| /* |
| * linux/arch/x86_64/entry.S |
| * |
| * Copyright (C) 1991, 1992 Linus Torvalds |
| * Copyright (C) 2000, 2001, 2002 Andi Kleen SuSE Labs |
| * Copyright (C) 2000 Pavel Machek <pavel@suse.cz> |
| * |
| * entry.S contains the system-call and fault low-level handling routines. |
| * |
| * Some of this is documented in Documentation/x86/entry_64.txt |
| * |
| * A note on terminology: |
| * - iret frame: Architecture defined interrupt frame from SS to RIP |
| * at the top of the kernel process stack. |
| * |
| * Some macro usage: |
| * - ENTRY/END: Define functions in the symbol table. |
| * - TRACE_IRQ_*: Trace hardirq state for lock debugging. |
| * - idtentry: Define exception entry points. |
| */ |
| #include <linux/linkage.h> |
| #include <asm/segment.h> |
| #include <asm/cache.h> |
| #include <asm/errno.h> |
| #include "calling.h" |
| #include <asm/asm-offsets.h> |
| #include <asm/msr.h> |
| #include <asm/unistd.h> |
| #include <asm/thread_info.h> |
| #include <asm/hw_irq.h> |
| #include <asm/page_types.h> |
| #include <asm/irqflags.h> |
| #include <asm/paravirt.h> |
| #include <asm/percpu.h> |
| #include <asm/asm.h> |
| #include <asm/smap.h> |
| #include <asm/pgtable_types.h> |
| #include <linux/err.h> |
| |
| /* Avoid __ASSEMBLER__'ifying <linux/audit.h> just for this. */ |
| #include <linux/elf-em.h> |
| #define AUDIT_ARCH_X86_64 (EM_X86_64|__AUDIT_ARCH_64BIT|__AUDIT_ARCH_LE) |
| #define __AUDIT_ARCH_64BIT 0x80000000 |
| #define __AUDIT_ARCH_LE 0x40000000 |
| |
| .code64 |
| .section .entry.text, "ax" |
| |
| #ifdef CONFIG_PARAVIRT |
| ENTRY(native_usergs_sysret64) |
| swapgs |
| sysretq |
| ENDPROC(native_usergs_sysret64) |
| #endif /* CONFIG_PARAVIRT */ |
| |
| .macro TRACE_IRQS_IRETQ |
| #ifdef CONFIG_TRACE_IRQFLAGS |
| bt $9, EFLAGS(%rsp) /* interrupts off? */ |
| jnc 1f |
| TRACE_IRQS_ON |
| 1: |
| #endif |
| .endm |
| |
| /* |
| * When dynamic function tracer is enabled it will add a breakpoint |
| * to all locations that it is about to modify, sync CPUs, update |
| * all the code, sync CPUs, then remove the breakpoints. In this time |
| * if lockdep is enabled, it might jump back into the debug handler |
| * outside the updating of the IST protection. (TRACE_IRQS_ON/OFF). |
| * |
| * We need to change the IDT table before calling TRACE_IRQS_ON/OFF to |
| * make sure the stack pointer does not get reset back to the top |
| * of the debug stack, and instead just reuses the current stack. |
| */ |
| #if defined(CONFIG_DYNAMIC_FTRACE) && defined(CONFIG_TRACE_IRQFLAGS) |
| |
| .macro TRACE_IRQS_OFF_DEBUG |
| call debug_stack_set_zero |
| TRACE_IRQS_OFF |
| call debug_stack_reset |
| .endm |
| |
| .macro TRACE_IRQS_ON_DEBUG |
| call debug_stack_set_zero |
| TRACE_IRQS_ON |
| call debug_stack_reset |
| .endm |
| |
| .macro TRACE_IRQS_IRETQ_DEBUG |
| bt $9, EFLAGS(%rsp) /* interrupts off? */ |
| jnc 1f |
| TRACE_IRQS_ON_DEBUG |
| 1: |
| .endm |
| |
| #else |
| # define TRACE_IRQS_OFF_DEBUG TRACE_IRQS_OFF |
| # define TRACE_IRQS_ON_DEBUG TRACE_IRQS_ON |
| # define TRACE_IRQS_IRETQ_DEBUG TRACE_IRQS_IRETQ |
| #endif |
| |
| /* |
| * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers. |
| * |
| * This is the only entry point used for 64-bit system calls. The |
| * hardware interface is reasonably well designed and the register to |
| * argument mapping Linux uses fits well with the registers that are |
| * available when SYSCALL is used. |
| * |
| * SYSCALL instructions can be found inlined in libc implementations as |
| * well as some other programs and libraries. There are also a handful |
| * of SYSCALL instructions in the vDSO used, for example, as a |
| * clock_gettimeofday fallback. |
| * |
| * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11, |
| * then loads new ss, cs, and rip from previously programmed MSRs. |
| * rflags gets masked by a value from another MSR (so CLD and CLAC |
| * are not needed). SYSCALL does not save anything on the stack |
| * and does not change rsp. |
| * |
| * Registers on entry: |
| * rax system call number |
| * rcx return address |
| * r11 saved rflags (note: r11 is callee-clobbered register in C ABI) |
| * rdi arg0 |
| * rsi arg1 |
| * rdx arg2 |
| * r10 arg3 (needs to be moved to rcx to conform to C ABI) |
| * r8 arg4 |
| * r9 arg5 |
| * (note: r12-r15, rbp, rbx are callee-preserved in C ABI) |
| * |
| * Only called from user space. |
| * |
| * When user can change pt_regs->foo always force IRET. That is because |
| * it deals with uncanonical addresses better. SYSRET has trouble |
| * with them due to bugs in both AMD and Intel CPUs. |
| */ |
| |
| ENTRY(entry_SYSCALL_64) |
| /* |
| * Interrupts are off on entry. |
| * We do not frame this tiny irq-off block with TRACE_IRQS_OFF/ON, |
| * it is too small to ever cause noticeable irq latency. |
| */ |
| SWAPGS_UNSAFE_STACK |
| /* |
| * A hypervisor implementation might want to use a label |
| * after the swapgs, so that it can do the swapgs |
| * for the guest and jump here on syscall. |
| */ |
| GLOBAL(entry_SYSCALL_64_after_swapgs) |
| |
| movq %rsp, PER_CPU_VAR(rsp_scratch) |
| movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp |
| |
| TRACE_IRQS_OFF |
| |
| /* Construct struct pt_regs on stack */ |
| pushq $__USER_DS /* pt_regs->ss */ |
| pushq PER_CPU_VAR(rsp_scratch) /* pt_regs->sp */ |
| pushq %r11 /* pt_regs->flags */ |
| pushq $__USER_CS /* pt_regs->cs */ |
| pushq %rcx /* pt_regs->ip */ |
| pushq %rax /* pt_regs->orig_ax */ |
| pushq %rdi /* pt_regs->di */ |
| pushq %rsi /* pt_regs->si */ |
| pushq %rdx /* pt_regs->dx */ |
