |
| #include <linux/of_address.h> |
| #include <linux/io.h> |
| #include <linux/smp.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/platform_device.h> |
| #include <linux/slab.h> |
| #include <linux/mbus.h> |
| #include <linux/clk.h> |
| #include <linux/pci.h> |
| #include <asm/smp_plat.h> |
| #include <asm/cacheflush.h> |
| #include <asm/mach/map.h> |
| #include "armada-370-xp.h" |
| #include "coherency.h" |
| #include "mvebu-soc-id.h" |
| |
| unsigned long coherency_phys_base; |
| void __iomem *coherency_base; |
| static void __iomem *coherency_cpu_base; |
| |
| /* Coherency fabric registers */ |
| #define IO_SYNC_BARRIER_CTL_OFFSET 0x0 |
| |
| enum { |
| COHERENCY_FABRIC_TYPE_NONE, |
| COHERENCY_FABRIC_TYPE_ARMADA_370_XP, |
| COHERENCY_FABRIC_TYPE_ARMADA_375, |
| COHERENCY_FABRIC_TYPE_ARMADA_380, |
| }; |
| |
| static struct of_device_id of_coherency_table[] = { |
| {.compatible = "marvell,coherency-fabric", |
| .data = (void *) COHERENCY_FABRIC_TYPE_ARMADA_370_XP }, |
| {.compatible = "marvell,armada-375-coherency-fabric", |
| .data = (void *) COHERENCY_FABRIC_TYPE_ARMADA_375 }, |
| {.compatible = "marvell,armada-380-coherency-fabric", |
| .data = (void *) COHERENCY_FABRIC_TYPE_ARMADA_380 }, |
| { /* end of list */ }, |
| }; |
| |
| /* Functions defined in coherency_ll.S */ |
| int ll_enable_coherency(void); |
| void ll_add_cpu_to_smp_group(void); |
| |
| int set_cpu_coherent(void) |
| { |
| if (!coherency_base) { |
| pr_warn("Can't make current CPU cache coherent.\n"); |
| pr_warn("Coherency fabric is not initialized\n"); |
| return 1; |
| } |
| |
| ll_add_cpu_to_smp_group(); |
| return ll_enable_coherency(); |
| } |
| |
| /* |
| * The below code implements the I/O coherency workaround on Armada |
| * 375. This workaround consists in using the two channels of the |
| * first XOR engine to trigger a XOR transaction that serves as the |
| * I/O coherency barrier. |
| */ |
| |
| static void __iomem *xor_base, *xor_high_base; |
| static dma_addr_t coherency_wa_buf_phys[CONFIG_NR_CPUS]; |
| static void *coherency_wa_buf[CONFIG_NR_CPUS]; |
| static bool coherency_wa_enabled; |
| |
| #define XOR_CONFIG(chan) (0x10 + (chan * 4)) |
| #define XOR_ACTIVATION(chan) (0x20 + (chan * 4)) |
| #define WINDOW_BAR_ENABLE(chan) (0x240 + ((chan) << 2)) |
| #define WINDOW_BASE(w) (0x250 + ((w) << 2)) |
| #define WINDOW_SIZE(w) (0x270 + ((w) << 2)) |
| #define WINDOW_REMAP_HIGH(w) (0x290 + ((w) << 2)) |
| #define WINDOW_OVERRIDE_CTRL(chan) (0x2A0 + ((chan) << 2)) |
| #define XOR_DEST_POINTER(chan) (0x2B0 + (chan * 4)) |
| #define XOR_BLOCK_SIZE(chan) (0x2C0 + (chan * 4)) |
| #define XOR_INIT_VALUE_LOW 0x2E0 |
| #define XOR_INIT_VALUE_HIGH 0x2E4 |
| |
| static inline void mvebu_hwcc_armada375_sync_io_barrier_wa(void) |
| { |
| int idx = smp_processor_id(); |
| |
| /* Write '1' to the first word of the buffer */ |
| writel(0x1, coherency_wa_buf[idx]); |
| |
| /* Wait until the engine is idle */ |
| while ((readl(xor_base + XOR_ACTIVATION(idx)) >> 4) & 0x3) |
| ; |
| |
| dmb(); |
| |
| /* Trigger channel */ |
| writel(0x1, xor_base + XOR_ACTIVATION(idx)); |
| |
| /* Poll the data until it is cleared by the XOR transaction */ |
| while (readl(coherency_wa_buf[idx])) |
| ; |
| } |
| |
