| /* |
| * Copyright (c) 2005-2011 Atheros Communications Inc. |
| * Copyright (c) 2011-2013 Qualcomm Atheros, Inc. |
| * |
| * Permission to use, copy, modify, and/or distribute this software for any |
| * purpose with or without fee is hereby granted, provided that the above |
| * copyright notice and this permission notice appear in all copies. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
| * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR |
| * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN |
| * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF |
| * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
| */ |
| |
| #include "core.h" |
| #include "htc.h" |
| #include "htt.h" |
| #include "txrx.h" |
| #include "debug.h" |
| #include "trace.h" |
| |
| #include <linux/log2.h> |
| |
| /* slightly larger than one large A-MPDU */ |
| #define HTT_RX_RING_SIZE_MIN 128 |
| |
| /* roughly 20 ms @ 1 Gbps of 1500B MSDUs */ |
| #define HTT_RX_RING_SIZE_MAX 2048 |
| |
| #define HTT_RX_AVG_FRM_BYTES 1000 |
| |
| /* ms, very conservative */ |
| #define HTT_RX_HOST_LATENCY_MAX_MS 20 |
| |
| /* ms, conservative */ |
| #define HTT_RX_HOST_LATENCY_WORST_LIKELY_MS 10 |
| |
| /* when under memory pressure rx ring refill may fail and needs a retry */ |
| #define HTT_RX_RING_REFILL_RETRY_MS 50 |
| |
| |
| static int ath10k_htt_rx_get_csum_state(struct sk_buff *skb); |
| static void ath10k_htt_txrx_compl_task(unsigned long ptr); |
| |
| static int ath10k_htt_rx_ring_size(struct ath10k_htt *htt) |
| { |
| int size; |
| |
| /* |
| * It is expected that the host CPU will typically be able to |
| * service the rx indication from one A-MPDU before the rx |
| * indication from the subsequent A-MPDU happens, roughly 1-2 ms |
| * later. However, the rx ring should be sized very conservatively, |
| * to accomodate the worst reasonable delay before the host CPU |
| * services a rx indication interrupt. |
| * |
| * The rx ring need not be kept full of empty buffers. In theory, |
| * the htt host SW can dynamically track the low-water mark in the |
| * rx ring, and dynamically adjust the level to which the rx ring |
| * is filled with empty buffers, to dynamically meet the desired |
| * low-water mark. |
| * |
| * In contrast, it's difficult to resize the rx ring itself, once |
| * it's in use. Thus, the ring itself should be sized very |
| * conservatively, while the degree to which the ring is filled |
| * with empty buffers should be sized moderately conservatively. |
| */ |
| |
| /* 1e6 bps/mbps / 1e3 ms per sec = 1000 */ |
| size = |
| htt->max_throughput_mbps + |
| 1000 / |
| (8 * HTT_RX_AVG_FRM_BYTES) * HTT_RX_HOST_LATENCY_MAX_MS; |
| |
| if (size < HTT_RX_RING_SIZE_MIN) |
| size = HTT_RX_RING_SIZE_MIN; |
| |
| if (size > HTT_RX_RING_SIZE_MAX) |
| size = HTT_RX_RING_SIZE_MAX; |
| |
| size = roundup_pow_of_two(size); |
| |
| return size; |
| } |
| |
| static int ath10k_htt_rx_ring_fill_level(struct ath10k_htt *htt) |
| { |
| int size; |
| |
| /* 1e6 bps/mbps / 1e3 ms per sec = 1000 */ |
| size = |
| htt->max_throughput_mbps * |
| 1000 / |
| (8 * HTT_RX_AVG_FRM_BYTES) * HTT_RX_HOST_LATENCY_WORST_LIKELY_MS; |
| |
| /* |
| * Make sure the fill level is at least 1 less than the ring size. |
| * Leaving 1 element empty allows the SW to easily distinguish |
| * between a full ring vs. an empty ring. |
| */ |
| if (size >= htt->rx_ring.size) |
| size = htt->rx_ring.size - 1; |
| |
| return size; |
| } |
| |
| static void ath10k_htt_rx_ring_free(struct ath10k_htt *htt) |
| { |
| struct sk_buff *skb; |
| struct ath10k_skb_cb *cb; |
| int i; |
| |
| for (i = 0; i < htt->rx_ring.fill_cnt; i++) { |
| skb = htt->rx_ring.netbufs_ring[i]; |
| cb = ATH10K_SKB_CB(skb); |
| dma_unmap_single(htt->ar->dev, cb->paddr, |
| skb->len + skb_tailroom(skb), |
| DMA_FROM_DEVICE); |
| dev_kfree_skb_any(skb); |
| } |
| |
| htt->rx_ring.fill_cnt = 0; |
| } |
| |
| static int __ath10k_htt_rx_ring_fill_n(struct ath10k_htt *htt, int num) |
| { |
| struct htt_rx_desc *rx_desc; |
| struct sk_buff *skb; |
| dma_addr_t paddr; |
| int ret = 0, idx; |
| |
| idx = __le32_to_cpu(*(htt->rx_ring.alloc_idx.vaddr)); |
| while (num > 0) { |
| skb = dev_alloc_skb(HTT_RX_BUF_SIZE + HTT_RX_DESC_ALIGN); |
| if (!skb) { |
| ret = -ENOMEM; |
| goto fail; |
| } |
| |
| if (!IS_ALIGNED((unsigned long)skb->data, HTT_RX_DESC_ALIGN)) |
| skb_pull(skb, |
| PTR_ALIGN(skb->data, HTT_RX_DESC_ALIGN) - |
| skb->data); |
| |
| /* Clear rx_desc attention word before posting to Rx ring */ |
| rx_desc = (struct htt_rx_desc *)skb->data; |
| rx_desc->attention.flags = __cpu_to_le32(0); |
| |
| paddr = dma_map_single(htt->ar->dev, skb->data, |
| skb->len + skb_tailroom(skb), |
| DMA_FROM_DEVICE); |
| |
| if (unlikely(dma_mapping_error(htt->ar->dev, paddr))) { |
| dev_kfree_skb_any(skb); |
| ret = -ENOMEM; |
| goto fail; |
| } |
| |
| ATH10K_SKB_CB(skb)->paddr = paddr; |
| htt->rx_ring.netbufs_ring[idx] = skb; |
| htt->rx_ring.paddrs_ring[idx] = __cpu_to_le32(paddr); |
| htt->rx_ring.fill_cnt++; |
| |
| num--; |
| idx++; |
| idx &= htt->rx_ring.size_mask; |
| } |
| |
| fail: |
| *(htt->rx_ring.alloc_idx.vaddr) = __cpu_to_le32(idx); |
| return ret; |
| } |
| |
| static int ath10k_htt_rx_ring_fill_n(struct ath10k_htt *htt, int num) |
| { |
| lockdep_assert_held(&htt->rx_ring.lock); |
| return __ath10k_htt_rx_ring_fill_n(htt, num); |
| } |
| |
| static void ath10k_htt_rx_msdu_buff_replenish(struct ath10k_htt *htt) |
| { |
| int ret, num_deficit, num_to_fill; |
| |
| /* Refilling the whole RX ring buffer proves to be a bad idea. The |
| * reason is RX may take up significant amount of CPU cycles and starve |
| * other tasks, e.g. TX on an ethernet device while acting as a bridge |