| pushq %rcx /* pt_regs->cx */ |
| pushq $-ENOSYS /* pt_regs->ax */ |
| pushq %r8 /* pt_regs->r8 */ |
| pushq %r9 /* pt_regs->r9 */ |
| pushq %r10 /* pt_regs->r10 */ |
| pushq %r11 /* pt_regs->r11 */ |
| sub $(6*8), %rsp /* pt_regs->bp, bx, r12-15 not saved */ |
| |
| /* |
| * If we need to do entry work or if we guess we'll need to do |
| * exit work, go straight to the slow path. |
| */ |
| testl $_TIF_WORK_SYSCALL_ENTRY|_TIF_ALLWORK_MASK, ASM_THREAD_INFO(TI_flags, %rsp, SIZEOF_PTREGS) |
| jnz entry_SYSCALL64_slow_path |
| |
| entry_SYSCALL_64_fastpath: |
| /* |
| * Easy case: enable interrupts and issue the syscall. If the syscall |
| * needs pt_regs, we'll call a stub that disables interrupts again |
| * and jumps to the slow path. |
| */ |
| TRACE_IRQS_ON |
| ENABLE_INTERRUPTS(CLBR_NONE) |
| #if __SYSCALL_MASK == ~0 |
| cmpq $__NR_syscall_max, %rax |
| #else |
| andl $__SYSCALL_MASK, %eax |
| cmpl $__NR_syscall_max, %eax |
| #endif |
| ja 1f /* return -ENOSYS (already in pt_regs->ax) */ |
| movq %r10, %rcx |
| |
| /* |
| * This call instruction is handled specially in stub_ptregs_64. |
| * It might end up jumping to the slow path. If it jumps, RAX |
| * and all argument registers are clobbered. |
| */ |
| call *sys_call_table(, %rax, 8) |
| .Lentry_SYSCALL_64_after_fastpath_call: |
| |
| movq %rax, RAX(%rsp) |
| 1: |
| |
| /* |
| * If we get here, then we know that pt_regs is clean for SYSRET64. |
| * If we see that no exit work is required (which we are required |
| * to check with IRQs off), then we can go straight to SYSRET64. |
| */ |
| DISABLE_INTERRUPTS(CLBR_NONE) |
| TRACE_IRQS_OFF |
| testl $_TIF_ALLWORK_MASK, ASM_THREAD_INFO(TI_flags, %rsp, SIZEOF_PTREGS) |
| jnz 1f |
| |
| LOCKDEP_SYS_EXIT |
| TRACE_IRQS_ON /* user mode is traced as IRQs on */ |
| movq RIP(%rsp), %rcx |
| movq EFLAGS(%rsp), %r11 |
| RESTORE_C_REGS_EXCEPT_RCX_R11 |
| movq RSP(%rsp), %rsp |
| USERGS_SYSRET64 |
| |
| 1: |
| /* |
| * The fast path looked good when we started, but something changed |
| * along the way and we need to switch to the slow path. Calling |
| * raise(3) will trigger this, for example. IRQs are off. |
| */ |
| TRACE_IRQS_ON |
| ENABLE_INTERRUPTS(CLBR_NONE) |
| SAVE_EXTRA_REGS |
| movq %rsp, %rdi |
| call syscall_return_slowpath /* returns with IRQs disabled */ |
| jmp return_from_SYSCALL_64 |
| |
| entry_SYSCALL64_slow_path: |
| /* IRQs are off. */ |
| SAVE_EXTRA_REGS |
| movq %rsp, %rdi |
| call do_syscall_64 /* returns with IRQs disabled */ |
| |
| return_from_SYSCALL_64: |
| RESTORE_EXTRA_REGS |
| TRACE_IRQS_IRETQ /* we're about to change IF */ |
| |
| /* |
| * Try to use SYSRET instead of IRET if we're returning to |
| * a completely clean 64-bit userspace context. |
| */ |
| movq RCX(%rsp), %rcx |
| movq RIP(%rsp), %r11 |
| cmpq %rcx, %r11 /* RCX == RIP */ |
| jne opportunistic_sysret_failed |
| |
| /* |
| * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP |
| * in kernel space. This essentially lets the user take over |
| * the kernel, since userspace controls RSP. |
| * |
| * If width of "canonical tail" ever becomes variable, this will need |
| * to be updated to remain correct on both old and new CPUs. |
| */ |
| .ifne __VIRTUAL_MASK_SHIFT - 47 |
| .error "virtual address width changed -- SYSRET checks need update" |
| .endif |
| |
| /* Change top 16 bits to be the sign-extension of 47th bit */ |
| shl $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx |
| sar $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx |
| |
| /* If this changed %rcx, it was not canonical */ |
| cmpq %rcx, %r11 |
| jne opportunistic_sysret_failed |
| |
| cmpq $__USER_CS, CS(%rsp) /* CS must match SYSRET */ |
| jne opportunistic_sysret_failed |
| |
| movq R11(%rsp), %r11 |
| cmpq %r11, EFLAGS(%rsp) /* R11 == RFLAGS */ |
| jne opportunistic_sysret_failed |
| |
| /* |
| * SYSRET can't restore RF. SYSRET can restore TF, but unlike IRET, |
| * restoring TF results in a trap from userspace immediately after |
| * SYSRET. This would cause an infinite loop whenever #DB happens |
| * with register state that satisfies the opportunistic SYSRET |
| * conditions. For example, single-stepping this user code: |
| * |
| * movq $stuck_here, %rcx |
| * pushfq |
| * popq %r11 |
| * stuck_here: |
| * |
| * would never get past 'stuck_here'. |
| */ |
| testq $(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11 |
| jnz opportunistic_sysret_failed |
| |
| /* nothing to check for RSP */ |
| |
| cmpq $__USER_DS, SS(%rsp) /* SS must match SYSRET */ |
| jne opportunistic_sysret_failed |
| |
| /* |
| * We win! This label is here just for ease of understanding |
| * perf profiles. Nothing jumps here. |
| */ |
| syscall_return_via_sysret: |
| /* rcx and r11 are already restored (see code above) */ |
| RESTORE_C_REGS_EXCEPT_RCX_R11 |
| movq RSP(%rsp), %rsp |
| USERGS_SYSRET64 |
| |
| opportunistic_sysret_failed: |
| SWAPGS |
| jmp restore_c_regs_and_iret |
| END(entry_SYSCALL_64) |
| |
| ENTRY(stub_ptregs_64) |
| /* |
| * Syscalls marked as needing ptregs land here. |
| * If we are on the fast path, we need to save the extra regs, |
| * which we achieve by trying again on the slow path. If we are on |
| * the slow path, the extra regs are already saved. |
| * |
| * RAX stores a pointer to the C function implementing the syscall. |
| * IRQs are on. |
| */ |
| cmpq $.Lentry_SYSCALL_64_after_fastpath_call, (%rsp) |
| jne 1f |
| |
| /* |
| * Called from fast path -- disable IRQs again, pop return address |
| * and jump to slow path |
| */ |
