| /* |
| * Copyright (c) 2003 Patrick McHardy, <kaber@trash.net> |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version 2 |
| * of the License, or (at your option) any later version. |
| * |
| * 2003-10-17 - Ported from altq |
| */ |
| /* |
| * Copyright (c) 1997-1999 Carnegie Mellon University. All Rights Reserved. |
| * |
| * Permission to use, copy, modify, and distribute this software and |
| * its documentation is hereby granted (including for commercial or |
| * for-profit use), provided that both the copyright notice and this |
| * permission notice appear in all copies of the software, derivative |
| * works, or modified versions, and any portions thereof. |
| * |
| * THIS SOFTWARE IS EXPERIMENTAL AND IS KNOWN TO HAVE BUGS, SOME OF |
| * WHICH MAY HAVE SERIOUS CONSEQUENCES. CARNEGIE MELLON PROVIDES THIS |
| * SOFTWARE IN ITS ``AS IS'' CONDITION, AND ANY EXPRESS OR IMPLIED |
| * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES |
| * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
| * DISCLAIMED. IN NO EVENT SHALL CARNEGIE MELLON UNIVERSITY BE LIABLE |
| * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT |
| * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR |
| * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF |
| * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE |
| * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH |
| * DAMAGE. |
| * |
| * Carnegie Mellon encourages (but does not require) users of this |
| * software to return any improvements or extensions that they make, |
| * and to grant Carnegie Mellon the rights to redistribute these |
| * changes without encumbrance. |
| */ |
| /* |
| * H-FSC is described in Proceedings of SIGCOMM'97, |
| * "A Hierarchical Fair Service Curve Algorithm for Link-Sharing, |
| * Real-Time and Priority Service" |
| * by Ion Stoica, Hui Zhang, and T. S. Eugene Ng. |
| * |
| * Oleg Cherevko <olwi@aq.ml.com.ua> added the upperlimit for link-sharing. |
| * when a class has an upperlimit, the fit-time is computed from the |
| * upperlimit service curve. the link-sharing scheduler does not schedule |
| * a class whose fit-time exceeds the current time. |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/types.h> |
| #include <linux/errno.h> |
| #include <linux/jiffies.h> |
| #include <linux/compiler.h> |
| #include <linux/spinlock.h> |
| #include <linux/skbuff.h> |
| #include <linux/string.h> |
| #include <linux/slab.h> |
| #include <linux/timer.h> |
| #include <linux/list.h> |
| #include <linux/rbtree.h> |
| #include <linux/init.h> |
| #include <linux/netdevice.h> |
| #include <linux/rtnetlink.h> |
| #include <linux/pkt_sched.h> |
| #include <net/pkt_sched.h> |
| #include <net/pkt_cls.h> |
| #include <asm/system.h> |
| #include <asm/div64.h> |
| |
| #define HFSC_DEBUG 1 |
| |
| /* |
| * kernel internal service curve representation: |
| * coordinates are given by 64 bit unsigned integers. |
| * x-axis: unit is clock count. |
| * y-axis: unit is byte. |
| * |
| * The service curve parameters are converted to the internal |
| * representation. The slope values are scaled to avoid overflow. |
| * the inverse slope values as well as the y-projection of the 1st |
| * segment are kept in order to to avoid 64-bit divide operations |
| * that are expensive on 32-bit architectures. |
| */ |
| |
| struct internal_sc |
| { |
| u64 sm1; /* scaled slope of the 1st segment */ |
| u64 ism1; /* scaled inverse-slope of the 1st segment */ |
| u64 dx; /* the x-projection of the 1st segment */ |
| u64 dy; /* the y-projection of the 1st segment */ |
| u64 sm2; /* scaled slope of the 2nd segment */ |
| u64 ism2; /* scaled inverse-slope of the 2nd segment */ |
| }; |
| |
| /* runtime service curve */ |
| struct runtime_sc |
| { |
| u64 x; /* current starting position on x-axis */ |