| * with ath10k wlan interface. This ended up with very poor performance |
| * once CPU the host system was overwhelmed with RX on ath10k. |
| * |
| * By limiting the number of refills the replenishing occurs |
| * progressively. This in turns makes use of the fact tasklets are |
| * processed in FIFO order. This means actual RX processing can starve |
| * out refilling. If there's not enough buffers on RX ring FW will not |
| * report RX until it is refilled with enough buffers. This |
| * automatically balances load wrt to CPU power. |
| * |
| * This probably comes at a cost of lower maximum throughput but |
| * improves the avarage and stability. */ |
| spin_lock_bh(&htt->rx_ring.lock); |
| num_deficit = htt->rx_ring.fill_level - htt->rx_ring.fill_cnt; |
| num_to_fill = min(ATH10K_HTT_MAX_NUM_REFILL, num_deficit); |
| num_deficit -= num_to_fill; |
| ret = ath10k_htt_rx_ring_fill_n(htt, num_to_fill); |
| if (ret == -ENOMEM) { |
| /* |
| * Failed to fill it to the desired level - |
| * we'll start a timer and try again next time. |
| * As long as enough buffers are left in the ring for |
| * another A-MPDU rx, no special recovery is needed. |
| */ |
| mod_timer(&htt->rx_ring.refill_retry_timer, jiffies + |
| msecs_to_jiffies(HTT_RX_RING_REFILL_RETRY_MS)); |
| } else if (num_deficit > 0) { |
| tasklet_schedule(&htt->rx_replenish_task); |
| } |
| spin_unlock_bh(&htt->rx_ring.lock); |
| } |
| |
| static void ath10k_htt_rx_ring_refill_retry(unsigned long arg) |
| { |
| struct ath10k_htt *htt = (struct ath10k_htt *)arg; |
| ath10k_htt_rx_msdu_buff_replenish(htt); |
| } |
| |
| static void ath10k_htt_rx_ring_clean_up(struct ath10k_htt *htt) |
| { |
| struct sk_buff *skb; |
| int i; |
| |
| for (i = 0; i < htt->rx_ring.size; i++) { |
| skb = htt->rx_ring.netbufs_ring[i]; |
| if (!skb) |
| continue; |
| |
| dma_unmap_single(htt->ar->dev, ATH10K_SKB_CB(skb)->paddr, |
| skb->len + skb_tailroom(skb), |
| DMA_FROM_DEVICE); |
| dev_kfree_skb_any(skb); |
| htt->rx_ring.netbufs_ring[i] = NULL; |
| } |
| } |
| |
| void ath10k_htt_rx_detach(struct ath10k_htt *htt) |
| { |
| del_timer_sync(&htt->rx_ring.refill_retry_timer); |
| tasklet_kill(&htt->rx_replenish_task); |
| tasklet_kill(&htt->txrx_compl_task); |
| |
| skb_queue_purge(&htt->tx_compl_q); |
| skb_queue_purge(&htt->rx_compl_q); |
| |
| ath10k_htt_rx_ring_clean_up(htt); |
| |
| dma_free_coherent(htt->ar->dev, |
| (htt->rx_ring.size * |
| sizeof(htt->rx_ring.paddrs_ring)), |
| htt->rx_ring.paddrs_ring, |
| htt->rx_ring.base_paddr); |
| |
| dma_free_coherent(htt->ar->dev, |
| sizeof(*htt->rx_ring.alloc_idx.vaddr), |
| htt->rx_ring.alloc_idx.vaddr, |
| htt->rx_ring.alloc_idx.paddr); |
| |
| kfree(htt->rx_ring.netbufs_ring); |
| } |
| |
| static inline struct sk_buff *ath10k_htt_rx_netbuf_pop(struct ath10k_htt *htt) |
| { |
| int idx; |
| struct sk_buff *msdu; |
| |
| lockdep_assert_held(&htt->rx_ring.lock); |
| |
| if (htt->rx_ring.fill_cnt == 0) { |
| ath10k_warn("tried to pop sk_buff from an empty rx ring\n"); |
| return NULL; |
| } |
| |
| idx = htt->rx_ring.sw_rd_idx.msdu_payld; |
| msdu = htt->rx_ring.netbufs_ring[idx]; |
| htt->rx_ring.netbufs_ring[idx] = NULL; |
| |
| idx++; |
| idx &= htt->rx_ring.size_mask; |
| htt->rx_ring.sw_rd_idx.msdu_payld = idx; |
| htt->rx_ring.fill_cnt--; |
| |
| return msdu; |
| } |
| |
| static void ath10k_htt_rx_free_msdu_chain(struct sk_buff *skb) |
| { |
| struct sk_buff *next; |
| |
| while (skb) { |
| next = skb->next; |
| dev_kfree_skb_any(skb); |
| skb = next; |
| } |
| } |
| |
| /* return: < 0 fatal error, 0 - non chained msdu, 1 chained msdu */ |
| static int ath10k_htt_rx_amsdu_pop(struct ath10k_htt *htt, |
| u8 **fw_desc, int *fw_desc_len, |
| struct sk_buff **head_msdu, |
| struct sk_buff **tail_msdu) |
| { |
| int msdu_len, msdu_chaining = 0; |
| struct sk_buff *msdu; |
| struct htt_rx_desc *rx_desc; |
| |
| lockdep_assert_held(&htt->rx_ring.lock); |
| |
| if (htt->rx_confused) { |
| ath10k_warn("htt is confused. refusing rx\n"); |
| return -1; |
| } |
| |
| msdu = *head_msdu = ath10k_htt_rx_netbuf_pop(htt); |
| while (msdu) { |
| int last_msdu, msdu_len_invalid, msdu_chained; |
| |
| dma_unmap_single(htt->ar->dev, |
| ATH10K_SKB_CB(msdu)->paddr, |
| msdu->len + skb_tailroom(msdu), |
| DMA_FROM_DEVICE); |
| |
| ath10k_dbg_dump(ATH10K_DBG_HTT_DUMP, NULL, "htt rx pop: ", |
| msdu->data, msdu->len + skb_tailroom(msdu)); |
| |
| rx_desc = (struct htt_rx_desc *)msdu->data; |
| |
| /* FIXME: we must report msdu payload since this is what caller |
| * expects now */ |
| skb_put(msdu, offsetof(struct htt_rx_desc, msdu_payload)); |
| skb_pull(msdu, offsetof(struct htt_rx_desc, msdu_payload)); |
| |
| /* |
| * Sanity check - confirm the HW is finished filling in the |
| * rx data. |
| * If the HW and SW are working correctly, then it's guaranteed |
| * that the HW's MAC DMA is done before this point in the SW. |
| * To prevent the case that we handle a stale Rx descriptor, |
| * just assert for now until we have a way to recover. |
| */ |
| if (!(__le32_to_cpu(rx_desc->attention.flags) |
| & RX_ATTENTION_FLAGS_MSDU_DONE)) { |
| ath10k_htt_rx_free_msdu_chain(*head_msdu); |
| *head_msdu = NULL; |
| msdu = NULL; |
| ath10k_err("htt rx stopped. cannot recover\n"); |
| htt->rx_confused = true; |
| break; |
| } |
| |
| /* |
| * Copy the FW rx descriptor for this MSDU from the rx |
| * indication message into the MSDU's netbuf. HL uses the |
| * same rx indication message definition as LL, and simply |
| * appends new info (fields from the HW rx desc, and the |
| * MSDU payload itself). So, the offset into the rx |
| * indication message only has to account for the standard |