| DISABLE_INTERRUPTS(CLBR_NONE) |
| TRACE_IRQS_OFF |
| popq %rax |
| jmp entry_SYSCALL64_slow_path |
| |
| 1: |
| /* Called from C */ |
| jmp *%rax /* called from C */ |
| END(stub_ptregs_64) |
| |
| .macro ptregs_stub func |
| ENTRY(ptregs_\func) |
| leaq \func(%rip), %rax |
| jmp stub_ptregs_64 |
| END(ptregs_\func) |
| .endm |
| |
| /* Instantiate ptregs_stub for each ptregs-using syscall */ |
| #define __SYSCALL_64_QUAL_(sym) |
| #define __SYSCALL_64_QUAL_ptregs(sym) ptregs_stub sym |
| #define __SYSCALL_64(nr, sym, qual) __SYSCALL_64_QUAL_##qual(sym) |
| #include <asm/syscalls_64.h> |
| |
| /* |
| * A newly forked process directly context switches into this address. |
| * |
| * rdi: prev task we switched from |
| */ |
| ENTRY(ret_from_fork) |
| LOCK ; btr $TIF_FORK, TI_flags(%r8) |
| |
| pushq $0x0002 |
| popfq /* reset kernel eflags */ |
| |
| call schedule_tail /* rdi: 'prev' task parameter */ |
| |
| testb $3, CS(%rsp) /* from kernel_thread? */ |
| jnz 1f |
| |
| /* |
| * We came from kernel_thread. This code path is quite twisted, and |
| * someone should clean it up. |
| * |
| * copy_thread_tls stashes the function pointer in RBX and the |
| * parameter to be passed in RBP. The called function is permitted |
| * to call do_execve and thereby jump to user mode. |
| */ |
| movq RBP(%rsp), %rdi |
| call *RBX(%rsp) |
| movl $0, RAX(%rsp) |
| |
| /* |
| * Fall through as though we're exiting a syscall. This makes a |
| * twisted sort of sense if we just called do_execve. |
| */ |
| |
| 1: |
| movq %rsp, %rdi |
| call syscall_return_slowpath /* returns with IRQs disabled */ |
| TRACE_IRQS_ON /* user mode is traced as IRQS on */ |
| SWAPGS |
| jmp restore_regs_and_iret |
| END(ret_from_fork) |
| |
| /* |
| * Build the entry stubs with some assembler magic. |
| * We pack 1 stub into every 8-byte block. |
| */ |
| .align 8 |
| ENTRY(irq_entries_start) |
| vector=FIRST_EXTERNAL_VECTOR |
| .rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR) |
| pushq $(~vector+0x80) /* Note: always in signed byte range */ |
| vector=vector+1 |
| jmp common_interrupt |
| .align 8 |
| .endr |
| END(irq_entries_start) |
| |
| /* |
| * Interrupt entry/exit. |
| * |
| * Interrupt entry points save only callee clobbered registers in fast path. |
| * |
| * Entry runs with interrupts off. |
| */ |
| |
| /* 0(%rsp): ~(interrupt number) */ |
| .macro interrupt func |
| cld |
| ALLOC_PT_GPREGS_ON_STACK |
| SAVE_C_REGS |
| SAVE_EXTRA_REGS |
| |
| testb $3, CS(%rsp) |
| jz 1f |
| |
| /* |
| * IRQ from user mode. Switch to kernel gsbase and inform context |
| * tracking that we're in kernel mode. |
| */ |
| SWAPGS |
| |
| /* |
| * We need to tell lockdep that IRQs are off. We can't do this until |
| * we fix gsbase, and we should do it before enter_from_user_mode |
| * (which can take locks). Since TRACE_IRQS_OFF idempotent, |
| * the simplest way to handle it is to just call it twice if |
| * we enter from user mode. There's no reason to optimize this since |
| * TRACE_IRQS_OFF is a no-op if lockdep is off. |
| */ |
| TRACE_IRQS_OFF |
| |
| CALL_enter_from_user_mode |
| |
| 1: |
| /* |
| * Save previous stack pointer, optionally switch to interrupt stack. |
| * irq_count is used to check if a CPU is already on an interrupt stack |
| * or not. While this is essentially redundant with preempt_count it is |
| * a little cheaper to use a separate counter in the PDA (short of |
| * moving irq_enter into assembly, which would be too much work) |
| */ |
| movq %rsp, %rdi |
| incl PER_CPU_VAR(irq_count) |
| cmovzq PER_CPU_VAR(irq_stack_ptr), %rsp |
| pushq %rdi |
| /* We entered an interrupt context - irqs are off: */ |
| TRACE_IRQS_OFF |
| |
| call \func /* rdi points to pt_regs */ |
| .endm |
| |
| /* |
| * The interrupt stubs push (~vector+0x80) onto the stack and |
| * then jump to common_interrupt. |
| */ |
| .p2align CONFIG_X86_L1_CACHE_SHIFT |
| common_interrupt: |
| ASM_CLAC |
| addq $-0x80, (%rsp) /* Adjust vector to [-256, -1] range */ |
| interrupt do_IRQ |
| /* 0(%rsp): old RSP */ |
| ret_from_intr: |
| DISABLE_INTERRUPTS(CLBR_NONE) |
| TRACE_IRQS_OFF |
| decl PER_CPU_VAR(irq_count) |
| |
| /* Restore saved previous stack */ |
| popq %rsp |
| |
| testb $3, CS(%rsp) |
| jz retint_kernel |
| |
| /* Interrupt came from user space */ |
| GLOBAL(retint_user) |
| mov %rsp,%rdi |
| call prepare_exit_to_usermode |
| TRACE_IRQS_IRETQ |
| SWAPGS |
| jmp restore_regs_and_iret |
| |
| /* Returning to kernel space */ |
| retint_kernel: |
| #ifdef CONFIG_PREEMPT |
| /* Interrupts are off */ |
| /* Check if we need preemption */ |
| bt $9, EFLAGS(%rsp) /* were interrupts off? */ |
| jnc 1f |
| 0: cmpl $0, PER_CPU_VAR(__preempt_count) |
| jnz 1f |
| call preempt_schedule_irq |
| jmp 0b |
| 1: |
| #endif |
| /* |
| * The iretq could re-enable interrupts: |
| */ |
| TRACE_IRQS_IRETQ |
| |
| /* |
| * At this label, code paths which return to kernel and to user, |
| * which come from interrupts/exception and from syscalls, merge. |
| */ |
| GLOBAL(restore_regs_and_iret) |
| RESTORE_EXTRA_REGS |
| restore_c_regs_and_iret: |
| RESTORE_C_REGS |
| REMOVE_PT_GPREGS_FROM_STACK 8 |
| INTERRUPT_RETURN |
| |
| ENTRY(native_iret) |
| /* |
| * Are we returning to a stack segment from the LDT? Note: in |
| * 64-bit mode SS:RSP on the exception stack is always valid. |
| */ |
| #ifdef CONFIG_X86_ESPFIX64 |
| testb $4, (SS-RIP)(%rsp) |
| jnz native_irq_return_ldt |
| #endif |
| |
| .global native_irq_return_iret |
| native_irq_return_iret: |
| /* |
| * This may fault. Non-paranoid faults on return to userspace are |
