| /* |
| * Copyright (C) 2007 Oracle. All rights reserved. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public |
| * License v2 as published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public |
| * License along with this program; if not, write to the |
| * Free Software Foundation, Inc., 59 Temple Place - Suite 330, |
| * Boston, MA 021110-1307, USA. |
| */ |
| #include <linux/sched.h> |
| #include <linux/pagemap.h> |
| #include <linux/writeback.h> |
| #include <linux/blkdev.h> |
| #include <linux/sort.h> |
| #include <linux/rcupdate.h> |
| #include <linux/kthread.h> |
| #include <linux/slab.h> |
| #include <linux/ratelimit.h> |
| #include "compat.h" |
| #include "hash.h" |
| #include "ctree.h" |
| #include "disk-io.h" |
| #include "print-tree.h" |
| #include "transaction.h" |
| #include "volumes.h" |
| #include "locking.h" |
| #include "free-space-cache.h" |
| |
| /* control flags for do_chunk_alloc's force field |
| * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk |
| * if we really need one. |
| * |
| * CHUNK_ALLOC_FORCE means it must try to allocate one |
| * |
| * CHUNK_ALLOC_LIMITED means to only try and allocate one |
| * if we have very few chunks already allocated. This is |
| * used as part of the clustering code to help make sure |
| * we have a good pool of storage to cluster in, without |
| * filling the FS with empty chunks |
| * |
| */ |
| enum { |
| CHUNK_ALLOC_NO_FORCE = 0, |
| CHUNK_ALLOC_FORCE = 1, |
| CHUNK_ALLOC_LIMITED = 2, |
| }; |
| |
| /* |
| * Control how reservations are dealt with. |
| * |
| * RESERVE_FREE - freeing a reservation. |
| * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for |
| * ENOSPC accounting |
| * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update |
| * bytes_may_use as the ENOSPC accounting is done elsewhere |
| */ |
| enum { |
| RESERVE_FREE = 0, |
| RESERVE_ALLOC = 1, |
| RESERVE_ALLOC_NO_ACCOUNT = 2, |
| }; |
| |
| static int update_block_group(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| u64 bytenr, u64 num_bytes, int alloc); |
| static int __btrfs_free_extent(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| u64 bytenr, u64 num_bytes, u64 parent, |
| u64 root_objectid, u64 owner_objectid, |
| u64 owner_offset, int refs_to_drop, |
| struct btrfs_delayed_extent_op *extra_op); |
| static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, |
| struct extent_buffer *leaf, |
| struct btrfs_extent_item *ei); |
| static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| u64 parent, u64 root_objectid, |
| u64 flags, u64 owner, u64 offset, |
| struct btrfs_key *ins, int ref_mod); |
| static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| u64 parent, u64 root_objectid, |
| u64 flags, struct btrfs_disk_key *key, |
| int level, struct btrfs_key *ins); |
| static int do_chunk_alloc(struct btrfs_trans_handle *trans, |
| struct btrfs_root *extent_root, u64 alloc_bytes, |
| u64 flags, int force); |
| static int find_next_key(struct btrfs_path *path, int level, |
| struct btrfs_key *key); |
| static void dump_space_info(struct btrfs_space_info *info, u64 bytes, |
| int dump_block_groups); |
| static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache, |
| u64 num_bytes, int reserve); |
| |
| static noinline int |
| block_group_cache_done(struct btrfs_block_group_cache *cache) |
| { |
| smp_mb(); |
| return cache->cached == BTRFS_CACHE_FINISHED; |
| } |
| |
| static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits) |
| { |
| return (cache->flags & bits) == bits; |
| } |
| |
| static void btrfs_get_block_group(struct btrfs_block_group_cache *cache) |
| { |
| atomic_inc(&cache->count); |
| } |
| |
| void btrfs_put_block_group(struct btrfs_block_group_cache *cache) |
| { |
| if (atomic_dec_and_test(&cache->count)) { |
| WARN_ON(cache->pinned > 0); |
| WARN_ON(cache->reserved > 0); |
| kfree(cache->free_space_ctl); |
| kfree(cache); |
| } |
| } |
| |
| /* |
| * this adds the block group to the fs_info rb tree for the block group |
| * cache |
| */ |
| static int btrfs_add_block_group_cache(struct btrfs_fs_info *info, |
| struct btrfs_block_group_cache *block_group) |
| { |
| struct rb_node **p; |
| struct rb_node *parent = NULL; |
| struct btrfs_block_group_cache *cache; |
| |
| spin_lock(&info->block_group_cache_lock); |
| p = &info->block_group_cache_tree.rb_node; |
| |
| while (*p) { |
| parent = *p; |
| cache = rb_entry(parent, struct btrfs_block_group_cache, |
| cache_node); |
| if (block_group->key.objectid < cache->key.objectid) { |
| p = &(*p)->rb_left; |
| } else if (block_group->key.objectid > cache->key.objectid) { |
| p = &(*p)->rb_right; |
| } else { |
| spin_unlock(&info->block_group_cache_lock); |
| return -EEXIST; |
| } |
| } |
| |
| rb_link_node(&block_group->cache_node, parent, p); |
| rb_insert_color(&block_group->cache_node, |
| &info->block_group_cache_tree); |
| spin_unlock(&info->block_group_cache_lock); |
| |
| return 0; |
| } |
| |
| /* |
| * This will return the block group at or after bytenr if contains is 0, else |
| * it will return the block group that contains the bytenr |
| */ |
| static struct btrfs_block_group_cache * |
| block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr, |
| int contains) |
| { |
| struct btrfs_block_group_cache *cache, *ret = NULL; |
| struct rb_node *n; |
| u64 end, start; |
| |
| spin_lock(&info->block_group_cache_lock); |
| n = info->block_group_cache_tree.rb_node; |
| |
| while (n) { |
| cache = rb_entry(n, struct btrfs_block_group_cache, |
| cache_node); |
| end = cache->key.objectid + cache->key.offset - 1; |
| start = cache->key.objectid; |
| |
| if (bytenr < start) { |
| if (!contains && (!ret || start < ret->key.objectid)) |
| ret = cache; |
| n = n->rb_left; |
| } else if (bytenr > start) { |
| if (contains && bytenr <= end) { |
| ret = cache; |
| break; |
| } |
| n = n->rb_right; |
| } else { |
| ret = cache; |
| break; |
| } |
| } |
| if (ret) |
| btrfs_get_block_group(ret); |
| spin_unlock(&info->block_group_cache_lock); |
| |
| return ret; |
| } |
| |
| static int add_excluded_extent(struct btrfs_root *root, |
| u64 start, u64 num_bytes) |
| { |
| u64 end = start + num_bytes - 1; |
| set_extent_bits(&root->fs_info->freed_extents[0], |
| start, end, EXTENT_UPTODATE, GFP_NOFS); |
| set_extent_bits(&root->fs_info->freed_extents[1], |
| start, end, EXTENT_UPTODATE, GFP_NOFS); |
| return 0; |
| } |
| |
| static void free_excluded_extents(struct btrfs_root *root, |
| struct btrfs_block_group_cache *cache) |
| { |
| u64 start, end; |
| |
| start = cache->key.objectid; |
| end = start + cache->key.offset - 1; |
| |
| clear_extent_bits(&root->fs_info->freed_extents[0], |
| start, end, EXTENT_UPTODATE, GFP_NOFS); |
| clear_extent_bits(&root->fs_info->freed_extents[1], |
| start, end, EXTENT_UPTODATE, GFP_NOFS); |
| } |
| |
| static int exclude_super_stripes(struct btrfs_root *root, |
| struct btrfs_block_group_cache *cache) |
| { |
| u64 bytenr; |
| u64 *logical; |
| int stripe_len; |
| int i, nr, ret; |
| |
| if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) { |
| stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid; |
| cache->bytes_super += stripe_len; |
| ret = add_excluded_extent(root, cache->key.objectid, |
| stripe_len); |
| BUG_ON(ret); |
| } |
| |
| for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { |
| bytenr = btrfs_sb_offset(i); |
| ret = btrfs_rmap_block(&root->fs_info->mapping_tree, |
| cache->key.objectid, bytenr, |
| 0, &logical, &nr, &stripe_len); |
| BUG_ON(ret); |
| |
| while (nr--) { |
| cache->bytes_super += stripe_len; |
| ret = add_excluded_extent(root, logical[nr], |
| stripe_len); |
| BUG_ON(ret); |
| } |
| |
| kfree(logical); |
| } |
| return 0; |
| } |
| |
| static struct btrfs_caching_control * |
| get_caching_control(struct btrfs_block_group_cache *cache) |
| { |
| struct btrfs_caching_control *ctl; |
| |
| spin_lock(&cache->lock); |
| if (cache->cached != BTRFS_CACHE_STARTED) { |
| spin_unlock(&cache->lock); |
| return NULL; |
| } |
| |
| /* We're loading it the fast way, so we don't have a caching_ctl. */ |
| if (!cache->caching_ctl) { |
| spin_unlock(&cache->lock); |
| return NULL; |
| } |
| |
| ctl = cache->caching_ctl; |
| atomic_inc(&ctl->count); |
| spin_unlock(&cache->lock); |
| return ctl; |
| } |
| |
| static void put_caching_control(struct btrfs_caching_control *ctl) |
| { |
| if (atomic_dec_and_test(&ctl->count)) |
| kfree(ctl); |
| } |
| |
| /* |
| * this is only called by cache_block_group, since we could have freed extents |
| * we need to check the pinned_extents for any extents that can't be used yet |
| * since their free space will be released as soon as the transaction commits. |
| */ |
| static u64 add_new_free_space(struct btrfs_block_group_cache *block_group, |
| struct btrfs_fs_info *info, u64 start, u64 end) |
| { |
| u64 extent_start, extent_end, size, total_added = 0; |
| int ret; |
| |
| while (start < end) { |
| ret = find_first_extent_bit(info->pinned_extents, start, |
| &extent_start, &extent_end, |
| EXTENT_DIRTY | EXTENT_UPTODATE); |
| if (ret) |
| break; |
| |
| if (extent_start <= start) { |
| start = extent_end + 1; |
| } else if (extent_start > start && extent_start < end) { |
| size = extent_start - start; |
| total_added += size; |
| ret = btrfs_add_free_space(block_group, start, |
| size); |
| BUG_ON(ret); |
| start = extent_end + 1; |
| } else { |
| break; |
| } |
| } |
| |
| if (start < end) { |
| size = end - start; |
| total_added += size; |
| ret = btrfs_add_free_space(block_group, start, size); |
| BUG_ON(ret); |
| } |
| |
| return total_added; |
| } |
| |
| static noinline void caching_thread(struct btrfs_work *work) |
| { |
| struct btrfs_block_group_cache *block_group; |
| struct btrfs_fs_info *fs_info; |
| struct btrfs_caching_control *caching_ctl; |
| struct btrfs_root *extent_root; |
| struct btrfs_path *path; |
| struct extent_buffer *leaf; |
| struct btrfs_key key; |
| u64 total_found = 0; |
| u64 last = 0; |
| u32 nritems; |
| int ret = 0; |
| |
| caching_ctl = container_of(work, struct btrfs_caching_control, work); |
| block_group = caching_ctl->block_group; |
| fs_info = block_group->fs_info; |
| extent_root = fs_info->extent_root; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| goto out; |
| |
| last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET); |
| |
| /* |
| * We don't want to deadlock with somebody trying to allocate a new |
| * extent for the extent root while also trying to search the extent |
| * root to add free space. So we skip locking and search the commit |
| * root, since its read-only |
| */ |
| path->skip_locking = 1; |
| path->search_commit_root = 1; |
| path->reada = 1; |
| |
| key.objectid = last; |
| key.offset = 0; |
| key.type = BTRFS_EXTENT_ITEM_KEY; |
| again: |
| mutex_lock(&caching_ctl->mutex); |
| /* need to make sure the commit_root doesn't disappear */ |
| down_read(&fs_info->extent_commit_sem); |
| |
| ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); |
| if (ret < 0) |
| goto err; |
| |
| leaf = path->nodes[0]; |
| nritems = btrfs_header_nritems(leaf); |
| |
| while (1) { |
| if (btrfs_fs_closing(fs_info) > 1) { |
| last = (u64)-1; |
| break; |
| } |
| |
| if (path->slots[0] < nritems) { |
| btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); |
| } else { |
| ret = find_next_key(path, 0, &key); |
| if (ret) |
| break; |
| |
| if (need_resched() || |
| btrfs_next_leaf(extent_root, path)) { |
| caching_ctl->progress = last; |
| btrfs_release_path(path); |
| up_read(&fs_info->extent_commit_sem); |
| mutex_unlock(&caching_ctl->mutex); |
| cond_resched(); |
| goto again; |
| } |
| leaf = path->nodes[0]; |
| nritems = btrfs_header_nritems(leaf); |
| continue; |
| } |
| |
| if (key.objectid < block_group->key.objectid) { |
| path->slots[0]++; |
| continue; |
| } |
| |
| if (key.objectid >= block_group->key.objectid + |
| block_group->key.offset) |
| break; |
| |
| if (key.type == BTRFS_EXTENT_ITEM_KEY) { |
| total_found += add_new_free_space(block_group, |
| fs_info, last, |
| key.objectid); |
| last = key.objectid + key.offset; |
| |
| if (total_found > (1024 * 1024 * 2)) { |
| total_found = 0; |
| wake_up(&caching_ctl->wait); |
| } |
| } |
| path->slots[0]++; |
| } |
| ret = 0; |
| |
| total_found += add_new_free_space(block_group, fs_info, last, |
| block_group->key.objectid + |
| block_group->key.offset); |
| caching_ctl->progress = (u64)-1; |
| |
| spin_lock(&block_group->lock); |
| block_group->caching_ctl = NULL; |
| block_group->cached = BTRFS_CACHE_FINISHED; |
| spin_unlock(&block_group->lock); |
| |
| err: |
| btrfs_free_path(path); |
| up_read(&fs_info->extent_commit_sem); |
| |
| free_excluded_extents(extent_root, block_group); |
| |
| mutex_unlock(&caching_ctl->mutex); |
| out: |
| wake_up(&caching_ctl->wait); |
| |
| put_caching_control(caching_ctl); |
| btrfs_put_block_group(block_group); |
| } |
| |
| static int cache_block_group(struct btrfs_block_group_cache *cache, |
| struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| int load_cache_only) |
| { |
| DEFINE_WAIT(wait); |
| struct btrfs_fs_info *fs_info = cache->fs_info; |
| struct btrfs_caching_control *caching_ctl; |
| int ret = 0; |
| |
| caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS); |
| BUG_ON(!caching_ctl); |
| |
| INIT_LIST_HEAD(&caching_ctl->list); |
| mutex_init(&caching_ctl->mutex); |
| init_waitqueue_head(&caching_ctl->wait); |
| caching_ctl->block_group = cache; |
| caching_ctl->progress = cache->key.objectid; |
| atomic_set(&caching_ctl->count, 1); |
| caching_ctl->work.func = caching_thread; |
| |
| spin_lock(&cache->lock); |
| /* |
| * This should be a rare occasion, but this could happen I think in the |
| * case where one thread starts to load the space cache info, and then |
| * some other thread starts a transaction commit which tries to do an |
| * allocation while the other thread is still loading the space cache |
| * info. The previous loop should have kept us from choosing this block |
| * group, but if we've moved to the state where we will wait on caching |
| * block groups we need to first check if we're doing a fast load here, |
| * so we can wait for it to finish, otherwise we could end up allocating |
| * from a block group who's cache gets evicted for one reason or |
| * another. |
| */ |
| while (cache->cached == BTRFS_CACHE_FAST) { |
| struct btrfs_caching_control *ctl; |
| |
| ctl = cache->caching_ctl; |
| atomic_inc(&ctl->count); |
| prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE); |
| spin_unlock(&cache->lock); |
| |
| schedule(); |
| |
| finish_wait(&ctl->wait, &wait); |
| put_caching_control(ctl); |
| spin_lock(&cache->lock); |
| } |
| |
| if (cache->cached != BTRFS_CACHE_NO) { |
| spin_unlock(&cache->lock); |
| kfree(caching_ctl); |
| return 0; |
| } |
| WARN_ON(cache->caching_ctl); |
| cache->caching_ctl = caching_ctl; |
| cache->cached = BTRFS_CACHE_FAST; |
| spin_unlock(&cache->lock); |
| |
| /* |
| * We can't do the read from on-disk cache during a commit since we need |
| * to have the normal tree locking. Also if we are currently trying to |
| * allocate blocks for the tree root we can't do the fast caching since |
| * we likely hold important locks. |
| */ |
| if (trans && (!trans->transaction->in_commit) && |
| (root && root != root->fs_info->tree_root) && |
| btrfs_test_opt(root, SPACE_CACHE)) { |
| ret = load_free_space_cache(fs_info, cache); |
| |
| spin_lock(&cache->lock); |
| if (ret == 1) { |
| cache->caching_ctl = NULL; |
| cache->cached = BTRFS_CACHE_FINISHED; |
| cache->last_byte_to_unpin = (u64)-1; |
| } else { |
| if (load_cache_only) { |
| cache->caching_ctl = NULL; |
| cache->cached = BTRFS_CACHE_NO; |
| } else { |
| cache->cached = BTRFS_CACHE_STARTED; |
| } |
| } |
| spin_unlock(&cache->lock); |
| wake_up(&caching_ctl->wait); |
| if (ret == 1) { |
| put_caching_control(caching_ctl); |
| free_excluded_extents(fs_info->extent_root, cache); |
| return 0; |
| } |
| } else { |
| /* |
| * We are not going to do the fast caching, set cached to the |
| * appropriate value and wakeup any waiters. |
| */ |
| spin_lock(&cache->lock); |
| if (load_cache_only) { |
| cache->caching_ctl = NULL; |
| cache->cached = BTRFS_CACHE_NO; |
| } else { |
| cache->cached = BTRFS_CACHE_STARTED; |
| } |
| spin_unlock(&cache->lock); |
| wake_up(&caching_ctl->wait); |
| } |
| |
| if (load_cache_only) { |
| put_caching_control(caching_ctl); |
| return 0; |
| } |
| |
| down_write(&fs_info->extent_commit_sem); |
| atomic_inc(&caching_ctl->count); |
| list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups); |
| up_write(&fs_info->extent_commit_sem); |
| |
| btrfs_get_block_group(cache); |
| |
| btrfs_queue_worker(&fs_info->caching_workers, &caching_ctl->work); |
| |
| return ret; |
| } |
| |
| /* |
| * return the block group that starts at or after bytenr |
| */ |
| static struct btrfs_block_group_cache * |
| btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr) |
| { |
| struct btrfs_block_group_cache *cache; |
| |
| cache = block_group_cache_tree_search(info, bytenr, 0); |
| |
| return cache; |
| } |
| |
| /* |
| * return the block group that contains the given bytenr |
| */ |
| struct btrfs_block_group_cache *btrfs_lookup_block_group( |
| struct btrfs_fs_info *info, |
| u64 bytenr) |
| { |
| struct btrfs_block_group_cache *cache; |
| |
| cache = block_group_cache_tree_search(info, bytenr, 1); |
| |
| return cache; |
| } |
| |
| static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info, |
| u64 flags) |
| { |
| struct list_head *head = &info->space_info; |
| struct btrfs_space_info *found; |
| |
| flags &= BTRFS_BLOCK_GROUP_TYPE_MASK; |
| |
| rcu_read_lock(); |
| list_for_each_entry_rcu(found, head, list) { |
| if (found->flags & flags) { |
| rcu_read_unlock(); |
| return found; |
| } |
| } |
| rcu_read_unlock(); |
| return NULL; |
| } |
| |
| /* |
| * after adding space to the filesystem, we need to clear the full flags |
| * on all the space infos. |
| */ |
| void btrfs_clear_space_info_full(struct btrfs_fs_info *info) |
| { |
| struct list_head *head = &info->space_info; |
| struct btrfs_space_info *found; |
| |
| rcu_read_lock(); |
| list_for_each_entry_rcu(found, head, list) |
| found->full = 0; |
| rcu_read_unlock(); |
| } |
| |
| static u64 div_factor(u64 num, int factor) |
| { |
| if (factor == 10) |
| return num; |
| num *= factor; |
| do_div(num, 10); |
| return num; |
| } |
| |
| static u64 div_factor_fine(u64 num, int factor) |
| { |
| if (factor == 100) |
| return num; |
| num *= factor; |
| do_div(num, 100); |
| return num; |
| } |
| |
| u64 btrfs_find_block_group(struct btrfs_root *root, |
| u64 search_start, u64 search_hint, int owner) |
| { |
| struct btrfs_block_group_cache *cache; |
| u64 used; |
| u64 last = max(search_hint, search_start); |
| u64 group_start = 0; |
| int full_search = 0; |
| int factor = 9; |
| int wrapped = 0; |
| again: |
| while (1) { |
| cache = btrfs_lookup_first_block_group(root->fs_info, last); |
| if (!cache) |
| break; |
| |
| spin_lock(&cache->lock); |
| last = cache->key.objectid + cache->key.offset; |
| used = btrfs_block_group_used(&cache->item); |
| |
| if ((full_search || !cache->ro) && |
| block_group_bits(cache, BTRFS_BLOCK_GROUP_METADATA)) { |
| if (used + cache->pinned + cache->reserved < |
| div_factor(cache->key.offset, factor)) { |
| group_start = cache->key.objectid; |
| spin_unlock(&cache->lock); |
| btrfs_put_block_group(cache); |
| goto found; |
| } |
| } |
| spin_unlock(&cache->lock); |
| btrfs_put_block_group(cache); |
| cond_resched(); |
| } |
| if (!wrapped) { |
| last = search_start; |
| wrapped = 1; |
| goto again; |
| } |
| if (!full_search && factor < 10) { |
| last = search_start; |
| full_search = 1; |
| factor = 10; |
| goto again; |
| } |
| found: |
| return group_start; |
| } |
| |
| /* simple helper to search for an existing extent at a given offset */ |
| int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len) |
| { |
| int ret; |
| struct btrfs_key key; |
| struct btrfs_path *path; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| key.objectid = start; |
| key.offset = len; |
| btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY); |
| ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path, |
| 0, 0); |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| /* |
| * helper function to lookup reference count and flags of extent. |
| * |
| * the head node for delayed ref is used to store the sum of all the |
| * reference count modifications queued up in the rbtree. the head |
| * node may also store the extent flags to set. This way you can check |
| * to see what the reference count and extent flags would be if all of |
| * the delayed refs are not processed. |
| */ |
| int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, u64 bytenr, |
| u64 num_bytes, u64 *refs, u64 *flags) |
| { |
| struct btrfs_delayed_ref_head *head; |
| struct btrfs_delayed_ref_root *delayed_refs; |
| struct btrfs_path *path; |
| struct btrfs_extent_item *ei; |
| struct extent_buffer *leaf; |
| struct btrfs_key key; |
| u32 item_size; |
| u64 num_refs; |
| u64 extent_flags; |
| int ret; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| key.objectid = bytenr; |
| key.type = BTRFS_EXTENT_ITEM_KEY; |
| key.offset = num_bytes; |
| if (!trans) { |
| path->skip_locking = 1; |
| path->search_commit_root = 1; |
| } |
| again: |
| ret = btrfs_search_slot(trans, root->fs_info->extent_root, |
| &key, path, 0, 0); |
| if (ret < 0) |
| goto out_free; |
| |
| if (ret == 0) { |
| leaf = path->nodes[0]; |
| item_size = btrfs_item_size_nr(leaf, path->slots[0]); |
| if (item_size >= sizeof(*ei)) { |
| ei = btrfs_item_ptr(leaf, path->slots[0], |
| struct btrfs_extent_item); |
| num_refs = btrfs_extent_refs(leaf, ei); |
| extent_flags = btrfs_extent_flags(leaf, ei); |
| } else { |
| #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 |
| struct btrfs_extent_item_v0 *ei0; |
| BUG_ON(item_size != sizeof(*ei0)); |
| ei0 = btrfs_item_ptr(leaf, path->slots[0], |
| struct btrfs_extent_item_v0); |
| num_refs = btrfs_extent_refs_v0(leaf, ei0); |
| /* FIXME: this isn't correct for data */ |
| extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF; |
| #else |
| BUG(); |
| #endif |
| } |
| BUG_ON(num_refs == 0); |
| } else { |
| num_refs = 0; |
| extent_flags = 0; |
| ret = 0; |
| } |
| |
| if (!trans) |
| goto out; |
| |
| delayed_refs = &trans->transaction->delayed_refs; |
| spin_lock(&delayed_refs->lock); |
| head = btrfs_find_delayed_ref_head(trans, bytenr); |
| if (head) { |
| if (!mutex_trylock(&head->mutex)) { |
| atomic_inc(&head->node.refs); |
| spin_unlock(&delayed_refs->lock); |
| |
| btrfs_release_path(path); |
| |
| /* |
| * Mutex was contended, block until it's released and try |
| * again |
| */ |
| mutex_lock(&head->mutex); |
| mutex_unlock(&head->mutex); |
| btrfs_put_delayed_ref(&head->node); |
| goto again; |
| } |
| if (head->extent_op && head->extent_op->update_flags) |
| extent_flags |= head->extent_op->flags_to_set; |
| else |
| BUG_ON(num_refs == 0); |
| |
| num_refs += head->node.ref_mod; |
| mutex_unlock(&head->mutex); |
| } |
| spin_unlock(&delayed_refs->lock); |
| out: |
| WARN_ON(num_refs == 0); |
| if (refs) |
| *refs = num_refs; |
| if (flags) |
| *flags = extent_flags; |
| out_free: |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| /* |
| * Back reference rules. Back refs have three main goals: |
| * |
| * 1) differentiate between all holders of references to an extent so that |
| * when a reference is dropped we can make sure it was a valid reference |
| * before freeing the extent. |
| * |
| * 2) Provide enough information to quickly find the holders of an extent |
| * if we notice a given block is corrupted or bad. |
| * |
| * 3) Make it easy to migrate blocks for FS shrinking or storage pool |
| * maintenance. This is actually the same as #2, but with a slightly |
| * different use case. |
| * |
| * There are two kinds of back refs. The implicit back refs is optimized |
| * for pointers in non-shared tree blocks. For a given pointer in a block, |
| * back refs of this kind provide information about the block's owner tree |
| * and the pointer's key. These information allow us to find the block by |
| * b-tree searching. The full back refs is for pointers in tree blocks not |
| * referenced by their owner trees. The location of tree block is recorded |
| * in the back refs. Actually the full back refs is generic, and can be |
| * used in all cases the implicit back refs is used. The major shortcoming |
| * of the full back refs is its overhead. Every time a tree block gets |
| * COWed, we have to update back refs entry for all pointers in it. |
| * |
| * For a newly allocated tree block, we use implicit back refs for |
| * pointers in it. This means most tree related operations only involve |
| * implicit back refs. For a tree block created in old transaction, the |
| * only way to drop a reference to it is COW it. So we can detect the |
| * event that tree block loses its owner tree's reference and do the |
| * back refs conversion. |
| * |
| * When a tree block is COW'd through a tree, there are four cases: |
| * |
| * The reference count of the block is one and the tree is the block's |
| * owner tree. Nothing to do in this case. |
| * |
| * The reference count of the block is one and the tree is not the |
| * block's owner tree. In this case, full back refs is used for pointers |
| * in the block. Remove these full back refs, add implicit back refs for |
| * every pointers in the new block. |
| * |
| * The reference count of the block is greater than one and the tree is |
| * the block's owner tree. In this case, implicit back refs is used for |
| * pointers in the block. Add full back refs for every pointers in the |
| * block, increase lower level extents' reference counts. The original |
| * implicit back refs are entailed to the new block. |
| * |
| * The reference count of the block is greater than one and the tree is |
| * not the block's owner tree. Add implicit back refs for every pointer in |
| * the new block, increase lower level extents' reference count. |
| * |
| * Back Reference Key composing: |
| * |
| * The key objectid corresponds to the first byte in the extent, |
| * The key type is used to differentiate between types of back refs. |
| * There are different meanings of the key offset for different types |
| * of back refs. |
| * |
| * File extents can be referenced by: |
| * |
| * - multiple snapshots, subvolumes, or different generations in one subvol |
| * - different files inside a single subvolume |
| * - different offsets inside a file (bookend extents in file.c) |
| * |
| * The extent ref structure for the implicit back refs has fields for: |
| * |
| * - Objectid of the subvolume root |
| * - objectid of the file holding the reference |
| * - original offset in the file |
| * - how many bookend extents |
| * |
| * The key offset for the implicit back refs is hash of the first |
| * three fields. |
| * |
| * The extent ref structure for the full back refs has field for: |
| * |
| * - number of pointers in the tree leaf |
| * |
| * The key offset for the implicit back refs is the first byte of |
| * the tree leaf |
| * |
| * When a file extent is allocated, The implicit back refs is used. |
| * the fields are filled in: |
| * |
| * (root_key.objectid, inode objectid, offset in file, 1) |
| * |
| * When a file extent is removed file truncation, we find the |
| * corresponding implicit back refs and check the following fields: |
| * |
| * (btrfs_header_owner(leaf), inode objectid, offset in file) |
| * |
| * Btree extents can be referenced by: |
| * |
| * - Different subvolumes |
| * |
| * Both the implicit back refs and the full back refs for tree blocks |
| * only consist of key. The key offset for the implicit back refs is |
| * objectid of block's owner tree. The key offset for the full back refs |
| * is the first byte of parent block. |
| * |
| * When implicit back refs is used, information about the lowest key and |
| * level of the tree block are required. These information are stored in |
| * tree block info structure. |
| */ |
| |
| #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 |
| static int convert_extent_item_v0(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_path *path, |
| u64 owner, u32 extra_size) |