| * offset of the per-MSDU FW rx desc info within the |
| * message, and how many bytes of the per-MSDU FW rx desc |
| * info have already been consumed. (And the endianness of |
| * the host, since for a big-endian host, the rx ind |
| * message contents, including the per-MSDU rx desc bytes, |
| * were byteswapped during upload.) |
| */ |
| if (*fw_desc_len > 0) { |
| rx_desc->fw_desc.info0 = **fw_desc; |
| /* |
| * The target is expected to only provide the basic |
| * per-MSDU rx descriptors. Just to be sure, verify |
| * that the target has not attached extension data |
| * (e.g. LRO flow ID). |
| */ |
| |
| /* or more, if there's extension data */ |
| (*fw_desc)++; |
| (*fw_desc_len)--; |
| } else { |
| /* |
| * When an oversized AMSDU happened, FW will lost |
| * some of MSDU status - in this case, the FW |
| * descriptors provided will be less than the |
| * actual MSDUs inside this MPDU. Mark the FW |
| * descriptors so that it will still deliver to |
| * upper stack, if no CRC error for this MPDU. |
| * |
| * FIX THIS - the FW descriptors are actually for |
| * MSDUs in the end of this A-MSDU instead of the |
| * beginning. |
| */ |
| rx_desc->fw_desc.info0 = 0; |
| } |
| |
| msdu_len_invalid = !!(__le32_to_cpu(rx_desc->attention.flags) |
| & (RX_ATTENTION_FLAGS_MPDU_LENGTH_ERR | |
| RX_ATTENTION_FLAGS_MSDU_LENGTH_ERR)); |
| msdu_len = MS(__le32_to_cpu(rx_desc->msdu_start.info0), |
| RX_MSDU_START_INFO0_MSDU_LENGTH); |
| msdu_chained = rx_desc->frag_info.ring2_more_count; |
| msdu_chaining = msdu_chained; |
| |
| if (msdu_len_invalid) |
| msdu_len = 0; |
| |
| skb_trim(msdu, 0); |
| skb_put(msdu, min(msdu_len, HTT_RX_MSDU_SIZE)); |
| msdu_len -= msdu->len; |
| |
| /* FIXME: Do chained buffers include htt_rx_desc or not? */ |
| while (msdu_chained--) { |
| struct sk_buff *next = ath10k_htt_rx_netbuf_pop(htt); |
| |
| dma_unmap_single(htt->ar->dev, |
| ATH10K_SKB_CB(next)->paddr, |
| next->len + skb_tailroom(next), |
| DMA_FROM_DEVICE); |
| |
| ath10k_dbg_dump(ATH10K_DBG_HTT_DUMP, NULL, |
| "htt rx chained: ", next->data, |
| next->len + skb_tailroom(next)); |
| |
| skb_trim(next, 0); |
| skb_put(next, min(msdu_len, HTT_RX_BUF_SIZE)); |
| msdu_len -= next->len; |
| |
| msdu->next = next; |
| msdu = next; |
| } |
| |
| last_msdu = __le32_to_cpu(rx_desc->msdu_end.info0) & |
| RX_MSDU_END_INFO0_LAST_MSDU; |
| |
| if (last_msdu) { |
| msdu->next = NULL; |
| break; |
| } else { |
| struct sk_buff *next = ath10k_htt_rx_netbuf_pop(htt); |
| msdu->next = next; |
| msdu = next; |
| } |
| } |
| *tail_msdu = msdu; |
| |
| if (*head_msdu == NULL) |
| msdu_chaining = -1; |
| |
| /* |
| * Don't refill the ring yet. |
| * |
| * First, the elements popped here are still in use - it is not |
| * safe to overwrite them until the matching call to |
| * mpdu_desc_list_next. Second, for efficiency it is preferable to |
| * refill the rx ring with 1 PPDU's worth of rx buffers (something |
| * like 32 x 3 buffers), rather than one MPDU's worth of rx buffers |
| * (something like 3 buffers). Consequently, we'll rely on the txrx |
| * SW to tell us when it is done pulling all the PPDU's rx buffers |
| * out of the rx ring, and then refill it just once. |
| */ |
| |
| return msdu_chaining; |
| } |
| |
| static void ath10k_htt_rx_replenish_task(unsigned long ptr) |
| { |
| struct ath10k_htt *htt = (struct ath10k_htt *)ptr; |
| ath10k_htt_rx_msdu_buff_replenish(htt); |
| } |
| |
| int ath10k_htt_rx_attach(struct ath10k_htt *htt) |
| { |
| dma_addr_t paddr; |
| void *vaddr; |
| struct timer_list *timer = &htt->rx_ring.refill_retry_timer; |
| |
| htt->rx_ring.size = ath10k_htt_rx_ring_size(htt); |
| if (!is_power_of_2(htt->rx_ring.size)) { |
| ath10k_warn("htt rx ring size is not power of 2\n"); |
| return -EINVAL; |
| } |
| |
| htt->rx_ring.size_mask = htt->rx_ring.size - 1; |
| |
| /* |
| * Set the initial value for the level to which the rx ring |
| * should be filled, based on the max throughput and the |
| * worst likely latency for the host to fill the rx ring |
| * with new buffers. In theory, this fill level can be |
| * dynamically adjusted from the initial value set here, to |
| * reflect the actual host latency rather than a |
| * conservative assumption about the host latency. |
| */ |
| htt->rx_ring.fill_level = ath10k_htt_rx_ring_fill_level(htt); |
| |
| htt->rx_ring.netbufs_ring = |
| kzalloc(htt->rx_ring.size * sizeof(struct sk_buff *), |
| GFP_KERNEL); |
| if (!htt->rx_ring.netbufs_ring) |
| goto err_netbuf; |
| |
| vaddr = dma_alloc_coherent(htt->ar->dev, |
| (htt->rx_ring.size * sizeof(htt->rx_ring.paddrs_ring)), |
| &paddr, GFP_DMA); |
| if (!vaddr) |
| goto err_dma_ring; |
| |
| htt->rx_ring.paddrs_ring = vaddr; |
| htt->rx_ring.base_paddr = paddr; |
| |
| vaddr = dma_alloc_coherent(htt->ar->dev, |
| sizeof(*htt->rx_ring.alloc_idx.vaddr), |
| &paddr, GFP_DMA); |
| if (!vaddr) |
| goto err_dma_idx; |
| |
| htt->rx_ring.alloc_idx.vaddr = vaddr; |
| htt->rx_ring.alloc_idx.paddr = paddr; |
| htt->rx_ring.sw_rd_idx.msdu_payld = 0; |
| *htt->rx_ring.alloc_idx.vaddr = 0; |
| |
| /* Initialize the Rx refill retry timer */ |
| setup_timer(timer, ath10k_htt_rx_ring_refill_retry, (unsigned long)htt); |
| |
| spin_lock_init(&htt->rx_ring.lock); |
| |
| htt->rx_ring.fill_cnt = 0; |
| if (__ath10k_htt_rx_ring_fill_n(htt, htt->rx_ring.fill_level)) |
| goto err_fill_ring; |
| |
| tasklet_init(&htt->rx_replenish_task, ath10k_htt_rx_replenish_task, |
| (unsigned long)htt); |
| |
| skb_queue_head_init(&htt->tx_compl_q); |
| skb_queue_head_init(&htt->rx_compl_q); |
| |
| tasklet_init(&htt->txrx_compl_task, ath10k_htt_txrx_compl_task, |
| (unsigned long)htt); |
| |
| ath10k_dbg(ATH10K_DBG_BOOT, "htt rx ring size %d fill_level %d\n", |