| * handled by fixup_bad_iret. These include #SS, #GP, and #NP. |
| * Double-faults due to espfix64 are handled in do_double_fault. |
| * Other faults here are fatal. |
| */ |
| iretq |
| |
| #ifdef CONFIG_X86_ESPFIX64 |
| native_irq_return_ldt: |
| pushq %rax |
| pushq %rdi |
| SWAPGS |
| movq PER_CPU_VAR(espfix_waddr), %rdi |
| movq %rax, (0*8)(%rdi) /* RAX */ |
| movq (2*8)(%rsp), %rax /* RIP */ |
| movq %rax, (1*8)(%rdi) |
| movq (3*8)(%rsp), %rax /* CS */ |
| movq %rax, (2*8)(%rdi) |
| movq (4*8)(%rsp), %rax /* RFLAGS */ |
| movq %rax, (3*8)(%rdi) |
| movq (6*8)(%rsp), %rax /* SS */ |
| movq %rax, (5*8)(%rdi) |
| movq (5*8)(%rsp), %rax /* RSP */ |
| movq %rax, (4*8)(%rdi) |
| andl $0xffff0000, %eax |
| popq %rdi |
| orq PER_CPU_VAR(espfix_stack), %rax |
| SWAPGS |
| movq %rax, %rsp |
| popq %rax |
| jmp native_irq_return_iret |
| #endif |
| END(common_interrupt) |
| |
| /* |
| * APIC interrupts. |
| */ |
| .macro apicinterrupt3 num sym do_sym |
| ENTRY(\sym) |
| ASM_CLAC |
| pushq $~(\num) |
| .Lcommon_\sym: |
| interrupt \do_sym |
| jmp ret_from_intr |
| END(\sym) |
| .endm |
| |
| #ifdef CONFIG_TRACING |
| #define trace(sym) trace_##sym |
| #define smp_trace(sym) smp_trace_##sym |
| |
| .macro trace_apicinterrupt num sym |
| apicinterrupt3 \num trace(\sym) smp_trace(\sym) |
| .endm |
| #else |
| .macro trace_apicinterrupt num sym do_sym |
| .endm |
| #endif |
| |
| .macro apicinterrupt num sym do_sym |
| apicinterrupt3 \num \sym \do_sym |
| trace_apicinterrupt \num \sym |
| .endm |
| |
| #ifdef CONFIG_SMP |
| apicinterrupt3 IRQ_MOVE_CLEANUP_VECTOR irq_move_cleanup_interrupt smp_irq_move_cleanup_interrupt |
| apicinterrupt3 REBOOT_VECTOR reboot_interrupt smp_reboot_interrupt |
| #endif |
| |
| #ifdef CONFIG_X86_UV |
| apicinterrupt3 UV_BAU_MESSAGE uv_bau_message_intr1 uv_bau_message_interrupt |
| #endif |
| |
| apicinterrupt LOCAL_TIMER_VECTOR apic_timer_interrupt smp_apic_timer_interrupt |
| apicinterrupt X86_PLATFORM_IPI_VECTOR x86_platform_ipi smp_x86_platform_ipi |
| |
| #ifdef CONFIG_HAVE_KVM |
| apicinterrupt3 POSTED_INTR_VECTOR kvm_posted_intr_ipi smp_kvm_posted_intr_ipi |
| apicinterrupt3 POSTED_INTR_WAKEUP_VECTOR kvm_posted_intr_wakeup_ipi smp_kvm_posted_intr_wakeup_ipi |
| #endif |
| |
| #ifdef CONFIG_X86_MCE_THRESHOLD |
| apicinterrupt THRESHOLD_APIC_VECTOR threshold_interrupt smp_threshold_interrupt |
| #endif |
| |
| #ifdef CONFIG_X86_MCE_AMD |
| apicinterrupt DEFERRED_ERROR_VECTOR deferred_error_interrupt smp_deferred_error_interrupt |
| #endif |
| |
| #ifdef CONFIG_X86_THERMAL_VECTOR |
| apicinterrupt THERMAL_APIC_VECTOR thermal_interrupt smp_thermal_interrupt |
| #endif |
| |
| #ifdef CONFIG_SMP |
| apicinterrupt CALL_FUNCTION_SINGLE_VECTOR call_function_single_interrupt smp_call_function_single_interrupt |
| apicinterrupt CALL_FUNCTION_VECTOR call_function_interrupt smp_call_function_interrupt |
| apicinterrupt RESCHEDULE_VECTOR reschedule_interrupt smp_reschedule_interrupt |
| #endif |
| |
| apicinterrupt ERROR_APIC_VECTOR error_interrupt smp_error_interrupt |
| apicinterrupt SPURIOUS_APIC_VECTOR spurious_interrupt smp_spurious_interrupt |
| |
| #ifdef CONFIG_IRQ_WORK |
| apicinterrupt IRQ_WORK_VECTOR irq_work_interrupt smp_irq_work_interrupt |
| #endif |
| |
| /* |
| * Exception entry points. |
| */ |
| #define CPU_TSS_IST(x) PER_CPU_VAR(cpu_tss) + (TSS_ist + ((x) - 1) * 8) |
| |
| .macro idtentry sym do_sym has_error_code:req paranoid=0 shift_ist=-1 |
| ENTRY(\sym) |
| /* Sanity check */ |
| .if \shift_ist != -1 && \paranoid == 0 |
| .error "using shift_ist requires paranoid=1" |
| .endif |
| |
| ASM_CLAC |
| PARAVIRT_ADJUST_EXCEPTION_FRAME |
| |
| .ifeq \has_error_code |
| pushq $-1 /* ORIG_RAX: no syscall to restart */ |
| .endif |
| |
| ALLOC_PT_GPREGS_ON_STACK |
| |
| .if \paranoid |
| .if \paranoid == 1 |
| testb $3, CS(%rsp) /* If coming from userspace, switch stacks */ |
| jnz 1f |
| .endif |
| call paranoid_entry |
| .else |
| call error_entry |
| .endif |
| /* returned flag: ebx=0: need swapgs on exit, ebx=1: don't need it */ |
| |
| .if \paranoid |
| .if \shift_ist != -1 |
| TRACE_IRQS_OFF_DEBUG /* reload IDT in case of recursion */ |
| .else |
| TRACE_IRQS_OFF |
| .endif |
| .endif |
| |
| movq %rsp, %rdi /* pt_regs pointer */ |
| |
| .if \has_error_code |
| movq ORIG_RAX(%rsp), %rsi /* get error code */ |
| movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */ |
| .else |
| xorl %esi, %esi /* no error code */ |
| .endif |
| |
| .if \shift_ist != -1 |
| subq $EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist) |
| .endif |
| |
| call \do_sym |
| |
| .if \shift_ist != -1 |
| addq $EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist) |
| .endif |
| |
| /* these procedures expect "no swapgs" flag in ebx */ |
| .if \paranoid |
| jmp paranoid_exit |
| .else |
| jmp error_exit |
| .endif |
| |
| .if \paranoid == 1 |
| /* |
| * Paranoid entry from userspace. Switch stacks and treat it |
| * as a normal entry. This means that paranoid handlers |
| * run in real process context if user_mode(regs). |
| */ |
| 1: |
| call error_entry |
| |
| |
| movq %rsp, %rdi /* pt_regs pointer */ |
| call sync_regs |
| movq %rax, %rsp /* switch stack */ |
| |
| movq %rsp, %rdi /* pt_regs pointer */ |
| |
| .if \has_error_code |
| movq ORIG_RAX(%rsp), %rsi /* get error code */ |
| movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */ |
| .else |
| xorl %esi, %esi /* no error code */ |
| .endif |
| |
| call \do_sym |
| |
| jmp error_exit /* %ebx: no swapgs flag */ |
| .endif |
| END(\sym) |