| static void __init armada_375_coherency_init_wa(void) |
| { |
| const struct mbus_dram_target_info *dram; |
| struct device_node *xor_node; |
| struct property *xor_status; |
| struct clk *xor_clk; |
| u32 win_enable = 0; |
| int i; |
| |
| pr_warn("enabling coherency workaround for Armada 375 Z1, one XOR engine disabled\n"); |
| |
| /* |
| * Since the workaround uses one XOR engine, we grab a |
| * reference to its Device Tree node first. |
| */ |
| xor_node = of_find_compatible_node(NULL, NULL, "marvell,orion-xor"); |
| BUG_ON(!xor_node); |
| |
| /* |
| * Then we mark it as disabled so that the real XOR driver |
| * will not use it. |
| */ |
| xor_status = kzalloc(sizeof(struct property), GFP_KERNEL); |
| BUG_ON(!xor_status); |
| |
| xor_status->value = kstrdup("disabled", GFP_KERNEL); |
| BUG_ON(!xor_status->value); |
| |
| xor_status->length = 8; |
| xor_status->name = kstrdup("status", GFP_KERNEL); |
| BUG_ON(!xor_status->name); |
| |
| of_update_property(xor_node, xor_status); |
| |
| /* |
| * And we remap the registers, get the clock, and do the |
| * initial configuration of the XOR engine. |
| */ |
| xor_base = of_iomap(xor_node, 0); |
| xor_high_base = of_iomap(xor_node, 1); |
| |
| xor_clk = of_clk_get_by_name(xor_node, NULL); |
| BUG_ON(!xor_clk); |
| |
| clk_prepare_enable(xor_clk); |
| |
| dram = mv_mbus_dram_info(); |
| |
| for (i = 0; i < 8; i++) { |
| writel(0, xor_base + WINDOW_BASE(i)); |
| writel(0, xor_base + WINDOW_SIZE(i)); |
| if (i < 4) |
| writel(0, xor_base + WINDOW_REMAP_HIGH(i)); |
| } |
| |
| for (i = 0; i < dram->num_cs; i++) { |
| const struct mbus_dram_window *cs = dram->cs + i; |
| writel((cs->base & 0xffff0000) | |
| (cs->mbus_attr << 8) | |
| dram->mbus_dram_target_id, xor_base + WINDOW_BASE(i)); |
| writel((cs->size - 1) & 0xffff0000, xor_base + WINDOW_SIZE(i)); |
| |
| win_enable |= (1 << i); |
| win_enable |= 3 << (16 + (2 * i)); |
| } |
| |
| writel(win_enable, xor_base + WINDOW_BAR_ENABLE(0)); |
| writel(win_enable, xor_base + WINDOW_BAR_ENABLE(1)); |
| writel(0, xor_base + WINDOW_OVERRIDE_CTRL(0)); |
| writel(0, xor_base + WINDOW_OVERRIDE_CTRL(1)); |
| |
| for (i = 0; i < CONFIG_NR_CPUS; i++) { |
| coherency_wa_buf[i] = kzalloc(PAGE_SIZE, GFP_KERNEL); |
| BUG_ON(!coherency_wa_buf[i]); |
| |
| /* |
| * We can't use the DMA mapping API, since we don't |
| * have a valid 'struct device' pointer |
| */ |
| coherency_wa_buf_phys[i] = |
| virt_to_phys(coherency_wa_buf[i]); |
| BUG_ON(!coherency_wa_buf_phys[i]); |
| |
| /* |
| * Configure the XOR engine for memset operation, with |
| * a 128 bytes block size |
| */ |
| writel(0x444, xor_base + XOR_CONFIG(i)); |
| writel(128, xor_base + XOR_BLOCK_SIZE(i)); |
| writel(coherency_wa_buf_phys[i], |
| xor_base + XOR_DEST_POINTER(i)); |
| } |
| |
| writel(0x0, xor_base + XOR_INIT_VALUE_LOW); |
| writel(0x0, xor_base + XOR_INIT_VALUE_HIGH); |
| |
| coherency_wa_enabled = true; |
| } |
| |
| static inline void mvebu_hwcc_sync_io_barrier(void) |
| { |
| if (coherency_wa_enabled) { |
| mvebu_hwcc_armada375_sync_io_barrier_wa(); |
| return; |
| } |
| |
| writel(0x1, coherency_cpu_base + IO_SYNC_BARRIER_CTL_OFFSET); |
| while (readl(coherency_cpu_base + IO_SYNC_BARRIER_CTL_OFFSET) & 0x1); |
| } |
| |