| htt->rx_ring.size, htt->rx_ring.fill_level); |
| return 0; |
| |
| err_fill_ring: |
| ath10k_htt_rx_ring_free(htt); |
| dma_free_coherent(htt->ar->dev, |
| sizeof(*htt->rx_ring.alloc_idx.vaddr), |
| htt->rx_ring.alloc_idx.vaddr, |
| htt->rx_ring.alloc_idx.paddr); |
| err_dma_idx: |
| dma_free_coherent(htt->ar->dev, |
| (htt->rx_ring.size * |
| sizeof(htt->rx_ring.paddrs_ring)), |
| htt->rx_ring.paddrs_ring, |
| htt->rx_ring.base_paddr); |
| err_dma_ring: |
| kfree(htt->rx_ring.netbufs_ring); |
| err_netbuf: |
| return -ENOMEM; |
| } |
| |
| static int ath10k_htt_rx_crypto_param_len(enum htt_rx_mpdu_encrypt_type type) |
| { |
| switch (type) { |
| case HTT_RX_MPDU_ENCRYPT_WEP40: |
| case HTT_RX_MPDU_ENCRYPT_WEP104: |
| return 4; |
| case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC: |
| case HTT_RX_MPDU_ENCRYPT_WEP128: /* not tested */ |
| case HTT_RX_MPDU_ENCRYPT_TKIP_WPA: |
| case HTT_RX_MPDU_ENCRYPT_WAPI: /* not tested */ |
| case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2: |
| return 8; |
| case HTT_RX_MPDU_ENCRYPT_NONE: |
| return 0; |
| } |
| |
| ath10k_warn("unknown encryption type %d\n", type); |
| return 0; |
| } |
| |
| static int ath10k_htt_rx_crypto_tail_len(enum htt_rx_mpdu_encrypt_type type) |
| { |
| switch (type) { |
| case HTT_RX_MPDU_ENCRYPT_NONE: |
| case HTT_RX_MPDU_ENCRYPT_WEP40: |
| case HTT_RX_MPDU_ENCRYPT_WEP104: |
| case HTT_RX_MPDU_ENCRYPT_WEP128: |
| case HTT_RX_MPDU_ENCRYPT_WAPI: |
| return 0; |
| case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC: |
| case HTT_RX_MPDU_ENCRYPT_TKIP_WPA: |
| return 4; |
| case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2: |
| return 8; |
| } |
| |
| ath10k_warn("unknown encryption type %d\n", type); |
| return 0; |
| } |
| |
| /* Applies for first msdu in chain, before altering it. */ |
| static struct ieee80211_hdr *ath10k_htt_rx_skb_get_hdr(struct sk_buff *skb) |
| { |
| struct htt_rx_desc *rxd; |
| enum rx_msdu_decap_format fmt; |
| |
| rxd = (void *)skb->data - sizeof(*rxd); |
| fmt = MS(__le32_to_cpu(rxd->msdu_start.info1), |
| RX_MSDU_START_INFO1_DECAP_FORMAT); |
| |
| if (fmt == RX_MSDU_DECAP_RAW) |
| return (void *)skb->data; |
| else |
| return (void *)skb->data - RX_HTT_HDR_STATUS_LEN; |
| } |
| |
| /* This function only applies for first msdu in an msdu chain */ |
| static bool ath10k_htt_rx_hdr_is_amsdu(struct ieee80211_hdr *hdr) |
| { |
| if (ieee80211_is_data_qos(hdr->frame_control)) { |
| u8 *qc = ieee80211_get_qos_ctl(hdr); |
| if (qc[0] & 0x80) |
| return true; |
| } |
| return false; |
| } |
| |
| struct rfc1042_hdr { |
| u8 llc_dsap; |
| u8 llc_ssap; |
| u8 llc_ctrl; |
| u8 snap_oui[3]; |
| __be16 snap_type; |
| } __packed; |
| |
| struct amsdu_subframe_hdr { |
| u8 dst[ETH_ALEN]; |
| u8 src[ETH_ALEN]; |
| __be16 len; |
| } __packed; |
| |
| static const u8 rx_legacy_rate_idx[] = { |
| 3, /* 0x00 - 11Mbps */ |
| 2, /* 0x01 - 5.5Mbps */ |
| 1, /* 0x02 - 2Mbps */ |
| 0, /* 0x03 - 1Mbps */ |
| 3, /* 0x04 - 11Mbps */ |
| 2, /* 0x05 - 5.5Mbps */ |
| 1, /* 0x06 - 2Mbps */ |
| 0, /* 0x07 - 1Mbps */ |
| 10, /* 0x08 - 48Mbps */ |
| 8, /* 0x09 - 24Mbps */ |
| 6, /* 0x0A - 12Mbps */ |
| 4, /* 0x0B - 6Mbps */ |
| 11, /* 0x0C - 54Mbps */ |
| 9, /* 0x0D - 36Mbps */ |
| 7, /* 0x0E - 18Mbps */ |
| 5, /* 0x0F - 9Mbps */ |
| }; |
| |
| static void ath10k_htt_rx_h_rates(struct ath10k *ar, |
| enum ieee80211_band band, |
| u8 info0, u32 info1, u32 info2, |
| struct ieee80211_rx_status *status) |
| { |
| u8 cck, rate, rate_idx, bw, sgi, mcs, nss; |
| u8 preamble = 0; |
| |
| /* Check if valid fields */ |
| if (!(info0 & HTT_RX_INDICATION_INFO0_START_VALID)) |
| return; |
| |
| preamble = MS(info1, HTT_RX_INDICATION_INFO1_PREAMBLE_TYPE); |
| |
| switch (preamble) { |
| case HTT_RX_LEGACY: |
| cck = info0 & HTT_RX_INDICATION_INFO0_LEGACY_RATE_CCK; |
| rate = MS(info0, HTT_RX_INDICATION_INFO0_LEGACY_RATE); |
| rate_idx = 0; |
| |
| if (rate < 0x08 || rate > 0x0F) |
| break; |
| |
| switch (band) { |
| case IEEE80211_BAND_2GHZ: |
| if (cck) |
| rate &= ~BIT(3); |
| rate_idx = rx_legacy_rate_idx[rate]; |
| break; |
| case IEEE80211_BAND_5GHZ: |
| rate_idx = rx_legacy_rate_idx[rate]; |
| /* We are using same rate table registering |
| HW - ath10k_rates[]. In case of 5GHz skip |
| CCK rates, so -4 here */ |
| rate_idx -= 4; |
| break; |
| default: |
| break; |
| } |
| |
| status->rate_idx = rate_idx; |
| break; |
| case HTT_RX_HT: |
| case HTT_RX_HT_WITH_TXBF: |
| /* HT-SIG - Table 20-11 in info1 and info2 */ |
| mcs = info1 & 0x1F; |
| nss = mcs >> 3; |
| bw = (info1 >> 7) & 1; |
| sgi = (info2 >> 7) & 1; |
| |
| status->rate_idx = mcs; |
| status->flag |= RX_FLAG_HT; |
| if (sgi) |
| status->flag |= RX_FLAG_SHORT_GI; |
| if (bw) |
| status->flag |= RX_FLAG_40MHZ; |
| break; |
| case HTT_RX_VHT: |
| case HTT_RX_VHT_WITH_TXBF: |
| /* VHT-SIG-A1 in info 1, VHT-SIG-A2 in info2 |
| TODO check this */ |
| mcs = (info2 >> 4) & 0x0F; |
| nss = ((info1 >> 10) & 0x07) + 1; |
| bw = info1 & 3; |
| sgi = info2 & 1; |
| |
| status->rate_idx = mcs; |
| status->vht_nss = nss; |
| |
| if (sgi) |
| status->flag |= RX_FLAG_SHORT_GI; |
| |
| switch (bw) { |
| /* 20MHZ */ |
| case 0: |
| break; |
| /* 40MHZ */ |
| case 1: |
| status->flag |= RX_FLAG_40MHZ; |
| break; |
| /* 80MHZ */ |
| case 2: |
| status->vht_flag |= RX_VHT_FLAG_80MHZ; |
| } |
| |
| status->flag |= RX_FLAG_VHT; |
| break; |
| default: |
| break; |
| } |
| } |
| |
| static void ath10k_htt_rx_h_protected(struct ath10k_htt *htt, |
| struct ieee80211_rx_status *rx_status, |
| struct sk_buff *skb, |
| enum htt_rx_mpdu_encrypt_type enctype) |
| { |
| struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; |
| |
| |