| .endm |
| |
| #ifdef CONFIG_TRACING |
| .macro trace_idtentry sym do_sym has_error_code:req |
| idtentry trace(\sym) trace(\do_sym) has_error_code=\has_error_code |
| idtentry \sym \do_sym has_error_code=\has_error_code |
| .endm |
| #else |
| .macro trace_idtentry sym do_sym has_error_code:req |
| idtentry \sym \do_sym has_error_code=\has_error_code |
| .endm |
| #endif |
| |
| idtentry divide_error do_divide_error has_error_code=0 |
| idtentry overflow do_overflow has_error_code=0 |
| idtentry bounds do_bounds has_error_code=0 |
| idtentry invalid_op do_invalid_op has_error_code=0 |
| idtentry device_not_available do_device_not_available has_error_code=0 |
| idtentry double_fault do_double_fault has_error_code=1 paranoid=2 |
| idtentry coprocessor_segment_overrun do_coprocessor_segment_overrun has_error_code=0 |
| idtentry invalid_TSS do_invalid_TSS has_error_code=1 |
| idtentry segment_not_present do_segment_not_present has_error_code=1 |
| idtentry spurious_interrupt_bug do_spurious_interrupt_bug has_error_code=0 |
| idtentry coprocessor_error do_coprocessor_error has_error_code=0 |
| idtentry alignment_check do_alignment_check has_error_code=1 |
| idtentry simd_coprocessor_error do_simd_coprocessor_error has_error_code=0 |
| |
| |
| /* |
| * Reload gs selector with exception handling |
| * edi: new selector |
| */ |
| ENTRY(native_load_gs_index) |
| pushfq |
| DISABLE_INTERRUPTS(CLBR_ANY & ~CLBR_RDI) |
| SWAPGS |
| .Lgs_change: |
| movl %edi, %gs |
| 2: ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE |
| SWAPGS |
| popfq |
| ret |
| END(native_load_gs_index) |
| |
| _ASM_EXTABLE(.Lgs_change, bad_gs) |
| .section .fixup, "ax" |
| /* running with kernelgs */ |
| bad_gs: |
| SWAPGS /* switch back to user gs */ |
| xorl %eax, %eax |
| movl %eax, %gs |
| jmp 2b |
| .previous |
| |
| /* Call softirq on interrupt stack. Interrupts are off. */ |
| ENTRY(do_softirq_own_stack) |
| pushq %rbp |
| mov %rsp, %rbp |
| incl PER_CPU_VAR(irq_count) |
| cmove PER_CPU_VAR(irq_stack_ptr), %rsp |
| push %rbp /* frame pointer backlink */ |
| call __do_softirq |
| leaveq |
| decl PER_CPU_VAR(irq_count) |
| ret |
| END(do_softirq_own_stack) |
| |
| #ifdef CONFIG_XEN |
| idtentry xen_hypervisor_callback xen_do_hypervisor_callback has_error_code=0 |
| |
| /* |
| * A note on the "critical region" in our callback handler. |
| * We want to avoid stacking callback handlers due to events occurring |
| * during handling of the last event. To do this, we keep events disabled |
| * until we've done all processing. HOWEVER, we must enable events before |
| * popping the stack frame (can't be done atomically) and so it would still |
| * be possible to get enough handler activations to overflow the stack. |
| * Although unlikely, bugs of that kind are hard to track down, so we'd |
| * like to avoid the possibility. |
| * So, on entry to the handler we detect whether we interrupted an |
| * existing activation in its critical region -- if so, we pop the current |
| * activation and restart the handler using the previous one. |
| */ |
| ENTRY(xen_do_hypervisor_callback) /* do_hypervisor_callback(struct *pt_regs) */ |
| |
| /* |
| * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will |
| * see the correct pointer to the pt_regs |
| */ |
| movq %rdi, %rsp /* we don't return, adjust the stack frame */ |
| 11: incl PER_CPU_VAR(irq_count) |
| movq %rsp, %rbp |
| cmovzq PER_CPU_VAR(irq_stack_ptr), %rsp |
| pushq %rbp /* frame pointer backlink */ |
| call xen_evtchn_do_upcall |
| popq %rsp |
| decl PER_CPU_VAR(irq_count) |
| #ifndef CONFIG_PREEMPT |
| call xen_maybe_preempt_hcall |
| #endif |
| jmp error_exit |
| END(xen_do_hypervisor_callback) |
| |
| /* |
| * Hypervisor uses this for application faults while it executes. |
| * We get here for two reasons: |
| * 1. Fault while reloading DS, ES, FS or GS |
| * 2. Fault while executing IRET |
| * Category 1 we do not need to fix up as Xen has already reloaded all segment |
| * registers that could be reloaded and zeroed the others. |
| * Category 2 we fix up by killing the current process. We cannot use the |
| * normal Linux return path in this case because if we use the IRET hypercall |
| * to pop the stack frame we end up in an infinite loop of failsafe callbacks. |
| * We distinguish between categories by comparing each saved segment register |
| * with its current contents: any discrepancy means we in category 1. |
| */ |
| ENTRY(xen_failsafe_callback) |
| movl %ds, %ecx |
| cmpw %cx, 0x10(%rsp) |
| jne 1f |
| movl %es, %ecx |
| cmpw %cx, 0x18(%rsp) |
| jne 1f |
| movl %fs, %ecx |
| cmpw %cx, 0x20(%rsp) |
| jne 1f |
| movl %gs, %ecx |
| cmpw %cx, 0x28(%rsp) |
| jne 1f |
| /* All segments match their saved values => Category 2 (Bad IRET). */ |
| movq (%rsp), %rcx |
| movq 8(%rsp), %r11 |
| addq $0x30, %rsp |
| pushq $0 /* RIP */ |
| pushq %r11 |
| pushq %rcx |
| jmp general_protection |
| 1: /* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */ |
| movq (%rsp), %rcx |
| movq 8(%rsp), %r11 |
| addq $0x30, %rsp |
| pushq $-1 /* orig_ax = -1 => not a system call */ |
| ALLOC_PT_GPREGS_ON_STACK |
| SAVE_C_REGS |
| SAVE_EXTRA_REGS |
| jmp error_exit |
| END(xen_failsafe_callback) |
| |
| apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \ |
| xen_hvm_callback_vector xen_evtchn_do_upcall |
| |
| #endif /* CONFIG_XEN */ |
| |
| #if IS_ENABLED(CONFIG_HYPERV) |
| apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \ |
| hyperv_callback_vector hyperv_vector_handler |
| #endif /* CONFIG_HYPERV */ |
| |