| static dma_addr_t mvebu_hwcc_dma_map_page(struct device *dev, struct page *page, |
| unsigned long offset, size_t size, |
| enum dma_data_direction dir, |
| struct dma_attrs *attrs) |
| { |
| if (dir != DMA_TO_DEVICE) |
| mvebu_hwcc_sync_io_barrier(); |
| return pfn_to_dma(dev, page_to_pfn(page)) + offset; |
| } |
| |
| |
| static void mvebu_hwcc_dma_unmap_page(struct device *dev, dma_addr_t dma_handle, |
| size_t size, enum dma_data_direction dir, |
| struct dma_attrs *attrs) |
| { |
| if (dir != DMA_TO_DEVICE) |
| mvebu_hwcc_sync_io_barrier(); |
| } |
| |
| static void mvebu_hwcc_dma_sync(struct device *dev, dma_addr_t dma_handle, |
| size_t size, enum dma_data_direction dir) |
| { |
| if (dir != DMA_TO_DEVICE) |
| mvebu_hwcc_sync_io_barrier(); |
| } |
| |
| static struct dma_map_ops mvebu_hwcc_dma_ops = { |
| .alloc = arm_dma_alloc, |
| .free = arm_dma_free, |
| .mmap = arm_dma_mmap, |
| .map_page = mvebu_hwcc_dma_map_page, |
| .unmap_page = mvebu_hwcc_dma_unmap_page, |
| .get_sgtable = arm_dma_get_sgtable, |
| .map_sg = arm_dma_map_sg, |
| .unmap_sg = arm_dma_unmap_sg, |
| .sync_single_for_cpu = mvebu_hwcc_dma_sync, |
| .sync_single_for_device = mvebu_hwcc_dma_sync, |
| .sync_sg_for_cpu = arm_dma_sync_sg_for_cpu, |
| .sync_sg_for_device = arm_dma_sync_sg_for_device, |
| .set_dma_mask = arm_dma_set_mask, |
| }; |
| |
| static int mvebu_hwcc_notifier(struct notifier_block *nb, |
| unsigned long event, void *__dev) |
| { |
| struct device *dev = __dev; |
| |
| if (event != BUS_NOTIFY_ADD_DEVICE) |
| return NOTIFY_DONE; |
| set_dma_ops(dev, &mvebu_hwcc_dma_ops); |
| |
| return NOTIFY_OK; |
| } |
| |
| static struct notifier_block mvebu_hwcc_nb = { |
| .notifier_call = mvebu_hwcc_notifier, |
| }; |
| |
| static struct notifier_block mvebu_hwcc_pci_nb = { |
| .notifier_call = mvebu_hwcc_notifier, |
| }; |
| |
| static void __init armada_370_coherency_init(struct device_node *np) |
| { |
| struct resource res; |
| |
| of_address_to_resource(np, 0, &res); |
| coherency_phys_base = res.start; |
| /* |
| * Ensure secondary CPUs will see the updated value, |
| * which they read before they join the coherency |
| * fabric, and therefore before they are coherent with |
| * the boot CPU cache. |
| */ |
| sync_cache_w(&coherency_phys_base); |
| coherency_base = of_iomap(np, 0); |
| coherency_cpu_base = of_iomap(np, 1); |
| set_cpu_coherent(); |
| } |
| |
| /* |
| * This ioremap hook is used on Armada 375/38x to ensure that PCIe |
| * memory areas are mapped as MT_UNCACHED instead of MT_DEVICE. This |
| * is needed as a workaround for a deadlock issue between the PCIe |
| * interface and the cache controller. |
| */ |
| static void __iomem * |
| armada_pcie_wa_ioremap_caller(phys_addr_t phys_addr, size_t size, |
| unsigned int mtype, void *caller) |
| { |
| struct resource pcie_mem; |
| |
| mvebu_mbus_get_pcie_mem_aperture(&pcie_mem); |
| |
| if (pcie_mem.start <= phys_addr && (phys_addr + size) <= pcie_mem.end) |
| mtype = MT_UNCACHED; |
| |
| return __arm_ioremap_caller(phys_addr, size, mtype, caller); |
| } |
| |
| static void __init armada_375_380_coherency_init(struct device_node *np) |
| { |
| struct device_node *cache_dn; |
| |
| coherency_cpu_base = of_iomap(np, 0); |
| arch_ioremap_caller = armada_pcie_wa_ioremap_caller; |