| if (enctype == HTT_RX_MPDU_ENCRYPT_NONE) { |
| rx_status->flag &= ~(RX_FLAG_DECRYPTED | |
| RX_FLAG_IV_STRIPPED | |
| RX_FLAG_MMIC_STRIPPED); |
| return; |
| } |
| |
| rx_status->flag |= RX_FLAG_DECRYPTED | |
| RX_FLAG_IV_STRIPPED | |
| RX_FLAG_MMIC_STRIPPED; |
| hdr->frame_control = __cpu_to_le16(__le16_to_cpu(hdr->frame_control) & |
| ~IEEE80211_FCTL_PROTECTED); |
| } |
| |
| static bool ath10k_htt_rx_h_channel(struct ath10k *ar, |
| struct ieee80211_rx_status *status) |
| { |
| struct ieee80211_channel *ch; |
| |
| spin_lock_bh(&ar->data_lock); |
| ch = ar->scan_channel; |
| if (!ch) |
| ch = ar->rx_channel; |
| spin_unlock_bh(&ar->data_lock); |
| |
| if (!ch) |
| return false; |
| |
| status->band = ch->band; |
| status->freq = ch->center_freq; |
| |
| return true; |
| } |
| |
| static void ath10k_process_rx(struct ath10k *ar, |
| struct ieee80211_rx_status *rx_status, |
| struct sk_buff *skb) |
| { |
| struct ieee80211_rx_status *status; |
| |
| status = IEEE80211_SKB_RXCB(skb); |
| *status = *rx_status; |
| |
| ath10k_dbg(ATH10K_DBG_DATA, |
| "rx skb %p len %u %s%s%s%s%s %srate_idx %u vht_nss %u freq %u band %u flag 0x%x fcs-err %imic-err %i\n", |
| skb, |
| skb->len, |
| status->flag == 0 ? "legacy" : "", |
| status->flag & RX_FLAG_HT ? "ht" : "", |
| status->flag & RX_FLAG_VHT ? "vht" : "", |
| status->flag & RX_FLAG_40MHZ ? "40" : "", |
| status->vht_flag & RX_VHT_FLAG_80MHZ ? "80" : "", |
| status->flag & RX_FLAG_SHORT_GI ? "sgi " : "", |
| status->rate_idx, |
| status->vht_nss, |
| status->freq, |
| status->band, status->flag, |
| !!(status->flag & RX_FLAG_FAILED_FCS_CRC), |
| !!(status->flag & RX_FLAG_MMIC_ERROR)); |
| ath10k_dbg_dump(ATH10K_DBG_HTT_DUMP, NULL, "rx skb: ", |
| skb->data, skb->len); |
| |
| ieee80211_rx(ar->hw, skb); |
| } |
| |
| static int ath10k_htt_rx_nwifi_hdrlen(struct ieee80211_hdr *hdr) |
| { |
| /* nwifi header is padded to 4 bytes. this fixes 4addr rx */ |
| return round_up(ieee80211_hdrlen(hdr->frame_control), 4); |
| } |
| |
| static void ath10k_htt_rx_amsdu(struct ath10k_htt *htt, |
| struct ieee80211_rx_status *rx_status, |
| struct sk_buff *skb_in) |
| { |
| struct htt_rx_desc *rxd; |
| struct sk_buff *skb = skb_in; |
| struct sk_buff *first; |
| enum rx_msdu_decap_format fmt; |
| enum htt_rx_mpdu_encrypt_type enctype; |
| struct ieee80211_hdr *hdr; |
| u8 hdr_buf[64], addr[ETH_ALEN], *qos; |
| unsigned int hdr_len; |
| |
| rxd = (void *)skb->data - sizeof(*rxd); |
| enctype = MS(__le32_to_cpu(rxd->mpdu_start.info0), |
| RX_MPDU_START_INFO0_ENCRYPT_TYPE); |
| |
| hdr = (struct ieee80211_hdr *)rxd->rx_hdr_status; |
| hdr_len = ieee80211_hdrlen(hdr->frame_control); |
| memcpy(hdr_buf, hdr, hdr_len); |
| hdr = (struct ieee80211_hdr *)hdr_buf; |
| |
| first = skb; |
| while (skb) { |
| void *decap_hdr; |
| int len; |
| |
| rxd = (void *)skb->data - sizeof(*rxd); |
| fmt = MS(__le32_to_cpu(rxd->msdu_start.info1), |
| RX_MSDU_START_INFO1_DECAP_FORMAT); |
| decap_hdr = (void *)rxd->rx_hdr_status; |
| |
| skb->ip_summed = ath10k_htt_rx_get_csum_state(skb); |
| |
| /* First frame in an A-MSDU chain has more decapped data. */ |
| if (skb == first) { |
| len = round_up(ieee80211_hdrlen(hdr->frame_control), 4); |
| len += round_up(ath10k_htt_rx_crypto_param_len(enctype), |
| 4); |
| decap_hdr += len; |
| } |
| |
| switch (fmt) { |
| case RX_MSDU_DECAP_RAW: |
| /* remove trailing FCS */ |
| skb_trim(skb, skb->len - FCS_LEN); |
| break; |
| case RX_MSDU_DECAP_NATIVE_WIFI: |
| /* pull decapped header and copy DA */ |
| hdr = (struct ieee80211_hdr *)skb->data; |
| hdr_len = ath10k_htt_rx_nwifi_hdrlen(hdr); |
| memcpy(addr, ieee80211_get_DA(hdr), ETH_ALEN); |
| skb_pull(skb, hdr_len); |
| |
| /* push original 802.11 header */ |
| hdr = (struct ieee80211_hdr *)hdr_buf; |
| hdr_len = ieee80211_hdrlen(hdr->frame_control); |
| memcpy(skb_push(skb, hdr_len), hdr, hdr_len); |
| |
| /* original A-MSDU header has the bit set but we're |
| * not including A-MSDU subframe header */ |
| hdr = (struct ieee80211_hdr *)skb->data; |
| qos = ieee80211_get_qos_ctl(hdr); |
| qos[0] &= ~IEEE80211_QOS_CTL_A_MSDU_PRESENT; |
| |
| /* original 802.11 header has a different DA */ |
| memcpy(ieee80211_get_DA(hdr), addr, ETH_ALEN); |
| break; |
| case RX_MSDU_DECAP_ETHERNET2_DIX: |
| /* strip ethernet header and insert decapped 802.11 |
| * header, amsdu subframe header and rfc1042 header */ |
| |
| len = 0; |
| len += sizeof(struct rfc1042_hdr); |
| len += sizeof(struct amsdu_subframe_hdr); |
| |
| skb_pull(skb, sizeof(struct ethhdr)); |
| memcpy(skb_push(skb, len), decap_hdr, len); |
| memcpy(skb_push(skb, hdr_len), hdr, hdr_len); |
| break; |
| case RX_MSDU_DECAP_8023_SNAP_LLC: |
| /* insert decapped 802.11 header making a singly |
| * A-MSDU */ |
| memcpy(skb_push(skb, hdr_len), hdr, hdr_len); |
| break; |
| } |
| |
| skb_in = skb; |
| ath10k_htt_rx_h_protected(htt, rx_status, skb_in, enctype); |
| skb = skb->next; |
| skb_in->next = NULL; |
| |
| if (skb) |
| rx_status->flag |= RX_FLAG_AMSDU_MORE; |
| else |
| rx_status->flag &= ~RX_FLAG_AMSDU_MORE; |
| |
| ath10k_process_rx(htt->ar, rx_status, skb_in); |
| } |
| |
| /* FIXME: It might be nice to re-assemble the A-MSDU when there's a |
| * monitor interface active for sniffing purposes. */ |
| } |
| |
| static void ath10k_htt_rx_msdu(struct ath10k_htt *htt, |
| struct ieee80211_rx_status *rx_status, |
| struct sk_buff *skb) |
| { |
| struct htt_rx_desc *rxd; |
| struct ieee80211_hdr *hdr; |
| enum rx_msdu_decap_format fmt; |
| enum htt_rx_mpdu_encrypt_type enctype; |
| int hdr_len; |
| void *rfc1042; |
| |
| /* This shouldn't happen. If it does than it may be a FW bug. */ |
| if (skb->next) { |
| ath10k_warn("htt rx received chained non A-MSDU frame\n"); |