| { |
| struct btrfs_extent_item *item; |
| struct btrfs_extent_item_v0 *ei0; |
| struct btrfs_extent_ref_v0 *ref0; |
| struct btrfs_tree_block_info *bi; |
| struct extent_buffer *leaf; |
| struct btrfs_key key; |
| struct btrfs_key found_key; |
| u32 new_size = sizeof(*item); |
| u64 refs; |
| int ret; |
| |
| leaf = path->nodes[0]; |
| BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0)); |
| |
| btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); |
| ei0 = btrfs_item_ptr(leaf, path->slots[0], |
| struct btrfs_extent_item_v0); |
| refs = btrfs_extent_refs_v0(leaf, ei0); |
| |
| if (owner == (u64)-1) { |
| while (1) { |
| if (path->slots[0] >= btrfs_header_nritems(leaf)) { |
| ret = btrfs_next_leaf(root, path); |
| if (ret < 0) |
| return ret; |
| BUG_ON(ret > 0); |
| leaf = path->nodes[0]; |
| } |
| btrfs_item_key_to_cpu(leaf, &found_key, |
| path->slots[0]); |
| BUG_ON(key.objectid != found_key.objectid); |
| if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) { |
| path->slots[0]++; |
| continue; |
| } |
| ref0 = btrfs_item_ptr(leaf, path->slots[0], |
| struct btrfs_extent_ref_v0); |
| owner = btrfs_ref_objectid_v0(leaf, ref0); |
| break; |
| } |
| } |
| btrfs_release_path(path); |
| |
| if (owner < BTRFS_FIRST_FREE_OBJECTID) |
| new_size += sizeof(*bi); |
| |
| new_size -= sizeof(*ei0); |
| ret = btrfs_search_slot(trans, root, &key, path, |
| new_size + extra_size, 1); |
| if (ret < 0) |
| return ret; |
| BUG_ON(ret); |
| |
| ret = btrfs_extend_item(trans, root, path, new_size); |
| |
| leaf = path->nodes[0]; |
| item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); |
| btrfs_set_extent_refs(leaf, item, refs); |
| /* FIXME: get real generation */ |
| btrfs_set_extent_generation(leaf, item, 0); |
| if (owner < BTRFS_FIRST_FREE_OBJECTID) { |
| btrfs_set_extent_flags(leaf, item, |
| BTRFS_EXTENT_FLAG_TREE_BLOCK | |
| BTRFS_BLOCK_FLAG_FULL_BACKREF); |
| bi = (struct btrfs_tree_block_info *)(item + 1); |
| /* FIXME: get first key of the block */ |
| memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi)); |
| btrfs_set_tree_block_level(leaf, bi, (int)owner); |
| } else { |
| btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA); |
| } |
| btrfs_mark_buffer_dirty(leaf); |
| return 0; |
| } |
| #endif |
| |
| static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset) |
| { |
| u32 high_crc = ~(u32)0; |
| u32 low_crc = ~(u32)0; |
| __le64 lenum; |
| |
| lenum = cpu_to_le64(root_objectid); |
| high_crc = crc32c(high_crc, &lenum, sizeof(lenum)); |
| lenum = cpu_to_le64(owner); |
| low_crc = crc32c(low_crc, &lenum, sizeof(lenum)); |
| lenum = cpu_to_le64(offset); |
| low_crc = crc32c(low_crc, &lenum, sizeof(lenum)); |
| |
| return ((u64)high_crc << 31) ^ (u64)low_crc; |
| } |
| |
| static u64 hash_extent_data_ref_item(struct extent_buffer *leaf, |
| struct btrfs_extent_data_ref *ref) |
| { |
| return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref), |
| btrfs_extent_data_ref_objectid(leaf, ref), |
| btrfs_extent_data_ref_offset(leaf, ref)); |
| } |
| |
| static int match_extent_data_ref(struct extent_buffer *leaf, |
| struct btrfs_extent_data_ref *ref, |
| u64 root_objectid, u64 owner, u64 offset) |
| { |
| if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid || |
| btrfs_extent_data_ref_objectid(leaf, ref) != owner || |
| btrfs_extent_data_ref_offset(leaf, ref) != offset) |
| return 0; |
| return 1; |
| } |
| |
| static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_path *path, |
| u64 bytenr, u64 parent, |
| u64 root_objectid, |
| u64 owner, u64 offset) |
| { |
| struct btrfs_key key; |
| struct btrfs_extent_data_ref *ref; |
| struct extent_buffer *leaf; |
| u32 nritems; |
| int ret; |
| int recow; |
| int err = -ENOENT; |
| |
| key.objectid = bytenr; |
| if (parent) { |
| key.type = BTRFS_SHARED_DATA_REF_KEY; |
| key.offset = parent; |
| } else { |
| key.type = BTRFS_EXTENT_DATA_REF_KEY; |
| key.offset = hash_extent_data_ref(root_objectid, |
| owner, offset); |
| } |
| again: |
| recow = 0; |
| ret = btrfs_search_slot(trans, root, &key, path, -1, 1); |
| if (ret < 0) { |
| err = ret; |
| goto fail; |
| } |
| |
| if (parent) { |
| if (!ret) |
| return 0; |
| #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 |
| key.type = BTRFS_EXTENT_REF_V0_KEY; |
| btrfs_release_path(path); |
| ret = btrfs_search_slot(trans, root, &key, path, -1, 1); |
| if (ret < 0) { |
| err = ret; |
| goto fail; |
| } |
| if (!ret) |
| return 0; |
| #endif |
| goto fail; |
| } |
| |
| leaf = path->nodes[0]; |
| nritems = btrfs_header_nritems(leaf); |
| while (1) { |
| if (path->slots[0] >= nritems) { |
| ret = btrfs_next_leaf(root, path); |
| if (ret < 0) |
| err = ret; |
| if (ret) |
| goto fail; |
| |
| leaf = path->nodes[0]; |
| nritems = btrfs_header_nritems(leaf); |
| recow = 1; |
| } |
| |
| btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); |
| if (key.objectid != bytenr || |
| key.type != BTRFS_EXTENT_DATA_REF_KEY) |
| goto fail; |
| |
| ref = btrfs_item_ptr(leaf, path->slots[0], |
| struct btrfs_extent_data_ref); |
| |
| if (match_extent_data_ref(leaf, ref, root_objectid, |
| owner, offset)) { |
| if (recow) { |
| btrfs_release_path(path); |
| goto again; |
| } |
| err = 0; |
| break; |
| } |
| path->slots[0]++; |
| } |
| fail: |
| return err; |
| } |
| |
| static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_path *path, |
| u64 bytenr, u64 parent, |
| u64 root_objectid, u64 owner, |
| u64 offset, int refs_to_add) |
| { |
| struct btrfs_key key; |
| struct extent_buffer *leaf; |
| u32 size; |
| u32 num_refs; |
| int ret; |
| |
| key.objectid = bytenr; |
| if (parent) { |
| key.type = BTRFS_SHARED_DATA_REF_KEY; |
| key.offset = parent; |
| size = sizeof(struct btrfs_shared_data_ref); |
| } else { |
| key.type = BTRFS_EXTENT_DATA_REF_KEY; |
| key.offset = hash_extent_data_ref(root_objectid, |
| owner, offset); |
| size = sizeof(struct btrfs_extent_data_ref); |
| } |
| |
| ret = btrfs_insert_empty_item(trans, root, path, &key, size); |
| if (ret && ret != -EEXIST) |
| goto fail; |
| |
| leaf = path->nodes[0]; |
| if (parent) { |
| struct btrfs_shared_data_ref *ref; |
| ref = btrfs_item_ptr(leaf, path->slots[0], |
| struct btrfs_shared_data_ref); |
| if (ret == 0) { |
| btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add); |
| } else { |
| num_refs = btrfs_shared_data_ref_count(leaf, ref); |
| num_refs += refs_to_add; |
| btrfs_set_shared_data_ref_count(leaf, ref, num_refs); |
| } |
| } else { |
| struct btrfs_extent_data_ref *ref; |
| while (ret == -EEXIST) { |
| ref = btrfs_item_ptr(leaf, path->slots[0], |
| struct btrfs_extent_data_ref); |
| if (match_extent_data_ref(leaf, ref, root_objectid, |
| owner, offset)) |
| break; |
| btrfs_release_path(path); |
| key.offset++; |
| ret = btrfs_insert_empty_item(trans, root, path, &key, |
| size); |
| if (ret && ret != -EEXIST) |
| goto fail; |
| |
| leaf = path->nodes[0]; |
| } |
| ref = btrfs_item_ptr(leaf, path->slots[0], |
| struct btrfs_extent_data_ref); |
| if (ret == 0) { |
| btrfs_set_extent_data_ref_root(leaf, ref, |
| root_objectid); |
| btrfs_set_extent_data_ref_objectid(leaf, ref, owner); |
| btrfs_set_extent_data_ref_offset(leaf, ref, offset); |
| btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add); |
| } else { |
| num_refs = btrfs_extent_data_ref_count(leaf, ref); |
| num_refs += refs_to_add; |
| btrfs_set_extent_data_ref_count(leaf, ref, num_refs); |
| } |
| } |
| btrfs_mark_buffer_dirty(leaf); |
| ret = 0; |
| fail: |
| btrfs_release_path(path); |
| return ret; |
| } |
| |
| static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_path *path, |
| int refs_to_drop) |
| { |
| struct btrfs_key key; |
| struct btrfs_extent_data_ref *ref1 = NULL; |
| struct btrfs_shared_data_ref *ref2 = NULL; |
| struct extent_buffer *leaf; |
| u32 num_refs = 0; |
| int ret = 0; |
| |
| leaf = path->nodes[0]; |
| btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); |
| |
| if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { |
| ref1 = btrfs_item_ptr(leaf, path->slots[0], |
| struct btrfs_extent_data_ref); |
| num_refs = btrfs_extent_data_ref_count(leaf, ref1); |
| } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { |
| ref2 = btrfs_item_ptr(leaf, path->slots[0], |
| struct btrfs_shared_data_ref); |
| num_refs = btrfs_shared_data_ref_count(leaf, ref2); |
| #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 |
| } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) { |
| struct btrfs_extent_ref_v0 *ref0; |
| ref0 = btrfs_item_ptr(leaf, path->slots[0], |
| struct btrfs_extent_ref_v0); |
| num_refs = btrfs_ref_count_v0(leaf, ref0); |
| #endif |
| } else { |
| BUG(); |
| } |
| |
| BUG_ON(num_refs < refs_to_drop); |
| num_refs -= refs_to_drop; |
| |
| if (num_refs == 0) { |
| ret = btrfs_del_item(trans, root, path); |
| } else { |
| if (key.type == BTRFS_EXTENT_DATA_REF_KEY) |
| btrfs_set_extent_data_ref_count(leaf, ref1, num_refs); |
| else if (key.type == BTRFS_SHARED_DATA_REF_KEY) |
| btrfs_set_shared_data_ref_count(leaf, ref2, num_refs); |
| #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 |
| else { |
| struct btrfs_extent_ref_v0 *ref0; |
| ref0 = btrfs_item_ptr(leaf, path->slots[0], |
| struct btrfs_extent_ref_v0); |
| btrfs_set_ref_count_v0(leaf, ref0, num_refs); |
| } |
| #endif |
| btrfs_mark_buffer_dirty(leaf); |
| } |
| return ret; |
| } |
| |
| static noinline u32 extent_data_ref_count(struct btrfs_root *root, |
| struct btrfs_path *path, |
| struct btrfs_extent_inline_ref *iref) |
| { |
| struct btrfs_key key; |
| struct extent_buffer *leaf; |
| struct btrfs_extent_data_ref *ref1; |
| struct btrfs_shared_data_ref *ref2; |
| u32 num_refs = 0; |
| |
| leaf = path->nodes[0]; |
| btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); |
| if (iref) { |
| if (btrfs_extent_inline_ref_type(leaf, iref) == |
| BTRFS_EXTENT_DATA_REF_KEY) { |
| ref1 = (struct btrfs_extent_data_ref *)(&iref->offset); |
| num_refs = btrfs_extent_data_ref_count(leaf, ref1); |
| } else { |
| ref2 = (struct btrfs_shared_data_ref *)(iref + 1); |
| num_refs = btrfs_shared_data_ref_count(leaf, ref2); |
| } |
| } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { |
| ref1 = btrfs_item_ptr(leaf, path->slots[0], |
| struct btrfs_extent_data_ref); |
| num_refs = btrfs_extent_data_ref_count(leaf, ref1); |
| } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { |
| ref2 = btrfs_item_ptr(leaf, path->slots[0], |
| struct btrfs_shared_data_ref); |
| num_refs = btrfs_shared_data_ref_count(leaf, ref2); |
| #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 |
| } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) { |
| struct btrfs_extent_ref_v0 *ref0; |
| ref0 = btrfs_item_ptr(leaf, path->slots[0], |
| struct btrfs_extent_ref_v0); |
| num_refs = btrfs_ref_count_v0(leaf, ref0); |
| #endif |
| } else { |
| WARN_ON(1); |
| } |
| return num_refs; |
| } |
| |
| static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_path *path, |
| u64 bytenr, u64 parent, |
| u64 root_objectid) |
| { |
| struct btrfs_key key; |
| int ret; |
| |
| key.objectid = bytenr; |
| if (parent) { |
| key.type = BTRFS_SHARED_BLOCK_REF_KEY; |
| key.offset = parent; |
| } else { |
| key.type = BTRFS_TREE_BLOCK_REF_KEY; |
| key.offset = root_objectid; |
| } |
| |
| ret = btrfs_search_slot(trans, root, &key, path, -1, 1); |
| if (ret > 0) |
| ret = -ENOENT; |
| #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 |
| if (ret == -ENOENT && parent) { |
| btrfs_release_path(path); |
| key.type = BTRFS_EXTENT_REF_V0_KEY; |
| ret = btrfs_search_slot(trans, root, &key, path, -1, 1); |
| if (ret > 0) |
| ret = -ENOENT; |
| } |
| #endif |
| return ret; |
| } |
| |
| static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_path *path, |
| u64 bytenr, u64 parent, |
| u64 root_objectid) |
| { |
| struct btrfs_key key; |
| int ret; |
| |
| key.objectid = bytenr; |
| if (parent) { |
| key.type = BTRFS_SHARED_BLOCK_REF_KEY; |
| key.offset = parent; |
| } else { |
| key.type = BTRFS_TREE_BLOCK_REF_KEY; |
| key.offset = root_objectid; |
| } |
| |
| ret = btrfs_insert_empty_item(trans, root, path, &key, 0); |
| btrfs_release_path(path); |
| return ret; |
| } |
| |
| static inline int extent_ref_type(u64 parent, u64 owner) |
| { |
| int type; |
| if (owner < BTRFS_FIRST_FREE_OBJECTID) { |
| if (parent > 0) |
| type = BTRFS_SHARED_BLOCK_REF_KEY; |
| else |
| type = BTRFS_TREE_BLOCK_REF_KEY; |
| } else { |
| if (parent > 0) |
| type = BTRFS_SHARED_DATA_REF_KEY; |
| else |
| type = BTRFS_EXTENT_DATA_REF_KEY; |
| } |
| return type; |
| } |
| |
| static int find_next_key(struct btrfs_path *path, int level, |
| struct btrfs_key *key) |
| |
| { |
| for (; level < BTRFS_MAX_LEVEL; level++) { |
| if (!path->nodes[level]) |
| break; |
| if (path->slots[level] + 1 >= |
| btrfs_header_nritems(path->nodes[level])) |
| continue; |
| if (level == 0) |
| btrfs_item_key_to_cpu(path->nodes[level], key, |
| path->slots[level] + 1); |
| else |
| btrfs_node_key_to_cpu(path->nodes[level], key, |
| path->slots[level] + 1); |
| return 0; |
| } |
| return 1; |
| } |
| |
| /* |
| * look for inline back ref. if back ref is found, *ref_ret is set |
| * to the address of inline back ref, and 0 is returned. |
| * |
| * if back ref isn't found, *ref_ret is set to the address where it |
| * should be inserted, and -ENOENT is returned. |
| * |
| * if insert is true and there are too many inline back refs, the path |
| * points to the extent item, and -EAGAIN is returned. |
| * |
| * NOTE: inline back refs are ordered in the same way that back ref |
| * items in the tree are ordered. |
| */ |
| static noinline_for_stack |
| int lookup_inline_extent_backref(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_path *path, |
| struct btrfs_extent_inline_ref **ref_ret, |
| u64 bytenr, u64 num_bytes, |
| u64 parent, u64 root_objectid, |
| u64 owner, u64 offset, int insert) |
| { |
| struct btrfs_key key; |
| struct extent_buffer *leaf; |
| struct btrfs_extent_item *ei; |
| struct btrfs_extent_inline_ref *iref; |
| u64 flags; |
| u64 item_size; |
| unsigned long ptr; |
| unsigned long end; |
| int extra_size; |
| int type; |
| int want; |
| int ret; |
| int err = 0; |
| |
| key.objectid = bytenr; |
| key.type = BTRFS_EXTENT_ITEM_KEY; |
| key.offset = num_bytes; |
| |
| want = extent_ref_type(parent, owner); |
| if (insert) { |
| extra_size = btrfs_extent_inline_ref_size(want); |
| path->keep_locks = 1; |
| } else |
| extra_size = -1; |
| ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1); |
| if (ret < 0) { |
| err = ret; |
| goto out; |
| } |
| BUG_ON(ret); |
| |
| leaf = path->nodes[0]; |
| item_size = btrfs_item_size_nr(leaf, path->slots[0]); |
| #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 |
| if (item_size < sizeof(*ei)) { |
| if (!insert) { |
| err = -ENOENT; |
| goto out; |
| } |
| ret = convert_extent_item_v0(trans, root, path, owner, |
| extra_size); |
| if (ret < 0) { |
| err = ret; |
| goto out; |
| } |
| leaf = path->nodes[0]; |
| item_size = btrfs_item_size_nr(leaf, path->slots[0]); |
| } |
| #endif |
| BUG_ON(item_size < sizeof(*ei)); |
| |
| ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); |
| flags = btrfs_extent_flags(leaf, ei); |
| |
| ptr = (unsigned long)(ei + 1); |
| end = (unsigned long)ei + item_size; |
| |
| if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { |
| ptr += sizeof(struct btrfs_tree_block_info); |
| BUG_ON(ptr > end); |
| } else { |
| BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA)); |
| } |
| |
| err = -ENOENT; |
| while (1) { |
| if (ptr >= end) { |
| WARN_ON(ptr > end); |
| break; |
| } |
| iref = (struct btrfs_extent_inline_ref *)ptr; |
| type = btrfs_extent_inline_ref_type(leaf, iref); |
| if (want < type) |
| break; |
| if (want > type) { |
| ptr += btrfs_extent_inline_ref_size(type); |
| continue; |
| } |
| |
| if (type == BTRFS_EXTENT_DATA_REF_KEY) { |
| struct btrfs_extent_data_ref *dref; |
| dref = (struct btrfs_extent_data_ref *)(&iref->offset); |
| if (match_extent_data_ref(leaf, dref, root_objectid, |
| owner, offset)) { |
| err = 0; |
| break; |
| } |
| if (hash_extent_data_ref_item(leaf, dref) < |
| hash_extent_data_ref(root_objectid, owner, offset)) |
| break; |
| } else { |
| u64 ref_offset; |
| ref_offset = btrfs_extent_inline_ref_offset(leaf, iref); |
| if (parent > 0) { |
| if (parent == ref_offset) { |
| err = 0; |
| break; |
| } |
| if (ref_offset < parent) |
| break; |
| } else { |
| if (root_objectid == ref_offset) { |
| err = 0; |
| break; |
| } |
| if (ref_offset < root_objectid) |
| break; |
| } |
| } |
| ptr += btrfs_extent_inline_ref_size(type); |
| } |
| if (err == -ENOENT && insert) { |
| if (item_size + extra_size >= |
| BTRFS_MAX_EXTENT_ITEM_SIZE(root)) { |
| err = -EAGAIN; |
| goto out; |
| } |
| /* |
| * To add new inline back ref, we have to make sure |
| * there is no corresponding back ref item. |
| * For simplicity, we just do not add new inline back |
| * ref if there is any kind of item for this block |
| */ |
| if (find_next_key(path, 0, &key) == 0 && |
| key.objectid == bytenr && |
| key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) { |
| err = -EAGAIN; |
| goto out; |
| } |
| } |
| *ref_ret = (struct btrfs_extent_inline_ref *)ptr; |
| out: |
| if (insert) { |
| path->keep_locks = 0; |
| btrfs_unlock_up_safe(path, 1); |
| } |
| return err; |
| } |
| |
| /* |
| * helper to add new inline back ref |
| */ |
| static noinline_for_stack |
| int setup_inline_extent_backref(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_path *path, |
| struct btrfs_extent_inline_ref *iref, |
| u64 parent, u64 root_objectid, |
| u64 owner, u64 offset, int refs_to_add, |
| struct btrfs_delayed_extent_op *extent_op) |
| { |
| struct extent_buffer *leaf; |
| struct btrfs_extent_item *ei; |
| unsigned long ptr; |
| unsigned long end; |
| unsigned long item_offset; |
| u64 refs; |
| int size; |
| int type; |
| int ret; |
| |
| leaf = path->nodes[0]; |
| ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); |
| item_offset = (unsigned long)iref - (unsigned long)ei; |
| |
| type = extent_ref_type(parent, owner); |
| size = btrfs_extent_inline_ref_size(type); |
| |
| ret = btrfs_extend_item(trans, root, path, size); |
| |
| ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); |
| refs = btrfs_extent_refs(leaf, ei); |
| refs += refs_to_add; |
| btrfs_set_extent_refs(leaf, ei, refs); |
| if (extent_op) |
| __run_delayed_extent_op(extent_op, leaf, ei); |
| |
| ptr = (unsigned long)ei + item_offset; |
| end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]); |
| if (ptr < end - size) |
| memmove_extent_buffer(leaf, ptr + size, ptr, |
| end - size - ptr); |
| |
| iref = (struct btrfs_extent_inline_ref *)ptr; |
| btrfs_set_extent_inline_ref_type(leaf, iref, type); |
| if (type == BTRFS_EXTENT_DATA_REF_KEY) { |
| struct btrfs_extent_data_ref *dref; |
| dref = (struct btrfs_extent_data_ref *)(&iref->offset); |
| btrfs_set_extent_data_ref_root(leaf, dref, root_objectid); |
| btrfs_set_extent_data_ref_objectid(leaf, dref, owner); |
| btrfs_set_extent_data_ref_offset(leaf, dref, offset); |
| btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add); |
| } else if (type == BTRFS_SHARED_DATA_REF_KEY) { |
| struct btrfs_shared_data_ref *sref; |
| sref = (struct btrfs_shared_data_ref *)(iref + 1); |
| btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add); |
| btrfs_set_extent_inline_ref_offset(leaf, iref, parent); |
| } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) { |
| btrfs_set_extent_inline_ref_offset(leaf, iref, parent); |
| } else { |
| btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); |
| } |
| btrfs_mark_buffer_dirty(leaf); |
| return 0; |
| } |
| |
| static int lookup_extent_backref(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_path *path, |
| struct btrfs_extent_inline_ref **ref_ret, |
| u64 bytenr, u64 num_bytes, u64 parent, |
| u64 root_objectid, u64 owner, u64 offset) |
| { |
| int ret; |
| |
| ret = lookup_inline_extent_backref(trans, root, path, ref_ret, |
| bytenr, num_bytes, parent, |
| root_objectid, owner, offset, 0); |
| if (ret != -ENOENT) |
| return ret; |
| |
| btrfs_release_path(path); |
| *ref_ret = NULL; |
| |
| if (owner < BTRFS_FIRST_FREE_OBJECTID) { |
| ret = lookup_tree_block_ref(trans, root, path, bytenr, parent, |
| root_objectid); |
| } else { |
| ret = lookup_extent_data_ref(trans, root, path, bytenr, parent, |
| root_objectid, owner, offset); |
| } |
| return ret; |
| } |
| |
| /* |
| * helper to update/remove inline back ref |
| */ |
| static noinline_for_stack |
| int update_inline_extent_backref(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_path *path, |
| struct btrfs_extent_inline_ref *iref, |
| int refs_to_mod, |
| struct btrfs_delayed_extent_op *extent_op) |
| { |
| struct extent_buffer *leaf; |
| struct btrfs_extent_item *ei; |
| struct btrfs_extent_data_ref *dref = NULL; |
| struct btrfs_shared_data_ref *sref = NULL; |
| unsigned long ptr; |
| unsigned long end; |
| u32 item_size; |
| int size; |
| int type; |
| int ret; |
| u64 refs; |
| |
| leaf = path->nodes[0]; |
| ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); |
| refs = btrfs_extent_refs(leaf, ei); |
| WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0); |
| refs += refs_to_mod; |
| btrfs_set_extent_refs(leaf, ei, refs); |
| if (extent_op) |
| __run_delayed_extent_op(extent_op, leaf, ei); |
| |
| type = btrfs_extent_inline_ref_type(leaf, iref); |
| |
| if (type == BTRFS_EXTENT_DATA_REF_KEY) { |
| dref = (struct btrfs_extent_data_ref *)(&iref->offset); |
| refs = btrfs_extent_data_ref_count(leaf, dref); |
| } else if (type == BTRFS_SHARED_DATA_REF_KEY) { |
| sref = (struct btrfs_shared_data_ref *)(iref + 1); |
| refs = btrfs_shared_data_ref_count(leaf, sref); |
| } else { |
| refs = 1; |
| BUG_ON(refs_to_mod != -1); |
| } |
| |
| BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod); |
| refs += refs_to_mod; |
| |
| if (refs > 0) { |
| if (type == BTRFS_EXTENT_DATA_REF_KEY) |
| btrfs_set_extent_data_ref_count(leaf, dref, refs); |
| else |
| btrfs_set_shared_data_ref_count(leaf, sref, refs); |
| } else { |
| size = btrfs_extent_inline_ref_size(type); |
| item_size = btrfs_item_size_nr(leaf, path->slots[0]); |
| ptr = (unsigned long)iref; |
| end = (unsigned long)ei + item_size; |
| if (ptr + size < end) |
| memmove_extent_buffer(leaf, ptr, ptr + size, |
| end - ptr - size); |
| item_size -= size; |
| ret = btrfs_truncate_item(trans, root, path, item_size, 1); |
| } |
| btrfs_mark_buffer_dirty(leaf); |
| return 0; |
| } |
| |
| static noinline_for_stack |
| int insert_inline_extent_backref(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_path *path, |
| u64 bytenr, u64 num_bytes, u64 parent, |
| u64 root_objectid, u64 owner, |
| u64 offset, int refs_to_add, |
| struct btrfs_delayed_extent_op *extent_op) |
| { |
| struct btrfs_extent_inline_ref *iref; |
| int ret; |
| |
| ret = lookup_inline_extent_backref(trans, root, path, &iref, |
| bytenr, num_bytes, parent, |
| root_objectid, owner, offset, 1); |
| if (ret == 0) { |
| BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID); |
| ret = update_inline_extent_backref(trans, root, path, iref, |
| refs_to_add, extent_op); |
| } else if (ret == -ENOENT) { |
| ret = setup_inline_extent_backref(trans, root, path, iref, |
| parent, root_objectid, |
| owner, offset, refs_to_add, |
| extent_op); |
| } |
| return ret; |
| } |
| |
| static int insert_extent_backref(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_path *path, |
| u64 bytenr, u64 parent, u64 root_objectid, |
| u64 owner, u64 offset, int refs_to_add) |
| { |
| int ret; |
| if (owner < BTRFS_FIRST_FREE_OBJECTID) { |
| BUG_ON(refs_to_add != 1); |
| ret = insert_tree_block_ref(trans, root, path, bytenr, |
| parent, root_objectid); |
| } else { |
| ret = insert_extent_data_ref(trans, root, path, bytenr, |
| parent, root_objectid, |
| owner, offset, refs_to_add); |
| } |
| return ret; |
| } |
| |
| static int remove_extent_backref(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_path *path, |
| struct btrfs_extent_inline_ref *iref, |
| int refs_to_drop, int is_data) |
| { |
| int ret; |
| |
| BUG_ON(!is_data && refs_to_drop != 1); |
| if (iref) { |
| ret = update_inline_extent_backref(trans, root, path, iref, |
| -refs_to_drop, NULL); |
| } else if (is_data) { |
| ret = remove_extent_data_ref(trans, root, path, refs_to_drop); |
| } else { |
| ret = btrfs_del_item(trans, root, path); |
| } |
| return ret; |
| } |
| |
| static int btrfs_issue_discard(struct block_device *bdev, |
| u64 start, u64 len) |
| { |
| return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0); |
| } |
| |
| static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr, |
| u64 num_bytes, u64 *actual_bytes) |
| { |
| int ret; |
| u64 discarded_bytes = 0; |
| struct btrfs_bio *bbio = NULL; |
| |
| |
| /* Tell the block device(s) that the sectors can be discarded */ |
| ret = btrfs_map_block(&root->fs_info->mapping_tree, REQ_DISCARD, |
| bytenr, &num_bytes, &bbio, 0); |
| if (!ret) { |
| struct btrfs_bio_stripe *stripe = bbio->stripes; |
| int i; |
| |
| |
| for (i = 0; i < bbio->num_stripes; i++, stripe++) { |
| if (!stripe->dev->can_discard) |
| continue; |
| |
| ret = btrfs_issue_discard(stripe->dev->bdev, |
| stripe->physical, |
| stripe->length); |
| if (!ret) |
| discarded_bytes += stripe->length; |
| else if (ret != -EOPNOTSUPP) |
| break; |
| |
| /* |
| * Just in case we get back EOPNOTSUPP for some reason, |
| * just ignore the return value so we don't screw up |
| * people calling discard_extent. |
| */ |
| ret = 0; |
| } |
| kfree(bbio); |
| } |
| |
| if (actual_bytes) |
| *actual_bytes = discarded_bytes; |
| |
| |
| return ret; |
| } |
| |
| int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| u64 bytenr, u64 num_bytes, u64 parent, |
| u64 root_objectid, u64 owner, u64 offset, int for_cow) |
| { |
| int ret; |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| |
| BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID && |
| root_objectid == BTRFS_TREE_LOG_OBJECTID); |
| |
| if (owner < BTRFS_FIRST_FREE_OBJECTID) { |
| ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr, |
| num_bytes, |
| parent, root_objectid, (int)owner, |
| BTRFS_ADD_DELAYED_REF, NULL, for_cow); |
| } else { |
| ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr, |
| num_bytes, |
| parent, root_objectid, owner, offset, |
| BTRFS_ADD_DELAYED_REF, NULL, for_cow); |
| } |
| return ret; |
| } |
| |
| static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| u64 bytenr, u64 num_bytes, |
| u64 parent, u64 root_objectid, |
| u64 owner, u64 offset, int refs_to_add, |
| struct btrfs_delayed_extent_op *extent_op) |
| { |
| struct btrfs_path *path; |
| struct extent_buffer *leaf; |
| struct btrfs_extent_item *item; |
| u64 refs; |
| int ret; |
| int err = 0; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| path->reada = 1; |
| path->leave_spinning = 1; |
| /* this will setup the path even if it fails to insert the back ref */ |
| ret = insert_inline_extent_backref(trans, root->fs_info->extent_root, |
| path, bytenr, num_bytes, parent, |
| root_objectid, owner, offset, |
| refs_to_add, extent_op); |
| if (ret == 0) |
| goto out; |
| |
| if (ret != -EAGAIN) { |
| err = ret; |
| goto out; |
| } |
| |
| leaf = path->nodes[0]; |
| item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); |
| refs = btrfs_extent_refs(leaf, item); |
| btrfs_set_extent_refs(leaf, item, refs + refs_to_add); |
| if (extent_op) |
| __run_delayed_extent_op(extent_op, leaf, item); |
| |
| btrfs_mark_buffer_dirty(leaf); |
| btrfs_release_path(path); |
| |
| path->reada = 1; |
| path->leave_spinning = 1; |
| |
| /* now insert the actual backref */ |
| ret = insert_extent_backref(trans, root->fs_info->extent_root, |
| path, bytenr, parent, root_objectid, |
| owner, offset, refs_to_add); |
| BUG_ON(ret); |
| out: |
| btrfs_free_path(path); |
| return err; |
| } |
| |
| static int run_delayed_data_ref(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_delayed_ref_node *node, |
| struct btrfs_delayed_extent_op *extent_op, |
| int insert_reserved) |
| { |
| int ret = 0; |
| struct btrfs_delayed_data_ref *ref; |
| struct btrfs_key ins; |
| u64 parent = 0; |
| u64 ref_root = 0; |
| u64 flags = 0; |
| |
| ins.objectid = node->bytenr; |
| ins.offset = node->num_bytes; |
| ins.type = BTRFS_EXTENT_ITEM_KEY; |