| idtentry debug do_debug has_error_code=0 paranoid=1 shift_ist=DEBUG_STACK |
| idtentry int3 do_int3 has_error_code=0 paranoid=1 shift_ist=DEBUG_STACK |
| idtentry stack_segment do_stack_segment has_error_code=1 |
| |
| #ifdef CONFIG_XEN |
| idtentry xen_debug do_debug has_error_code=0 |
| idtentry xen_int3 do_int3 has_error_code=0 |
| idtentry xen_stack_segment do_stack_segment has_error_code=1 |
| #endif |
| |
| idtentry general_protection do_general_protection has_error_code=1 |
| trace_idtentry page_fault do_page_fault has_error_code=1 |
| |
| #ifdef CONFIG_KVM_GUEST |
| idtentry async_page_fault do_async_page_fault has_error_code=1 |
| #endif |
| |
| #ifdef CONFIG_X86_MCE |
| idtentry machine_check has_error_code=0 paranoid=1 do_sym=*machine_check_vector(%rip) |
| #endif |
| |
| /* |
| * Save all registers in pt_regs, and switch gs if needed. |
| * Use slow, but surefire "are we in kernel?" check. |
| * Return: ebx=0: need swapgs on exit, ebx=1: otherwise |
| */ |
| ENTRY(paranoid_entry) |
| cld |
| SAVE_C_REGS 8 |
| SAVE_EXTRA_REGS 8 |
| movl $1, %ebx |
| movl $MSR_GS_BASE, %ecx |
| rdmsr |
| testl %edx, %edx |
| js 1f /* negative -> in kernel */ |
| SWAPGS |
| xorl %ebx, %ebx |
| 1: ret |
| END(paranoid_entry) |
| |
| /* |
| * "Paranoid" exit path from exception stack. This is invoked |
| * only on return from non-NMI IST interrupts that came |
| * from kernel space. |
| * |
| * We may be returning to very strange contexts (e.g. very early |
| * in syscall entry), so checking for preemption here would |
| * be complicated. Fortunately, we there's no good reason |
| * to try to handle preemption here. |
| * |
| * On entry, ebx is "no swapgs" flag (1: don't need swapgs, 0: need it) |
| */ |
| ENTRY(paranoid_exit) |
| DISABLE_INTERRUPTS(CLBR_NONE) |
| TRACE_IRQS_OFF_DEBUG |
| testl %ebx, %ebx /* swapgs needed? */ |
| jnz paranoid_exit_no_swapgs |
| TRACE_IRQS_IRETQ |
| SWAPGS_UNSAFE_STACK |
| jmp paranoid_exit_restore |
| paranoid_exit_no_swapgs: |
| TRACE_IRQS_IRETQ_DEBUG |
| paranoid_exit_restore: |
| RESTORE_EXTRA_REGS |
| RESTORE_C_REGS |
| REMOVE_PT_GPREGS_FROM_STACK 8 |
| INTERRUPT_RETURN |
| END(paranoid_exit) |
| |
| /* |
| * Save all registers in pt_regs, and switch gs if needed. |
| * Return: EBX=0: came from user mode; EBX=1: otherwise |
| */ |
| ENTRY(error_entry) |
| cld |
| SAVE_C_REGS 8 |
| SAVE_EXTRA_REGS 8 |
| xorl %ebx, %ebx |
| testb $3, CS+8(%rsp) |
| jz .Lerror_kernelspace |
| |
| .Lerror_entry_from_usermode_swapgs: |
| /* |
| * We entered from user mode or we're pretending to have entered |
| * from user mode due to an IRET fault. |
| */ |
| SWAPGS |
| |
| .Lerror_entry_from_usermode_after_swapgs: |
| /* |
| * We need to tell lockdep that IRQs are off. We can't do this until |
| * we fix gsbase, and we should do it before enter_from_user_mode |
| * (which can take locks). |
| */ |
| TRACE_IRQS_OFF |
| CALL_enter_from_user_mode |
| ret |
| |
| .Lerror_entry_done: |
| TRACE_IRQS_OFF |
| ret |
| |
| /* |
| * There are two places in the kernel that can potentially fault with |
| * usergs. Handle them here. B stepping K8s sometimes report a |
| * truncated RIP for IRET exceptions returning to compat mode. Check |
| * for these here too. |
| */ |
| .Lerror_kernelspace: |
| incl %ebx |
| leaq native_irq_return_iret(%rip), %rcx |
| cmpq %rcx, RIP+8(%rsp) |
| je .Lerror_bad_iret |
| movl %ecx, %eax /* zero extend */ |
| cmpq %rax, RIP+8(%rsp) |
| je .Lbstep_iret |
| cmpq $.Lgs_change, RIP+8(%rsp) |
| jne .Lerror_entry_done |
| |
| /* |
| * hack: .Lgs_change can fail with user gsbase. If this happens, fix up |
| * gsbase and proceed. We'll fix up the exception and land in |
| * .Lgs_change's error handler with kernel gsbase. |
| */ |
| jmp .Lerror_entry_from_usermode_swapgs |
| |
| .Lbstep_iret: |
| /* Fix truncated RIP */ |
| movq %rcx, RIP+8(%rsp) |
| /* fall through */ |
| |
| .Lerror_bad_iret: |
| /* |
| * We came from an IRET to user mode, so we have user gsbase. |
| * Switch to kernel gsbase: |
| */ |
| SWAPGS |
| |
| /* |
| * Pretend that the exception came from user mode: set up pt_regs |
| * as if we faulted immediately after IRET and clear EBX so that |
| * error_exit knows that we will be returning to user mode. |
| */ |
| mov %rsp, %rdi |
| call fixup_bad_iret |
| mov %rax, %rsp |
| decl %ebx |
| jmp .Lerror_entry_from_usermode_after_swapgs |
| END(error_entry) |
| |
| |
| /* |
| * On entry, EBS is a "return to kernel mode" flag: |
| * 1: already in kernel mode, don't need SWAPGS |
| * 0: user gsbase is loaded, we need SWAPGS and standard preparation for return to usermode |
| */ |
| ENTRY(error_exit) |
| movl %ebx, %eax |
| DISABLE_INTERRUPTS(CLBR_NONE) |
| TRACE_IRQS_OFF |
| testl %eax, %eax |
| jnz retint_kernel |
| jmp retint_user |
| END(error_exit) |
| |
| /* Runs on exception stack */ |
| ENTRY(nmi) |
| /* |
| * Fix up the exception frame if we're on Xen. |
| * PARAVIRT_ADJUST_EXCEPTION_FRAME is guaranteed to push at most |
| * one value to the stack on native, so it may clobber the rdx |
| * scratch slot, but it won't clobber any of the important |
| * slots past it. |
| * |
| * Xen is a different story, because the Xen frame itself overlaps |
| * the "NMI executing" variable. |
| */ |
| PARAVIRT_ADJUST_EXCEPTION_FRAME |
| |
| /* |
| * We allow breakpoints in NMIs. If a breakpoint occurs, then |
| * the iretq it performs will take us out of NMI context. |
| * This means that we can have nested NMIs where the next |
| * NMI is using the top of the stack of the previous NMI. We |