| ath10k_htt_rx_free_msdu_chain(skb->next); |
| skb->next = NULL; |
| } |
| |
| rxd = (void *)skb->data - sizeof(*rxd); |
| fmt = MS(__le32_to_cpu(rxd->msdu_start.info1), |
| RX_MSDU_START_INFO1_DECAP_FORMAT); |
| enctype = MS(__le32_to_cpu(rxd->mpdu_start.info0), |
| RX_MPDU_START_INFO0_ENCRYPT_TYPE); |
| hdr = (struct ieee80211_hdr *)rxd->rx_hdr_status; |
| hdr_len = ieee80211_hdrlen(hdr->frame_control); |
| |
| skb->ip_summed = ath10k_htt_rx_get_csum_state(skb); |
| |
| switch (fmt) { |
| case RX_MSDU_DECAP_RAW: |
| /* remove trailing FCS */ |
| skb_trim(skb, skb->len - FCS_LEN); |
| break; |
| case RX_MSDU_DECAP_NATIVE_WIFI: |
| /* Pull decapped header */ |
| hdr = (struct ieee80211_hdr *)skb->data; |
| hdr_len = ath10k_htt_rx_nwifi_hdrlen(hdr); |
| skb_pull(skb, hdr_len); |
| |
| /* Push original header */ |
| hdr = (struct ieee80211_hdr *)rxd->rx_hdr_status; |
| hdr_len = ieee80211_hdrlen(hdr->frame_control); |
| memcpy(skb_push(skb, hdr_len), hdr, hdr_len); |
| break; |
| case RX_MSDU_DECAP_ETHERNET2_DIX: |
| /* strip ethernet header and insert decapped 802.11 header and |
| * rfc1042 header */ |
| |
| rfc1042 = hdr; |
| rfc1042 += roundup(hdr_len, 4); |
| rfc1042 += roundup(ath10k_htt_rx_crypto_param_len(enctype), 4); |
| |
| skb_pull(skb, sizeof(struct ethhdr)); |
| memcpy(skb_push(skb, sizeof(struct rfc1042_hdr)), |
| rfc1042, sizeof(struct rfc1042_hdr)); |
| memcpy(skb_push(skb, hdr_len), hdr, hdr_len); |
| break; |
| case RX_MSDU_DECAP_8023_SNAP_LLC: |
| /* remove A-MSDU subframe header and insert |
| * decapped 802.11 header. rfc1042 header is already there */ |
| |
| skb_pull(skb, sizeof(struct amsdu_subframe_hdr)); |
| memcpy(skb_push(skb, hdr_len), hdr, hdr_len); |
| break; |
| } |
| |
| ath10k_htt_rx_h_protected(htt, rx_status, skb, enctype); |
| |
| ath10k_process_rx(htt->ar, rx_status, skb); |
| } |
| |
| static int ath10k_htt_rx_get_csum_state(struct sk_buff *skb) |
| { |
| struct htt_rx_desc *rxd; |
| u32 flags, info; |
| bool is_ip4, is_ip6; |
| bool is_tcp, is_udp; |
| bool ip_csum_ok, tcpudp_csum_ok; |
| |
| rxd = (void *)skb->data - sizeof(*rxd); |
| flags = __le32_to_cpu(rxd->attention.flags); |
| info = __le32_to_cpu(rxd->msdu_start.info1); |
| |
| is_ip4 = !!(info & RX_MSDU_START_INFO1_IPV4_PROTO); |
| is_ip6 = !!(info & RX_MSDU_START_INFO1_IPV6_PROTO); |
| is_tcp = !!(info & RX_MSDU_START_INFO1_TCP_PROTO); |
| is_udp = !!(info & RX_MSDU_START_INFO1_UDP_PROTO); |
| ip_csum_ok = !(flags & RX_ATTENTION_FLAGS_IP_CHKSUM_FAIL); |
| tcpudp_csum_ok = !(flags & RX_ATTENTION_FLAGS_TCP_UDP_CHKSUM_FAIL); |
| |
| if (!is_ip4 && !is_ip6) |
| return CHECKSUM_NONE; |
| if (!is_tcp && !is_udp) |
| return CHECKSUM_NONE; |
| if (!ip_csum_ok) |
| return CHECKSUM_NONE; |
| if (!tcpudp_csum_ok) |
| return CHECKSUM_NONE; |
| |
| return CHECKSUM_UNNECESSARY; |
| } |
| |
| static int ath10k_unchain_msdu(struct sk_buff *msdu_head) |
| { |
| struct sk_buff *next = msdu_head->next; |
| struct sk_buff *to_free = next; |
| int space; |
| int total_len = 0; |
| |
| /* TODO: Might could optimize this by using |
| * skb_try_coalesce or similar method to |
| * decrease copying, or maybe get mac80211 to |
| * provide a way to just receive a list of |
| * skb? |
| */ |
| |
| msdu_head->next = NULL; |
| |
| /* Allocate total length all at once. */ |
| while (next) { |
| total_len += next->len; |
| next = next->next; |
| } |
| |
| space = total_len - skb_tailroom(msdu_head); |
| if ((space > 0) && |
| (pskb_expand_head(msdu_head, 0, space, GFP_ATOMIC) < 0)) { |
| /* TODO: bump some rx-oom error stat */ |
| /* put it back together so we can free the |
| * whole list at once. |
| */ |
| msdu_head->next = to_free; |
| return -1; |
| } |
| |
| /* Walk list again, copying contents into |
| * msdu_head |
| */ |
| next = to_free; |
| while (next) { |
| skb_copy_from_linear_data(next, skb_put(msdu_head, next->len), |
| next->len); |
| next = next->next; |
| } |
| |
| /* If here, we have consolidated skb. Free the |
| * fragments and pass the main skb on up the |
| * stack. |
| */ |
| ath10k_htt_rx_free_msdu_chain(to_free); |
| return 0; |
| } |
| |
| static bool ath10k_htt_rx_amsdu_allowed(struct ath10k_htt *htt, |
| struct sk_buff *head, |
| enum htt_rx_mpdu_status status, |
| bool channel_set, |
| u32 attention) |
| { |
| if (head->len == 0) { |
| ath10k_dbg(ATH10K_DBG_HTT, |
| "htt rx dropping due to zero-len\n"); |
| return false; |
| } |
| |
| if (attention & RX_ATTENTION_FLAGS_DECRYPT_ERR) { |
| ath10k_dbg(ATH10K_DBG_HTT, |
| "htt rx dropping due to decrypt-err\n"); |
| return false; |
| } |
| |
| if (!channel_set) { |
| ath10k_warn("no channel configured; ignoring frame!\n"); |
| return false; |
| } |
| |
| /* Skip mgmt frames while we handle this in WMI */ |
| if (status == HTT_RX_IND_MPDU_STATUS_MGMT_CTRL || |
| attention & RX_ATTENTION_FLAGS_MGMT_TYPE) { |
| ath10k_dbg(ATH10K_DBG_HTT, "htt rx mgmt ctrl\n"); |
| return false; |
| } |
| |
| if (status != HTT_RX_IND_MPDU_STATUS_OK && |
| status != HTT_RX_IND_MPDU_STATUS_TKIP_MIC_ERR && |
| status != HTT_RX_IND_MPDU_STATUS_ERR_INV_PEER && |
| !htt->ar->monitor_started) { |
| ath10k_dbg(ATH10K_DBG_HTT, |
| "htt rx ignoring frame w/ status %d\n", |
| status); |
| return false; |
| } |
| |
| if (test_bit(ATH10K_CAC_RUNNING, &htt->ar->dev_flags)) { |
| ath10k_dbg(ATH10K_DBG_HTT, |
| "htt rx CAC running\n"); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static void ath10k_htt_rx_handler(struct ath10k_htt *htt, |
| struct htt_rx_indication *rx) |
| { |
| struct ieee80211_rx_status *rx_status = &htt->rx_status; |
| struct htt_rx_indication_mpdu_range *mpdu_ranges; |
| struct htt_rx_desc *rxd; |
| enum htt_rx_mpdu_status status; |