| |
| ref = btrfs_delayed_node_to_data_ref(node); |
| if (node->type == BTRFS_SHARED_DATA_REF_KEY) |
| parent = ref->parent; |
| else |
| ref_root = ref->root; |
| |
| if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { |
| if (extent_op) { |
| BUG_ON(extent_op->update_key); |
| flags |= extent_op->flags_to_set; |
| } |
| ret = alloc_reserved_file_extent(trans, root, |
| parent, ref_root, flags, |
| ref->objectid, ref->offset, |
| &ins, node->ref_mod); |
| } else if (node->action == BTRFS_ADD_DELAYED_REF) { |
| ret = __btrfs_inc_extent_ref(trans, root, node->bytenr, |
| node->num_bytes, parent, |
| ref_root, ref->objectid, |
| ref->offset, node->ref_mod, |
| extent_op); |
| } else if (node->action == BTRFS_DROP_DELAYED_REF) { |
| ret = __btrfs_free_extent(trans, root, node->bytenr, |
| node->num_bytes, parent, |
| ref_root, ref->objectid, |
| ref->offset, node->ref_mod, |
| extent_op); |
| } else { |
| BUG(); |
| } |
| return ret; |
| } |
| |
| static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, |
| struct extent_buffer *leaf, |
| struct btrfs_extent_item *ei) |
| { |
| u64 flags = btrfs_extent_flags(leaf, ei); |
| if (extent_op->update_flags) { |
| flags |= extent_op->flags_to_set; |
| btrfs_set_extent_flags(leaf, ei, flags); |
| } |
| |
| if (extent_op->update_key) { |
| struct btrfs_tree_block_info *bi; |
| BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)); |
| bi = (struct btrfs_tree_block_info *)(ei + 1); |
| btrfs_set_tree_block_key(leaf, bi, &extent_op->key); |
| } |
| } |
| |
| static int run_delayed_extent_op(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_delayed_ref_node *node, |
| struct btrfs_delayed_extent_op *extent_op) |
| { |
| struct btrfs_key key; |
| struct btrfs_path *path; |
| struct btrfs_extent_item *ei; |
| struct extent_buffer *leaf; |
| u32 item_size; |
| int ret; |
| int err = 0; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| key.objectid = node->bytenr; |
| key.type = BTRFS_EXTENT_ITEM_KEY; |
| key.offset = node->num_bytes; |
| |
| path->reada = 1; |
| path->leave_spinning = 1; |
| ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key, |
| path, 0, 1); |
| if (ret < 0) { |
| err = ret; |
| goto out; |
| } |
| if (ret > 0) { |
| err = -EIO; |
| goto out; |
| } |
| |
| leaf = path->nodes[0]; |
| item_size = btrfs_item_size_nr(leaf, path->slots[0]); |
| #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 |
| if (item_size < sizeof(*ei)) { |
| ret = convert_extent_item_v0(trans, root->fs_info->extent_root, |
| path, (u64)-1, 0); |
| if (ret < 0) { |
| err = ret; |
| goto out; |
| } |
| leaf = path->nodes[0]; |
| item_size = btrfs_item_size_nr(leaf, path->slots[0]); |
| } |
| #endif |
| BUG_ON(item_size < sizeof(*ei)); |
| ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); |
| __run_delayed_extent_op(extent_op, leaf, ei); |
| |
| btrfs_mark_buffer_dirty(leaf); |
| out: |
| btrfs_free_path(path); |
| return err; |
| } |
| |
| static int run_delayed_tree_ref(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_delayed_ref_node *node, |
| struct btrfs_delayed_extent_op *extent_op, |
| int insert_reserved) |
| { |
| int ret = 0; |
| struct btrfs_delayed_tree_ref *ref; |
| struct btrfs_key ins; |
| u64 parent = 0; |
| u64 ref_root = 0; |
| |
| ins.objectid = node->bytenr; |
| ins.offset = node->num_bytes; |
| ins.type = BTRFS_EXTENT_ITEM_KEY; |
| |
| ref = btrfs_delayed_node_to_tree_ref(node); |
| if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) |
| parent = ref->parent; |
| else |
| ref_root = ref->root; |
| |
| BUG_ON(node->ref_mod != 1); |
| if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { |
| BUG_ON(!extent_op || !extent_op->update_flags || |
| !extent_op->update_key); |
| ret = alloc_reserved_tree_block(trans, root, |
| parent, ref_root, |
| extent_op->flags_to_set, |
| &extent_op->key, |
| ref->level, &ins); |
| } else if (node->action == BTRFS_ADD_DELAYED_REF) { |
| ret = __btrfs_inc_extent_ref(trans, root, node->bytenr, |
| node->num_bytes, parent, ref_root, |
| ref->level, 0, 1, extent_op); |
| } else if (node->action == BTRFS_DROP_DELAYED_REF) { |
| ret = __btrfs_free_extent(trans, root, node->bytenr, |
| node->num_bytes, parent, ref_root, |
| ref->level, 0, 1, extent_op); |
| } else { |
| BUG(); |
| } |
| return ret; |
| } |
| |
| /* helper function to actually process a single delayed ref entry */ |
| static int run_one_delayed_ref(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_delayed_ref_node *node, |
| struct btrfs_delayed_extent_op *extent_op, |
| int insert_reserved) |
| { |
| int ret; |
| if (btrfs_delayed_ref_is_head(node)) { |
| struct btrfs_delayed_ref_head *head; |
| /* |
| * we've hit the end of the chain and we were supposed |
| * to insert this extent into the tree. But, it got |
| * deleted before we ever needed to insert it, so all |
| * we have to do is clean up the accounting |
| */ |
| BUG_ON(extent_op); |
| head = btrfs_delayed_node_to_head(node); |
| if (insert_reserved) { |
| btrfs_pin_extent(root, node->bytenr, |
| node->num_bytes, 1); |
| if (head->is_data) { |
| ret = btrfs_del_csums(trans, root, |
| node->bytenr, |
| node->num_bytes); |
| BUG_ON(ret); |
| } |
| } |
| mutex_unlock(&head->mutex); |
| return 0; |
| } |
| |
| if (node->type == BTRFS_TREE_BLOCK_REF_KEY || |
| node->type == BTRFS_SHARED_BLOCK_REF_KEY) |
| ret = run_delayed_tree_ref(trans, root, node, extent_op, |
| insert_reserved); |
| else if (node->type == BTRFS_EXTENT_DATA_REF_KEY || |
| node->type == BTRFS_SHARED_DATA_REF_KEY) |
| ret = run_delayed_data_ref(trans, root, node, extent_op, |
| insert_reserved); |
| else |
| BUG(); |
| return ret; |
| } |
| |
| static noinline struct btrfs_delayed_ref_node * |
| select_delayed_ref(struct btrfs_delayed_ref_head *head) |
| { |
| struct rb_node *node; |
| struct btrfs_delayed_ref_node *ref; |
| int action = BTRFS_ADD_DELAYED_REF; |
| again: |
| /* |
| * select delayed ref of type BTRFS_ADD_DELAYED_REF first. |
| * this prevents ref count from going down to zero when |
| * there still are pending delayed ref. |
| */ |
| node = rb_prev(&head->node.rb_node); |
| while (1) { |
| if (!node) |
| break; |
| ref = rb_entry(node, struct btrfs_delayed_ref_node, |
| rb_node); |
| if (ref->bytenr != head->node.bytenr) |
| break; |
| if (ref->action == action) |
| return ref; |
| node = rb_prev(node); |
| } |
| if (action == BTRFS_ADD_DELAYED_REF) { |
| action = BTRFS_DROP_DELAYED_REF; |
| goto again; |
| } |
| return NULL; |
| } |
| |
| static noinline int run_clustered_refs(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct list_head *cluster) |
| { |
| struct btrfs_delayed_ref_root *delayed_refs; |
| struct btrfs_delayed_ref_node *ref; |
| struct btrfs_delayed_ref_head *locked_ref = NULL; |
| struct btrfs_delayed_extent_op *extent_op; |
| int ret; |
| int count = 0; |
| int must_insert_reserved = 0; |
| |
| delayed_refs = &trans->transaction->delayed_refs; |
| while (1) { |
| if (!locked_ref) { |
| /* pick a new head ref from the cluster list */ |
| if (list_empty(cluster)) |
| break; |
| |
| locked_ref = list_entry(cluster->next, |
| struct btrfs_delayed_ref_head, cluster); |
| |
| /* grab the lock that says we are going to process |
| * all the refs for this head */ |
| ret = btrfs_delayed_ref_lock(trans, locked_ref); |
| |
| /* |
| * we may have dropped the spin lock to get the head |
| * mutex lock, and that might have given someone else |
| * time to free the head. If that's true, it has been |
| * removed from our list and we can move on. |
| */ |
| if (ret == -EAGAIN) { |
| locked_ref = NULL; |
| count++; |
| continue; |
| } |
| } |
| |
| /* |
| * locked_ref is the head node, so we have to go one |
| * node back for any delayed ref updates |
| */ |
| ref = select_delayed_ref(locked_ref); |
| |
| if (ref && ref->seq && |
| btrfs_check_delayed_seq(delayed_refs, ref->seq)) { |
| /* |
| * there are still refs with lower seq numbers in the |
| * process of being added. Don't run this ref yet. |
| */ |
| list_del_init(&locked_ref->cluster); |
| mutex_unlock(&locked_ref->mutex); |
| locked_ref = NULL; |
| delayed_refs->num_heads_ready++; |
| spin_unlock(&delayed_refs->lock); |
| cond_resched(); |
| spin_lock(&delayed_refs->lock); |
| continue; |
| } |
| |
| /* |
| * record the must insert reserved flag before we |
| * drop the spin lock. |
| */ |
| must_insert_reserved = locked_ref->must_insert_reserved; |
| locked_ref->must_insert_reserved = 0; |
| |
| extent_op = locked_ref->extent_op; |
| locked_ref->extent_op = NULL; |
| |
| if (!ref) { |
| /* All delayed refs have been processed, Go ahead |
| * and send the head node to run_one_delayed_ref, |
| * so that any accounting fixes can happen |
| */ |
| ref = &locked_ref->node; |
| |
| if (extent_op && must_insert_reserved) { |
| kfree(extent_op); |
| extent_op = NULL; |
| } |
| |
| if (extent_op) { |
| spin_unlock(&delayed_refs->lock); |
| |
| ret = run_delayed_extent_op(trans, root, |
| ref, extent_op); |
| BUG_ON(ret); |
| kfree(extent_op); |
| |
| goto next; |
| } |
| |
| list_del_init(&locked_ref->cluster); |
| locked_ref = NULL; |
| } |
| |
| ref->in_tree = 0; |
| rb_erase(&ref->rb_node, &delayed_refs->root); |
| delayed_refs->num_entries--; |
| /* |
| * we modified num_entries, but as we're currently running |
| * delayed refs, skip |
| * wake_up(&delayed_refs->seq_wait); |
| * here. |
| */ |
| spin_unlock(&delayed_refs->lock); |
| |
| ret = run_one_delayed_ref(trans, root, ref, extent_op, |
| must_insert_reserved); |
| BUG_ON(ret); |
| |
| btrfs_put_delayed_ref(ref); |
| kfree(extent_op); |
| count++; |
| next: |
| do_chunk_alloc(trans, root->fs_info->extent_root, |
| 2 * 1024 * 1024, |
| btrfs_get_alloc_profile(root, 0), |
| CHUNK_ALLOC_NO_FORCE); |
| cond_resched(); |
| spin_lock(&delayed_refs->lock); |
| } |
| return count; |
| } |
| |
| |
| static void wait_for_more_refs(struct btrfs_delayed_ref_root *delayed_refs, |
| unsigned long num_refs) |
| { |
| struct list_head *first_seq = delayed_refs->seq_head.next; |
| |
| spin_unlock(&delayed_refs->lock); |
| pr_debug("waiting for more refs (num %ld, first %p)\n", |
| num_refs, first_seq); |
| wait_event(delayed_refs->seq_wait, |
| num_refs != delayed_refs->num_entries || |
| delayed_refs->seq_head.next != first_seq); |
| pr_debug("done waiting for more refs (num %ld, first %p)\n", |
| delayed_refs->num_entries, delayed_refs->seq_head.next); |
| spin_lock(&delayed_refs->lock); |
| } |
| |
| /* |
| * this starts processing the delayed reference count updates and |
| * extent insertions we have queued up so far. count can be |
| * 0, which means to process everything in the tree at the start |
| * of the run (but not newly added entries), or it can be some target |
| * number you'd like to process. |
| */ |
| int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, unsigned long count) |
| { |
| struct rb_node *node; |
| struct btrfs_delayed_ref_root *delayed_refs; |
| struct btrfs_delayed_ref_node *ref; |
| struct list_head cluster; |
| int ret; |
| u64 delayed_start; |
| int run_all = count == (unsigned long)-1; |
| int run_most = 0; |
| unsigned long num_refs = 0; |
| int consider_waiting; |
| |
| if (root == root->fs_info->extent_root) |
| root = root->fs_info->tree_root; |
| |
| do_chunk_alloc(trans, root->fs_info->extent_root, |
| 2 * 1024 * 1024, btrfs_get_alloc_profile(root, 0), |
| CHUNK_ALLOC_NO_FORCE); |
| |
| delayed_refs = &trans->transaction->delayed_refs; |
| INIT_LIST_HEAD(&cluster); |
| again: |
| consider_waiting = 0; |
| spin_lock(&delayed_refs->lock); |
| if (count == 0) { |
| count = delayed_refs->num_entries * 2; |
| run_most = 1; |
| } |
| while (1) { |
| if (!(run_all || run_most) && |
| delayed_refs->num_heads_ready < 64) |
| break; |
| |
| /* |
| * go find something we can process in the rbtree. We start at |
| * the beginning of the tree, and then build a cluster |
| * of refs to process starting at the first one we are able to |
| * lock |
| */ |
| delayed_start = delayed_refs->run_delayed_start; |
| ret = btrfs_find_ref_cluster(trans, &cluster, |
| delayed_refs->run_delayed_start); |
| if (ret) |
| break; |
| |
| if (delayed_start >= delayed_refs->run_delayed_start) { |
| if (consider_waiting == 0) { |
| /* |
| * btrfs_find_ref_cluster looped. let's do one |
| * more cycle. if we don't run any delayed ref |
| * during that cycle (because we can't because |
| * all of them are blocked) and if the number of |
| * refs doesn't change, we avoid busy waiting. |
| */ |
| consider_waiting = 1; |
| num_refs = delayed_refs->num_entries; |
| } else { |
| wait_for_more_refs(delayed_refs, num_refs); |
| /* |
| * after waiting, things have changed. we |
| * dropped the lock and someone else might have |
| * run some refs, built new clusters and so on. |
| * therefore, we restart staleness detection. |
| */ |
| consider_waiting = 0; |
| } |
| } |
| |
| ret = run_clustered_refs(trans, root, &cluster); |
| BUG_ON(ret < 0); |
| |
| count -= min_t(unsigned long, ret, count); |
| |
| if (count == 0) |
| break; |
| |
| if (ret || delayed_refs->run_delayed_start == 0) { |
| /* refs were run, let's reset staleness detection */ |
| consider_waiting = 0; |
| } |
| } |
| |
| if (run_all) { |
| node = rb_first(&delayed_refs->root); |
| if (!node) |
| goto out; |
| count = (unsigned long)-1; |
| |
| while (node) { |
| ref = rb_entry(node, struct btrfs_delayed_ref_node, |
| rb_node); |
| if (btrfs_delayed_ref_is_head(ref)) { |
| struct btrfs_delayed_ref_head *head; |
| |
| head = btrfs_delayed_node_to_head(ref); |
| atomic_inc(&ref->refs); |
| |
| spin_unlock(&delayed_refs->lock); |
| /* |
| * Mutex was contended, block until it's |
| * released and try again |
| */ |
| mutex_lock(&head->mutex); |
| mutex_unlock(&head->mutex); |
| |
| btrfs_put_delayed_ref(ref); |
| cond_resched(); |
| goto again; |
| } |
| node = rb_next(node); |
| } |
| spin_unlock(&delayed_refs->lock); |
| schedule_timeout(1); |
| goto again; |
| } |
| out: |
| spin_unlock(&delayed_refs->lock); |
| return 0; |
| } |
| |
| int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| u64 bytenr, u64 num_bytes, u64 flags, |
| int is_data) |
| { |
| struct btrfs_delayed_extent_op *extent_op; |
| int ret; |
| |
| extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS); |
| if (!extent_op) |
| return -ENOMEM; |
| |
| extent_op->flags_to_set = flags; |
| extent_op->update_flags = 1; |
| extent_op->update_key = 0; |
| extent_op->is_data = is_data ? 1 : 0; |
| |
| ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr, |
| num_bytes, extent_op); |
| if (ret) |
| kfree(extent_op); |
| return ret; |
| } |
| |
| static noinline int check_delayed_ref(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_path *path, |
| u64 objectid, u64 offset, u64 bytenr) |
| { |
| struct btrfs_delayed_ref_head *head; |
| struct btrfs_delayed_ref_node *ref; |
| struct btrfs_delayed_data_ref *data_ref; |
| struct btrfs_delayed_ref_root *delayed_refs; |
| struct rb_node *node; |
| int ret = 0; |
| |
| ret = -ENOENT; |
| delayed_refs = &trans->transaction->delayed_refs; |
| spin_lock(&delayed_refs->lock); |
| head = btrfs_find_delayed_ref_head(trans, bytenr); |
| if (!head) |
| goto out; |
| |
| if (!mutex_trylock(&head->mutex)) { |
| atomic_inc(&head->node.refs); |
| spin_unlock(&delayed_refs->lock); |
| |
| btrfs_release_path(path); |
| |
| /* |
| * Mutex was contended, block until it's released and let |
| * caller try again |
| */ |
| mutex_lock(&head->mutex); |
| mutex_unlock(&head->mutex); |
| btrfs_put_delayed_ref(&head->node); |
| return -EAGAIN; |
| } |
| |
| node = rb_prev(&head->node.rb_node); |
| if (!node) |
| goto out_unlock; |
| |
| ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node); |
| |
| if (ref->bytenr != bytenr) |
| goto out_unlock; |
| |
| ret = 1; |
| if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) |
| goto out_unlock; |
| |
| data_ref = btrfs_delayed_node_to_data_ref(ref); |
| |
| node = rb_prev(node); |
| if (node) { |
| ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node); |
| if (ref->bytenr == bytenr) |
| goto out_unlock; |
| } |
| |
| if (data_ref->root != root->root_key.objectid || |
| data_ref->objectid != objectid || data_ref->offset != offset) |
| goto out_unlock; |
| |
| ret = 0; |
| out_unlock: |
| mutex_unlock(&head->mutex); |
| out: |
| spin_unlock(&delayed_refs->lock); |
| return ret; |
| } |
| |
| static noinline int check_committed_ref(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_path *path, |
| u64 objectid, u64 offset, u64 bytenr) |
| { |
| struct btrfs_root *extent_root = root->fs_info->extent_root; |
| struct extent_buffer *leaf; |
| struct btrfs_extent_data_ref *ref; |
| struct btrfs_extent_inline_ref *iref; |
| struct btrfs_extent_item *ei; |
| struct btrfs_key key; |
| u32 item_size; |
| int ret; |
| |
| key.objectid = bytenr; |
| key.offset = (u64)-1; |
| key.type = BTRFS_EXTENT_ITEM_KEY; |
| |
| ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); |
| if (ret < 0) |
| goto out; |
| BUG_ON(ret == 0); |
| |
| ret = -ENOENT; |
| if (path->slots[0] == 0) |
| goto out; |
| |
| path->slots[0]--; |
| leaf = path->nodes[0]; |
| btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); |
| |
| if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY) |
| goto out; |
| |
| ret = 1; |
| item_size = btrfs_item_size_nr(leaf, path->slots[0]); |
| #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 |
| if (item_size < sizeof(*ei)) { |
| WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0)); |
| goto out; |
| } |
| #endif |
| ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); |
| |
| if (item_size != sizeof(*ei) + |
| btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY)) |
| goto out; |
| |
| if (btrfs_extent_generation(leaf, ei) <= |
| btrfs_root_last_snapshot(&root->root_item)) |
| goto out; |
| |
| iref = (struct btrfs_extent_inline_ref *)(ei + 1); |
| if (btrfs_extent_inline_ref_type(leaf, iref) != |
| BTRFS_EXTENT_DATA_REF_KEY) |
| goto out; |
| |
| ref = (struct btrfs_extent_data_ref *)(&iref->offset); |
| if (btrfs_extent_refs(leaf, ei) != |
| btrfs_extent_data_ref_count(leaf, ref) || |
| btrfs_extent_data_ref_root(leaf, ref) != |
| root->root_key.objectid || |
| btrfs_extent_data_ref_objectid(leaf, ref) != objectid || |
| btrfs_extent_data_ref_offset(leaf, ref) != offset) |
| goto out; |
| |
| ret = 0; |
| out: |
| return ret; |
| } |
| |
| int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| u64 objectid, u64 offset, u64 bytenr) |
| { |
| struct btrfs_path *path; |
| int ret; |
| int ret2; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOENT; |
| |
| do { |
| ret = check_committed_ref(trans, root, path, objectid, |
| offset, bytenr); |
| if (ret && ret != -ENOENT) |
| goto out; |
| |
| ret2 = check_delayed_ref(trans, root, path, objectid, |
| offset, bytenr); |
| } while (ret2 == -EAGAIN); |
| |
| if (ret2 && ret2 != -ENOENT) { |
| ret = ret2; |
| goto out; |
| } |
| |
| if (ret != -ENOENT || ret2 != -ENOENT) |
| ret = 0; |
| out: |
| btrfs_free_path(path); |
| if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) |
| WARN_ON(ret > 0); |
| return ret; |
| } |
| |
| static int __btrfs_mod_ref(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct extent_buffer *buf, |
| int full_backref, int inc, int for_cow) |
| { |
| u64 bytenr; |
| u64 num_bytes; |
| u64 parent; |
| u64 ref_root; |
| u32 nritems; |
| struct btrfs_key key; |
| struct btrfs_file_extent_item *fi; |
| int i; |
| int level; |
| int ret = 0; |
| int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *, |
| u64, u64, u64, u64, u64, u64, int); |
| |
| ref_root = btrfs_header_owner(buf); |
| nritems = btrfs_header_nritems(buf); |
| level = btrfs_header_level(buf); |
| |
| if (!root->ref_cows && level == 0) |
| return 0; |
| |
| if (inc) |
| process_func = btrfs_inc_extent_ref; |
| else |
| process_func = btrfs_free_extent; |
| |
| if (full_backref) |
| parent = buf->start; |
| else |
| parent = 0; |
| |
| for (i = 0; i < nritems; i++) { |
| if (level == 0) { |
| btrfs_item_key_to_cpu(buf, &key, i); |
| if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY) |
| continue; |
| fi = btrfs_item_ptr(buf, i, |
| struct btrfs_file_extent_item); |
| if (btrfs_file_extent_type(buf, fi) == |
| BTRFS_FILE_EXTENT_INLINE) |
| continue; |
| bytenr = btrfs_file_extent_disk_bytenr(buf, fi); |
| if (bytenr == 0) |
| continue; |
| |
| num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi); |
| key.offset -= btrfs_file_extent_offset(buf, fi); |
| ret = process_func(trans, root, bytenr, num_bytes, |
| parent, ref_root, key.objectid, |
| key.offset, for_cow); |
| if (ret) |
| goto fail; |
| } else { |
| bytenr = btrfs_node_blockptr(buf, i); |
| num_bytes = btrfs_level_size(root, level - 1); |
| ret = process_func(trans, root, bytenr, num_bytes, |
| parent, ref_root, level - 1, 0, |
| for_cow); |
| if (ret) |
| goto fail; |
| } |
| } |
| return 0; |
| fail: |
| BUG(); |
| return ret; |
| } |
| |
| int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, |
| struct extent_buffer *buf, int full_backref, int for_cow) |
| { |
| return __btrfs_mod_ref(trans, root, buf, full_backref, 1, for_cow); |
| } |
| |
| int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, |
| struct extent_buffer *buf, int full_backref, int for_cow) |
| { |
| return __btrfs_mod_ref(trans, root, buf, full_backref, 0, for_cow); |
| } |
| |
| static int write_one_cache_group(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_path *path, |
| struct btrfs_block_group_cache *cache) |
| { |
| int ret; |
| struct btrfs_root *extent_root = root->fs_info->extent_root; |
| unsigned long bi; |
| struct extent_buffer *leaf; |
| |
| ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1); |
| if (ret < 0) |
| goto fail; |
| BUG_ON(ret); |
| |
| leaf = path->nodes[0]; |
| bi = btrfs_item_ptr_offset(leaf, path->slots[0]); |
| write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item)); |
| btrfs_mark_buffer_dirty(leaf); |
| btrfs_release_path(path); |
| fail: |
| if (ret) |
| return ret; |
| return 0; |
| |
| } |
| |
| static struct btrfs_block_group_cache * |
| next_block_group(struct btrfs_root *root, |
| struct btrfs_block_group_cache *cache) |
| { |
| struct rb_node *node; |
| spin_lock(&root->fs_info->block_group_cache_lock); |
| node = rb_next(&cache->cache_node); |
| btrfs_put_block_group(cache); |
| if (node) { |
| cache = rb_entry(node, struct btrfs_block_group_cache, |
| cache_node); |
| btrfs_get_block_group(cache); |
| } else |
| cache = NULL; |
| spin_unlock(&root->fs_info->block_group_cache_lock); |
| return cache; |
| } |
| |
| static int cache_save_setup(struct btrfs_block_group_cache *block_group, |
| struct btrfs_trans_handle *trans, |
| struct btrfs_path *path) |
| { |
| struct btrfs_root *root = block_group->fs_info->tree_root; |
| struct inode *inode = NULL; |
| u64 alloc_hint = 0; |
| int dcs = BTRFS_DC_ERROR; |
| int num_pages = 0; |
| int retries = 0; |
| int ret = 0; |
| |
| /* |
| * If this block group is smaller than 100 megs don't bother caching the |
| * block group. |
| */ |
| if (block_group->key.offset < (100 * 1024 * 1024)) { |
| spin_lock(&block_group->lock); |
| block_group->disk_cache_state = BTRFS_DC_WRITTEN; |
| spin_unlock(&block_group->lock); |
| return 0; |
| } |
| |
| again: |
| inode = lookup_free_space_inode(root, block_group, path); |
| if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) { |
| ret = PTR_ERR(inode); |
| btrfs_release_path(path); |
| goto out; |
| } |
| |
| if (IS_ERR(inode)) { |
| BUG_ON(retries); |
| retries++; |
| |
| if (block_group->ro) |
| goto out_free; |
| |
| ret = create_free_space_inode(root, trans, block_group, path); |
| if (ret) |
| goto out_free; |
| goto again; |
| } |
| |
| /* We've already setup this transaction, go ahead and exit */ |
| if (block_group->cache_generation == trans->transid && |
| i_size_read(inode)) { |
| dcs = BTRFS_DC_SETUP; |
| goto out_put; |
| } |
| |
| /* |
| * We want to set the generation to 0, that way if anything goes wrong |
| * from here on out we know not to trust this cache when we load up next |
| * time. |
| */ |
| BTRFS_I(inode)->generation = 0; |
| ret = btrfs_update_inode(trans, root, inode); |
| WARN_ON(ret); |
| |
| if (i_size_read(inode) > 0) { |
| ret = btrfs_truncate_free_space_cache(root, trans, path, |
| inode); |
| if (ret) |
| goto out_put; |
| } |
| |
| spin_lock(&block_group->lock); |
| if (block_group->cached != BTRFS_CACHE_FINISHED) { |
| /* We're not cached, don't bother trying to write stuff out */ |
| dcs = BTRFS_DC_WRITTEN; |
| spin_unlock(&block_group->lock); |
| goto out_put; |
| } |
| spin_unlock(&block_group->lock); |
| |
| num_pages = (int)div64_u64(block_group->key.offset, 1024 * 1024 * 1024); |
| if (!num_pages) |
| num_pages = 1; |
| |
| /* |
| * Just to make absolutely sure we have enough space, we're going to |
| * preallocate 12 pages worth of space for each block group. In |
| * practice we ought to use at most 8, but we need extra space so we can |
| * add our header and have a terminator between the extents and the |
| * bitmaps. |
| */ |
| num_pages *= 16; |
| num_pages *= PAGE_CACHE_SIZE; |
| |
| ret = btrfs_check_data_free_space(inode, num_pages); |
| if (ret) |
| goto out_put; |
| |
| ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages, |
| num_pages, num_pages, |
| &alloc_hint); |
| if (!ret) |
| dcs = BTRFS_DC_SETUP; |
| btrfs_free_reserved_data_space(inode, num_pages); |
| |
| out_put: |
| iput(inode); |
| out_free: |
| btrfs_release_path(path); |
| out: |
| spin_lock(&block_group->lock); |
| if (!ret && dcs == BTRFS_DC_SETUP) |
| block_group->cache_generation = trans->transid; |
| block_group->disk_cache_state = dcs; |
| spin_unlock(&block_group->lock); |
| |
| return ret; |
| } |
| |
| int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root) |
| { |
| struct btrfs_block_group_cache *cache; |
| int err = 0; |
| struct btrfs_path *path; |
| u64 last = 0; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| again: |
| while (1) { |
| cache = btrfs_lookup_first_block_group(root->fs_info, last); |
| while (cache) { |
| if (cache->disk_cache_state == BTRFS_DC_CLEAR) |
| break; |
| cache = next_block_group(root, cache); |
| } |
| if (!cache) { |
| if (last == 0) |
| break; |
| last = 0; |
| continue; |
| } |
| err = cache_save_setup(cache, trans, path); |
| last = cache->key.objectid + cache->key.offset; |
| btrfs_put_block_group(cache); |
| } |
| |
| while (1) { |
| if (last == 0) { |
| err = btrfs_run_delayed_refs(trans, root, |
| (unsigned long)-1); |
| BUG_ON(err); |
| } |
| |
| cache = btrfs_lookup_first_block_group(root->fs_info, last); |
| while (cache) { |
| if (cache->disk_cache_state == BTRFS_DC_CLEAR) { |
| btrfs_put_block_group(cache); |
| goto again; |
| } |
| |
| if (cache->dirty) |
| break; |
| cache = next_block_group(root, cache); |
| } |
| if (!cache) { |
| if (last == 0) |
| break; |
| last = 0; |
| continue; |
| } |
| |
| if (cache->disk_cache_state == BTRFS_DC_SETUP) |
| cache->disk_cache_state = BTRFS_DC_NEED_WRITE; |
| cache->dirty = 0; |
| last = cache->key.objectid + cache->key.offset; |
| |
| err = write_one_cache_group(trans, root, path, cache); |
| BUG_ON(err); |
| btrfs_put_block_group(cache); |
| } |
| |
| while (1) { |
| /* |
| * I don't think this is needed since we're just marking our |
| * preallocated extent as written, but just in case it can't |
| * hurt. |
| */ |
| if (last == 0) { |
| err = btrfs_run_delayed_refs(trans, root, |
| (unsigned long)-1); |
| BUG_ON(err); |
| } |
| |
| cache = btrfs_lookup_first_block_group(root->fs_info, last); |
| while (cache) { |
| /* |
| * Really this shouldn't happen, but it could if we |
| * couldn't write the entire preallocated extent and |
| * splitting the extent resulted in a new block. |
| */ |
| if (cache->dirty) { |
| btrfs_put_block_group(cache); |
| goto again; |
| } |
| if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE) |
| break; |
| cache = next_block_group(root, cache); |
| } |
| if (!cache) { |
| if (last == 0) |
| break; |
| last = 0; |
| continue; |
| } |
| |
| btrfs_write_out_cache(root, trans, cache, path); |
| |
| /* |
| * If we didn't have an error then the cache state is still |
| * NEED_WRITE, so we can set it to WRITTEN. |
| */ |
| if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE) |
| cache->disk_cache_state = BTRFS_DC_WRITTEN; |