| |
| /* |
| * Add the PL310 property "arm,io-coherent". This makes sure the |
| * outer sync operation is not used, which allows to |
| * workaround the system erratum that causes deadlocks when |
| * doing PCIe in an SMP situation on Armada 375 and Armada |
| * 38x. |
| */ |
| for_each_compatible_node(cache_dn, NULL, "arm,pl310-cache") { |
| struct property *p; |
| |
| p = kzalloc(sizeof(*p), GFP_KERNEL); |
| p->name = kstrdup("arm,io-coherent", GFP_KERNEL); |
| of_add_property(cache_dn, p); |
| } |
| } |
| |
| static int coherency_type(void) |
| { |
| struct device_node *np; |
| const struct of_device_id *match; |
| int type; |
| |
| /* |
| * The coherency fabric is needed: |
| * - For coherency between processors on Armada XP, so only |
| * when SMP is enabled. |
| * - For coherency between the processor and I/O devices, but |
| * this coherency requires many pre-requisites (write |
| * allocate cache policy, shareable pages, SMP bit set) that |
| * are only meant in SMP situations. |
| * |
| * Note that this means that on Armada 370, there is currently |
| * no way to use hardware I/O coherency, because even when |
| * CONFIG_SMP is enabled, is_smp() returns false due to the |
| * Armada 370 being a single-core processor. To lift this |
| * limitation, we would have to find a way to make the cache |
| * policy set to write-allocate (on all Armada SoCs), and to |
| * set the shareable attribute in page tables (on all Armada |
| * SoCs except the Armada 370). Unfortunately, such decisions |
| * are taken very early in the kernel boot process, at a point |
| * where we don't know yet on which SoC we are running. |
| |
| */ |
| if (!is_smp()) |
| return COHERENCY_FABRIC_TYPE_NONE; |
| |
| np = of_find_matching_node_and_match(NULL, of_coherency_table, &match); |
| if (!np) |
| return COHERENCY_FABRIC_TYPE_NONE; |
| |
| type = (int) match->data; |
| |
| of_node_put(np); |
| |
| return type; |
| } |
| |
| int coherency_available(void) |
| { |
| return coherency_type() != COHERENCY_FABRIC_TYPE_NONE; |
| } |
| |
| int __init coherency_init(void) |
| { |
| int type = coherency_type(); |
| struct device_node *np; |
| |
| np = of_find_matching_node(NULL, of_coherency_table); |
| |
| if (type == COHERENCY_FABRIC_TYPE_ARMADA_370_XP) |
| armada_370_coherency_init(np); |
| else if (type == COHERENCY_FABRIC_TYPE_ARMADA_375 || |
| type == COHERENCY_FABRIC_TYPE_ARMADA_380) |
| armada_375_380_coherency_init(np); |
| |
| of_node_put(np); |
| |
| return 0; |
| } |
| |
| static int __init coherency_late_init(void) |
| { |
| int type = coherency_type(); |
| |
| if (type == COHERENCY_FABRIC_TYPE_NONE) |
| return 0; |
| |
| if (type == COHERENCY_FABRIC_TYPE_ARMADA_375) { |
| u32 dev, rev; |
| |
| if (mvebu_get_soc_id(&dev, &rev) == 0 && |
| rev == ARMADA_375_Z1_REV) |
| armada_375_coherency_init_wa(); |
| } |
| |
| bus_register_notifier(&platform_bus_type, |
| &mvebu_hwcc_nb); |
| |
| return 0; |
| } |
| |
| postcore_initcall(coherency_late_init); |
| |
| #if IS_ENABLED(CONFIG_PCI) |
| static int __init coherency_pci_init(void) |
| { |
| if (coherency_available()) |
| bus_register_notifier(&pci_bus_type, |
| &mvebu_hwcc_pci_nb); |
| return 0; |
| } |
| |
| arch_initcall(coherency_pci_init); |
| #endif |