| struct ieee80211_hdr *hdr; |
| int num_mpdu_ranges; |
| u32 attention; |
| int fw_desc_len; |
| u8 *fw_desc; |
| bool channel_set; |
| int i, j; |
| int ret; |
| |
| lockdep_assert_held(&htt->rx_ring.lock); |
| |
| fw_desc_len = __le16_to_cpu(rx->prefix.fw_rx_desc_bytes); |
| fw_desc = (u8 *)&rx->fw_desc; |
| |
| num_mpdu_ranges = MS(__le32_to_cpu(rx->hdr.info1), |
| HTT_RX_INDICATION_INFO1_NUM_MPDU_RANGES); |
| mpdu_ranges = htt_rx_ind_get_mpdu_ranges(rx); |
| |
| /* Fill this once, while this is per-ppdu */ |
| if (rx->ppdu.info0 & HTT_RX_INDICATION_INFO0_START_VALID) { |
| memset(rx_status, 0, sizeof(*rx_status)); |
| rx_status->signal = ATH10K_DEFAULT_NOISE_FLOOR + |
| rx->ppdu.combined_rssi; |
| } |
| |
| if (rx->ppdu.info0 & HTT_RX_INDICATION_INFO0_END_VALID) { |
| /* TSF available only in 32-bit */ |
| rx_status->mactime = __le32_to_cpu(rx->ppdu.tsf) & 0xffffffff; |
| rx_status->flag |= RX_FLAG_MACTIME_END; |
| } |
| |
| channel_set = ath10k_htt_rx_h_channel(htt->ar, rx_status); |
| |
| if (channel_set) { |
| ath10k_htt_rx_h_rates(htt->ar, rx_status->band, |
| rx->ppdu.info0, |
| __le32_to_cpu(rx->ppdu.info1), |
| __le32_to_cpu(rx->ppdu.info2), |
| rx_status); |
| } |
| |
| ath10k_dbg_dump(ATH10K_DBG_HTT_DUMP, NULL, "htt rx ind: ", |
| rx, sizeof(*rx) + |
| (sizeof(struct htt_rx_indication_mpdu_range) * |
| num_mpdu_ranges)); |
| |
| for (i = 0; i < num_mpdu_ranges; i++) { |
| status = mpdu_ranges[i].mpdu_range_status; |
| |
| for (j = 0; j < mpdu_ranges[i].mpdu_count; j++) { |
| struct sk_buff *msdu_head, *msdu_tail; |
| |
| msdu_head = NULL; |
| msdu_tail = NULL; |
| ret = ath10k_htt_rx_amsdu_pop(htt, |
| &fw_desc, |
| &fw_desc_len, |
| &msdu_head, |
| &msdu_tail); |
| |
| if (ret < 0) { |
| ath10k_warn("failed to pop amsdu from htt rx ring %d\n", |
| ret); |
| ath10k_htt_rx_free_msdu_chain(msdu_head); |
| continue; |
| } |
| |
| rxd = container_of((void *)msdu_head->data, |
| struct htt_rx_desc, |
| msdu_payload); |
| attention = __le32_to_cpu(rxd->attention.flags); |
| |
| if (!ath10k_htt_rx_amsdu_allowed(htt, msdu_head, |
| status, |
| channel_set, |
| attention)) { |
| ath10k_htt_rx_free_msdu_chain(msdu_head); |
| continue; |
| } |
| |
| if (ret > 0 && |
| ath10k_unchain_msdu(msdu_head) < 0) { |
| ath10k_htt_rx_free_msdu_chain(msdu_head); |
| continue; |
| } |
| |
| if (attention & RX_ATTENTION_FLAGS_FCS_ERR) |
| rx_status->flag |= RX_FLAG_FAILED_FCS_CRC; |
| else |
| rx_status->flag &= ~RX_FLAG_FAILED_FCS_CRC; |
| |
| if (attention & RX_ATTENTION_FLAGS_TKIP_MIC_ERR) |
| rx_status->flag |= RX_FLAG_MMIC_ERROR; |
| else |
| rx_status->flag &= ~RX_FLAG_MMIC_ERROR; |
| |
| hdr = ath10k_htt_rx_skb_get_hdr(msdu_head); |
| |
| if (ath10k_htt_rx_hdr_is_amsdu(hdr)) |
| ath10k_htt_rx_amsdu(htt, rx_status, msdu_head); |
| else |
| ath10k_htt_rx_msdu(htt, rx_status, msdu_head); |
| } |
| } |
| |
| tasklet_schedule(&htt->rx_replenish_task); |
| } |
| |
| static void ath10k_htt_rx_frag_handler(struct ath10k_htt *htt, |
| struct htt_rx_fragment_indication *frag) |
| { |
| struct sk_buff *msdu_head, *msdu_tail; |
| enum htt_rx_mpdu_encrypt_type enctype; |
| struct htt_rx_desc *rxd; |
| enum rx_msdu_decap_format fmt; |
| struct ieee80211_rx_status *rx_status = &htt->rx_status; |
| struct ieee80211_hdr *hdr; |
| int ret; |
| bool tkip_mic_err; |
| bool decrypt_err; |
| u8 *fw_desc; |
| int fw_desc_len, hdrlen, paramlen; |
| int trim; |
| |
| fw_desc_len = __le16_to_cpu(frag->fw_rx_desc_bytes); |
| fw_desc = (u8 *)frag->fw_msdu_rx_desc; |
| |
| msdu_head = NULL; |
| msdu_tail = NULL; |
| |
| spin_lock_bh(&htt->rx_ring.lock); |
| ret = ath10k_htt_rx_amsdu_pop(htt, &fw_desc, &fw_desc_len, |
| &msdu_head, &msdu_tail); |
| spin_unlock_bh(&htt->rx_ring.lock); |
| |
| ath10k_dbg(ATH10K_DBG_HTT_DUMP, "htt rx frag ahead\n"); |
| |
| if (ret) { |
| ath10k_warn("failed to pop amsdu from httr rx ring for fragmented rx %d\n", |
| ret); |
| ath10k_htt_rx_free_msdu_chain(msdu_head); |
| return; |
| } |
| |
| /* FIXME: implement signal strength */ |
| |
| hdr = (struct ieee80211_hdr *)msdu_head->data; |
| rxd = (void *)msdu_head->data - sizeof(*rxd); |
| tkip_mic_err = !!(__le32_to_cpu(rxd->attention.flags) & |
| RX_ATTENTION_FLAGS_TKIP_MIC_ERR); |
| decrypt_err = !!(__le32_to_cpu(rxd->attention.flags) & |
| RX_ATTENTION_FLAGS_DECRYPT_ERR); |
| fmt = MS(__le32_to_cpu(rxd->msdu_start.info1), |
| RX_MSDU_START_INFO1_DECAP_FORMAT); |
| |
| if (fmt != RX_MSDU_DECAP_RAW) { |
| ath10k_warn("we dont support non-raw fragmented rx yet\n"); |
| dev_kfree_skb_any(msdu_head); |
| goto end; |
| } |
| |
| enctype = MS(__le32_to_cpu(rxd->mpdu_start.info0), |
| RX_MPDU_START_INFO0_ENCRYPT_TYPE); |
| ath10k_htt_rx_h_protected(htt, rx_status, msdu_head, enctype); |
| msdu_head->ip_summed = ath10k_htt_rx_get_csum_state(msdu_head); |
| |
| if (tkip_mic_err) |
| ath10k_warn("tkip mic error\n"); |
| |
| if (decrypt_err) { |
| ath10k_warn("decryption err in fragmented rx\n"); |
| dev_kfree_skb_any(msdu_head); |
| goto end; |
| } |
| |
| if (enctype != HTT_RX_MPDU_ENCRYPT_NONE) { |
| hdrlen = ieee80211_hdrlen(hdr->frame_control); |
| paramlen = ath10k_htt_rx_crypto_param_len(enctype); |
| |
| /* It is more efficient to move the header than the payload */ |
| memmove((void *)msdu_head->data + paramlen, |
| (void *)msdu_head->data, |
| hdrlen); |
| skb_pull(msdu_head, paramlen); |
| hdr = (struct ieee80211_hdr *)msdu_head->data; |
| } |
| |
| /* remove trailing FCS */ |
| trim = 4; |
| |
| /* remove crypto trailer */ |
| trim += ath10k_htt_rx_crypto_tail_len(enctype); |
| |
| /* last fragment of TKIP frags has MIC */ |
| if (!ieee80211_has_morefrags(hdr->frame_control) && |
| enctype == HTT_RX_MPDU_ENCRYPT_TKIP_WPA) |