| last = cache->key.objectid + cache->key.offset; |
| btrfs_put_block_group(cache); |
| } |
| |
| btrfs_free_path(path); |
| return 0; |
| } |
| |
| int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr) |
| { |
| struct btrfs_block_group_cache *block_group; |
| int readonly = 0; |
| |
| block_group = btrfs_lookup_block_group(root->fs_info, bytenr); |
| if (!block_group || block_group->ro) |
| readonly = 1; |
| if (block_group) |
| btrfs_put_block_group(block_group); |
| return readonly; |
| } |
| |
| static int update_space_info(struct btrfs_fs_info *info, u64 flags, |
| u64 total_bytes, u64 bytes_used, |
| struct btrfs_space_info **space_info) |
| { |
| struct btrfs_space_info *found; |
| int i; |
| int factor; |
| |
| if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 | |
| BTRFS_BLOCK_GROUP_RAID10)) |
| factor = 2; |
| else |
| factor = 1; |
| |
| found = __find_space_info(info, flags); |
| if (found) { |
| spin_lock(&found->lock); |
| found->total_bytes += total_bytes; |
| found->disk_total += total_bytes * factor; |
| found->bytes_used += bytes_used; |
| found->disk_used += bytes_used * factor; |
| found->full = 0; |
| spin_unlock(&found->lock); |
| *space_info = found; |
| return 0; |
| } |
| found = kzalloc(sizeof(*found), GFP_NOFS); |
| if (!found) |
| return -ENOMEM; |
| |
| for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) |
| INIT_LIST_HEAD(&found->block_groups[i]); |
| init_rwsem(&found->groups_sem); |
| spin_lock_init(&found->lock); |
| found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK; |
| found->total_bytes = total_bytes; |
| found->disk_total = total_bytes * factor; |
| found->bytes_used = bytes_used; |
| found->disk_used = bytes_used * factor; |
| found->bytes_pinned = 0; |
| found->bytes_reserved = 0; |
| found->bytes_readonly = 0; |
| found->bytes_may_use = 0; |
| found->full = 0; |
| found->force_alloc = CHUNK_ALLOC_NO_FORCE; |
| found->chunk_alloc = 0; |
| found->flush = 0; |
| init_waitqueue_head(&found->wait); |
| *space_info = found; |
| list_add_rcu(&found->list, &info->space_info); |
| return 0; |
| } |
| |
| static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) |
| { |
| u64 extra_flags = flags & BTRFS_BLOCK_GROUP_PROFILE_MASK; |
| |
| /* chunk -> extended profile */ |
| if (extra_flags == 0) |
| extra_flags = BTRFS_AVAIL_ALLOC_BIT_SINGLE; |
| |
| if (flags & BTRFS_BLOCK_GROUP_DATA) |
| fs_info->avail_data_alloc_bits |= extra_flags; |
| if (flags & BTRFS_BLOCK_GROUP_METADATA) |
| fs_info->avail_metadata_alloc_bits |= extra_flags; |
| if (flags & BTRFS_BLOCK_GROUP_SYSTEM) |
| fs_info->avail_system_alloc_bits |= extra_flags; |
| } |
| |
| /* |
| * @flags: available profiles in extended format (see ctree.h) |
| * |
| * Returns reduced profile in chunk format. If profile changing is in |
| * progress (either running or paused) picks the target profile (if it's |
| * already available), otherwise falls back to plain reducing. |
| */ |
| u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags) |
| { |
| /* |
| * we add in the count of missing devices because we want |
| * to make sure that any RAID levels on a degraded FS |
| * continue to be honored. |
| */ |
| u64 num_devices = root->fs_info->fs_devices->rw_devices + |
| root->fs_info->fs_devices->missing_devices; |
| |
| /* pick restriper's target profile if it's available */ |
| spin_lock(&root->fs_info->balance_lock); |
| if (root->fs_info->balance_ctl) { |
| struct btrfs_balance_control *bctl = root->fs_info->balance_ctl; |
| u64 tgt = 0; |
| |
| if ((flags & BTRFS_BLOCK_GROUP_DATA) && |
| (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) && |
| (flags & bctl->data.target)) { |
| tgt = BTRFS_BLOCK_GROUP_DATA | bctl->data.target; |
| } else if ((flags & BTRFS_BLOCK_GROUP_SYSTEM) && |
| (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) && |
| (flags & bctl->sys.target)) { |
| tgt = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target; |
| } else if ((flags & BTRFS_BLOCK_GROUP_METADATA) && |
| (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) && |
| (flags & bctl->meta.target)) { |
| tgt = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target; |
| } |
| |
| if (tgt) { |
| spin_unlock(&root->fs_info->balance_lock); |
| flags = tgt; |
| goto out; |
| } |
| } |
| spin_unlock(&root->fs_info->balance_lock); |
| |
| if (num_devices == 1) |
| flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0); |
| if (num_devices < 4) |
| flags &= ~BTRFS_BLOCK_GROUP_RAID10; |
| |
| if ((flags & BTRFS_BLOCK_GROUP_DUP) && |
| (flags & (BTRFS_BLOCK_GROUP_RAID1 | |
| BTRFS_BLOCK_GROUP_RAID10))) { |
| flags &= ~BTRFS_BLOCK_GROUP_DUP; |
| } |
| |
| if ((flags & BTRFS_BLOCK_GROUP_RAID1) && |
| (flags & BTRFS_BLOCK_GROUP_RAID10)) { |
| flags &= ~BTRFS_BLOCK_GROUP_RAID1; |
| } |
| |
| if ((flags & BTRFS_BLOCK_GROUP_RAID0) && |
| ((flags & BTRFS_BLOCK_GROUP_RAID1) | |
| (flags & BTRFS_BLOCK_GROUP_RAID10) | |
| (flags & BTRFS_BLOCK_GROUP_DUP))) { |
| flags &= ~BTRFS_BLOCK_GROUP_RAID0; |
| } |
| |
| out: |
| /* extended -> chunk profile */ |
| flags &= ~BTRFS_AVAIL_ALLOC_BIT_SINGLE; |
| return flags; |
| } |
| |
| static u64 get_alloc_profile(struct btrfs_root *root, u64 flags) |
| { |
| if (flags & BTRFS_BLOCK_GROUP_DATA) |
| flags |= root->fs_info->avail_data_alloc_bits; |
| else if (flags & BTRFS_BLOCK_GROUP_SYSTEM) |
| flags |= root->fs_info->avail_system_alloc_bits; |
| else if (flags & BTRFS_BLOCK_GROUP_METADATA) |
| flags |= root->fs_info->avail_metadata_alloc_bits; |
| |
| return btrfs_reduce_alloc_profile(root, flags); |
| } |
| |
| u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data) |
| { |
| u64 flags; |
| |
| if (data) |
| flags = BTRFS_BLOCK_GROUP_DATA; |
| else if (root == root->fs_info->chunk_root) |
| flags = BTRFS_BLOCK_GROUP_SYSTEM; |
| else |
| flags = BTRFS_BLOCK_GROUP_METADATA; |
| |
| return get_alloc_profile(root, flags); |
| } |
| |
| void btrfs_set_inode_space_info(struct btrfs_root *root, struct inode *inode) |
| { |
| BTRFS_I(inode)->space_info = __find_space_info(root->fs_info, |
| BTRFS_BLOCK_GROUP_DATA); |
| } |
| |
| /* |
| * This will check the space that the inode allocates from to make sure we have |
| * enough space for bytes. |
| */ |
| int btrfs_check_data_free_space(struct inode *inode, u64 bytes) |
| { |
| struct btrfs_space_info *data_sinfo; |
| struct btrfs_root *root = BTRFS_I(inode)->root; |
| u64 used; |
| int ret = 0, committed = 0, alloc_chunk = 1; |
| |
| /* make sure bytes are sectorsize aligned */ |
| bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1); |
| |
| if (root == root->fs_info->tree_root || |
| BTRFS_I(inode)->location.objectid == BTRFS_FREE_INO_OBJECTID) { |
| alloc_chunk = 0; |
| committed = 1; |
| } |
| |
| data_sinfo = BTRFS_I(inode)->space_info; |
| if (!data_sinfo) |
| goto alloc; |
| |
| again: |
| /* make sure we have enough space to handle the data first */ |
| spin_lock(&data_sinfo->lock); |
| used = data_sinfo->bytes_used + data_sinfo->bytes_reserved + |
| data_sinfo->bytes_pinned + data_sinfo->bytes_readonly + |
| data_sinfo->bytes_may_use; |
| |
| if (used + bytes > data_sinfo->total_bytes) { |
| struct btrfs_trans_handle *trans; |
| |
| /* |
| * if we don't have enough free bytes in this space then we need |
| * to alloc a new chunk. |
| */ |
| if (!data_sinfo->full && alloc_chunk) { |
| u64 alloc_target; |
| |
| data_sinfo->force_alloc = CHUNK_ALLOC_FORCE; |
| spin_unlock(&data_sinfo->lock); |
| alloc: |
| alloc_target = btrfs_get_alloc_profile(root, 1); |
| trans = btrfs_join_transaction(root); |
| if (IS_ERR(trans)) |
| return PTR_ERR(trans); |
| |
| ret = do_chunk_alloc(trans, root->fs_info->extent_root, |
| bytes + 2 * 1024 * 1024, |
| alloc_target, |
| CHUNK_ALLOC_NO_FORCE); |
| btrfs_end_transaction(trans, root); |
| if (ret < 0) { |
| if (ret != -ENOSPC) |
| return ret; |
| else |
| goto commit_trans; |
| } |
| |
| if (!data_sinfo) { |
| btrfs_set_inode_space_info(root, inode); |
| data_sinfo = BTRFS_I(inode)->space_info; |
| } |
| goto again; |
| } |
| |
| /* |
| * If we have less pinned bytes than we want to allocate then |
| * don't bother committing the transaction, it won't help us. |
| */ |
| if (data_sinfo->bytes_pinned < bytes) |
| committed = 1; |
| spin_unlock(&data_sinfo->lock); |
| |
| /* commit the current transaction and try again */ |
| commit_trans: |
| if (!committed && |
| !atomic_read(&root->fs_info->open_ioctl_trans)) { |
| committed = 1; |
| trans = btrfs_join_transaction(root); |
| if (IS_ERR(trans)) |
| return PTR_ERR(trans); |
| ret = btrfs_commit_transaction(trans, root); |
| if (ret) |
| return ret; |
| goto again; |
| } |
| |
| return -ENOSPC; |
| } |
| data_sinfo->bytes_may_use += bytes; |
| spin_unlock(&data_sinfo->lock); |
| |
| return 0; |
| } |
| |
| /* |
| * Called if we need to clear a data reservation for this inode. |
| */ |
| void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes) |
| { |
| struct btrfs_root *root = BTRFS_I(inode)->root; |
| struct btrfs_space_info *data_sinfo; |
| |
| /* make sure bytes are sectorsize aligned */ |
| bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1); |
| |
| data_sinfo = BTRFS_I(inode)->space_info; |
| spin_lock(&data_sinfo->lock); |
| data_sinfo->bytes_may_use -= bytes; |
| spin_unlock(&data_sinfo->lock); |
| } |
| |
| static void force_metadata_allocation(struct btrfs_fs_info *info) |
| { |
| struct list_head *head = &info->space_info; |
| struct btrfs_space_info *found; |
| |
| rcu_read_lock(); |
| list_for_each_entry_rcu(found, head, list) { |
| if (found->flags & BTRFS_BLOCK_GROUP_METADATA) |
| found->force_alloc = CHUNK_ALLOC_FORCE; |
| } |
| rcu_read_unlock(); |
| } |
| |
| static int should_alloc_chunk(struct btrfs_root *root, |
| struct btrfs_space_info *sinfo, u64 alloc_bytes, |
| int force) |
| { |
| struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; |
| u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly; |
| u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved; |
| u64 thresh; |
| |
| if (force == CHUNK_ALLOC_FORCE) |
| return 1; |
| |
| /* |
| * We need to take into account the global rsv because for all intents |
| * and purposes it's used space. Don't worry about locking the |
| * global_rsv, it doesn't change except when the transaction commits. |
| */ |
| num_allocated += global_rsv->size; |
| |
| /* |
| * in limited mode, we want to have some free space up to |
| * about 1% of the FS size. |
| */ |
| if (force == CHUNK_ALLOC_LIMITED) { |
| thresh = btrfs_super_total_bytes(root->fs_info->super_copy); |
| thresh = max_t(u64, 64 * 1024 * 1024, |
| div_factor_fine(thresh, 1)); |
| |
| if (num_bytes - num_allocated < thresh) |
| return 1; |
| } |
| thresh = btrfs_super_total_bytes(root->fs_info->super_copy); |
| |
| /* 256MB or 2% of the FS */ |
| thresh = max_t(u64, 256 * 1024 * 1024, div_factor_fine(thresh, 2)); |
| |
| if (num_bytes > thresh && sinfo->bytes_used < div_factor(num_bytes, 8)) |
| return 0; |
| return 1; |
| } |
| |
| static int do_chunk_alloc(struct btrfs_trans_handle *trans, |
| struct btrfs_root *extent_root, u64 alloc_bytes, |
| u64 flags, int force) |
| { |
| struct btrfs_space_info *space_info; |
| struct btrfs_fs_info *fs_info = extent_root->fs_info; |
| int wait_for_alloc = 0; |
| int ret = 0; |
| |
| BUG_ON(!profile_is_valid(flags, 0)); |
| |
| space_info = __find_space_info(extent_root->fs_info, flags); |
| if (!space_info) { |
| ret = update_space_info(extent_root->fs_info, flags, |
| 0, 0, &space_info); |
| BUG_ON(ret); |
| } |
| BUG_ON(!space_info); |
| |
| again: |
| spin_lock(&space_info->lock); |
| if (space_info->force_alloc) |
| force = space_info->force_alloc; |
| if (space_info->full) { |
| spin_unlock(&space_info->lock); |
| return 0; |
| } |
| |
| if (!should_alloc_chunk(extent_root, space_info, alloc_bytes, force)) { |
| spin_unlock(&space_info->lock); |
| return 0; |
| } else if (space_info->chunk_alloc) { |
| wait_for_alloc = 1; |
| } else { |
| space_info->chunk_alloc = 1; |
| } |
| |
| spin_unlock(&space_info->lock); |
| |
| mutex_lock(&fs_info->chunk_mutex); |
| |
| /* |
| * The chunk_mutex is held throughout the entirety of a chunk |
| * allocation, so once we've acquired the chunk_mutex we know that the |
| * other guy is done and we need to recheck and see if we should |
| * allocate. |
| */ |
| if (wait_for_alloc) { |
| mutex_unlock(&fs_info->chunk_mutex); |
| wait_for_alloc = 0; |
| goto again; |
| } |
| |
| /* |
| * If we have mixed data/metadata chunks we want to make sure we keep |
| * allocating mixed chunks instead of individual chunks. |
| */ |
| if (btrfs_mixed_space_info(space_info)) |
| flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA); |
| |
| /* |
| * if we're doing a data chunk, go ahead and make sure that |
| * we keep a reasonable number of metadata chunks allocated in the |
| * FS as well. |
| */ |
| if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) { |
| fs_info->data_chunk_allocations++; |
| if (!(fs_info->data_chunk_allocations % |
| fs_info->metadata_ratio)) |
| force_metadata_allocation(fs_info); |
| } |
| |
| ret = btrfs_alloc_chunk(trans, extent_root, flags); |
| if (ret < 0 && ret != -ENOSPC) |
| goto out; |
| |
| spin_lock(&space_info->lock); |
| if (ret) |
| space_info->full = 1; |
| else |
| ret = 1; |
| |
| space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; |
| space_info->chunk_alloc = 0; |
| spin_unlock(&space_info->lock); |
| out: |
| mutex_unlock(&extent_root->fs_info->chunk_mutex); |
| return ret; |
| } |
| |
| /* |
| * shrink metadata reservation for delalloc |
| */ |
| static int shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, |
| bool wait_ordered) |
| { |
| struct btrfs_block_rsv *block_rsv; |
| struct btrfs_space_info *space_info; |
| struct btrfs_trans_handle *trans; |
| u64 reserved; |
| u64 max_reclaim; |
| u64 reclaimed = 0; |
| long time_left; |
| unsigned long nr_pages = (2 * 1024 * 1024) >> PAGE_CACHE_SHIFT; |
| int loops = 0; |
| unsigned long progress; |
| |
| trans = (struct btrfs_trans_handle *)current->journal_info; |
| block_rsv = &root->fs_info->delalloc_block_rsv; |
| space_info = block_rsv->space_info; |
| |
| smp_mb(); |
| reserved = space_info->bytes_may_use; |
| progress = space_info->reservation_progress; |
| |
| if (reserved == 0) |
| return 0; |
| |
| smp_mb(); |
| if (root->fs_info->delalloc_bytes == 0) { |
| if (trans) |
| return 0; |
| btrfs_wait_ordered_extents(root, 0, 0); |
| return 0; |
| } |
| |
| max_reclaim = min(reserved, to_reclaim); |
| nr_pages = max_t(unsigned long, nr_pages, |
| max_reclaim >> PAGE_CACHE_SHIFT); |
| while (loops < 1024) { |
| /* have the flusher threads jump in and do some IO */ |
| smp_mb(); |
| nr_pages = min_t(unsigned long, nr_pages, |
| root->fs_info->delalloc_bytes >> PAGE_CACHE_SHIFT); |
| writeback_inodes_sb_nr_if_idle(root->fs_info->sb, nr_pages, |
| WB_REASON_FS_FREE_SPACE); |
| |
| spin_lock(&space_info->lock); |
| if (reserved > space_info->bytes_may_use) |
| reclaimed += reserved - space_info->bytes_may_use; |
| reserved = space_info->bytes_may_use; |
| spin_unlock(&space_info->lock); |
| |
| loops++; |
| |
| if (reserved == 0 || reclaimed >= max_reclaim) |
| break; |
| |
| if (trans && trans->transaction->blocked) |
| return -EAGAIN; |
| |
| if (wait_ordered && !trans) { |
| btrfs_wait_ordered_extents(root, 0, 0); |
| } else { |
| time_left = schedule_timeout_interruptible(1); |
| |
| /* We were interrupted, exit */ |
| if (time_left) |
| break; |
| } |
| |
| /* we've kicked the IO a few times, if anything has been freed, |
| * exit. There is no sense in looping here for a long time |
| * when we really need to commit the transaction, or there are |
| * just too many writers without enough free space |
| */ |
| |
| if (loops > 3) { |
| smp_mb(); |
| if (progress != space_info->reservation_progress) |
| break; |
| } |
| |
| } |
| |
| return reclaimed >= to_reclaim; |
| } |
| |
| /** |
| * maybe_commit_transaction - possibly commit the transaction if its ok to |
| * @root - the root we're allocating for |
| * @bytes - the number of bytes we want to reserve |
| * @force - force the commit |
| * |
| * This will check to make sure that committing the transaction will actually |
| * get us somewhere and then commit the transaction if it does. Otherwise it |
| * will return -ENOSPC. |
| */ |
| static int may_commit_transaction(struct btrfs_root *root, |
| struct btrfs_space_info *space_info, |
| u64 bytes, int force) |
| { |
| struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv; |
| struct btrfs_trans_handle *trans; |
| |
| trans = (struct btrfs_trans_handle *)current->journal_info; |
| if (trans) |
| return -EAGAIN; |
| |
| if (force) |
| goto commit; |
| |
| /* See if there is enough pinned space to make this reservation */ |
| spin_lock(&space_info->lock); |
| if (space_info->bytes_pinned >= bytes) { |
| spin_unlock(&space_info->lock); |
| goto commit; |
| } |
| spin_unlock(&space_info->lock); |
| |
| /* |
| * See if there is some space in the delayed insertion reservation for |
| * this reservation. |
| */ |
| if (space_info != delayed_rsv->space_info) |
| return -ENOSPC; |
| |
| spin_lock(&delayed_rsv->lock); |
| if (delayed_rsv->size < bytes) { |
| spin_unlock(&delayed_rsv->lock); |
| return -ENOSPC; |
| } |
| spin_unlock(&delayed_rsv->lock); |
| |
| commit: |
| trans = btrfs_join_transaction(root); |
| if (IS_ERR(trans)) |
| return -ENOSPC; |
| |
| return btrfs_commit_transaction(trans, root); |
| } |
| |
| /** |
| * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space |
| * @root - the root we're allocating for |
| * @block_rsv - the block_rsv we're allocating for |
| * @orig_bytes - the number of bytes we want |
| * @flush - wether or not we can flush to make our reservation |
| * |
| * This will reserve orgi_bytes number of bytes from the space info associated |
| * with the block_rsv. If there is not enough space it will make an attempt to |
| * flush out space to make room. It will do this by flushing delalloc if |
| * possible or committing the transaction. If flush is 0 then no attempts to |
| * regain reservations will be made and this will fail if there is not enough |
| * space already. |
| */ |
| static int reserve_metadata_bytes(struct btrfs_root *root, |
| struct btrfs_block_rsv *block_rsv, |
| u64 orig_bytes, int flush) |
| { |
| struct btrfs_space_info *space_info = block_rsv->space_info; |
| u64 used; |
| u64 num_bytes = orig_bytes; |
| int retries = 0; |
| int ret = 0; |
| bool committed = false; |
| bool flushing = false; |
| bool wait_ordered = false; |
| |
| again: |
| ret = 0; |
| spin_lock(&space_info->lock); |
| /* |
| * We only want to wait if somebody other than us is flushing and we are |
| * actually alloed to flush. |
| */ |
| while (flush && !flushing && space_info->flush) { |
| spin_unlock(&space_info->lock); |
| /* |
| * If we have a trans handle we can't wait because the flusher |
| * may have to commit the transaction, which would mean we would |
| * deadlock since we are waiting for the flusher to finish, but |
| * hold the current transaction open. |
| */ |
| if (current->journal_info) |
| return -EAGAIN; |
| ret = wait_event_interruptible(space_info->wait, |
| !space_info->flush); |
| /* Must have been interrupted, return */ |
| if (ret) |
| return -EINTR; |
| |
| spin_lock(&space_info->lock); |
| } |
| |
| ret = -ENOSPC; |
| used = space_info->bytes_used + space_info->bytes_reserved + |
| space_info->bytes_pinned + space_info->bytes_readonly + |
| space_info->bytes_may_use; |
| |
| /* |
| * The idea here is that we've not already over-reserved the block group |
| * then we can go ahead and save our reservation first and then start |
| * flushing if we need to. Otherwise if we've already overcommitted |
| * lets start flushing stuff first and then come back and try to make |
| * our reservation. |
| */ |
| if (used <= space_info->total_bytes) { |
| if (used + orig_bytes <= space_info->total_bytes) { |
| space_info->bytes_may_use += orig_bytes; |
| ret = 0; |
| } else { |
| /* |
| * Ok set num_bytes to orig_bytes since we aren't |
| * overocmmitted, this way we only try and reclaim what |
| * we need. |
| */ |
| num_bytes = orig_bytes; |
| } |
| } else { |
| /* |
| * Ok we're over committed, set num_bytes to the overcommitted |
| * amount plus the amount of bytes that we need for this |
| * reservation. |
| */ |
| wait_ordered = true; |
| num_bytes = used - space_info->total_bytes + |
| (orig_bytes * (retries + 1)); |
| } |
| |
| if (ret) { |
| u64 profile = btrfs_get_alloc_profile(root, 0); |
| u64 avail; |
| |
| /* |
| * If we have a lot of space that's pinned, don't bother doing |
| * the overcommit dance yet and just commit the transaction. |
| */ |
| avail = (space_info->total_bytes - space_info->bytes_used) * 8; |
| do_div(avail, 10); |
| if (space_info->bytes_pinned >= avail && flush && !committed) { |
| space_info->flush = 1; |
| flushing = true; |
| spin_unlock(&space_info->lock); |
| ret = may_commit_transaction(root, space_info, |
| orig_bytes, 1); |
| if (ret) |
| goto out; |
| committed = true; |
| goto again; |
| } |
| |
| spin_lock(&root->fs_info->free_chunk_lock); |
| avail = root->fs_info->free_chunk_space; |
| |
| /* |
| * If we have dup, raid1 or raid10 then only half of the free |
| * space is actually useable. |
| */ |
| if (profile & (BTRFS_BLOCK_GROUP_DUP | |
| BTRFS_BLOCK_GROUP_RAID1 | |
| BTRFS_BLOCK_GROUP_RAID10)) |
| avail >>= 1; |
| |
| /* |
| * If we aren't flushing don't let us overcommit too much, say |
| * 1/8th of the space. If we can flush, let it overcommit up to |
| * 1/2 of the space. |
| */ |
| if (flush) |
| avail >>= 3; |
| else |
| avail >>= 1; |
| spin_unlock(&root->fs_info->free_chunk_lock); |
| |
| if (used + num_bytes < space_info->total_bytes + avail) { |
| space_info->bytes_may_use += orig_bytes; |
| ret = 0; |
| } else { |
| wait_ordered = true; |
| } |
| } |
| |
| /* |
| * Couldn't make our reservation, save our place so while we're trying |
| * to reclaim space we can actually use it instead of somebody else |
| * stealing it from us. |
| */ |
| if (ret && flush) { |
| flushing = true; |
| space_info->flush = 1; |
| } |
| |
| spin_unlock(&space_info->lock); |
| |
| if (!ret || !flush) |
| goto out; |
| |
| /* |
| * We do synchronous shrinking since we don't actually unreserve |
| * metadata until after the IO is completed. |
| */ |
| ret = shrink_delalloc(root, num_bytes, wait_ordered); |
| if (ret < 0) |
| goto out; |
| |
| ret = 0; |
| |
| /* |
| * So if we were overcommitted it's possible that somebody else flushed |
| * out enough space and we simply didn't have enough space to reclaim, |
| * so go back around and try again. |
| */ |
| if (retries < 2) { |
| wait_ordered = true; |
| retries++; |
| goto again; |
| } |
| |
| ret = -ENOSPC; |
| if (committed) |
| goto out; |
| |
| ret = may_commit_transaction(root, space_info, orig_bytes, 0); |
| if (!ret) { |
| committed = true; |
| goto again; |
| } |
| |
| out: |
| if (flushing) { |
| spin_lock(&space_info->lock); |
| space_info->flush = 0; |
| wake_up_all(&space_info->wait); |
| spin_unlock(&space_info->lock); |
| } |
| return ret; |
| } |
| |
| static struct btrfs_block_rsv *get_block_rsv(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root) |
| { |
| struct btrfs_block_rsv *block_rsv = NULL; |
| |
| if (root->ref_cows || root == root->fs_info->csum_root) |
| block_rsv = trans->block_rsv; |
| |
| if (!block_rsv) |
| block_rsv = root->block_rsv; |
| |
| if (!block_rsv) |
| block_rsv = &root->fs_info->empty_block_rsv; |
| |
| return block_rsv; |
| } |
| |
| static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, |
| u64 num_bytes) |
| { |
| int ret = -ENOSPC; |
| spin_lock(&block_rsv->lock); |
| if (block_rsv->reserved >= num_bytes) { |
| block_rsv->reserved -= num_bytes; |
| if (block_rsv->reserved < block_rsv->size) |
| block_rsv->full = 0; |
| ret = 0; |
| } |
| spin_unlock(&block_rsv->lock); |
| return ret; |
| } |
| |
| static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv, |
| u64 num_bytes, int update_size) |
| { |
| spin_lock(&block_rsv->lock); |
| block_rsv->reserved += num_bytes; |
| if (update_size) |
| block_rsv->size += num_bytes; |
| else if (block_rsv->reserved >= block_rsv->size) |
| block_rsv->full = 1; |
| spin_unlock(&block_rsv->lock); |
| } |
| |
| static void block_rsv_release_bytes(struct btrfs_block_rsv *block_rsv, |
| struct btrfs_block_rsv *dest, u64 num_bytes) |
| { |
| struct btrfs_space_info *space_info = block_rsv->space_info; |
| |
| spin_lock(&block_rsv->lock); |
| if (num_bytes == (u64)-1) |
| num_bytes = block_rsv->size; |
| block_rsv->size -= num_bytes; |
| if (block_rsv->reserved >= block_rsv->size) { |
| num_bytes = block_rsv->reserved - block_rsv->size; |
| block_rsv->reserved = block_rsv->size; |
| block_rsv->full = 1; |
| } else { |
| num_bytes = 0; |
| } |
| spin_unlock(&block_rsv->lock); |
| |
| if (num_bytes > 0) { |
| if (dest) { |
| spin_lock(&dest->lock); |
| if (!dest->full) { |
| u64 bytes_to_add; |
| |
| bytes_to_add = dest->size - dest->reserved; |
| bytes_to_add = min(num_bytes, bytes_to_add); |
| dest->reserved += bytes_to_add; |
| if (dest->reserved >= dest->size) |
| dest->full = 1; |
| num_bytes -= bytes_to_add; |
| } |
| spin_unlock(&dest->lock); |
| } |
| if (num_bytes) { |
| spin_lock(&space_info->lock); |
| space_info->bytes_may_use -= num_bytes; |
| space_info->reservation_progress++; |
| spin_unlock(&space_info->lock); |
| } |
| } |
| } |
| |
| static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src, |
| struct btrfs_block_rsv *dst, u64 num_bytes) |
| { |
| int ret; |
| |
| ret = block_rsv_use_bytes(src, num_bytes); |
| if (ret) |
| return ret; |
| |
| block_rsv_add_bytes(dst, num_bytes, 1); |
| return 0; |
| } |
| |
| void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv) |
| { |
| memset(rsv, 0, sizeof(*rsv)); |
| spin_lock_init(&rsv->lock); |
| } |
| |
| struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root) |
| { |
| struct btrfs_block_rsv *block_rsv; |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| |
| block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS); |
| if (!block_rsv) |
| return NULL; |
| |
| btrfs_init_block_rsv(block_rsv); |
| block_rsv->space_info = __find_space_info(fs_info, |
| BTRFS_BLOCK_GROUP_METADATA); |
| return block_rsv; |
| } |
| |
| void btrfs_free_block_rsv(struct btrfs_root *root, |
| struct btrfs_block_rsv *rsv) |
| { |
| btrfs_block_rsv_release(root, rsv, (u64)-1); |
| kfree(rsv); |
| } |
| |
| static inline int __block_rsv_add(struct btrfs_root *root, |
| struct btrfs_block_rsv *block_rsv, |
| u64 num_bytes, int flush) |
| { |
| int ret; |
| |
| if (num_bytes == 0) |
| return 0; |
| |
| ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush); |
| if (!ret) { |
| block_rsv_add_bytes(block_rsv, num_bytes, 1); |
| return 0; |
| } |
| |
| return ret; |
| } |
| |
| int btrfs_block_rsv_add(struct btrfs_root *root, |
| struct btrfs_block_rsv *block_rsv, |
| u64 num_bytes) |
| { |
| return __block_rsv_add(root, block_rsv, num_bytes, 1); |
| } |
| |
| int btrfs_block_rsv_add_noflush(struct btrfs_root *root, |
| struct btrfs_block_rsv *block_rsv, |
| u64 num_bytes) |
| { |
| return __block_rsv_add(root, block_rsv, num_bytes, 0); |
| } |
| |
| int btrfs_block_rsv_check(struct btrfs_root *root, |
| struct btrfs_block_rsv *block_rsv, int min_factor) |
| { |
| u64 num_bytes = 0; |
| int ret = -ENOSPC; |
| |
| if (!block_rsv) |
| return 0; |
| |
| spin_lock(&block_rsv->lock); |
| num_bytes = div_factor(block_rsv->size, min_factor); |
| if (block_rsv->reserved >= num_bytes) |
| ret = 0; |
| spin_unlock(&block_rsv->lock); |
| |
| return ret; |
| } |
| |
| static inline int __btrfs_block_rsv_refill(struct btrfs_root *root, |
| struct btrfs_block_rsv *block_rsv, |
| u64 min_reserved, int flush) |
| { |
| u64 num_bytes = 0; |
| int ret = -ENOSPC; |
| |
| if (!block_rsv) |
| return 0; |
| |
| spin_lock(&block_rsv->lock); |
| num_bytes = min_reserved; |
| if (block_rsv->reserved >= num_bytes) |
| ret = 0; |
| else |
| num_bytes -= block_rsv->reserved; |
| spin_unlock(&block_rsv->lock); |
| |
| if (!ret) |
| return 0; |
| |
| ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush); |
| if (!ret) { |
| block_rsv_add_bytes(block_rsv, num_bytes, 0); |
| return 0; |
| } |
| |
| return ret; |
| } |
| |
| int btrfs_block_rsv_refill(struct btrfs_root *root, |