| * can't let it execute because the nested NMI will corrupt the |
| * stack of the previous NMI. NMI handlers are not re-entrant |
| * anyway. |
| * |
| * To handle this case we do the following: |
| * Check the a special location on the stack that contains |
| * a variable that is set when NMIs are executing. |
| * The interrupted task's stack is also checked to see if it |
| * is an NMI stack. |
| * If the variable is not set and the stack is not the NMI |
| * stack then: |
| * o Set the special variable on the stack |
| * o Copy the interrupt frame into an "outermost" location on the |
| * stack |
| * o Copy the interrupt frame into an "iret" location on the stack |
| * o Continue processing the NMI |
| * If the variable is set or the previous stack is the NMI stack: |
| * o Modify the "iret" location to jump to the repeat_nmi |
| * o return back to the first NMI |
| * |
| * Now on exit of the first NMI, we first clear the stack variable |
| * The NMI stack will tell any nested NMIs at that point that it is |
| * nested. Then we pop the stack normally with iret, and if there was |
| * a nested NMI that updated the copy interrupt stack frame, a |
| * jump will be made to the repeat_nmi code that will handle the second |
| * NMI. |
| * |
| * However, espfix prevents us from directly returning to userspace |
| * with a single IRET instruction. Similarly, IRET to user mode |
| * can fault. We therefore handle NMIs from user space like |
| * other IST entries. |
| */ |
| |
| /* Use %rdx as our temp variable throughout */ |
| pushq %rdx |
| |
| testb $3, CS-RIP+8(%rsp) |
| jz .Lnmi_from_kernel |
| |
| /* |
| * NMI from user mode. We need to run on the thread stack, but we |
| * can't go through the normal entry paths: NMIs are masked, and |
| * we don't want to enable interrupts, because then we'll end |
| * up in an awkward situation in which IRQs are on but NMIs |
| * are off. |
| * |
| * We also must not push anything to the stack before switching |
| * stacks lest we corrupt the "NMI executing" variable. |
| */ |
| |
| SWAPGS_UNSAFE_STACK |
| cld |
| movq %rsp, %rdx |
| movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp |
| pushq 5*8(%rdx) /* pt_regs->ss */ |
| pushq 4*8(%rdx) /* pt_regs->rsp */ |
| pushq 3*8(%rdx) /* pt_regs->flags */ |
| pushq 2*8(%rdx) /* pt_regs->cs */ |
| pushq 1*8(%rdx) /* pt_regs->rip */ |
| pushq $-1 /* pt_regs->orig_ax */ |
| pushq %rdi /* pt_regs->di */ |
| pushq %rsi /* pt_regs->si */ |
| pushq (%rdx) /* pt_regs->dx */ |
| pushq %rcx /* pt_regs->cx */ |
| pushq %rax /* pt_regs->ax */ |
| pushq %r8 /* pt_regs->r8 */ |
| pushq %r9 /* pt_regs->r9 */ |
| pushq %r10 /* pt_regs->r10 */ |
| pushq %r11 /* pt_regs->r11 */ |
| pushq %rbx /* pt_regs->rbx */ |
| pushq %rbp /* pt_regs->rbp */ |
| pushq %r12 /* pt_regs->r12 */ |
| pushq %r13 /* pt_regs->r13 */ |
| pushq %r14 /* pt_regs->r14 */ |
| pushq %r15 /* pt_regs->r15 */ |
| |
| /* |
| * At this point we no longer need to worry about stack damage |
| * due to nesting -- we're on the normal thread stack and we're |
| * done with the NMI stack. |
| */ |
| |
| movq %rsp, %rdi |
| movq $-1, %rsi |
| call do_nmi |
| |
| /* |
| * Return back to user mode. We must *not* do the normal exit |
| * work, because we don't want to enable interrupts. Fortunately, |
| * do_nmi doesn't modify pt_regs. |
| */ |
| SWAPGS |
| jmp restore_c_regs_and_iret |
| |
| .Lnmi_from_kernel: |
| /* |
| * Here's what our stack frame will look like: |
| * +---------------------------------------------------------+ |
| * | original SS | |
| * | original Return RSP | |
| * | original RFLAGS | |
| * | original CS | |
| * | original RIP | |
| * +---------------------------------------------------------+ |
| * | temp storage for rdx | |
| * +---------------------------------------------------------+ |
| * | "NMI executing" variable | |
| * +---------------------------------------------------------+ |
| * | iret SS } Copied from "outermost" frame | |
| * | iret Return RSP } on each loop iteration; overwritten | |
| * | iret RFLAGS } by a nested NMI to force another | |
| * | iret CS } iteration if needed. | |
| * | iret RIP } | |
| * +---------------------------------------------------------+ |
| * | outermost SS } initialized in first_nmi; | |
| * | outermost Return RSP } will not be changed before | |
| * | outermost RFLAGS } NMI processing is done. | |
| * | outermost CS } Copied to "iret" frame on each | |
| * | outermost RIP } iteration. | |
| * +---------------------------------------------------------+ |
| * | pt_regs | |
| * +---------------------------------------------------------+ |
| * |
| * The "original" frame is used by hardware. Before re-enabling |
| * NMIs, we need to be done with it, and we need to leave enough |
| * space for the asm code here. |
| * |
| * We return by executing IRET while RSP points to the "iret" frame. |
| * That will either return for real or it will loop back into NMI |
| * processing. |
| * |
| * The "outermost" frame is copied to the "iret" frame on each |
| * iteration of the loop, so each iteration starts with the "iret" |
| * frame pointing to the final return target. |
| */ |
| |
| /* |
| * Determine whether we're a nested NMI. |
| * |
| * If we interrupted kernel code between repeat_nmi and |
| * end_repeat_nmi, then we are a nested NMI. We must not |
| * modify the "iret" frame because it's being written by |
| * the outer NMI. That's okay; the outer NMI handler is |
| * about to about to call do_nmi anyway, so we can just |
| * resume the outer NMI. |
| */ |
| |