| trim += 8; |
| |
| if (trim > msdu_head->len) { |
| ath10k_warn("htt rx fragment: trailer longer than the frame itself? drop\n"); |
| dev_kfree_skb_any(msdu_head); |
| goto end; |
| } |
| |
| skb_trim(msdu_head, msdu_head->len - trim); |
| |
| ath10k_dbg_dump(ATH10K_DBG_HTT_DUMP, NULL, "htt rx frag mpdu: ", |
| msdu_head->data, msdu_head->len); |
| ath10k_process_rx(htt->ar, rx_status, msdu_head); |
| |
| end: |
| if (fw_desc_len > 0) { |
| ath10k_dbg(ATH10K_DBG_HTT, |
| "expecting more fragmented rx in one indication %d\n", |
| fw_desc_len); |
| } |
| } |
| |
| static void ath10k_htt_rx_frm_tx_compl(struct ath10k *ar, |
| struct sk_buff *skb) |
| { |
| struct ath10k_htt *htt = &ar->htt; |
| struct htt_resp *resp = (struct htt_resp *)skb->data; |
| struct htt_tx_done tx_done = {}; |
| int status = MS(resp->data_tx_completion.flags, HTT_DATA_TX_STATUS); |
| __le16 msdu_id; |
| int i; |
| |
| lockdep_assert_held(&htt->tx_lock); |
| |
| switch (status) { |
| case HTT_DATA_TX_STATUS_NO_ACK: |
| tx_done.no_ack = true; |
| break; |
| case HTT_DATA_TX_STATUS_OK: |
| break; |
| case HTT_DATA_TX_STATUS_DISCARD: |
| case HTT_DATA_TX_STATUS_POSTPONE: |
| case HTT_DATA_TX_STATUS_DOWNLOAD_FAIL: |
| tx_done.discard = true; |
| break; |
| default: |
| ath10k_warn("unhandled tx completion status %d\n", status); |
| tx_done.discard = true; |
| break; |
| } |
| |
| ath10k_dbg(ATH10K_DBG_HTT, "htt tx completion num_msdus %d\n", |
| resp->data_tx_completion.num_msdus); |
| |
| for (i = 0; i < resp->data_tx_completion.num_msdus; i++) { |
| msdu_id = resp->data_tx_completion.msdus[i]; |
| tx_done.msdu_id = __le16_to_cpu(msdu_id); |
| ath10k_txrx_tx_unref(htt, &tx_done); |
| } |
| } |
| |
| void ath10k_htt_t2h_msg_handler(struct ath10k *ar, struct sk_buff *skb) |
| { |
| struct ath10k_htt *htt = &ar->htt; |
| struct htt_resp *resp = (struct htt_resp *)skb->data; |
| |
| /* confirm alignment */ |
| if (!IS_ALIGNED((unsigned long)skb->data, 4)) |
| ath10k_warn("unaligned htt message, expect trouble\n"); |
| |
| ath10k_dbg(ATH10K_DBG_HTT, "htt rx, msg_type: 0x%0X\n", |
| resp->hdr.msg_type); |
| switch (resp->hdr.msg_type) { |
| case HTT_T2H_MSG_TYPE_VERSION_CONF: { |
| htt->target_version_major = resp->ver_resp.major; |
| htt->target_version_minor = resp->ver_resp.minor; |
| complete(&htt->target_version_received); |
| break; |
| } |
| case HTT_T2H_MSG_TYPE_RX_IND: |
| spin_lock_bh(&htt->rx_ring.lock); |
| __skb_queue_tail(&htt->rx_compl_q, skb); |
| spin_unlock_bh(&htt->rx_ring.lock); |
| tasklet_schedule(&htt->txrx_compl_task); |
| return; |
| case HTT_T2H_MSG_TYPE_PEER_MAP: { |
| struct htt_peer_map_event ev = { |
| .vdev_id = resp->peer_map.vdev_id, |
| .peer_id = __le16_to_cpu(resp->peer_map.peer_id), |
| }; |
| memcpy(ev.addr, resp->peer_map.addr, sizeof(ev.addr)); |
| ath10k_peer_map_event(htt, &ev); |
| break; |
| } |
| case HTT_T2H_MSG_TYPE_PEER_UNMAP: { |
| struct htt_peer_unmap_event ev = { |
| .peer_id = __le16_to_cpu(resp->peer_unmap.peer_id), |
| }; |
| ath10k_peer_unmap_event(htt, &ev); |
| break; |
| } |
| case HTT_T2H_MSG_TYPE_MGMT_TX_COMPLETION: { |
| struct htt_tx_done tx_done = {}; |
| int status = __le32_to_cpu(resp->mgmt_tx_completion.status); |
| |
| tx_done.msdu_id = |
| __le32_to_cpu(resp->mgmt_tx_completion.desc_id); |
| |
| switch (status) { |
| case HTT_MGMT_TX_STATUS_OK: |
| break; |
| case HTT_MGMT_TX_STATUS_RETRY: |
| tx_done.no_ack = true; |
| break; |
| case HTT_MGMT_TX_STATUS_DROP: |
| tx_done.discard = true; |
| break; |
| } |
| |
| spin_lock_bh(&htt->tx_lock); |
| ath10k_txrx_tx_unref(htt, &tx_done); |
| spin_unlock_bh(&htt->tx_lock); |
| break; |
| } |
| case HTT_T2H_MSG_TYPE_TX_COMPL_IND: |
| spin_lock_bh(&htt->tx_lock); |
| __skb_queue_tail(&htt->tx_compl_q, skb); |
| spin_unlock_bh(&htt->tx_lock); |
| tasklet_schedule(&htt->txrx_compl_task); |
| return; |
| case HTT_T2H_MSG_TYPE_SEC_IND: { |
| struct ath10k *ar = htt->ar; |
| struct htt_security_indication *ev = &resp->security_indication; |
| |
| ath10k_dbg(ATH10K_DBG_HTT, |
| "sec ind peer_id %d unicast %d type %d\n", |
| __le16_to_cpu(ev->peer_id), |
| !!(ev->flags & HTT_SECURITY_IS_UNICAST), |
| MS(ev->flags, HTT_SECURITY_TYPE)); |
| complete(&ar->install_key_done); |
| break; |
| } |
| case HTT_T2H_MSG_TYPE_RX_FRAG_IND: { |
| ath10k_dbg_dump(ATH10K_DBG_HTT_DUMP, NULL, "htt event: ", |
| skb->data, skb->len); |
| ath10k_htt_rx_frag_handler(htt, &resp->rx_frag_ind); |
| break; |
| } |
| case HTT_T2H_MSG_TYPE_TEST: |
| /* FIX THIS */ |
| break; |
| case HTT_T2H_MSG_TYPE_STATS_CONF: |
| trace_ath10k_htt_stats(skb->data, skb->len); |
| break; |
| case HTT_T2H_MSG_TYPE_TX_INSPECT_IND: |
| case HTT_T2H_MSG_TYPE_RX_ADDBA: |
| case HTT_T2H_MSG_TYPE_RX_DELBA: |
| case HTT_T2H_MSG_TYPE_RX_FLUSH: |
| default: |
| ath10k_dbg(ATH10K_DBG_HTT, "htt event (%d) not handled\n", |
| resp->hdr.msg_type); |
| ath10k_dbg_dump(ATH10K_DBG_HTT_DUMP, NULL, "htt event: ", |
| skb->data, skb->len); |
| break; |
| }; |
| |
| /* Free the indication buffer */ |
| dev_kfree_skb_any(skb); |
| } |
| |
| static void ath10k_htt_txrx_compl_task(unsigned long ptr) |
| { |
| struct ath10k_htt *htt = (struct ath10k_htt *)ptr; |
| struct htt_resp *resp; |
| struct sk_buff *skb; |
| |
| spin_lock_bh(&htt->tx_lock); |
| while ((skb = __skb_dequeue(&htt->tx_compl_q))) { |
| ath10k_htt_rx_frm_tx_compl(htt->ar, skb); |
| dev_kfree_skb_any(skb); |
| } |
| spin_unlock_bh(&htt->tx_lock); |
| |
| spin_lock_bh(&htt->rx_ring.lock); |
| while ((skb = __skb_dequeue(&htt->rx_compl_q))) { |
| resp = (struct htt_resp *)skb->data; |
| ath10k_htt_rx_handler(htt, &resp->rx_ind); |
| dev_kfree_skb_any(skb); |
| } |
| spin_unlock_bh(&htt->rx_ring.lock); |
| } |