| struct btrfs_block_rsv *block_rsv, |
| u64 min_reserved) |
| { |
| return __btrfs_block_rsv_refill(root, block_rsv, min_reserved, 1); |
| } |
| |
| int btrfs_block_rsv_refill_noflush(struct btrfs_root *root, |
| struct btrfs_block_rsv *block_rsv, |
| u64 min_reserved) |
| { |
| return __btrfs_block_rsv_refill(root, block_rsv, min_reserved, 0); |
| } |
| |
| int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv, |
| struct btrfs_block_rsv *dst_rsv, |
| u64 num_bytes) |
| { |
| return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes); |
| } |
| |
| void btrfs_block_rsv_release(struct btrfs_root *root, |
| struct btrfs_block_rsv *block_rsv, |
| u64 num_bytes) |
| { |
| struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; |
| if (global_rsv->full || global_rsv == block_rsv || |
| block_rsv->space_info != global_rsv->space_info) |
| global_rsv = NULL; |
| block_rsv_release_bytes(block_rsv, global_rsv, num_bytes); |
| } |
| |
| /* |
| * helper to calculate size of global block reservation. |
| * the desired value is sum of space used by extent tree, |
| * checksum tree and root tree |
| */ |
| static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info) |
| { |
| struct btrfs_space_info *sinfo; |
| u64 num_bytes; |
| u64 meta_used; |
| u64 data_used; |
| int csum_size = btrfs_super_csum_size(fs_info->super_copy); |
| |
| sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA); |
| spin_lock(&sinfo->lock); |
| data_used = sinfo->bytes_used; |
| spin_unlock(&sinfo->lock); |
| |
| sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); |
| spin_lock(&sinfo->lock); |
| if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) |
| data_used = 0; |
| meta_used = sinfo->bytes_used; |
| spin_unlock(&sinfo->lock); |
| |
| num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) * |
| csum_size * 2; |
| num_bytes += div64_u64(data_used + meta_used, 50); |
| |
| if (num_bytes * 3 > meta_used) |
| num_bytes = div64_u64(meta_used, 3); |
| |
| return ALIGN(num_bytes, fs_info->extent_root->leafsize << 10); |
| } |
| |
| static void update_global_block_rsv(struct btrfs_fs_info *fs_info) |
| { |
| struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; |
| struct btrfs_space_info *sinfo = block_rsv->space_info; |
| u64 num_bytes; |
| |
| num_bytes = calc_global_metadata_size(fs_info); |
| |
| spin_lock(&block_rsv->lock); |
| spin_lock(&sinfo->lock); |
| |
| block_rsv->size = num_bytes; |
| |
| num_bytes = sinfo->bytes_used + sinfo->bytes_pinned + |
| sinfo->bytes_reserved + sinfo->bytes_readonly + |
| sinfo->bytes_may_use; |
| |
| if (sinfo->total_bytes > num_bytes) { |
| num_bytes = sinfo->total_bytes - num_bytes; |
| block_rsv->reserved += num_bytes; |
| sinfo->bytes_may_use += num_bytes; |
| } |
| |
| if (block_rsv->reserved >= block_rsv->size) { |
| num_bytes = block_rsv->reserved - block_rsv->size; |
| sinfo->bytes_may_use -= num_bytes; |
| sinfo->reservation_progress++; |
| block_rsv->reserved = block_rsv->size; |
| block_rsv->full = 1; |
| } |
| |
| spin_unlock(&sinfo->lock); |
| spin_unlock(&block_rsv->lock); |
| } |
| |
| static void init_global_block_rsv(struct btrfs_fs_info *fs_info) |
| { |
| struct btrfs_space_info *space_info; |
| |
| space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); |
| fs_info->chunk_block_rsv.space_info = space_info; |
| |
| space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); |
| fs_info->global_block_rsv.space_info = space_info; |
| fs_info->delalloc_block_rsv.space_info = space_info; |
| fs_info->trans_block_rsv.space_info = space_info; |
| fs_info->empty_block_rsv.space_info = space_info; |
| fs_info->delayed_block_rsv.space_info = space_info; |
| |
| fs_info->extent_root->block_rsv = &fs_info->global_block_rsv; |
| fs_info->csum_root->block_rsv = &fs_info->global_block_rsv; |
| fs_info->dev_root->block_rsv = &fs_info->global_block_rsv; |
| fs_info->tree_root->block_rsv = &fs_info->global_block_rsv; |
| fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv; |
| |
| update_global_block_rsv(fs_info); |
| } |
| |
| static void release_global_block_rsv(struct btrfs_fs_info *fs_info) |
| { |
| block_rsv_release_bytes(&fs_info->global_block_rsv, NULL, (u64)-1); |
| WARN_ON(fs_info->delalloc_block_rsv.size > 0); |
| WARN_ON(fs_info->delalloc_block_rsv.reserved > 0); |
| WARN_ON(fs_info->trans_block_rsv.size > 0); |
| WARN_ON(fs_info->trans_block_rsv.reserved > 0); |
| WARN_ON(fs_info->chunk_block_rsv.size > 0); |
| WARN_ON(fs_info->chunk_block_rsv.reserved > 0); |
| WARN_ON(fs_info->delayed_block_rsv.size > 0); |
| WARN_ON(fs_info->delayed_block_rsv.reserved > 0); |
| } |
| |
| void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root) |
| { |
| if (!trans->bytes_reserved) |
| return; |
| |
| btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved); |
| trans->bytes_reserved = 0; |
| } |
| |
| int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans, |
| struct inode *inode) |
| { |
| struct btrfs_root *root = BTRFS_I(inode)->root; |
| struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root); |
| struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv; |
| |
| /* |
| * We need to hold space in order to delete our orphan item once we've |
| * added it, so this takes the reservation so we can release it later |
| * when we are truly done with the orphan item. |
| */ |
| u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1); |
| return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes); |
| } |
| |
| void btrfs_orphan_release_metadata(struct inode *inode) |
| { |
| struct btrfs_root *root = BTRFS_I(inode)->root; |
| u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1); |
| btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes); |
| } |
| |
| int btrfs_snap_reserve_metadata(struct btrfs_trans_handle *trans, |
| struct btrfs_pending_snapshot *pending) |
| { |
| struct btrfs_root *root = pending->root; |
| struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root); |
| struct btrfs_block_rsv *dst_rsv = &pending->block_rsv; |
| /* |
| * two for root back/forward refs, two for directory entries |
| * and one for root of the snapshot. |
| */ |
| u64 num_bytes = btrfs_calc_trans_metadata_size(root, 5); |
| dst_rsv->space_info = src_rsv->space_info; |
| return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes); |
| } |
| |
| /** |
| * drop_outstanding_extent - drop an outstanding extent |
| * @inode: the inode we're dropping the extent for |
| * |
| * This is called when we are freeing up an outstanding extent, either called |
| * after an error or after an extent is written. This will return the number of |
| * reserved extents that need to be freed. This must be called with |
| * BTRFS_I(inode)->lock held. |
| */ |
| static unsigned drop_outstanding_extent(struct inode *inode) |
| { |
| unsigned drop_inode_space = 0; |
| unsigned dropped_extents = 0; |
| |
| BUG_ON(!BTRFS_I(inode)->outstanding_extents); |
| BTRFS_I(inode)->outstanding_extents--; |
| |
| if (BTRFS_I(inode)->outstanding_extents == 0 && |
| BTRFS_I(inode)->delalloc_meta_reserved) { |
| drop_inode_space = 1; |
| BTRFS_I(inode)->delalloc_meta_reserved = 0; |
| } |
| |
| /* |
| * If we have more or the same amount of outsanding extents than we have |
| * reserved then we need to leave the reserved extents count alone. |
| */ |
| if (BTRFS_I(inode)->outstanding_extents >= |
| BTRFS_I(inode)->reserved_extents) |
| return drop_inode_space; |
| |
| dropped_extents = BTRFS_I(inode)->reserved_extents - |
| BTRFS_I(inode)->outstanding_extents; |
| BTRFS_I(inode)->reserved_extents -= dropped_extents; |
| return dropped_extents + drop_inode_space; |
| } |
| |
| /** |
| * calc_csum_metadata_size - return the amount of metada space that must be |
| * reserved/free'd for the given bytes. |
| * @inode: the inode we're manipulating |
| * @num_bytes: the number of bytes in question |
| * @reserve: 1 if we are reserving space, 0 if we are freeing space |
| * |
| * This adjusts the number of csum_bytes in the inode and then returns the |
| * correct amount of metadata that must either be reserved or freed. We |
| * calculate how many checksums we can fit into one leaf and then divide the |
| * number of bytes that will need to be checksumed by this value to figure out |
| * how many checksums will be required. If we are adding bytes then the number |
| * may go up and we will return the number of additional bytes that must be |
| * reserved. If it is going down we will return the number of bytes that must |
| * be freed. |
| * |
| * This must be called with BTRFS_I(inode)->lock held. |
| */ |
| static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes, |
| int reserve) |
| { |
| struct btrfs_root *root = BTRFS_I(inode)->root; |
| u64 csum_size; |
| int num_csums_per_leaf; |
| int num_csums; |
| int old_csums; |
| |
| if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM && |
| BTRFS_I(inode)->csum_bytes == 0) |
| return 0; |
| |
| old_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize); |
| if (reserve) |
| BTRFS_I(inode)->csum_bytes += num_bytes; |
| else |
| BTRFS_I(inode)->csum_bytes -= num_bytes; |
| csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item); |
| num_csums_per_leaf = (int)div64_u64(csum_size, |
| sizeof(struct btrfs_csum_item) + |
| sizeof(struct btrfs_disk_key)); |
| num_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize); |
| num_csums = num_csums + num_csums_per_leaf - 1; |
| num_csums = num_csums / num_csums_per_leaf; |
| |
| old_csums = old_csums + num_csums_per_leaf - 1; |
| old_csums = old_csums / num_csums_per_leaf; |
| |
| /* No change, no need to reserve more */ |
| if (old_csums == num_csums) |
| return 0; |
| |
| if (reserve) |
| return btrfs_calc_trans_metadata_size(root, |
| num_csums - old_csums); |
| |
| return btrfs_calc_trans_metadata_size(root, old_csums - num_csums); |
| } |
| |
| int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes) |
| { |
| struct btrfs_root *root = BTRFS_I(inode)->root; |
| struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv; |
| u64 to_reserve = 0; |
| u64 csum_bytes; |
| unsigned nr_extents = 0; |
| int extra_reserve = 0; |
| int flush = 1; |
| int ret; |
| |
| /* Need to be holding the i_mutex here if we aren't free space cache */ |
| if (btrfs_is_free_space_inode(root, inode)) |
| flush = 0; |
| else |
| WARN_ON(!mutex_is_locked(&inode->i_mutex)); |
| |
| if (flush && btrfs_transaction_in_commit(root->fs_info)) |
| schedule_timeout(1); |
| |
| num_bytes = ALIGN(num_bytes, root->sectorsize); |
| |
| spin_lock(&BTRFS_I(inode)->lock); |
| BTRFS_I(inode)->outstanding_extents++; |
| |
| if (BTRFS_I(inode)->outstanding_extents > |
| BTRFS_I(inode)->reserved_extents) |
| nr_extents = BTRFS_I(inode)->outstanding_extents - |
| BTRFS_I(inode)->reserved_extents; |
| |
| /* |
| * Add an item to reserve for updating the inode when we complete the |
| * delalloc io. |
| */ |
| if (!BTRFS_I(inode)->delalloc_meta_reserved) { |
| nr_extents++; |
| extra_reserve = 1; |
| } |
| |
| to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents); |
| to_reserve += calc_csum_metadata_size(inode, num_bytes, 1); |
| csum_bytes = BTRFS_I(inode)->csum_bytes; |
| spin_unlock(&BTRFS_I(inode)->lock); |
| |
| ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush); |
| if (ret) { |
| u64 to_free = 0; |
| unsigned dropped; |
| |
| spin_lock(&BTRFS_I(inode)->lock); |
| dropped = drop_outstanding_extent(inode); |
| /* |
| * If the inodes csum_bytes is the same as the original |
| * csum_bytes then we know we haven't raced with any free()ers |
| * so we can just reduce our inodes csum bytes and carry on. |
| * Otherwise we have to do the normal free thing to account for |
| * the case that the free side didn't free up its reserve |
| * because of this outstanding reservation. |
| */ |
| if (BTRFS_I(inode)->csum_bytes == csum_bytes) |
| calc_csum_metadata_size(inode, num_bytes, 0); |
| else |
| to_free = calc_csum_metadata_size(inode, num_bytes, 0); |
| spin_unlock(&BTRFS_I(inode)->lock); |
| if (dropped) |
| to_free += btrfs_calc_trans_metadata_size(root, dropped); |
| |
| if (to_free) |
| btrfs_block_rsv_release(root, block_rsv, to_free); |
| return ret; |
| } |
| |
| spin_lock(&BTRFS_I(inode)->lock); |
| if (extra_reserve) { |
| BTRFS_I(inode)->delalloc_meta_reserved = 1; |
| nr_extents--; |
| } |
| BTRFS_I(inode)->reserved_extents += nr_extents; |
| spin_unlock(&BTRFS_I(inode)->lock); |
| |
| block_rsv_add_bytes(block_rsv, to_reserve, 1); |
| |
| return 0; |
| } |
| |
| /** |
| * btrfs_delalloc_release_metadata - release a metadata reservation for an inode |
| * @inode: the inode to release the reservation for |
| * @num_bytes: the number of bytes we're releasing |
| * |
| * This will release the metadata reservation for an inode. This can be called |
| * once we complete IO for a given set of bytes to release their metadata |
| * reservations. |
| */ |
| void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes) |
| { |
| struct btrfs_root *root = BTRFS_I(inode)->root; |
| u64 to_free = 0; |
| unsigned dropped; |
| |
| num_bytes = ALIGN(num_bytes, root->sectorsize); |
| spin_lock(&BTRFS_I(inode)->lock); |
| dropped = drop_outstanding_extent(inode); |
| |
| to_free = calc_csum_metadata_size(inode, num_bytes, 0); |
| spin_unlock(&BTRFS_I(inode)->lock); |
| if (dropped > 0) |
| to_free += btrfs_calc_trans_metadata_size(root, dropped); |
| |
| btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv, |
| to_free); |
| } |
| |
| /** |
| * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc |
| * @inode: inode we're writing to |
| * @num_bytes: the number of bytes we want to allocate |
| * |
| * This will do the following things |
| * |
| * o reserve space in the data space info for num_bytes |
| * o reserve space in the metadata space info based on number of outstanding |
| * extents and how much csums will be needed |
| * o add to the inodes ->delalloc_bytes |
| * o add it to the fs_info's delalloc inodes list. |
| * |
| * This will return 0 for success and -ENOSPC if there is no space left. |
| */ |
| int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes) |
| { |
| int ret; |
| |
| ret = btrfs_check_data_free_space(inode, num_bytes); |
| if (ret) |
| return ret; |
| |
| ret = btrfs_delalloc_reserve_metadata(inode, num_bytes); |
| if (ret) { |
| btrfs_free_reserved_data_space(inode, num_bytes); |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * btrfs_delalloc_release_space - release data and metadata space for delalloc |
| * @inode: inode we're releasing space for |
| * @num_bytes: the number of bytes we want to free up |
| * |
| * This must be matched with a call to btrfs_delalloc_reserve_space. This is |
| * called in the case that we don't need the metadata AND data reservations |
| * anymore. So if there is an error or we insert an inline extent. |
| * |
| * This function will release the metadata space that was not used and will |
| * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes |
| * list if there are no delalloc bytes left. |
| */ |
| void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes) |
| { |
| btrfs_delalloc_release_metadata(inode, num_bytes); |
| btrfs_free_reserved_data_space(inode, num_bytes); |
| } |
| |
| static int update_block_group(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| u64 bytenr, u64 num_bytes, int alloc) |
| { |
| struct btrfs_block_group_cache *cache = NULL; |
| struct btrfs_fs_info *info = root->fs_info; |
| u64 total = num_bytes; |
| u64 old_val; |
| u64 byte_in_group; |
| int factor; |
| |
| /* block accounting for super block */ |
| spin_lock(&info->delalloc_lock); |
| old_val = btrfs_super_bytes_used(info->super_copy); |
| if (alloc) |
| old_val += num_bytes; |
| else |
| old_val -= num_bytes; |
| btrfs_set_super_bytes_used(info->super_copy, old_val); |
| spin_unlock(&info->delalloc_lock); |
| |
| while (total) { |
| cache = btrfs_lookup_block_group(info, bytenr); |
| if (!cache) |
| return -1; |
| if (cache->flags & (BTRFS_BLOCK_GROUP_DUP | |
| BTRFS_BLOCK_GROUP_RAID1 | |
| BTRFS_BLOCK_GROUP_RAID10)) |
| factor = 2; |
| else |
| factor = 1; |
| /* |
| * If this block group has free space cache written out, we |
| * need to make sure to load it if we are removing space. This |
| * is because we need the unpinning stage to actually add the |
| * space back to the block group, otherwise we will leak space. |
| */ |
| if (!alloc && cache->cached == BTRFS_CACHE_NO) |
| cache_block_group(cache, trans, NULL, 1); |
| |
| byte_in_group = bytenr - cache->key.objectid; |
| WARN_ON(byte_in_group > cache->key.offset); |
| |
| spin_lock(&cache->space_info->lock); |
| spin_lock(&cache->lock); |
| |
| if (btrfs_test_opt(root, SPACE_CACHE) && |
| cache->disk_cache_state < BTRFS_DC_CLEAR) |
| cache->disk_cache_state = BTRFS_DC_CLEAR; |
| |
| cache->dirty = 1; |
| old_val = btrfs_block_group_used(&cache->item); |
| num_bytes = min(total, cache->key.offset - byte_in_group); |
| if (alloc) { |
| old_val += num_bytes; |
| btrfs_set_block_group_used(&cache->item, old_val); |
| cache->reserved -= num_bytes; |
| cache->space_info->bytes_reserved -= num_bytes; |
| cache->space_info->bytes_used += num_bytes; |
| cache->space_info->disk_used += num_bytes * factor; |
| spin_unlock(&cache->lock); |
| spin_unlock(&cache->space_info->lock); |
| } else { |
| old_val -= num_bytes; |
| btrfs_set_block_group_used(&cache->item, old_val); |
| cache->pinned += num_bytes; |
| cache->space_info->bytes_pinned += num_bytes; |
| cache->space_info->bytes_used -= num_bytes; |
| cache->space_info->disk_used -= num_bytes * factor; |
| spin_unlock(&cache->lock); |
| spin_unlock(&cache->space_info->lock); |
| |
| set_extent_dirty(info->pinned_extents, |
| bytenr, bytenr + num_bytes - 1, |
| GFP_NOFS | __GFP_NOFAIL); |
| } |
| btrfs_put_block_group(cache); |
| total -= num_bytes; |
| bytenr += num_bytes; |
| } |
| return 0; |
| } |
| |
| static u64 first_logical_byte(struct btrfs_root *root, u64 search_start) |
| { |
| struct btrfs_block_group_cache *cache; |
| u64 bytenr; |
| |
| cache = btrfs_lookup_first_block_group(root->fs_info, search_start); |
| if (!cache) |
| return 0; |
| |
| bytenr = cache->key.objectid; |
| btrfs_put_block_group(cache); |
| |
| return bytenr; |
| } |
| |
| static int pin_down_extent(struct btrfs_root *root, |
| struct btrfs_block_group_cache *cache, |
| u64 bytenr, u64 num_bytes, int reserved) |
| { |
| spin_lock(&cache->space_info->lock); |
| spin_lock(&cache->lock); |
| cache->pinned += num_bytes; |
| cache->space_info->bytes_pinned += num_bytes; |
| if (reserved) { |
| cache->reserved -= num_bytes; |
| cache->space_info->bytes_reserved -= num_bytes; |
| } |
| spin_unlock(&cache->lock); |
| spin_unlock(&cache->space_info->lock); |
| |
| set_extent_dirty(root->fs_info->pinned_extents, bytenr, |
| bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL); |
| return 0; |
| } |
| |
| /* |
| * this function must be called within transaction |
| */ |
| int btrfs_pin_extent(struct btrfs_root *root, |
| u64 bytenr, u64 num_bytes, int reserved) |
| { |
| struct btrfs_block_group_cache *cache; |
| |
| cache = btrfs_lookup_block_group(root->fs_info, bytenr); |
| BUG_ON(!cache); |
| |
| pin_down_extent(root, cache, bytenr, num_bytes, reserved); |
| |
| btrfs_put_block_group(cache); |
| return 0; |
| } |
| |
| /* |
| * this function must be called within transaction |
| */ |
| int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| u64 bytenr, u64 num_bytes) |
| { |
| struct btrfs_block_group_cache *cache; |
| |
| cache = btrfs_lookup_block_group(root->fs_info, bytenr); |
| BUG_ON(!cache); |
| |
| /* |
| * pull in the free space cache (if any) so that our pin |
| * removes the free space from the cache. We have load_only set |
| * to one because the slow code to read in the free extents does check |
| * the pinned extents. |
| */ |
| cache_block_group(cache, trans, root, 1); |
| |
| pin_down_extent(root, cache, bytenr, num_bytes, 0); |
| |
| /* remove us from the free space cache (if we're there at all) */ |
| btrfs_remove_free_space(cache, bytenr, num_bytes); |
| btrfs_put_block_group(cache); |
| return 0; |
| } |
| |
| /** |
| * btrfs_update_reserved_bytes - update the block_group and space info counters |
| * @cache: The cache we are manipulating |
| * @num_bytes: The number of bytes in question |
| * @reserve: One of the reservation enums |
| * |
| * This is called by the allocator when it reserves space, or by somebody who is |
| * freeing space that was never actually used on disk. For example if you |
| * reserve some space for a new leaf in transaction A and before transaction A |
| * commits you free that leaf, you call this with reserve set to 0 in order to |
| * clear the reservation. |
| * |
| * Metadata reservations should be called with RESERVE_ALLOC so we do the proper |
| * ENOSPC accounting. For data we handle the reservation through clearing the |
| * delalloc bits in the io_tree. We have to do this since we could end up |
| * allocating less disk space for the amount of data we have reserved in the |
| * case of compression. |
| * |
| * If this is a reservation and the block group has become read only we cannot |
| * make the reservation and return -EAGAIN, otherwise this function always |
| * succeeds. |
| */ |
| static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache, |
| u64 num_bytes, int reserve) |
| { |
| struct btrfs_space_info *space_info = cache->space_info; |
| int ret = 0; |
| spin_lock(&space_info->lock); |
| spin_lock(&cache->lock); |
| if (reserve != RESERVE_FREE) { |
| if (cache->ro) { |
| ret = -EAGAIN; |
| } else { |
| cache->reserved += num_bytes; |
| space_info->bytes_reserved += num_bytes; |
| if (reserve == RESERVE_ALLOC) { |
| BUG_ON(space_info->bytes_may_use < num_bytes); |
| space_info->bytes_may_use -= num_bytes; |
| } |
| } |
| } else { |
| if (cache->ro) |
| space_info->bytes_readonly += num_bytes; |
| cache->reserved -= num_bytes; |
| space_info->bytes_reserved -= num_bytes; |
| space_info->reservation_progress++; |
| } |
| spin_unlock(&cache->lock); |
| spin_unlock(&space_info->lock); |
| return ret; |
| } |
| |
| int btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root) |
| { |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| struct btrfs_caching_control *next; |
| struct btrfs_caching_control *caching_ctl; |
| struct btrfs_block_group_cache *cache; |
| |
| down_write(&fs_info->extent_commit_sem); |
| |
| list_for_each_entry_safe(caching_ctl, next, |
| &fs_info->caching_block_groups, list) { |
| cache = caching_ctl->block_group; |
| if (block_group_cache_done(cache)) { |
| cache->last_byte_to_unpin = (u64)-1; |
| list_del_init(&caching_ctl->list); |
| put_caching_control(caching_ctl); |
| } else { |
| cache->last_byte_to_unpin = caching_ctl->progress; |
| } |
| } |
| |
| if (fs_info->pinned_extents == &fs_info->freed_extents[0]) |
| fs_info->pinned_extents = &fs_info->freed_extents[1]; |
| else |
| fs_info->pinned_extents = &fs_info->freed_extents[0]; |
| |
| up_write(&fs_info->extent_commit_sem); |
| |
| update_global_block_rsv(fs_info); |
| return 0; |
| } |
| |
| static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end) |
| { |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| struct btrfs_block_group_cache *cache = NULL; |
| u64 len; |
| |
| while (start <= end) { |
| if (!cache || |
| start >= cache->key.objectid + cache->key.offset) { |
| if (cache) |
| btrfs_put_block_group(cache); |
| cache = btrfs_lookup_block_group(fs_info, start); |
| BUG_ON(!cache); |
| } |
| |
| len = cache->key.objectid + cache->key.offset - start; |
| len = min(len, end + 1 - start); |
| |
| if (start < cache->last_byte_to_unpin) { |
| len = min(len, cache->last_byte_to_unpin - start); |
| btrfs_add_free_space(cache, start, len); |
| } |
| |
| start += len; |
| |
| spin_lock(&cache->space_info->lock); |
| spin_lock(&cache->lock); |
| cache->pinned -= len; |
| cache->space_info->bytes_pinned -= len; |
| if (cache->ro) |
| cache->space_info->bytes_readonly += len; |
| spin_unlock(&cache->lock); |
| spin_unlock(&cache->space_info->lock); |
| } |
| |
| if (cache) |
| btrfs_put_block_group(cache); |
| return 0; |
| } |
| |
| int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root) |
| { |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| struct extent_io_tree *unpin; |
| u64 start; |
| u64 end; |
| int ret; |
| |
| if (fs_info->pinned_extents == &fs_info->freed_extents[0]) |
| unpin = &fs_info->freed_extents[1]; |
| else |
| unpin = &fs_info->freed_extents[0]; |
| |
| while (1) { |
| ret = find_first_extent_bit(unpin, 0, &start, &end, |
| EXTENT_DIRTY); |
| if (ret) |
| break; |
| |
| if (btrfs_test_opt(root, DISCARD)) |
| ret = btrfs_discard_extent(root, start, |
| end + 1 - start, NULL); |
| |
| clear_extent_dirty(unpin, start, end, GFP_NOFS); |
| unpin_extent_range(root, start, end); |
| cond_resched(); |
| } |
| |
| return 0; |
| } |
| |
| static int __btrfs_free_extent(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| u64 bytenr, u64 num_bytes, u64 parent, |
| u64 root_objectid, u64 owner_objectid, |
| u64 owner_offset, int refs_to_drop, |
| struct btrfs_delayed_extent_op *extent_op) |
| { |
| struct btrfs_key key; |
| struct btrfs_path *path; |
| struct btrfs_fs_info *info = root->fs_info; |
| struct btrfs_root *extent_root = info->extent_root; |
| struct extent_buffer *leaf; |
| struct btrfs_extent_item *ei; |
| struct btrfs_extent_inline_ref *iref; |
| int ret; |
| int is_data; |
| int extent_slot = 0; |
| int found_extent = 0; |
| int num_to_del = 1; |
| u32 item_size; |
| u64 refs; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| path->reada = 1; |
| path->leave_spinning = 1; |
| |
| is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID; |
| BUG_ON(!is_data && refs_to_drop != 1); |
| |
| ret = lookup_extent_backref(trans, extent_root, path, &iref, |
| bytenr, num_bytes, parent, |
| root_objectid, owner_objectid, |
| owner_offset); |
| if (ret == 0) { |
| extent_slot = path->slots[0]; |
| while (extent_slot >= 0) { |
| btrfs_item_key_to_cpu(path->nodes[0], &key, |
| extent_slot); |
| if (key.objectid != bytenr) |
| break; |
| if (key.type == BTRFS_EXTENT_ITEM_KEY && |
| key.offset == num_bytes) { |
| found_extent = 1; |
| break; |
| } |
| if (path->slots[0] - extent_slot > 5) |
| break; |
| extent_slot--; |
| } |
| #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 |
| item_size = btrfs_item_size_nr(path->nodes[0], extent_slot); |
| if (found_extent && item_size < sizeof(*ei)) |
| found_extent = 0; |
| #endif |
| if (!found_extent) { |
| BUG_ON(iref); |
| ret = remove_extent_backref(trans, extent_root, path, |
| NULL, refs_to_drop, |
| is_data); |
| BUG_ON(ret); |
| btrfs_release_path(path); |
| path->leave_spinning = 1; |
| |
| key.objectid = bytenr; |
| key.type = BTRFS_EXTENT_ITEM_KEY; |
| key.offset = num_bytes; |
| |
| ret = btrfs_search_slot(trans, extent_root, |
| &key, path, -1, 1); |
| if (ret) { |
| printk(KERN_ERR "umm, got %d back from search" |
| ", was looking for %llu\n", ret, |
| (unsigned long long)bytenr); |
| if (ret > 0) |
| btrfs_print_leaf(extent_root, |
| path->nodes[0]); |
| } |
| BUG_ON(ret); |
| extent_slot = path->slots[0]; |
| } |
| } else { |
| btrfs_print_leaf(extent_root, path->nodes[0]); |
| WARN_ON(1); |
| printk(KERN_ERR "btrfs unable to find ref byte nr %llu " |
| "parent %llu root %llu owner %llu offset %llu\n", |
| (unsigned long long)bytenr, |
| (unsigned long long)parent, |
| (unsigned long long)root_objectid, |
| (unsigned long long)owner_objectid, |
| (unsigned long long)owner_offset); |
| } |
| |
| leaf = path->nodes[0]; |
| item_size = btrfs_item_size_nr(leaf, extent_slot); |
| #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 |
| if (item_size < sizeof(*ei)) { |
| BUG_ON(found_extent || extent_slot != path->slots[0]); |
| ret = convert_extent_item_v0(trans, extent_root, path, |
| owner_objectid, 0); |
| BUG_ON(ret < 0); |
| |
| btrfs_release_path(path); |
| path->leave_spinning = 1; |
| |
| key.objectid = bytenr; |
| key.type = BTRFS_EXTENT_ITEM_KEY; |
| key.offset = num_bytes; |
| |
| ret = btrfs_search_slot(trans, extent_root, &key, path, |
| -1, 1); |
| if (ret) { |
| printk(KERN_ERR "umm, got %d back from search" |
| ", was looking for %llu\n", ret, |
| (unsigned long long)bytenr); |
| btrfs_print_leaf(extent_root, path->nodes[0]); |