| movq $repeat_nmi, %rdx |
| cmpq 8(%rsp), %rdx |
| ja 1f |
| movq $end_repeat_nmi, %rdx |
| cmpq 8(%rsp), %rdx |
| ja nested_nmi_out |
| 1: |
| |
| /* |
| * Now check "NMI executing". If it's set, then we're nested. |
| * This will not detect if we interrupted an outer NMI just |
| * before IRET. |
| */ |
| cmpl $1, -8(%rsp) |
| je nested_nmi |
| |
| /* |
| * Now test if the previous stack was an NMI stack. This covers |
| * the case where we interrupt an outer NMI after it clears |
| * "NMI executing" but before IRET. We need to be careful, though: |
| * there is one case in which RSP could point to the NMI stack |
| * despite there being no NMI active: naughty userspace controls |
| * RSP at the very beginning of the SYSCALL targets. We can |
| * pull a fast one on naughty userspace, though: we program |
| * SYSCALL to mask DF, so userspace cannot cause DF to be set |
| * if it controls the kernel's RSP. We set DF before we clear |
| * "NMI executing". |
| */ |
| lea 6*8(%rsp), %rdx |
| /* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */ |
| cmpq %rdx, 4*8(%rsp) |
| /* If the stack pointer is above the NMI stack, this is a normal NMI */ |
| ja first_nmi |
| |
| subq $EXCEPTION_STKSZ, %rdx |
| cmpq %rdx, 4*8(%rsp) |
| /* If it is below the NMI stack, it is a normal NMI */ |
| jb first_nmi |
| |
| /* Ah, it is within the NMI stack. */ |
| |
| testb $(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp) |
| jz first_nmi /* RSP was user controlled. */ |
| |
| /* This is a nested NMI. */ |
| |
| nested_nmi: |
| /* |
| * Modify the "iret" frame to point to repeat_nmi, forcing another |
| * iteration of NMI handling. |
| */ |
| subq $8, %rsp |
| leaq -10*8(%rsp), %rdx |
| pushq $__KERNEL_DS |
| pushq %rdx |
| pushfq |
| pushq $__KERNEL_CS |
| pushq $repeat_nmi |
| |
| /* Put stack back */ |
| addq $(6*8), %rsp |
| |
| nested_nmi_out: |
| popq %rdx |
| |
| /* We are returning to kernel mode, so this cannot result in a fault. */ |
| INTERRUPT_RETURN |
| |
| first_nmi: |
| /* Restore rdx. */ |
| movq (%rsp), %rdx |
| |
| /* Make room for "NMI executing". */ |
| pushq $0 |
| |
| /* Leave room for the "iret" frame */ |
| subq $(5*8), %rsp |
| |
| /* Copy the "original" frame to the "outermost" frame */ |
| .rept 5 |
| pushq 11*8(%rsp) |
| .endr |
| |
| /* Everything up to here is safe from nested NMIs */ |
| |
| #ifdef CONFIG_DEBUG_ENTRY |
| /* |
| * For ease of testing, unmask NMIs right away. Disabled by |
| * default because IRET is very expensive. |
| */ |
| pushq $0 /* SS */ |
| pushq %rsp /* RSP (minus 8 because of the previous push) */ |
| addq $8, (%rsp) /* Fix up RSP */ |
| pushfq /* RFLAGS */ |
| pushq $__KERNEL_CS /* CS */ |
| pushq $1f /* RIP */ |
| INTERRUPT_RETURN /* continues at repeat_nmi below */ |
| 1: |
| #endif |
| |
| repeat_nmi: |
| /* |
| * If there was a nested NMI, the first NMI's iret will return |
| * here. But NMIs are still enabled and we can take another |
| * nested NMI. The nested NMI checks the interrupted RIP to see |
| * if it is between repeat_nmi and end_repeat_nmi, and if so |
| * it will just return, as we are about to repeat an NMI anyway. |
| * This makes it safe to copy to the stack frame that a nested |
| * NMI will update. |
| * |
| * RSP is pointing to "outermost RIP". gsbase is unknown, but, if |
| * we're repeating an NMI, gsbase has the same value that it had on |
| * the first iteration. paranoid_entry will load the kernel |
| * gsbase if needed before we call do_nmi. "NMI executing" |
| * is zero. |
| */ |
| movq $1, 10*8(%rsp) /* Set "NMI executing". */ |
| |
| /* |
| * Copy the "outermost" frame to the "iret" frame. NMIs that nest |
| * here must not modify the "iret" frame while we're writing to |
| * it or it will end up containing garbage. |
| */ |
| addq $(10*8), %rsp |
| .rept 5 |
| pushq -6*8(%rsp) |
| .endr |
| subq $(5*8), %rsp |
| end_repeat_nmi: |
| |
| /* |
| * Everything below this point can be preempted by a nested NMI. |
| * If this happens, then the inner NMI will change the "iret" |
| * frame to point back to repeat_nmi. |
| */ |
| pushq $-1 /* ORIG_RAX: no syscall to restart */ |
| ALLOC_PT_GPREGS_ON_STACK |
| |
| /* |
| * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit |
| * as we should not be calling schedule in NMI context. |
| * Even with normal interrupts enabled. An NMI should not be |
| * setting NEED_RESCHED or anything that normal interrupts and |
| * exceptions might do. |
| */ |
| call paranoid_entry |
| |
| /* paranoidentry do_nmi, 0; without TRACE_IRQS_OFF */ |
| movq %rsp, %rdi |
| movq $-1, %rsi |
| call do_nmi |
| |
| testl %ebx, %ebx /* swapgs needed? */ |
| jnz nmi_restore |
| nmi_swapgs: |
| SWAPGS_UNSAFE_STACK |
| nmi_restore: |
| RESTORE_EXTRA_REGS |
| RESTORE_C_REGS |
| |
| /* Point RSP at the "iret" frame. */ |
| REMOVE_PT_GPREGS_FROM_STACK 6*8 |
| |
| /* |
| * Clear "NMI executing". Set DF first so that we can easily |
| * distinguish the remaining code between here and IRET from |
| * the SYSCALL entry and exit paths. On a native kernel, we |
| * could just inspect RIP, but, on paravirt kernels, |
| * INTERRUPT_RETURN can translate into a jump into a |
| * hypercall page. |
| */ |
| std |
| movq $0, 5*8(%rsp) /* clear "NMI executing" */ |
| |
| /* |
| * INTERRUPT_RETURN reads the "iret" frame and exits the NMI |
| * stack in a single instruction. We are returning to kernel |
| * mode, so this cannot result in a fault. |
| */ |
| INTERRUPT_RETURN |
| END(nmi) |
| |
| ENTRY(ignore_sysret) |
| mov $-ENOSYS, %eax |
| sysret |
| END(ignore_sysret) |