| } |
| BUG_ON(ret); |
| extent_slot = path->slots[0]; |
| leaf = path->nodes[0]; |
| item_size = btrfs_item_size_nr(leaf, extent_slot); |
| } |
| #endif |
| BUG_ON(item_size < sizeof(*ei)); |
| ei = btrfs_item_ptr(leaf, extent_slot, |
| struct btrfs_extent_item); |
| if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID) { |
| struct btrfs_tree_block_info *bi; |
| BUG_ON(item_size < sizeof(*ei) + sizeof(*bi)); |
| bi = (struct btrfs_tree_block_info *)(ei + 1); |
| WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi)); |
| } |
| |
| refs = btrfs_extent_refs(leaf, ei); |
| BUG_ON(refs < refs_to_drop); |
| refs -= refs_to_drop; |
| |
| if (refs > 0) { |
| if (extent_op) |
| __run_delayed_extent_op(extent_op, leaf, ei); |
| /* |
| * In the case of inline back ref, reference count will |
| * be updated by remove_extent_backref |
| */ |
| if (iref) { |
| BUG_ON(!found_extent); |
| } else { |
| btrfs_set_extent_refs(leaf, ei, refs); |
| btrfs_mark_buffer_dirty(leaf); |
| } |
| if (found_extent) { |
| ret = remove_extent_backref(trans, extent_root, path, |
| iref, refs_to_drop, |
| is_data); |
| BUG_ON(ret); |
| } |
| } else { |
| if (found_extent) { |
| BUG_ON(is_data && refs_to_drop != |
| extent_data_ref_count(root, path, iref)); |
| if (iref) { |
| BUG_ON(path->slots[0] != extent_slot); |
| } else { |
| BUG_ON(path->slots[0] != extent_slot + 1); |
| path->slots[0] = extent_slot; |
| num_to_del = 2; |
| } |
| } |
| |
| ret = btrfs_del_items(trans, extent_root, path, path->slots[0], |
| num_to_del); |
| BUG_ON(ret); |
| btrfs_release_path(path); |
| |
| if (is_data) { |
| ret = btrfs_del_csums(trans, root, bytenr, num_bytes); |
| BUG_ON(ret); |
| } else { |
| invalidate_mapping_pages(info->btree_inode->i_mapping, |
| bytenr >> PAGE_CACHE_SHIFT, |
| (bytenr + num_bytes - 1) >> PAGE_CACHE_SHIFT); |
| } |
| |
| ret = update_block_group(trans, root, bytenr, num_bytes, 0); |
| BUG_ON(ret); |
| } |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| /* |
| * when we free an block, it is possible (and likely) that we free the last |
| * delayed ref for that extent as well. This searches the delayed ref tree for |
| * a given extent, and if there are no other delayed refs to be processed, it |
| * removes it from the tree. |
| */ |
| static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, u64 bytenr) |
| { |
| struct btrfs_delayed_ref_head *head; |
| struct btrfs_delayed_ref_root *delayed_refs; |
| struct btrfs_delayed_ref_node *ref; |
| struct rb_node *node; |
| int ret = 0; |
| |
| delayed_refs = &trans->transaction->delayed_refs; |
| spin_lock(&delayed_refs->lock); |
| head = btrfs_find_delayed_ref_head(trans, bytenr); |
| if (!head) |
| goto out; |
| |
| node = rb_prev(&head->node.rb_node); |
| if (!node) |
| goto out; |
| |
| ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node); |
| |
| /* there are still entries for this ref, we can't drop it */ |
| if (ref->bytenr == bytenr) |
| goto out; |
| |
| if (head->extent_op) { |
| if (!head->must_insert_reserved) |
| goto out; |
| kfree(head->extent_op); |
| head->extent_op = NULL; |
| } |
| |
| /* |
| * waiting for the lock here would deadlock. If someone else has it |
| * locked they are already in the process of dropping it anyway |
| */ |
| if (!mutex_trylock(&head->mutex)) |
| goto out; |
| |
| /* |
| * at this point we have a head with no other entries. Go |
| * ahead and process it. |
| */ |
| head->node.in_tree = 0; |
| rb_erase(&head->node.rb_node, &delayed_refs->root); |
| |
| delayed_refs->num_entries--; |
| if (waitqueue_active(&delayed_refs->seq_wait)) |
| wake_up(&delayed_refs->seq_wait); |
| |
| /* |
| * we don't take a ref on the node because we're removing it from the |
| * tree, so we just steal the ref the tree was holding. |
| */ |
| delayed_refs->num_heads--; |
| if (list_empty(&head->cluster)) |
| delayed_refs->num_heads_ready--; |
| |
| list_del_init(&head->cluster); |
| spin_unlock(&delayed_refs->lock); |
| |
| BUG_ON(head->extent_op); |
| if (head->must_insert_reserved) |
| ret = 1; |
| |
| mutex_unlock(&head->mutex); |
| btrfs_put_delayed_ref(&head->node); |
| return ret; |
| out: |
| spin_unlock(&delayed_refs->lock); |
| return 0; |
| } |
| |
| void btrfs_free_tree_block(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct extent_buffer *buf, |
| u64 parent, int last_ref, int for_cow) |
| { |
| struct btrfs_block_group_cache *cache = NULL; |
| int ret; |
| |
| if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { |
| ret = btrfs_add_delayed_tree_ref(root->fs_info, trans, |
| buf->start, buf->len, |
| parent, root->root_key.objectid, |
| btrfs_header_level(buf), |
| BTRFS_DROP_DELAYED_REF, NULL, for_cow); |
| BUG_ON(ret); |
| } |
| |
| if (!last_ref) |
| return; |
| |
| cache = btrfs_lookup_block_group(root->fs_info, buf->start); |
| |
| if (btrfs_header_generation(buf) == trans->transid) { |
| if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { |
| ret = check_ref_cleanup(trans, root, buf->start); |
| if (!ret) |
| goto out; |
| } |
| |
| if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) { |
| pin_down_extent(root, cache, buf->start, buf->len, 1); |
| goto out; |
| } |
| |
| WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)); |
| |
| btrfs_add_free_space(cache, buf->start, buf->len); |
| btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE); |
| } |
| out: |
| /* |
| * Deleting the buffer, clear the corrupt flag since it doesn't matter |
| * anymore. |
| */ |
| clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags); |
| btrfs_put_block_group(cache); |
| } |
| |
| int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root, |
| u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid, |
| u64 owner, u64 offset, int for_cow) |
| { |
| int ret; |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| |
| /* |
| * tree log blocks never actually go into the extent allocation |
| * tree, just update pinning info and exit early. |
| */ |
| if (root_objectid == BTRFS_TREE_LOG_OBJECTID) { |
| WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID); |
| /* unlocks the pinned mutex */ |
| btrfs_pin_extent(root, bytenr, num_bytes, 1); |
| ret = 0; |
| } else if (owner < BTRFS_FIRST_FREE_OBJECTID) { |
| ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr, |
| num_bytes, |
| parent, root_objectid, (int)owner, |
| BTRFS_DROP_DELAYED_REF, NULL, for_cow); |
| BUG_ON(ret); |
| } else { |
| ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr, |
| num_bytes, |
| parent, root_objectid, owner, |
| offset, BTRFS_DROP_DELAYED_REF, |
| NULL, for_cow); |
| BUG_ON(ret); |
| } |
| return ret; |
| } |
| |
| static u64 stripe_align(struct btrfs_root *root, u64 val) |
| { |
| u64 mask = ((u64)root->stripesize - 1); |
| u64 ret = (val + mask) & ~mask; |
| return ret; |
| } |
| |
| /* |
| * when we wait for progress in the block group caching, its because |
| * our allocation attempt failed at least once. So, we must sleep |
| * and let some progress happen before we try again. |
| * |
| * This function will sleep at least once waiting for new free space to |
| * show up, and then it will check the block group free space numbers |
| * for our min num_bytes. Another option is to have it go ahead |
| * and look in the rbtree for a free extent of a given size, but this |
| * is a good start. |
| */ |
| static noinline int |
| wait_block_group_cache_progress(struct btrfs_block_group_cache *cache, |
| u64 num_bytes) |
| { |
| struct btrfs_caching_control *caching_ctl; |
| DEFINE_WAIT(wait); |
| |
| caching_ctl = get_caching_control(cache); |
| if (!caching_ctl) |
| return 0; |
| |
| wait_event(caching_ctl->wait, block_group_cache_done(cache) || |
| (cache->free_space_ctl->free_space >= num_bytes)); |
| |
| put_caching_control(caching_ctl); |
| return 0; |
| } |
| |
| static noinline int |
| wait_block_group_cache_done(struct btrfs_block_group_cache *cache) |
| { |
| struct btrfs_caching_control *caching_ctl; |
| DEFINE_WAIT(wait); |
| |
| caching_ctl = get_caching_control(cache); |
| if (!caching_ctl) |
| return 0; |
| |
| wait_event(caching_ctl->wait, block_group_cache_done(cache)); |
| |
| put_caching_control(caching_ctl); |
| return 0; |
| } |
| |
| static int get_block_group_index(struct btrfs_block_group_cache *cache) |
| { |
| int index; |
| if (cache->flags & BTRFS_BLOCK_GROUP_RAID10) |
| index = 0; |
| else if (cache->flags & BTRFS_BLOCK_GROUP_RAID1) |
| index = 1; |
| else if (cache->flags & BTRFS_BLOCK_GROUP_DUP) |
| index = 2; |
| else if (cache->flags & BTRFS_BLOCK_GROUP_RAID0) |
| index = 3; |
| else |
| index = 4; |
| return index; |
| } |
| |
| enum btrfs_loop_type { |
| LOOP_FIND_IDEAL = 0, |
| LOOP_CACHING_NOWAIT = 1, |
| LOOP_CACHING_WAIT = 2, |
| LOOP_ALLOC_CHUNK = 3, |
| LOOP_NO_EMPTY_SIZE = 4, |
| }; |
| |
| /* |
| * walks the btree of allocated extents and find a hole of a given size. |
| * The key ins is changed to record the hole: |
| * ins->objectid == block start |
| * ins->flags = BTRFS_EXTENT_ITEM_KEY |
| * ins->offset == number of blocks |
| * Any available blocks before search_start are skipped. |
| */ |
| static noinline int find_free_extent(struct btrfs_trans_handle *trans, |
| struct btrfs_root *orig_root, |
| u64 num_bytes, u64 empty_size, |
| u64 search_start, u64 search_end, |
| u64 hint_byte, struct btrfs_key *ins, |
| u64 data) |
| { |
| int ret = 0; |
| struct btrfs_root *root = orig_root->fs_info->extent_root; |
| struct btrfs_free_cluster *last_ptr = NULL; |
| struct btrfs_block_group_cache *block_group = NULL; |
| struct btrfs_block_group_cache *used_block_group; |
| int empty_cluster = 2 * 1024 * 1024; |
| int allowed_chunk_alloc = 0; |
| int done_chunk_alloc = 0; |
| struct btrfs_space_info *space_info; |
| int loop = 0; |
| int index = 0; |
| int alloc_type = (data & BTRFS_BLOCK_GROUP_DATA) ? |
| RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC; |
| bool found_uncached_bg = false; |
| bool failed_cluster_refill = false; |
| bool failed_alloc = false; |
| bool use_cluster = true; |
| bool have_caching_bg = false; |
| u64 ideal_cache_percent = 0; |
| u64 ideal_cache_offset = 0; |
| |
| WARN_ON(num_bytes < root->sectorsize); |
| btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY); |
| ins->objectid = 0; |
| ins->offset = 0; |
| |
| trace_find_free_extent(orig_root, num_bytes, empty_size, data); |
| |
| space_info = __find_space_info(root->fs_info, data); |
| if (!space_info) { |
| printk(KERN_ERR "No space info for %llu\n", data); |
| return -ENOSPC; |
| } |
| |
| /* |
| * If the space info is for both data and metadata it means we have a |
| * small filesystem and we can't use the clustering stuff. |
| */ |
| if (btrfs_mixed_space_info(space_info)) |
| use_cluster = false; |
| |
| if (orig_root->ref_cows || empty_size) |
| allowed_chunk_alloc = 1; |
| |
| if (data & BTRFS_BLOCK_GROUP_METADATA && use_cluster) { |
| last_ptr = &root->fs_info->meta_alloc_cluster; |
| if (!btrfs_test_opt(root, SSD)) |
| empty_cluster = 64 * 1024; |
| } |
| |
| if ((data & BTRFS_BLOCK_GROUP_DATA) && use_cluster && |
| btrfs_test_opt(root, SSD)) { |
| last_ptr = &root->fs_info->data_alloc_cluster; |
| } |
| |
| if (last_ptr) { |
| spin_lock(&last_ptr->lock); |
| if (last_ptr->block_group) |
| hint_byte = last_ptr->window_start; |
| spin_unlock(&last_ptr->lock); |
| } |
| |
| search_start = max(search_start, first_logical_byte(root, 0)); |
| search_start = max(search_start, hint_byte); |
| |
| if (!last_ptr) |
| empty_cluster = 0; |
| |
| if (search_start == hint_byte) { |
| ideal_cache: |
| block_group = btrfs_lookup_block_group(root->fs_info, |
| search_start); |
| used_block_group = block_group; |
| /* |
| * we don't want to use the block group if it doesn't match our |
| * allocation bits, or if its not cached. |
| * |
| * However if we are re-searching with an ideal block group |
| * picked out then we don't care that the block group is cached. |
| */ |
| if (block_group && block_group_bits(block_group, data) && |
| (block_group->cached != BTRFS_CACHE_NO || |
| search_start == ideal_cache_offset)) { |
| down_read(&space_info->groups_sem); |
| if (list_empty(&block_group->list) || |
| block_group->ro) { |
| /* |
| * someone is removing this block group, |
| * we can't jump into the have_block_group |
| * target because our list pointers are not |
| * valid |
| */ |
| btrfs_put_block_group(block_group); |
| up_read(&space_info->groups_sem); |
| } else { |
| index = get_block_group_index(block_group); |
| goto have_block_group; |
| } |
| } else if (block_group) { |
| btrfs_put_block_group(block_group); |
| } |
| } |
| search: |
| have_caching_bg = false; |
| down_read(&space_info->groups_sem); |
| list_for_each_entry(block_group, &space_info->block_groups[index], |
| list) { |
| u64 offset; |
| int cached; |
| |
| used_block_group = block_group; |
| btrfs_get_block_group(block_group); |
| search_start = block_group->key.objectid; |
| |
| /* |
| * this can happen if we end up cycling through all the |
| * raid types, but we want to make sure we only allocate |
| * for the proper type. |
| */ |
| if (!block_group_bits(block_group, data)) { |
| u64 extra = BTRFS_BLOCK_GROUP_DUP | |
| BTRFS_BLOCK_GROUP_RAID1 | |
| BTRFS_BLOCK_GROUP_RAID10; |
| |
| /* |
| * if they asked for extra copies and this block group |
| * doesn't provide them, bail. This does allow us to |
| * fill raid0 from raid1. |
| */ |
| if ((data & extra) && !(block_group->flags & extra)) |
| goto loop; |
| } |
| |
| have_block_group: |
| cached = block_group_cache_done(block_group); |
| if (unlikely(!cached)) { |
| u64 free_percent; |
| |
| found_uncached_bg = true; |
| ret = cache_block_group(block_group, trans, |
| orig_root, 1); |
| if (block_group->cached == BTRFS_CACHE_FINISHED) |
| goto alloc; |
| |
| free_percent = btrfs_block_group_used(&block_group->item); |
| free_percent *= 100; |
| free_percent = div64_u64(free_percent, |
| block_group->key.offset); |
| free_percent = 100 - free_percent; |
| if (free_percent > ideal_cache_percent && |
| likely(!block_group->ro)) { |
| ideal_cache_offset = block_group->key.objectid; |
| ideal_cache_percent = free_percent; |
| } |
| |
| /* |
| * The caching workers are limited to 2 threads, so we |
| * can queue as much work as we care to. |
| */ |
| if (loop > LOOP_FIND_IDEAL) { |
| ret = cache_block_group(block_group, trans, |
| orig_root, 0); |
| BUG_ON(ret); |
| } |
| |
| /* |
| * If loop is set for cached only, try the next block |
| * group. |
| */ |
| if (loop == LOOP_FIND_IDEAL) |
| goto loop; |
| } |
| |
| alloc: |
| if (unlikely(block_group->ro)) |
| goto loop; |
| |
| /* |
| * Ok we want to try and use the cluster allocator, so |
| * lets look there |
| */ |
| if (last_ptr) { |
| /* |
| * the refill lock keeps out other |
| * people trying to start a new cluster |
| */ |
| spin_lock(&last_ptr->refill_lock); |
| used_block_group = last_ptr->block_group; |
| if (used_block_group != block_group && |
| (!used_block_group || |
| used_block_group->ro || |
| !block_group_bits(used_block_group, data))) { |
| used_block_group = block_group; |
| goto refill_cluster; |
| } |
| |
| if (used_block_group != block_group) |
| btrfs_get_block_group(used_block_group); |
| |
| offset = btrfs_alloc_from_cluster(used_block_group, |
| last_ptr, num_bytes, used_block_group->key.objectid); |
| if (offset) { |
| /* we have a block, we're done */ |
| spin_unlock(&last_ptr->refill_lock); |
| trace_btrfs_reserve_extent_cluster(root, |
| block_group, search_start, num_bytes); |
| goto checks; |
| } |
| |
| WARN_ON(last_ptr->block_group != used_block_group); |
| if (used_block_group != block_group) { |
| btrfs_put_block_group(used_block_group); |
| used_block_group = block_group; |
| } |
| refill_cluster: |
| BUG_ON(used_block_group != block_group); |
| /* If we are on LOOP_NO_EMPTY_SIZE, we can't |
| * set up a new clusters, so lets just skip it |
| * and let the allocator find whatever block |
| * it can find. If we reach this point, we |
| * will have tried the cluster allocator |
| * plenty of times and not have found |
| * anything, so we are likely way too |
| * fragmented for the clustering stuff to find |
| * anything. |
| * |
| * However, if the cluster is taken from the |
| * current block group, release the cluster |
| * first, so that we stand a better chance of |
| * succeeding in the unclustered |
| * allocation. */ |
| if (loop >= LOOP_NO_EMPTY_SIZE && |
| last_ptr->block_group != block_group) { |
| spin_unlock(&last_ptr->refill_lock); |
| goto unclustered_alloc; |
| } |
| |
| /* |
| * this cluster didn't work out, free it and |
| * start over |
| */ |
| btrfs_return_cluster_to_free_space(NULL, last_ptr); |
| |
| if (loop >= LOOP_NO_EMPTY_SIZE) { |
| spin_unlock(&last_ptr->refill_lock); |
| goto unclustered_alloc; |
| } |
| |
| /* allocate a cluster in this block group */ |
| ret = btrfs_find_space_cluster(trans, root, |
| block_group, last_ptr, |
| search_start, num_bytes, |
| empty_cluster + empty_size); |
| if (ret == 0) { |
| /* |
| * now pull our allocation out of this |
| * cluster |
| */ |
| offset = btrfs_alloc_from_cluster(block_group, |
| last_ptr, num_bytes, |
| search_start); |
| if (offset) { |
| /* we found one, proceed */ |
| spin_unlock(&last_ptr->refill_lock); |
| trace_btrfs_reserve_extent_cluster(root, |
| block_group, search_start, |
| num_bytes); |
| goto checks; |
| } |
| } else if (!cached && loop > LOOP_CACHING_NOWAIT |
| && !failed_cluster_refill) { |
| spin_unlock(&last_ptr->refill_lock); |
| |
| failed_cluster_refill = true; |
| wait_block_group_cache_progress(block_group, |
| num_bytes + empty_cluster + empty_size); |
| goto have_block_group; |
| } |
| |
| /* |
| * at this point we either didn't find a cluster |
| * or we weren't able to allocate a block from our |
| * cluster. Free the cluster we've been trying |
| * to use, and go to the next block group |
| */ |
| btrfs_return_cluster_to_free_space(NULL, last_ptr); |
| spin_unlock(&last_ptr->refill_lock); |
| goto loop; |
| } |
| |
| unclustered_alloc: |
| spin_lock(&block_group->free_space_ctl->tree_lock); |
| if (cached && |
| block_group->free_space_ctl->free_space < |
| num_bytes + empty_cluster + empty_size) { |
| spin_unlock(&block_group->free_space_ctl->tree_lock); |
| goto loop; |
| } |
| spin_unlock(&block_group->free_space_ctl->tree_lock); |
| |
| offset = btrfs_find_space_for_alloc(block_group, search_start, |
| num_bytes, empty_size); |
| /* |
| * If we didn't find a chunk, and we haven't failed on this |
| * block group before, and this block group is in the middle of |
| * caching and we are ok with waiting, then go ahead and wait |
| * for progress to be made, and set failed_alloc to true. |
| * |
| * If failed_alloc is true then we've already waited on this |
| * block group once and should move on to the next block group. |
| */ |
| if (!offset && !failed_alloc && !cached && |
| loop > LOOP_CACHING_NOWAIT) { |
| wait_block_group_cache_progress(block_group, |
| num_bytes + empty_size); |
| failed_alloc = true; |
| goto have_block_group; |
| } else if (!offset) { |
| if (!cached) |
| have_caching_bg = true; |
| goto loop; |
| } |
| checks: |
| search_start = stripe_align(root, offset); |
| /* move on to the next group */ |
| if (search_start + num_bytes >= search_end) { |
| btrfs_add_free_space(used_block_group, offset, num_bytes); |
| goto loop; |
| } |
| |
| /* move on to the next group */ |
| if (search_start + num_bytes > |
| used_block_group->key.objectid + used_block_group->key.offset) { |
| btrfs_add_free_space(used_block_group, offset, num_bytes); |
| goto loop; |
| } |
| |
| if (offset < search_start) |
| btrfs_add_free_space(used_block_group, offset, |
| search_start - offset); |
| BUG_ON(offset > search_start); |
| |
| ret = btrfs_update_reserved_bytes(used_block_group, num_bytes, |
| alloc_type); |
| if (ret == -EAGAIN) { |
| btrfs_add_free_space(used_block_group, offset, num_bytes); |
| goto loop; |
| } |
| |
| /* we are all good, lets return */ |
| ins->objectid = search_start; |
| ins->offset = num_bytes; |
| |
| trace_btrfs_reserve_extent(orig_root, block_group, |
| search_start, num_bytes); |
| if (offset < search_start) |
| btrfs_add_free_space(used_block_group, offset, |
| search_start - offset); |
| BUG_ON(offset > search_start); |
| if (used_block_group != block_group) |
| btrfs_put_block_group(used_block_group); |
| btrfs_put_block_group(block_group); |
| break; |
| loop: |
| failed_cluster_refill = false; |
| failed_alloc = false; |
| BUG_ON(index != get_block_group_index(block_group)); |
| if (used_block_group != block_group) |
| btrfs_put_block_group(used_block_group); |
| btrfs_put_block_group(block_group); |
| } |
| up_read(&space_info->groups_sem); |
| |
| if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg) |
| goto search; |
| |
| if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES) |
| goto search; |
| |
| /* LOOP_FIND_IDEAL, only search caching/cached bg's, and don't wait for |
| * for them to make caching progress. Also |
| * determine the best possible bg to cache |
| * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking |
| * caching kthreads as we move along |
| * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching |
| * LOOP_ALLOC_CHUNK, force a chunk allocation and try again |
| * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try |
| * again |
| */ |
| if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) { |
| index = 0; |
| if (loop == LOOP_FIND_IDEAL && found_uncached_bg) { |
| found_uncached_bg = false; |
| loop++; |
| if (!ideal_cache_percent) |
| goto search; |
| |
| /* |
| * 1 of the following 2 things have happened so far |
| * |
| * 1) We found an ideal block group for caching that |
| * is mostly full and will cache quickly, so we might |
| * as well wait for it. |
| * |
| * 2) We searched for cached only and we didn't find |
| * anything, and we didn't start any caching kthreads |
| * either, so chances are we will loop through and |
| * start a couple caching kthreads, and then come back |
| * around and just wait for them. This will be slower |
| * because we will have 2 caching kthreads reading at |
| * the same time when we could have just started one |
| * and waited for it to get far enough to give us an |
| * allocation, so go ahead and go to the wait caching |
| * loop. |
| */ |
| loop = LOOP_CACHING_WAIT; |
| search_start = ideal_cache_offset; |
| ideal_cache_percent = 0; |
| goto ideal_cache; |
| } else if (loop == LOOP_FIND_IDEAL) { |
| /* |
| * Didn't find a uncached bg, wait on anything we find |
| * next. |
| */ |
| loop = LOOP_CACHING_WAIT; |
| goto search; |
| } |
| |
| loop++; |
| |
| if (loop == LOOP_ALLOC_CHUNK) { |
| if (allowed_chunk_alloc) { |
| ret = do_chunk_alloc(trans, root, num_bytes + |
| 2 * 1024 * 1024, data, |
| CHUNK_ALLOC_LIMITED); |
| allowed_chunk_alloc = 0; |
| if (ret == 1) |
| done_chunk_alloc = 1; |
| } else if (!done_chunk_alloc && |
| space_info->force_alloc == |
| CHUNK_ALLOC_NO_FORCE) { |
| space_info->force_alloc = CHUNK_ALLOC_LIMITED; |
| } |
| |
| /* |
| * We didn't allocate a chunk, go ahead and drop the |
| * empty size and loop again. |
| */ |
| if (!done_chunk_alloc) |
| loop = LOOP_NO_EMPTY_SIZE; |
| } |
| |
| if (loop == LOOP_NO_EMPTY_SIZE) { |
| empty_size = 0; |
| empty_cluster = 0; |
| } |
| |
| goto search; |
| } else if (!ins->objectid) { |
| ret = -ENOSPC; |
| } else if (ins->objectid) { |
| ret = 0; |
| } |
| |
| return ret; |
| } |
| |
| static void dump_space_info(struct btrfs_space_info *info, u64 bytes, |
| int dump_block_groups) |
| { |
| struct btrfs_block_group_cache *cache; |
| int index = 0; |
| |
| spin_lock(&info->lock); |
| printk(KERN_INFO "space_info %llu has %llu free, is %sfull\n", |
| (unsigned long long)info->flags, |
| (unsigned long long)(info->total_bytes - info->bytes_used - |
| info->bytes_pinned - info->bytes_reserved - |
| info->bytes_readonly), |
| (info->full) ? "" : "not "); |
| printk(KERN_INFO "space_info total=%llu, used=%llu, pinned=%llu, " |
| "reserved=%llu, may_use=%llu, readonly=%llu\n", |
| (unsigned long long)info->total_bytes, |
| (unsigned long long)info->bytes_used, |
| (unsigned long long)info->bytes_pinned, |
| (unsigned long long)info->bytes_reserved, |
| (unsigned long long)info->bytes_may_use, |
| (unsigned long long)info->bytes_readonly); |
| spin_unlock(&info->lock); |
| |
| if (!dump_block_groups) |
| return; |
| |
| down_read(&info->groups_sem); |
| again: |
| list_for_each_entry(cache, &info->block_groups[index], list) { |
| spin_lock(&cache->lock); |
| printk(KERN_INFO "block group %llu has %llu bytes, %llu used " |
| "%llu pinned %llu reserved\n", |
| (unsigned long long)cache->key.objectid, |
| (unsigned long long)cache->key.offset, |
| (unsigned long long)btrfs_block_group_used(&cache->item), |
| (unsigned long long)cache->pinned, |
| (unsigned long long)cache->reserved); |
| btrfs_dump_free_space(cache, bytes); |
| spin_unlock(&cache->lock); |
| } |
| if (++index < BTRFS_NR_RAID_TYPES) |
| goto again; |
| up_read(&info->groups_sem); |
| } |
| |
| int btrfs_reserve_extent(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| u64 num_bytes, u64 min_alloc_size, |
| u64 empty_size, u64 hint_byte, |
| u64 search_end, struct btrfs_key *ins, |
| u64 data) |
| { |
| int ret; |
| u64 search_start = 0; |
| |
| data = btrfs_get_alloc_profile(root, data); |
| again: |
| /* |
| * the only place that sets empty_size is btrfs_realloc_node, which |
| * is not called recursively on allocations |
| */ |
| if (empty_size || root->ref_cows) |
| ret = do_chunk_alloc(trans, root->fs_info->extent_root, |
| num_bytes + 2 * 1024 * 1024, data, |
| CHUNK_ALLOC_NO_FORCE); |
| |
| WARN_ON(num_bytes < root->sectorsize); |
| ret = find_free_extent(trans, root, num_bytes, empty_size, |
| search_start, search_end, hint_byte, |
| ins, data); |
| |
| if (ret == -ENOSPC && num_bytes > min_alloc_size) { |
| num_bytes = num_bytes >> 1; |
| num_bytes = num_bytes & ~(root->sectorsize - 1); |
| num_bytes = max(num_bytes, min_alloc_size); |
| do_chunk_alloc(trans, root->fs_info->extent_root, |
| num_bytes, data, CHUNK_ALLOC_FORCE); |
| goto again; |
| } |
| if (ret == -ENOSPC && btrfs_test_opt(root, ENOSPC_DEBUG)) { |
| struct btrfs_space_info *sinfo; |
| |
| sinfo = __find_space_info(root->fs_info, data); |
| printk(KERN_ERR "btrfs allocation failed flags %llu, " |
| "wanted %llu\n", (unsigned long long)data, |
| (unsigned long long)num_bytes); |
| dump_space_info(sinfo, num_bytes, 1); |
| } |
| |
| trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset); |
| |
| return ret; |
| } |
| |
| static int __btrfs_free_reserved_extent(struct btrfs_root *root, |
| u64 start, u64 len, int pin) |
| { |
| struct btrfs_block_group_cache *cache; |
| int ret = 0; |
| |
| cache = btrfs_lookup_block_group(root->fs_info, start); |
| if (!cache) { |
| printk(KERN_ERR "Unable to find block group for %llu\n", |
| (unsigned long long)start); |
| return -ENOSPC; |
| } |
| |
| if (btrfs_test_opt(root, DISCARD)) |
| ret = btrfs_discard_extent(root, start, len, NULL); |
| |
| if (pin) |
| pin_down_extent(root, cache, start, len, 1); |
| else { |
| btrfs_add_free_space(cache, start, len); |
| btrfs_update_reserved_bytes(cache, len, RESERVE_FREE); |
| } |
| btrfs_put_block_group(cache); |
| |
| trace_btrfs_reserved_extent_free(root, start, len); |
| |
| return ret; |
| } |
| |
| int btrfs_free_reserved_extent(struct btrfs_root *root, |
| u64 start, u64 len) |
| { |
| return __btrfs_free_reserved_extent(root, start, len, 0); |
| } |
| |
| int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root, |
| u64 start, u64 len) |
| { |
| return __btrfs_free_reserved_extent(root, start, len, 1); |
| } |
| |
| static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| u64 parent, u64 root_objectid, |
| u64 flags, u64 owner, u64 offset, |
| struct btrfs_key *ins, int ref_mod) |
| { |
| int ret; |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| struct btrfs_extent_item *extent_item; |
| struct btrfs_extent_inline_ref *iref; |
| struct btrfs_path *path; |
| struct extent_buffer *leaf; |
| int type; |
| u32 size; |
| |
| if (parent > 0) |
| type = BTRFS_SHARED_DATA_REF_KEY; |
| else |
| type = BTRFS_EXTENT_DATA_REF_KEY; |
| |
| size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type); |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| path->leave_spinning = 1; |
| ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, |
| ins, size); |
| BUG_ON(ret); |
| |
| leaf = path->nodes[0]; |
| extent_item = btrfs_item_ptr(leaf, path->slots[0], |
| struct btrfs_extent_item); |
| btrfs_set_extent_refs(leaf, extent_item, ref_mod); |
| btrfs_set_extent_generation(leaf, extent_item, trans->transid); |
| btrfs_set_extent_flags(leaf, extent_item, |
| flags | BTRFS_EXTENT_FLAG_DATA); |
| |
| iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); |
| btrfs_set_extent_inline_ref_type(leaf, iref, type); |
| if (parent > 0) { |
| struct btrfs_shared_data_ref *ref; |
| ref = (struct btrfs_shared_data_ref *)(iref + 1); |
| btrfs_set_extent_inline_ref_offset(leaf, iref, parent); |
| btrfs_set_shared_data_ref_count(leaf, ref, ref_mod); |
| } else { |
| struct btrfs_extent_data_ref *ref; |
| ref = (struct btrfs_extent_data_ref *)(&iref->offset); |
| btrfs_set_extent_data_ref_root(leaf, ref, root_objectid); |
| btrfs_set_extent_data_ref_objectid(leaf, ref, owner); |
| btrfs_set_extent_data_ref_offset(leaf, ref, offset); |
| btrfs_set_extent_data_ref_count(leaf, ref, ref_mod); |
| } |
| |
| btrfs_mark_buffer_dirty(path->nodes[0]); |
| btrfs_free_path(path); |
| |
| ret = update_block_group(trans, root, ins->objectid, ins->offset, 1); |
| if (ret) { |
| printk(KERN_ERR "btrfs update block group failed for %llu " |
| "%llu\n", (unsigned long long)ins->objectid, |
| (unsigned long long)ins->offset); |
| BUG(); |
| } |
| return ret; |
| } |
| |
| static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| u64 parent, u64 root_objectid, |
| u64 flags, struct btrfs_disk_key *key, |
| int level, struct btrfs_key *ins) |
| { |
| int ret; |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| struct btrfs_extent_item *extent_item; |
| struct btrfs_tree_block_info *block_info; |
| struct btrfs_extent_inline_ref *iref; |
| struct btrfs_path *path; |
| struct extent_buffer *leaf; |
| u32 size = sizeof(*extent_item) + sizeof(*block_info) + sizeof(*iref); |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| path->leave_spinning = 1; |
| ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, |
| ins, size); |
| BUG_ON(ret); |
| |
| leaf = path->nodes[0]; |
| extent_item = btrfs_item_ptr(leaf, path->slots[0], |
| struct btrfs_extent_item); |
| btrfs_set_extent_refs(leaf, extent_item, 1); |
| btrfs_set_extent_generation(leaf, extent_item, trans->transid); |
| btrfs_set_extent_flags(leaf, extent_item, |
| flags | BTRFS_EXTENT_FLAG_TREE_BLOCK); |
| block_info = (struct btrfs_tree_block_info *)(extent_item + 1); |
| |
| btrfs_set_tree_block_key(leaf, block_info, key); |
| btrfs_set_tree_block_level(leaf, block_info, level); |
| |
| iref = (struct btrfs_extent_inline_ref *)(block_info + 1); |
| if (parent > 0) { |
| BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); |
| btrfs_set_extent_inline_ref_type(leaf, iref, |
| BTRFS_SHARED_BLOCK_REF_KEY); |
| btrfs_set_extent_inline_ref_offset(leaf, iref, parent); |
| } else { |
| btrfs_set_extent_inline_ref_type(leaf, iref, |
| BTRFS_TREE_BLOCK_REF_KEY); |
| btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); |
| } |
| |
| btrfs_mark_buffer_dirty(leaf); |
| btrfs_free_path(path); |
| |
| ret = update_block_group(trans, root, ins->objectid, ins->offset, 1); |
| if (ret) { |
| printk(KERN_ERR "btrfs update block group failed for %llu " |
| "%llu\n", (unsigned long long)ins->objectid, |
| (unsigned long long)ins->offset); |
| BUG(); |
| } |
| return ret; |
| } |
| |
| int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| u64 root_objectid, u64 owner, |
| u64 offset, struct btrfs_key *ins) |
| { |
| int ret; |
| |
| BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID); |
| |
| ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid, |
| ins->offset, 0, |
| root_objectid, owner, offset, |
| BTRFS_ADD_DELAYED_EXTENT, NULL, 0); |
| return ret; |
| } |
| |
| /* |
| * this is used by the tree logging recovery code. It records that |
| * an extent has been allocated and makes sure to clear the free |
| * space cache bits as well |
| */ |
| int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| u64 root_objectid, u64 owner, u64 offset, |
| struct btrfs_key *ins) |
| { |
| int ret; |
| struct btrfs_block_group_cache *block_group; |
| struct btrfs_caching_control *caching_ctl; |
| u64 start = ins->objectid; |
| u64 num_bytes = ins->offset; |
| |
| block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid); |
| cache_block_group(block_group, trans, NULL, 0); |
| caching_ctl = get_caching_control(block_group); |
| |
| if (!caching_ctl) { |
| BUG_ON(!block_group_cache_done(block_group)); |
| ret = btrfs_remove_free_space(block_group, start, num_bytes); |
| BUG_ON(ret); |
| } else { |
| mutex_lock(&caching_ctl->mutex); |
| |
| if (start >= caching_ctl->progress) { |
| ret = add_excluded_extent(root, start, num_bytes); |
| BUG_ON(ret); |
| } else if (start + num_bytes <= caching_ctl->progress) { |
| ret = btrfs_remove_free_space(block_group, |
| start, num_bytes); |
| BUG_ON(ret); |
| } else { |
| num_bytes = caching_ctl->progress - start; |
| ret = btrfs_remove_free_space(block_group, |
| start, num_bytes); |
| BUG_ON(ret); |
| |
| start = caching_ctl->progress; |
| num_bytes = ins->objectid + ins->offset - |
| caching_ctl->progress; |
| ret = add_excluded_extent(root, start, num_bytes); |
| BUG_ON(ret); |
| } |
| |
| mutex_unlock(&caching_ctl->mutex); |
| put_caching_control(caching_ctl); |
| } |
| |
| ret = btrfs_update_reserved_bytes(block_group, ins->offset, |
| RESERVE_ALLOC_NO_ACCOUNT); |
| BUG_ON(ret); |
| btrfs_put_block_group(block_group); |
| ret = alloc_reserved_file_extent(trans, root, 0, root_objectid, |
| 0, owner, offset, ins, 1); |
| return ret; |
| } |
| |
| struct extent_buffer *btrfs_init_new_buffer(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| u64 bytenr, u32 blocksize, |
| int level) |
| { |
| struct extent_buffer *buf; |
| |
| buf = btrfs_find_create_tree_block(root, bytenr, blocksize); |
| if (!buf) |
| return ERR_PTR(-ENOMEM); |
| btrfs_set_header_generation(buf, trans->transid); |
| btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level); |
| btrfs_tree_lock(buf); |
| clean_tree_block(trans, root, buf); |
| |
| btrfs_set_lock_blocking(buf); |
| btrfs_set_buffer_uptodate(buf); |
| |
| if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) { |
| /* |
| * we allow two log transactions at a time, use different |
| * EXENT bit to differentiate dirty pages. |
| */ |
| if (root->log_transid % 2 == 0) |
| set_extent_dirty(&root->dirty_log_pages, buf->start, |
| buf->start + buf->len - 1, GFP_NOFS); |
| else |
| set_extent_new(&root->dirty_log_pages, buf->start, |
| buf->start + buf->len - 1, GFP_NOFS); |
| } else { |
| set_extent_dirty(&trans->transaction->dirty_pages, buf->start, |
| buf->start + buf->len - 1, GFP_NOFS); |
| } |
| trans->blocks_used++; |
| /* this returns a buffer locked for blocking */ |
| return buf; |
| } |
| |
| static struct btrfs_block_rsv * |
| use_block_rsv(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, u32 blocksize) |
| { |
| struct btrfs_block_rsv *block_rsv; |
| struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; |
| int ret; |
| |
| block_rsv = get_block_rsv(trans, root); |
| |
| if (block_rsv->size == 0) { |
| ret = reserve_metadata_bytes(root, block_rsv, blocksize, 0); |
| /* |
| * If we couldn't reserve metadata bytes try and use some from |
| * the global reserve. |
| */ |
| if (ret && block_rsv != global_rsv) { |
| ret = block_rsv_use_bytes(global_rsv, blocksize); |
| if (!ret) |
| return global_rsv; |
| return ERR_PTR(ret); |
| } else if (ret) { |
| return ERR_PTR(ret); |
| } |
| return block_rsv; |
| } |
| |
| ret = block_rsv_use_bytes(block_rsv, blocksize); |
| if (!ret) |
| return block_rsv; |
| if (ret) { |
| static DEFINE_RATELIMIT_STATE(_rs, |
| DEFAULT_RATELIMIT_INTERVAL, |
| /*DEFAULT_RATELIMIT_BURST*/ 2); |
| if (__ratelimit(&_rs)) { |
| printk(KERN_DEBUG "btrfs: block rsv returned %d\n", ret); |
| WARN_ON(1); |
| } |
| ret = reserve_metadata_bytes(root, block_rsv, blocksize, 0); |
| if (!ret) { |
| return block_rsv; |
| } else if (ret && block_rsv != global_rsv) { |
| ret = block_rsv_use_bytes(global_rsv, blocksize); |
| if (!ret) |
| return global_rsv; |
| } |
| } |
| |
| return ERR_PTR(-ENOSPC); |
| } |
| |
| static void unuse_block_rsv(struct btrfs_block_rsv *block_rsv, u32 blocksize) |
| { |
| block_rsv_add_bytes(block_rsv, blocksize, 0); |
| block_rsv_release_bytes(block_rsv, NULL, 0); |
| } |
| |
| /* |
| * finds a free extent and does all the dirty work required for allocation |
| * returns the key for the extent through ins, and a tree buffer for |
| * the first block of the extent through buf. |
| * |
| * returns the tree buffer or NULL. |
| */ |
| struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, u32 blocksize, |
| u64 parent, u64 root_objectid, |
| struct btrfs_disk_key *key, int level, |
| u64 hint, u64 empty_size, int for_cow) |
| { |
| struct btrfs_key ins; |
| struct btrfs_block_rsv *block_rsv; |
| struct extent_buffer *buf; |
| u64 flags = 0; |
| int ret; |
| |
| |
| block_rsv = use_block_rsv(trans, root, blocksize); |
| if (IS_ERR(block_rsv)) |
| return ERR_CAST(block_rsv); |
| |
| ret = btrfs_reserve_extent(trans, root, blocksize, blocksize, |
| empty_size, hint, (u64)-1, &ins, 0); |
| if (ret) { |
| unuse_block_rsv(block_rsv, blocksize); |
| return ERR_PTR(ret); |
| } |
| |
| buf = btrfs_init_new_buffer(trans, root, ins.objectid, |
| blocksize, level); |
| BUG_ON(IS_ERR(buf)); |
| |
| if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) { |
| if (parent == 0) |
| parent = ins.objectid; |
| flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; |
| } else |
| BUG_ON(parent > 0); |
| |
| if (root_objectid != BTRFS_TREE_LOG_OBJECTID) { |
| struct btrfs_delayed_extent_op *extent_op; |
| extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS); |
| BUG_ON(!extent_op); |
| if (key) |
| memcpy(&extent_op->key, key, sizeof(extent_op->key)); |
| else |
| memset(&extent_op->key, 0, sizeof(extent_op->key)); |
| extent_op->flags_to_set = flags; |
| extent_op->update_key = 1; |
| extent_op->update_flags = 1; |
| extent_op->is_data = 0; |
| |
| ret = btrfs_add_delayed_tree_ref(root->fs_info, trans, |
| ins.objectid, |
| ins.offset, parent, root_objectid, |
| level, BTRFS_ADD_DELAYED_EXTENT, |
| extent_op, for_cow); |
| BUG_ON(ret); |
| } |
| return buf; |
| } |
| |
| struct walk_control { |
| u64 refs[BTRFS_MAX_LEVEL]; |
| u64 flags[BTRFS_MAX_LEVEL]; |
| struct btrfs_key update_progress; |
| int stage; |
| int level; |
| int shared_level; |
| int update_ref; |
| int keep_locks; |
| int reada_slot; |
| int reada_count; |
| int for_reloc; |
| }; |
| |
| #define DROP_REFERENCE 1 |
| #define UPDATE_BACKREF 2 |
| |
| static noinline void reada_walk_down(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct walk_control *wc, |
| struct btrfs_path *path) |
| { |
| u64 bytenr; |
| u64 generation; |
| u64 refs; |
| u64 flags; |
| u32 nritems; |
| u32 blocksize; |
| struct btrfs_key key; |
| struct extent_buffer *eb; |
| int ret; |
| int slot; |
| int nread = 0; |
| |
| if (path->slots[wc->level] < wc->reada_slot) { |
| wc->reada_count = wc->reada_count * 2 / 3; |
| wc->reada_count = max(wc->reada_count, 2); |
| } else { |
| wc->reada_count = wc->reada_count * 3 / 2; |
| wc->reada_count = min_t(int, wc->reada_count, |
| BTRFS_NODEPTRS_PER_BLOCK(root)); |
| } |
| |
| eb = path->nodes[wc->level]; |
| nritems = btrfs_header_nritems(eb); |
| blocksize = btrfs_level_size(root, wc->level - 1); |
| |
| for (slot = path->slots[wc->level]; slot < nritems; slot++) { |
| if (nread >= wc->reada_count) |
| break; |
| |
| cond_resched(); |
| bytenr = btrfs_node_blockptr(eb, slot); |
| generation = btrfs_node_ptr_generation(eb, slot); |
| |
| if (slot == path->slots[wc->level]) |
| goto reada; |
| |
| if (wc->stage == UPDATE_BACKREF && |
| generation <= root->root_key.offset) |
| continue; |
| |
| /* We don't lock the tree block, it's OK to be racy here */ |
| ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize, |
| &refs, &flags); |
| BUG_ON(ret); |
| BUG_ON(refs == 0); |
| |
| if (wc->stage == DROP_REFERENCE) { |
| if (refs == 1) |
| goto reada; |
| |
| if (wc->level == 1 && |
| (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) |
| continue; |
| if (!wc->update_ref || |
| generation <= root->root_key.offset) |
| continue; |
| btrfs_node_key_to_cpu(eb, &key, slot); |
| ret = btrfs_comp_cpu_keys(&key, |
| &wc->update_progress); |
| if (ret < 0) |
| continue; |
| } else { |
| if (wc->level == 1 && |
| (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) |
| continue; |
| } |
| reada: |
| ret = readahead_tree_block(root, bytenr, blocksize, |
| generation); |
| if (ret) |
| break; |
| nread++; |
| } |
| wc->reada_slot = slot; |
| } |
| |
| /* |
| * hepler to process tree block while walking down the tree. |
| * |
| * when wc->stage == UPDATE_BACKREF, this function updates |
| * back refs for pointers in the block. |
| * |
| * NOTE: return value 1 means we should stop walking down. |
| */ |
| static noinline int walk_down_proc(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_path *path, |
| struct walk_control *wc, int lookup_info) |
| { |
| int level = wc->level; |
| struct extent_buffer *eb = path->nodes[level]; |
| u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF; |
| int ret; |
| |
| if (wc->stage == UPDATE_BACKREF && |
| btrfs_header_owner(eb) != root->root_key.objectid) |
| return 1; |
| |
| /* |
| * when reference count of tree block is 1, it won't increase |
| * again. once full backref flag is set, we never clear it. |
| */ |
| if (lookup_info && |
| ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) || |
| (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) { |
| BUG_ON(!path->locks[level]); |
| ret = btrfs_lookup_extent_info(trans, root, |
| eb->start, eb->len, |
| &wc->refs[level], |
| &wc->flags[level]); |
| BUG_ON(ret); |
| BUG_ON(wc->refs[level] == 0); |
| } |
| |
| if (wc->stage == DROP_REFERENCE) { |
| if (wc->refs[level] > 1) |
| return 1; |
| |
| if (path->locks[level] && !wc->keep_locks) { |
| btrfs_tree_unlock_rw(eb, path->locks[level]); |
| path->locks[level] = 0; |
| } |
| return 0; |
| } |
| |
| /* wc->stage == UPDATE_BACKREF */ |
| if (!(wc->flags[level] & flag)) { |
| BUG_ON(!path->locks[level]); |
| ret = btrfs_inc_ref(trans, root, eb, 1, wc->for_reloc); |
| BUG_ON(ret); |
| ret = btrfs_dec_ref(trans, root, eb, 0, wc->for_reloc); |
| BUG_ON(ret); |
| ret = btrfs_set_disk_extent_flags(trans, root, eb->start, |
| eb->len, flag, 0); |
| BUG_ON(ret); |
| wc->flags[level] |= flag; |
| } |
| |
| /* |
| * the block is shared by multiple trees, so it's not good to |
| * keep the tree lock |
| */ |
| if (path->locks[level] && level > 0) { |
| btrfs_tree_unlock_rw(eb, path->locks[level]); |
| path->locks[level] = 0; |
| } |
| return 0; |
| } |
| |
| /* |
| * hepler to process tree block pointer. |
| * |
| * when wc->stage == DROP_REFERENCE, this function checks |
| * reference count of the block pointed to. if the block |
| * is shared and we need update back refs for the subtree |
| * rooted at the block, this function changes wc->stage to |
| * UPDATE_BACKREF. if the block is shared and there is no |
| * need to update back, this function drops the reference |
| * to the block. |
| * |
| * NOTE: return value 1 means we should stop walking down. |
| */ |
| static noinline int do_walk_down(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_path *path, |
| struct walk_control *wc, int *lookup_info) |
| { |
| u64 bytenr; |
| u64 generation; |
| u64 parent; |
| u32 blocksize; |
| struct btrfs_key key; |
| struct extent_buffer *next; |
| int level = wc->level; |
| int reada = 0; |
| int ret = 0; |
| |
| generation = btrfs_node_ptr_generation(path->nodes[level], |
| path->slots[level]); |
| /* |
| * if the lower level block was created before the snapshot |
| * was created, we know there is no need to update back refs |
| * for the subtree |
| */ |
| if (wc->stage == UPDATE_BACKREF && |
| generation <= root->root_key.offset) { |
| *lookup_info = 1; |
| return 1; |
| } |
| |
| bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]); |
| blocksize = btrfs_level_size(root, level - 1); |
| |
| next = btrfs_find_tree_block(root, bytenr, blocksize); |
| if (!next) { |
| next = btrfs_find_create_tree_block(root, bytenr, blocksize); |
| if (!next) |
| return -ENOMEM; |
| reada = 1; |
| } |
| btrfs_tree_lock(next); |
| btrfs_set_lock_blocking(next); |
| |
| ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize, |
| &wc->refs[level - 1], |
| &wc->flags[level - 1]); |
| BUG_ON(ret); |
| BUG_ON(wc->refs[level - 1] == 0); |
| *lookup_info = 0; |
| |
| if (wc->stage == DROP_REFERENCE) { |
| if (wc->refs[level - 1] > 1) { |
| if (level == 1 && |
| (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) |
| goto skip; |
| |
| if (!wc->update_ref || |
| generation <= root->root_key.offset) |
| goto skip; |
| |
| btrfs_node_key_to_cpu(path->nodes[level], &key, |
| path->slots[level]); |
| ret = btrfs_comp_cpu_keys(&key, &wc->update_progress); |
| if (ret < 0) |
| goto skip; |
| |
| wc->stage = UPDATE_BACKREF; |
| wc->shared_level = level - 1; |
| } |
| } else { |
| if (level == 1 && |
| (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) |
| goto skip; |
| } |
| |
| if (!btrfs_buffer_uptodate(next, generation)) { |
| btrfs_tree_unlock(next); |
| free_extent_buffer(next); |
| next = NULL; |
| *lookup_info = 1; |
| } |
| |
| if (!next) { |
| if (reada && level == 1) |
| reada_walk_down(trans, root, wc, path); |
| next = read_tree_block(root, bytenr, blocksize, generation); |
| if (!next) |
| return -EIO; |
| btrfs_tree_lock(next); |
| btrfs_set_lock_blocking(next); |
| } |
| |
| level--; |
| BUG_ON(level != btrfs_header_level(next)); |
| path->nodes[level] = next; |
| path->slots[level] = 0; |
| path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; |
| wc->level = level; |
| if (wc->level == 1) |
| wc->reada_slot = 0; |
| return 0; |
| skip: |
| wc->refs[level - 1] = 0; |
| wc->flags[level - 1] = 0; |
| if (wc->stage == DROP_REFERENCE) { |
| if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) { |
| parent = path->nodes[level]->start; |
| } else { |
| BUG_ON(root->root_key.objectid != |
| btrfs_header_owner(path->nodes[level])); |
| parent = 0; |
| } |
| |
| ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent, |
| root->root_key.objectid, level - 1, 0, 0); |
| BUG_ON(ret); |
| } |
| btrfs_tree_unlock(next); |
| free_extent_buffer(next); |
| *lookup_info = 1; |
| return 1; |
| } |
| |
| /* |
| * hepler to process tree block while walking up the tree. |
| * |
| * when wc->stage == DROP_REFERENCE, this function drops |
| * reference count on the block. |
| * |
| * when wc->stage == UPDATE_BACKREF, this function changes |
| * wc->stage back to DROP_REFERENCE if we changed wc->stage |
| * to UPDATE_BACKREF previously while processing the block. |
| * |
| * NOTE: return value 1 means we should stop walking up. |
| */ |
| static noinline int walk_up_proc(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_path *path, |
| struct walk_control *wc) |
| { |
| int ret; |
| int level = wc->level; |
| struct extent_buffer *eb = path->nodes[level]; |
| u64 parent = 0; |
| |
| if (wc->stage == UPDATE_BACKREF) { |
| BUG_ON(wc->shared_level < level); |
| if (level < wc->shared_level) |
| goto out; |
| |
| ret = find_next_key(path, level + 1, &wc->update_progress); |
| if (ret > 0) |
| wc->update_ref = 0; |
| |
| wc->stage = DROP_REFERENCE; |
| wc->shared_level = -1; |
| path->slots[level] = 0; |
| |
| /* |
| * check reference count again if the block isn't locked. |
| * we should start walking down the tree again if reference |
| * count is one. |
| */ |
| if (!path->locks[level]) { |
| BUG_ON(level == 0); |
| btrfs_tree_lock(eb); |
| btrfs_set_lock_blocking(eb); |
| path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; |
| |
| ret = btrfs_lookup_extent_info(trans, root, |
| eb->start, eb->len, |
| &wc->refs[level], |
| &wc->flags[level]); |
| BUG_ON(ret); |
| BUG_ON(wc->refs[level] == 0); |
| if (wc->refs[level] == 1) { |
| btrfs_tree_unlock_rw(eb, path->locks[level]); |
| return 1; |
| } |
| } |
| } |
| |
| /* wc->stage == DROP_REFERENCE */ |
| BUG_ON(wc->refs[level] > 1 && !path->locks[level]); |
| |
| if (wc->refs[level] == 1) { |
| if (level == 0) { |
| if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) |
| ret = btrfs_dec_ref(trans, root, eb, 1, |
| wc->for_reloc); |
| else |
| ret = btrfs_dec_ref(trans, root, eb, 0, |
| wc->for_reloc); |
| BUG_ON(ret); |
| } |
| /* make block locked assertion in clean_tree_block happy */ |
| if (!path->locks[level] && |
| btrfs_header_generation(eb) == trans->transid) { |
| btrfs_tree_lock(eb); |
| btrfs_set_lock_blocking(eb); |
| path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; |
| } |
| clean_tree_block(trans, root, eb); |
| } |
| |
| if (eb == root->node) { |
| if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) |
| parent = eb->start; |
| else |
| BUG_ON(root->root_key.objectid != |
| btrfs_header_owner(eb)); |
| } else { |
| if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF) |
| parent = path->nodes[level + 1]->start; |
| else |
| BUG_ON(root->root_key.objectid != |
| btrfs_header_owner(path->nodes[level + 1])); |
| } |
| |
| btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1, 0); |
| out: |
| wc->refs[level] = 0; |
| wc->flags[level] = 0; |
| return 0; |
| } |
| |
| static noinline int walk_down_tree(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_path *path, |
| struct walk_control *wc) |
| { |
| int level = wc->level; |
| int lookup_info = 1; |
| int ret; |
| |
| while (level >= 0) { |
| ret = walk_down_proc(trans, root, path, wc, lookup_info); |
| if (ret > 0) |
| break; |
| |
| if (level == 0) |
| break; |
| |
| if (path->slots[level] >= |
| btrfs_header_nritems(path->nodes[level])) |
| break; |
| |
| ret = do_walk_down(trans, root, path, wc, &lookup_info); |
| if (ret > 0) { |
| path->slots[level]++; |
| continue; |
| } else if (ret < 0) |
| return ret; |
| level = wc->level; |
| } |
| return 0; |
| } |
| |
| static noinline int walk_up_tree(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_path *path, |
| struct walk_control *wc, int max_level) |
| { |
| int level = wc->level; |
| int ret; |
| |
| path->slots[level] = btrfs_header_nritems(path->nodes[level]); |
| while (level < max_level && path->nodes[level]) { |
| wc->level = level; |
| if (path->slots[level] + 1 < |
| btrfs_header_nritems(path->nodes[level])) { |
| path->slots[level]++; |
| return 0; |
| } else { |
| ret = walk_up_proc(trans, root, path, wc); |
| if (ret > 0) |
| return 0; |
| |
| if (path->locks[level]) { |
| btrfs_tree_unlock_rw(path->nodes[level], |
| path->locks[level]); |
| path->locks[level] = 0; |
| } |
| free_extent_buffer(path->nodes[level]); |
| path->nodes[level] = NULL; |
| level++; |
| } |
| } |
| return 1; |
| } |
| |
| /* |
| * drop a subvolume tree. |
| * |
| * this function traverses the tree freeing any blocks that only |
| * referenced by the tree. |
| * |
| * when a shared tree block is found. this function decreases its |
| * reference count by one. if update_ref is true, this function |
| * also make sure backrefs for the shared block and all lower level |
| * blocks are properly updated. |
| */ |
| void btrfs_drop_snapshot(struct btrfs_root *root, |
| struct btrfs_block_rsv *block_rsv, int update_ref, |
| int for_reloc) |
| { |
| struct btrfs_path *path; |
| struct btrfs_trans_handle *trans; |
| struct btrfs_root *tree_root = root->fs_info->tree_root; |
| struct btrfs_root_item *root_item = &root->root_item; |
| struct walk_control *wc; |
| struct btrfs_key key; |
| int err = 0; |
| int ret; |
| int level; |
| |
| path = btrfs_alloc_path(); |
| if (!path) { |
| err = -ENOMEM; |
| goto out; |
| } |
| |
| wc = kzalloc(sizeof(*wc), GFP_NOFS); |
| if (!wc) { |
| btrfs_free_path(path); |
| err = -ENOMEM; |
| goto out; |
| } |
| |
| trans = btrfs_start_transaction(tree_root, 0); |
| BUG_ON(IS_ERR(trans)); |
| |
| if (block_rsv) |
| trans->block_rsv = block_rsv; |
| |
| if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { |
| level = btrfs_header_level(root->node); |
| path->nodes[level] = btrfs_lock_root_node(root); |
| btrfs_set_lock_blocking(path->nodes[level]); |
| path->slots[level] = 0; |
| path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; |
| memset(&wc->update_progress, 0, |
| sizeof(wc->update_progress)); |
| } else { |
| btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); |
| memcpy(&wc->update_progress, &key, |
| sizeof(wc->update_progress)); |
| |
| level = root_item->drop_level; |
| BUG_ON(level == 0); |
| path->lowest_level = level; |
| ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); |
| path->lowest_level = 0; |
| if (ret < 0) { |
| err = ret; |
| goto out_free; |
| } |
| WARN_ON(ret > 0); |
| |
| /* |
| * unlock our path, this is safe because only this |
| * function is allowed to delete this snapshot |
| */ |
| btrfs_unlock_up_safe(path, 0); |
| |
| level = btrfs_header_level(root->node); |
| while (1) { |
| btrfs_tree_lock(path->nodes[level]); |
| btrfs_set_lock_blocking(path->nodes[level]); |
| |
| ret = btrfs_lookup_extent_info(trans, root, |
| path->nodes[level]->start, |
| path->nodes[level]->len, |
| &wc->refs[level], |
| &wc->flags[level]); |
| BUG_ON(ret); |
| BUG_ON(wc->refs[level] == 0); |
| |
| if (level == root_item->drop_level) |
| break; |
| |
| btrfs_tree_unlock(path->nodes[level]); |
| WARN_ON(wc->refs[level] != 1); |
| level--; |
| } |
| } |
| |
| wc->level = level; |
| wc->shared_level = -1; |
| wc->stage = DROP_REFERENCE; |
| wc->update_ref = update_ref; |
| wc->keep_locks = 0; |
| wc->for_reloc = for_reloc; |
| wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root); |
| |
| while (1) { |
| ret = walk_down_tree(trans, root, path, wc); |
| if (ret < 0) { |
| err = ret; |
| break; |
| } |
| |
| ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL); |
| if (ret < 0) { |
| err = ret; |
| break; |
| } |
| |
| if (ret > 0) { |
| BUG_ON(wc->stage != DROP_REFERENCE); |
| break; |
| } |
| |
| if (wc->stage == DROP_REFERENCE) { |
| level = wc->level; |
| btrfs_node_key(path->nodes[level], |
| &root_item->drop_progress, |
| path->slots[level]); |
| root_item->drop_level = level; |
| } |
| |
| BUG_ON(wc->level == 0); |
| if (btrfs_should_end_transaction(trans, tree_root)) { |
| ret = btrfs_update_root(trans, tree_root, |
| &root->root_key, |
| root_item); |
| BUG_ON(ret); |
| |
| btrfs_end_transaction_throttle(trans, tree_root); |
| trans = btrfs_start_transaction(tree_root, 0); |
| BUG_ON(IS_ERR(trans)); |
| if (block_rsv) |
| trans->block_rsv = block_rsv; |
| } |
| } |
| btrfs_release_path(path); |
| BUG_ON(err); |
| |
| ret = btrfs_del_root(trans, tree_root, &root->root_key); |
| BUG_ON(ret); |
| |
| if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { |
| ret = btrfs_find_last_root(tree_root, root->root_key.objectid, |
| NULL, NULL); |
| BUG_ON(ret < 0); |
| if (ret > 0) { |
| /* if we fail to delete the orphan item this time |
| * around, it'll get picked up the next time. |
| * |
| * The most common failure here is just -ENOENT. |
| */ |
| btrfs_del_orphan_item(trans, tree_root, |
| root->root_key.objectid); |
| } |
| } |
| |
| if (root->in_radix) { |
| btrfs_free_fs_root(tree_root->fs_info, root); |
| } else { |
| free_extent_buffer(root->node); |
| free_extent_buffer(root->commit_root); |
| kfree(root); |
| } |
| out_free: |
| btrfs_end_transaction_throttle(trans, tree_root); |
| kfree(wc); |
| btrfs_free_path(path); |
| out: |
| if (err) |
| btrfs_std_error(root->fs_info, err); |
| return; |
| } |
| |
| /* |
| * drop subtree rooted at tree block 'node'. |
| * |
| * NOTE: this function will unlock and release tree block 'node' |
| * only used by relocation code |
| */ |
| int btrfs_drop_subtree(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct extent_buffer *node, |
| struct extent_buffer *parent) |
| { |
| struct btrfs_path *path; |
| struct walk_control *wc; |
| int level; |
| int parent_level; |
| int ret = 0; |
| int wret; |
| |
| BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| wc = kzalloc(sizeof(*wc), GFP_NOFS); |
| if (!wc) { |
| btrfs_free_path(path); |
| return -ENOMEM; |
| } |
| |
| btrfs_assert_tree_locked(parent); |
| parent_level = btrfs_header_level(parent); |
| extent_buffer_get(parent); |
| path->nodes[parent_level] = parent; |
| path->slots[parent_level] = btrfs_header_nritems(parent); |
| |
| btrfs_assert_tree_locked(node); |
| level = btrfs_header_level(node); |
| path->nodes[level] = node; |
| path->slots[level] = 0; |
| path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; |
| |
| wc->refs[parent_level] = 1; |
| wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF; |
| wc->level = level; |
| wc->shared_level = -1; |
| wc->stage = DROP_REFERENCE; |
| wc->update_ref = 0; |
| wc->keep_locks = 1; |
| wc->for_reloc = 1; |
| wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root); |
| |
| while (1) { |
| wret = walk_down_tree(trans, root, path, wc); |
| if (wret < 0) { |
| ret = wret; |
| break; |
| } |
| |
| wret = walk_up_tree(trans, root, path, wc, parent_level); |
| if (wret < 0) |
| ret = wret; |
| if (wret != 0) |
| break; |
| } |
| |
| kfree(wc); |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| static u64 update_block_group_flags(struct btrfs_root *root, u64 flags) |
| { |
| u64 num_devices; |
| u64 stripped = BTRFS_BLOCK_GROUP_RAID0 | |
| BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10; |
| |
| if (root->fs_info->balance_ctl) { |
| struct btrfs_balance_control *bctl = root->fs_info->balance_ctl; |
| u64 tgt = 0; |
| |
| /* pick restriper's target profile and return */ |
| if (flags & BTRFS_BLOCK_GROUP_DATA && |
| bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) { |
| tgt = BTRFS_BLOCK_GROUP_DATA | bctl->data.target; |
| } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM && |
| bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) { |
| tgt = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target; |
| } else if (flags & BTRFS_BLOCK_GROUP_METADATA && |
| bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) { |
| tgt = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target; |
| } |
| |
| if (tgt) { |
| /* extended -> chunk profile */ |
| tgt &= ~BTRFS_AVAIL_ALLOC_BIT_SINGLE; |
| return tgt; |
| } |
| } |
| |
| /* |
| * we add in the count of missing devices because we want |
| * to make sure that any RAID levels on a degraded FS |
| * continue to be honored. |
| */ |
| num_devices = root->fs_info->fs_devices->rw_devices + |
| root->fs_info->fs_devices->missing_devices; |
| |
| if (num_devices == 1) { |
| stripped |= BTRFS_BLOCK_GROUP_DUP; |
| stripped = flags & ~stripped; |
| |
| /* turn raid0 into single device chunks */ |
| if (flags & BTRFS_BLOCK_GROUP_RAID0) |
| return stripped; |
| |
| /* turn mirroring into duplication */ |
| if (flags & (BTRFS_BLOCK_GROUP_RAID1 | |
| BTRFS_BLOCK_GROUP_RAID10)) |
| return stripped | BTRFS_BLOCK_GROUP_DUP; |
| return flags; |
| } else { |
| /* they already had raid on here, just return */ |
| if (flags & stripped) |
| return flags; |
| |
| stripped |= BTRFS_BLOCK_GROUP_DUP; |
| stripped = flags & ~stripped; |
| |
| /* switch duplicated blocks with raid1 */ |
| if (flags & BTRFS_BLOCK_GROUP_DUP) |
| return stripped | BTRFS_BLOCK_GROUP_RAID1; |
| |
| /* turn single device chunks into raid0 */ |
| return stripped | BTRFS_BLOCK_GROUP_RAID0; |
| } |
| return flags; |
| } |
| |
| static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force) |
| { |
| struct btrfs_space_info *sinfo = cache->space_info; |
| u64 num_bytes; |
| u64 min_allocable_bytes; |
| int ret = -ENOSPC; |
| |
| |
| /* |
| * We need some metadata space and system metadata space for |
| * allocating chunks in some corner cases until we force to set |
| * it to be readonly. |
| */ |
| if ((sinfo->flags & |
| (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) && |
| !force) |
| min_allocable_bytes = 1 * 1024 * 1024; |
| else |
| min_allocable_bytes = 0; |
| |
| spin_lock(&sinfo->lock); |
| spin_lock(&cache->lock); |
| |
| if (cache->ro) { |
| ret = 0; |
| goto out; |
| } |
| |
| num_bytes = cache->key.offset - cache->reserved - cache->pinned - |
| cache->bytes_super - btrfs_block_group_used(&cache->item); |
| |
| if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned + |
| sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes + |
| min_allocable_bytes <= sinfo->total_bytes) { |
| sinfo->bytes_readonly += num_bytes; |
| cache->ro = 1; |
| ret = 0; |
| } |
| out: |
| spin_unlock(&cache->lock); |
| spin_unlock(&sinfo->lock); |
| return ret; |
| } |
| |
| int btrfs_set_block_group_ro(struct btrfs_root *root, |
| struct btrfs_block_group_cache *cache) |
| |
| { |
| struct btrfs_trans_handle *trans; |
| u64 alloc_flags; |
| int ret; |
| |
| BUG_ON(cache->ro); |
| |
| trans = btrfs_join_transaction(root); |
| BUG_ON(IS_ERR(trans)); |
| |
| alloc_flags = update_block_group_flags(root, cache->flags); |
| if (alloc_flags != cache->flags) |
| do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags, |
| CHUNK_ALLOC_FORCE); |
| |
| ret = set_block_group_ro(cache, 0); |
| if (!ret) |
| goto out; |
| alloc_flags = get_alloc_profile(root, cache->space_info->flags); |
| ret = do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags, |
| CHUNK_ALLOC_FORCE); |
| if (ret < 0) |
| goto out; |
| ret = set_block_group_ro(cache, 0); |
| out: |
| btrfs_end_transaction(trans, root); |
| return ret; |
| } |
| |
| int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, u64 type) |
| { |
| u64 alloc_flags = get_alloc_profile(root, type); |
| return do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags, |
| CHUNK_ALLOC_FORCE); |
| } |
| |
| /* |
| * helper to account the unused space of all the readonly block group in the |
| * list. takes mirrors into account. |
| */ |
| static u64 __btrfs_get_ro_block_group_free_space(struct list_head *groups_list) |
| { |
| struct btrfs_block_group_cache *block_group; |
| u64 free_bytes = 0; |
| int factor; |
| |
| list_for_each_entry(block_group, groups_list, list) { |
| spin_lock(&block_group->lock); |
| |
| if (!block_group->ro) { |
| spin_unlock(&block_group->lock); |
| continue; |
| } |
| |
| if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 | |
| BTRFS_BLOCK_GROUP_RAID10 | |
| BTRFS_BLOCK_GROUP_DUP)) |
| factor = 2; |
| else |
| factor = 1; |
| |
| free_bytes += (block_group->key.offset - |
| btrfs_block_group_used(&block_group->item)) * |
| factor; |
| |
| spin_unlock(&block_group->lock); |
| } |
| |
| return free_bytes; |
| } |
| |
| /* |
| * helper to account the unused space of all the readonly block group in the |
| * space_info. takes mirrors into account. |
| */ |
| u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo) |
| { |
| int i; |
| u64 free_bytes = 0; |
| |
| spin_lock(&sinfo->lock); |
| |
| for(i = 0; i < BTRFS_NR_RAID_TYPES; i++) |
| if (!list_empty(&sinfo->block_groups[i])) |
| free_bytes += __btrfs_get_ro_block_group_free_space( |
| &sinfo->block_groups[i]); |
| |
| spin_unlock(&sinfo->lock); |
| |
| return free_bytes; |
| } |
| |
| int btrfs_set_block_group_rw(struct btrfs_root *root, |
| struct btrfs_block_group_cache *cache) |
| { |
| struct btrfs_space_info *sinfo = cache->space_info; |
| u64 num_bytes; |
| |
| BUG_ON(!cache->ro); |
| |
| spin_lock(&sinfo->lock); |
| spin_lock(&cache->lock); |
| num_bytes = cache->key.offset - cache->reserved - cache->pinned - |
| cache->bytes_super - btrfs_block_group_used(&cache->item); |
| sinfo->bytes_readonly -= num_bytes; |
| cache->ro = 0; |
| spin_unlock(&cache->lock); |
| spin_unlock(&sinfo->lock); |
| return 0; |
| } |
| |
| /* |
| * checks to see if its even possible to relocate this block group. |
| * |
| * @return - -1 if it's not a good idea to relocate this block group, 0 if its |
| * ok to go ahead and try. |
| */ |
| int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr) |
| { |
| struct btrfs_block_group_cache *block_group; |
| struct btrfs_space_info *space_info; |
| struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; |
| struct btrfs_device *device; |
| u64 min_free; |
| u64 dev_min = 1; |
| u64 dev_nr = 0; |
| int index; |
| int full = 0; |
| int ret = 0; |
| |
| block_group = btrfs_lookup_block_group(root->fs_info, bytenr); |
| |
| /* odd, couldn't find the block group, leave it alone */ |
| if (!block_group) |
| return -1; |
| |
| min_free = btrfs_block_group_used(&block_group->item); |
| |
| /* no bytes used, we're good */ |
| if (!min_free) |
| goto out; |
| |
| space_info = block_group->space_info; |
| spin_lock(&space_info->lock); |
| |
| full = space_info->full; |
| |
| /* |
| * if this is the last block group we have in this space, we can't |
| * relocate it unless we're able to allocate a new chunk below. |
| * |
| * Otherwise, we need to make sure we have room in the space to handle |
| * all of the extents from this block group. If we can, we're good |
| */ |
| if ((space_info->total_bytes != block_group->key.offset) && |
| (space_info->bytes_used + space_info->bytes_reserved + |
| space_info->bytes_pinned + space_info->bytes_readonly + |
| min_free < space_info->total_bytes)) { |
| spin_unlock(&space_info->lock); |
| goto out; |
| } |
| spin_unlock(&space_info->lock); |
| |
| /* |
| * ok we don't have enough space, but maybe we have free space on our |
| * devices to allocate new chunks for relocation, so loop through our |
| * alloc devices and guess if we have enough space. However, if we |
| * were marked as full, then we know there aren't enough chunks, and we |
| * can just return. |
| */ |
| ret = -1; |
| if (full) |
| goto out; |
| |
| /* |
| * index: |
| * 0: raid10 |
| * 1: raid1 |
| * 2: dup |
| * 3: raid0 |
| * 4: single |
| */ |
| index = get_block_group_index(block_group); |
| if (index == 0) { |
| dev_min = 4; |
| /* Divide by 2 */ |
| min_free >>= 1; |
| } else if (index == 1) { |
| dev_min = 2; |
| } else if (index == 2) { |
| /* Multiply by 2 */ |
| min_free <<= 1; |
| } else if (index == 3) { |
| dev_min = fs_devices->rw_devices; |
| do_div(min_free, dev_min); |
| } |
| |
| mutex_lock(&root->fs_info->chunk_mutex); |
| list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { |
| u64 dev_offset; |
| |
| /* |
| * check to make sure we can actually find a chunk with enough |
| * space to fit our block group in. |
| */ |
| if (device->total_bytes > device->bytes_used + min_free) { |
| ret = find_free_dev_extent(device, min_free, |
| &dev_offset, NULL); |
| if (!ret) |
| dev_nr++; |
| |
| if (dev_nr >= dev_min) |
| break; |
| |
| ret = -1; |
| } |
| } |
| mutex_unlock(&root->fs_info->chunk_mutex); |
| out: |
| btrfs_put_block_group(block_group); |
| return ret; |
| } |
| |
| static int find_first_block_group(struct btrfs_root *root, |
| struct btrfs_path *path, struct btrfs_key *key) |
| { |
| int ret = 0; |
| struct btrfs_key found_key; |
| struct extent_buffer *leaf; |
| int slot; |
| |
| ret = btrfs_search_slot(NULL, root, key, path, 0, 0); |
| if (ret < 0) |
| goto out; |
| |
| while (1) { |
| slot = path->slots[0]; |
| leaf = path->nodes[0]; |
| if (slot >= btrfs_header_nritems(leaf)) { |
| ret = btrfs_next_leaf(root, path); |
| if (ret == 0) |
| continue; |
| if (ret < 0) |
| goto out; |
| break; |
| } |
| btrfs_item_key_to_cpu(leaf, &found_key, slot); |
| |
| if (found_key.objectid >= key->objectid && |
| found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) { |
| ret = 0; |
| goto out; |
| } |
| path->slots[0]++; |
| } |
| out: |
| return ret; |
| } |
| |
| void btrfs_put_block_group_cache(struct btrfs_fs_info *info) |
| { |
| struct btrfs_block_group_cache *block_group; |
| u64 last = 0; |
| |
| while (1) { |
| struct inode *inode; |
| |
| block_group = btrfs_lookup_first_block_group(info, last); |
| while (block_group) { |
| spin_lock(&block_group->lock); |
| if (block_group->iref) |
| break; |
| spin_unlock(&block_group->lock); |
| block_group = next_block_group(info->tree_root, |
| block_group); |
| } |
| if (!block_group) { |
| if (last == 0) |
| break; |
| last = 0; |
| continue; |
| } |
| |
| inode = block_group->inode; |
| block_group->iref = 0; |
| block_group->inode = NULL; |
| spin_unlock(&block_group->lock); |
| iput(inode); |
| last = block_group->key.objectid + block_group->key.offset; |
| btrfs_put_block_group(block_group); |
| } |
| } |
| |
| int btrfs_free_block_groups(struct btrfs_fs_info *info) |
| { |
| struct btrfs_block_group_cache *block_group; |
| struct btrfs_space_info *space_info; |
| struct btrfs_caching_control *caching_ctl; |
| struct rb_node *n; |
| |
| down_write(&info->extent_commit_sem); |
| while (!list_empty(&info->caching_block_groups)) { |
| caching_ctl = list_entry(info->caching_block_groups.next, |
| struct btrfs_caching_control, list); |
| list_del(&caching_ctl->list); |
| put_caching_control(caching_ctl); |
| } |
| up_write(&info->extent_commit_sem); |
| |
| spin_lock(&info->block_group_cache_lock); |
| while ((n = rb_last(&info->block_group_cache_tree)) != NULL) { |
| block_group = rb_entry(n, struct btrfs_block_group_cache, |
| cache_node); |
| rb_erase(&block_group->cache_node, |
| &info->block_group_cache_tree); |
| spin_unlock(&info->block_group_cache_lock); |
| |
| down_write(&block_group->space_info->groups_sem); |
| list_del(&block_group->list); |
| up_write(&block_group->space_info->groups_sem); |
| |
| if (block_group->cached == BTRFS_CACHE_STARTED) |
| wait_block_group_cache_done(block_group); |
| |
| /* |
| * We haven't cached this block group, which means we could |
| * possibly have excluded extents on this block group. |
| */ |
| if (block_group->cached == BTRFS_CACHE_NO) |
| free_excluded_extents(info->extent_root, block_group); |
| |
| btrfs_remove_free_space_cache(block_group); |
| btrfs_put_block_group(block_group); |
| |
| spin_lock(&info->block_group_cache_lock); |
| } |
| spin_unlock(&info->block_group_cache_lock); |
| |
| /* now that all the block groups are freed, go through and |
| * free all the space_info structs. This is only called during |
| * the final stages of unmount, and so we know nobody is |
| * using them. We call synchronize_rcu() once before we start, |
| * just to be on the safe side. |
| */ |
| synchronize_rcu(); |
| |
| release_global_block_rsv(info); |
| |
| while(!list_empty(&info->space_info)) { |
| space_info = list_entry(info->space_info.next, |
| struct btrfs_space_info, |
| list); |
| if (space_info->bytes_pinned > 0 || |
| space_info->bytes_reserved > 0 || |
| space_info->bytes_may_use > 0) { |
| WARN_ON(1); |
| dump_space_info(space_info, 0, 0); |
| } |
| list_del(&space_info->list); |
| kfree(space_info); |
| } |
| return 0; |
| } |
| |
| static void __link_block_group(struct btrfs_space_info *space_info, |
| struct btrfs_block_group_cache *cache) |
| { |
| int index = get_block_group_index(cache); |
| |
| down_write(&space_info->groups_sem); |
| list_add_tail(&cache->list, &space_info->block_groups[index]); |
| up_write(&space_info->groups_sem); |
| } |
| |
| int btrfs_read_block_groups(struct btrfs_root *root) |
| { |
| struct btrfs_path *path; |
| int ret; |
| struct btrfs_block_group_cache *cache; |
| struct btrfs_fs_info *info = root->fs_info; |
| struct btrfs_space_info *space_info; |
| struct btrfs_key key; |
| struct btrfs_key found_key; |
| struct extent_buffer *leaf; |
| int need_clear = 0; |
| u64 cache_gen; |
| |
| root = info->extent_root; |
| key.objectid = 0; |
| key.offset = 0; |
| btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY); |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| path->reada = 1; |
| |
| cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy); |
| if (btrfs_test_opt(root, SPACE_CACHE) && |
| btrfs_super_generation(root->fs_info->super_copy) != cache_gen) |
| need_clear = 1; |
| if (btrfs_test_opt(root, CLEAR_CACHE)) |
| need_clear = 1; |
| |
| while (1) { |
| ret = find_first_block_group(root, path, &key); |
| if (ret > 0) |
| break; |
| if (ret != 0) |
| goto error; |
| leaf = path->nodes[0]; |
| btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); |
| cache = kzalloc(sizeof(*cache), GFP_NOFS); |
| if (!cache) { |
| ret = -ENOMEM; |
| goto error; |
| } |
| cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl), |
| GFP_NOFS); |
| if (!cache->free_space_ctl) { |
| kfree(cache); |
| ret = -ENOMEM; |
| goto error; |
| } |
| |
| atomic_set(&cache->count, 1); |
| spin_lock_init(&cache->lock); |
| cache->fs_info = info; |
| INIT_LIST_HEAD(&cache->list); |
| INIT_LIST_HEAD(&cache->cluster_list); |
| |
| if (need_clear) |
| cache->disk_cache_state = BTRFS_DC_CLEAR; |
| |
| read_extent_buffer(leaf, &cache->item, |
| btrfs_item_ptr_offset(leaf, path->slots[0]), |
| sizeof(cache->item)); |
| memcpy(&cache->key, &found_key, sizeof(found_key)); |
| |
| key.objectid = found_key.objectid + found_key.offset; |
| btrfs_release_path(path); |
| cache->flags = btrfs_block_group_flags(&cache->item); |
| cache->sectorsize = root->sectorsize; |
| |
| btrfs_init_free_space_ctl(cache); |
| |
| /* |
| * We need to exclude the super stripes now so that the space |
| * info has super bytes accounted for, otherwise we'll think |
| * we have more space than we actually do. |
| */ |
| exclude_super_stripes(root, cache); |
| |
| /* |
| * check for two cases, either we are full, and therefore |
| * don't need to bother with the caching work since we won't |
| * find any space, or we are empty, and we can just add all |
| * the space in and be done with it. This saves us _alot_ of |
| * time, particularly in the full case. |
| */ |
| if (found_key.offset == btrfs_block_group_used(&cache->item)) { |
| cache->last_byte_to_unpin = (u64)-1; |
| cache->cached = BTRFS_CACHE_FINISHED; |
| free_excluded_extents(root, cache); |
| } else if (btrfs_block_group_used(&cache->item) == 0) { |
| cache->last_byte_to_unpin = (u64)-1; |
| cache->cached = BTRFS_CACHE_FINISHED; |
| add_new_free_space(cache, root->fs_info, |
| found_key.objectid, |
| found_key.objectid + |
| found_key.offset); |
| free_excluded_extents(root, cache); |
| } |
| |
| ret = update_space_info(info, cache->flags, found_key.offset, |
| btrfs_block_group_used(&cache->item), |
| &space_info); |
| BUG_ON(ret); |
| cache->space_info = space_info; |
| spin_lock(&cache->space_info->lock); |
| cache->space_info->bytes_readonly += cache->bytes_super; |
| spin_unlock(&cache->space_info->lock); |
| |
| __link_block_group(space_info, cache); |
| |
| ret = btrfs_add_block_group_cache(root->fs_info, cache); |
| BUG_ON(ret); |
| |
| set_avail_alloc_bits(root->fs_info, cache->flags); |
| if (btrfs_chunk_readonly(root, cache->key.objectid)) |
| set_block_group_ro(cache, 1); |
| } |
| |
| list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) { |
| if (!(get_alloc_profile(root, space_info->flags) & |
| (BTRFS_BLOCK_GROUP_RAID10 | |
| BTRFS_BLOCK_GROUP_RAID1 | |
| BTRFS_BLOCK_GROUP_DUP))) |
| continue; |
| /* |
| * avoid allocating from un-mirrored block group if there are |
| * mirrored block groups. |
| */ |
| list_for_each_entry(cache, &space_info->block_groups[3], list) |
| set_block_group_ro(cache, 1); |
| list_for_each_entry(cache, &space_info->block_groups[4], list) |
| set_block_group_ro(cache, 1); |
| } |
| |
| init_global_block_rsv(info); |
| ret = 0; |
| error: |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| int btrfs_make_block_group(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, u64 bytes_used, |
| u64 type, u64 chunk_objectid, u64 chunk_offset, |
| u64 size) |
| { |
| int ret; |
| struct btrfs_root *extent_root; |
| struct btrfs_block_group_cache *cache; |
| |
| extent_root = root->fs_info->extent_root; |
| |
| root->fs_info->last_trans_log_full_commit = trans->transid; |
| |
| cache = kzalloc(sizeof(*cache), GFP_NOFS); |
| if (!cache) |
| return -ENOMEM; |
| cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl), |
| GFP_NOFS); |
| if (!cache->free_space_ctl) { |
| kfree(cache); |
| return -ENOMEM; |
| } |
| |
| cache->key.objectid = chunk_offset; |
| cache->key.offset = size; |
| cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; |
| cache->sectorsize = root->sectorsize; |
| cache->fs_info = root->fs_info; |
| |
| atomic_set(&cache->count, 1); |
| spin_lock_init(&cache->lock); |
| INIT_LIST_HEAD(&cache->list); |
| INIT_LIST_HEAD(&cache->cluster_list); |
| |
| btrfs_init_free_space_ctl(cache); |
| |
| btrfs_set_block_group_used(&cache->item, bytes_used); |
| btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid); |
| cache->flags = type; |
| btrfs_set_block_group_flags(&cache->item, type); |
| |
| cache->last_byte_to_unpin = (u64)-1; |
| cache->cached = BTRFS_CACHE_FINISHED; |
| exclude_super_stripes(root, cache); |
| |
| add_new_free_space(cache, root->fs_info, chunk_offset, |
| chunk_offset + size); |
| |
| free_excluded_extents(root, cache); |
| |
| ret = update_space_info(root->fs_info, cache->flags, size, bytes_used, |
| &cache->space_info); |
| BUG_ON(ret); |
| update_global_block_rsv(root->fs_info); |
| |
| spin_lock(&cache->space_info->lock); |
| cache->space_info->bytes_readonly += cache->bytes_super; |
| spin_unlock(&cache->space_info->lock); |
| |
| __link_block_group(cache->space_info, cache); |
| |
| ret = btrfs_add_block_group_cache(root->fs_info, cache); |
| BUG_ON(ret); |
| |
| ret = btrfs_insert_item(trans, extent_root, &cache->key, &cache->item, |
| sizeof(cache->item)); |
| BUG_ON(ret); |
| |
| set_avail_alloc_bits(extent_root->fs_info, type); |
| |
| return 0; |
| } |
| |
| static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) |
| { |
| u64 extra_flags = flags & BTRFS_BLOCK_GROUP_PROFILE_MASK; |
| |
| /* chunk -> extended profile */ |
| if (extra_flags == 0) |
| extra_flags = BTRFS_AVAIL_ALLOC_BIT_SINGLE; |
| |
| if (flags & BTRFS_BLOCK_GROUP_DATA) |
| fs_info->avail_data_alloc_bits &= ~extra_flags; |
| if (flags & BTRFS_BLOCK_GROUP_METADATA) |
| fs_info->avail_metadata_alloc_bits &= ~extra_flags; |
| if (flags & BTRFS_BLOCK_GROUP_SYSTEM) |
| fs_info->avail_system_alloc_bits &= ~extra_flags; |
| } |
| |
| int btrfs_remove_block_group(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, u64 group_start) |
| { |
| struct btrfs_path *path; |
| struct btrfs_block_group_cache *block_group; |
| struct btrfs_free_cluster *cluster; |
| struct btrfs_root *tree_root = root->fs_info->tree_root; |
| struct btrfs_key key; |
| struct inode *inode; |
| int ret; |
| int index; |
| int factor; |
| |
| root = root->fs_info->extent_root; |
| |
| block_group = btrfs_lookup_block_group(root->fs_info, group_start); |
| BUG_ON(!block_group); |
| BUG_ON(!block_group->ro); |
| |
| /* |
| * Free the reserved super bytes from this block group before |
| * remove it. |
| */ |
| free_excluded_extents(root, block_group); |
| |
| memcpy(&key, &block_group->key, sizeof(key)); |
| index = get_block_group_index(block_group); |
| if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP | |
| BTRFS_BLOCK_GROUP_RAID1 | |
| BTRFS_BLOCK_GROUP_RAID10)) |
| factor = 2; |
| else |
| factor = 1; |
| |
| /* make sure this block group isn't part of an allocation cluster */ |
| cluster = &root->fs_info->data_alloc_cluster; |
| spin_lock(&cluster->refill_lock); |
| btrfs_return_cluster_to_free_space(block_group, cluster); |
| spin_unlock(&cluster->refill_lock); |
| |
| /* |
| * make sure this block group isn't part of a metadata |
| * allocation cluster |
| */ |
| cluster = &root->fs_info->meta_alloc_cluster; |
| spin_lock(&cluster->refill_lock); |
| btrfs_return_cluster_to_free_space(block_group, cluster); |
| spin_unlock(&cluster->refill_lock); |
| |
| path = btrfs_alloc_path(); |
| if (!path) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| |
| inode = lookup_free_space_inode(tree_root, block_group, path); |
| if (!IS_ERR(inode)) { |
| ret = btrfs_orphan_add(trans, inode); |
| BUG_ON(ret); |
| clear_nlink(inode); |
| /* One for the block groups ref */ |
| spin_lock(&block_group->lock); |
| if (block_group->iref) { |
| block_group->iref = 0; |
| block_group->inode = NULL; |
| spin_unlock(&block_group->lock); |
| iput(inode); |
| } else { |
| spin_unlock(&block_group->lock); |
| } |
| /* One for our lookup ref */ |
| btrfs_add_delayed_iput(inode); |
| } |
| |
| key.objectid = BTRFS_FREE_SPACE_OBJECTID; |
| key.offset = block_group->key.objectid; |
| key.type = 0; |
| |
| ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1); |
| if (ret < 0) |
| goto out; |
| if (ret > 0) |
| btrfs_release_path(path); |
| if (ret == 0) { |
| ret = btrfs_del_item(trans, tree_root, path); |
| if (ret) |
| goto out; |
| btrfs_release_path(path); |
| } |
| |
| spin_lock(&root->fs_info->block_group_cache_lock); |
| rb_erase(&block_group->cache_node, |
| &root->fs_info->block_group_cache_tree); |
| spin_unlock(&root->fs_info->block_group_cache_lock); |
| |
| down_write(&block_group->space_info->groups_sem); |
| /* |
| * we must use list_del_init so people can check to see if they |
| * are still on the list after taking the semaphore |
| */ |
| list_del_init(&block_group->list); |
| if (list_empty(&block_group->space_info->block_groups[index])) |
| clear_avail_alloc_bits(root->fs_info, block_group->flags); |
| up_write(&block_group->space_info->groups_sem); |
| |
| if (block_group->cached == BTRFS_CACHE_STARTED) |
| wait_block_group_cache_done(block_group); |
| |
| btrfs_remove_free_space_cache(block_group); |
| |
| spin_lock(&block_group->space_info->lock); |
| block_group->space_info->total_bytes -= block_group->key.offset; |
| block_group->space_info->bytes_readonly -= block_group->key.offset; |
| block_group->space_info->disk_total -= block_group->key.offset * factor; |
| spin_unlock(&block_group->space_info->lock); |
| |
| memcpy(&key, &block_group->key, sizeof(key)); |
| |
| btrfs_clear_space_info_full(root->fs_info); |
| |
| btrfs_put_block_group(block_group); |
| btrfs_put_block_group(block_group); |
| |
| ret = btrfs_search_slot(trans, root, &key, path, -1, 1); |
| if (ret > 0) |
| ret = -EIO; |
| if (ret < 0) |
| goto out; |
| |
| ret = btrfs_del_item(trans, root, path); |
| out: |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| int btrfs_init_space_info(struct btrfs_fs_info *fs_info) |
| { |
| struct btrfs_space_info *space_info; |
| struct btrfs_super_block *disk_super; |
| u64 features; |
| u64 flags; |
| int mixed = 0; |
| int ret; |
| |
| disk_super = fs_info->super_copy; |
| if (!btrfs_super_root(disk_super)) |
| return 1; |
| |
| features = btrfs_super_incompat_flags(disk_super); |
| if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) |
| mixed = 1; |
| |
| flags = BTRFS_BLOCK_GROUP_SYSTEM; |
| ret = update_space_info(fs_info, flags, 0, 0, &space_info); |
| if (ret) |
| goto out; |
| |
| if (mixed) { |
| flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA; |
| ret = update_space_info(fs_info, flags, 0, 0, &space_info); |
| } else { |
| flags = BTRFS_BLOCK_GROUP_METADATA; |
| ret = update_space_info(fs_info, flags, 0, 0, &space_info); |
| if (ret) |
| goto out; |
| |
| flags = BTRFS_BLOCK_GROUP_DATA; |
| ret = update_space_info(fs_info, flags, 0, 0, &space_info); |
| } |
| out: |
| return ret; |
| } |
| |
| int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end) |
| { |
| return unpin_extent_range(root, start, end); |
| } |
| |
| int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr, |
| u64 num_bytes, u64 *actual_bytes) |
| { |
| return btrfs_discard_extent(root, bytenr, num_bytes, actual_bytes); |
| } |
| |
| int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range) |
| { |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| struct btrfs_block_group_cache *cache = NULL; |
| u64 group_trimmed; |
| u64 start; |
| u64 end; |
| u64 trimmed = 0; |
| int ret = 0; |
| |
| cache = btrfs_lookup_block_group(fs_info, range->start); |
| |
| while (cache) { |
| if (cache->key.objectid >= (range->start + range->len)) { |
| btrfs_put_block_group(cache); |
| break; |
| } |
| |
| start = max(range->start, cache->key.objectid); |
| end = min(range->start + range->len, |
| cache->key.objectid + cache->key.offset); |
| |
| if (end - start >= range->minlen) { |
| if (!block_group_cache_done(cache)) { |
| ret = cache_block_group(cache, NULL, root, 0); |
| if (!ret) |
| wait_block_group_cache_done(cache); |
| } |
| ret = btrfs_trim_block_group(cache, |
| &group_trimmed, |
| start, |
| end, |
| range->minlen); |
| |
| trimmed += group_trimmed; |
| if (ret) { |
| btrfs_put_block_group(cache); |
| break; |
| } |
| } |
| |
| cache = next_block_group(fs_info->tree_root, cache); |
| } |
| |
| range->len = trimmed; |
| return ret; |
| } |