| u64 y; /* current starting position on y-axis */ |
| u64 sm1; /* scaled slope of the 1st segment */ |
| u64 ism1; /* scaled inverse-slope of the 1st segment */ |
| u64 dx; /* the x-projection of the 1st segment */ |
| u64 dy; /* the y-projection of the 1st segment */ |
| u64 sm2; /* scaled slope of the 2nd segment */ |
| u64 ism2; /* scaled inverse-slope of the 2nd segment */ |
| }; |
| |
| enum hfsc_class_flags |
| { |
| HFSC_RSC = 0x1, |
| HFSC_FSC = 0x2, |
| HFSC_USC = 0x4 |
| }; |
| |
| struct hfsc_class |
| { |
| u32 classid; /* class id */ |
| unsigned int refcnt; /* usage count */ |
| |
| struct gnet_stats_basic bstats; |
| struct gnet_stats_queue qstats; |
| struct gnet_stats_rate_est rate_est; |
| spinlock_t *stats_lock; |
| unsigned int level; /* class level in hierarchy */ |
| struct tcf_proto *filter_list; /* filter list */ |
| unsigned int filter_cnt; /* filter count */ |
| |
| struct hfsc_sched *sched; /* scheduler data */ |
| struct hfsc_class *cl_parent; /* parent class */ |
| struct list_head siblings; /* sibling classes */ |
| struct list_head children; /* child classes */ |
| struct Qdisc *qdisc; /* leaf qdisc */ |
| |
| struct rb_node el_node; /* qdisc's eligible tree member */ |
| struct rb_root vt_tree; /* active children sorted by cl_vt */ |
| struct rb_node vt_node; /* parent's vt_tree member */ |
| struct rb_root cf_tree; /* active children sorted by cl_f */ |
| struct rb_node cf_node; /* parent's cf_heap member */ |
| struct list_head hlist; /* hash list member */ |
| struct list_head dlist; /* drop list member */ |
| |
| u64 cl_total; /* total work in bytes */ |
| u64 cl_cumul; /* cumulative work in bytes done by |
| real-time criteria */ |
| |
| u64 cl_d; /* deadline*/ |
| u64 cl_e; /* eligible time */ |
| u64 cl_vt; /* virtual time */ |
| u64 cl_f; /* time when this class will fit for |
| link-sharing, max(myf, cfmin) */ |
| u64 cl_myf; /* my fit-time (calculated from this |
| class's own upperlimit curve) */ |
| u64 cl_myfadj; /* my fit-time adjustment (to cancel |
| history dependence) */ |
| u64 cl_cfmin; /* earliest children's fit-time (used |
| with cl_myf to obtain cl_f) */ |
| u64 cl_cvtmin; /* minimal virtual time among the |
| children fit for link-sharing |
| (monotonic within a period) */ |
| u64 cl_vtadj; /* intra-period cumulative vt |
| adjustment */ |
| u64 cl_vtoff; /* inter-period cumulative vt offset */ |
| u64 cl_cvtmax; /* max child's vt in the last period */ |
| u64 cl_cvtoff; /* cumulative cvtmax of all periods */ |
| u64 cl_pcvtoff; /* parent's cvtoff at initalization |
| time */ |
| |
| struct internal_sc cl_rsc; /* internal real-time service curve */ |
| struct internal_sc cl_fsc; /* internal fair service curve */ |
| struct internal_sc cl_usc; /* internal upperlimit service curve */ |
| struct runtime_sc cl_deadline; /* deadline curve */ |
| struct runtime_sc cl_eligible; /* eligible curve */ |
| struct runtime_sc cl_virtual; /* virtual curve */ |
| struct runtime_sc cl_ulimit; /* upperlimit curve */ |
| |
| unsigned long cl_flags; /* which curves are valid */ |
| unsigned long cl_vtperiod; /* vt period sequence number */ |
| unsigned long cl_parentperiod;/* parent's vt period sequence number*/ |
| unsigned long cl_nactive; /* number of active children */ |
| }; |
| |
| #define HFSC_HSIZE 16 |
| |
| struct hfsc_sched |
| { |
| u16 defcls; /* default class id */ |
| struct hfsc_class root; /* root class */ |
| struct list_head clhash[HFSC_HSIZE]; /* class hash */ |
| struct rb_root eligible; /* eligible tree */ |
| struct list_head droplist; /* active leaf class list (for |
| dropping) */ |
| struct sk_buff_head requeue; /* requeued packet */ |
| struct timer_list wd_timer; /* watchdog timer */ |
| }; |
| |
| /* |
| * macros |
| */ |
| #ifdef CONFIG_NET_SCH_CLK_GETTIMEOFDAY |
| #include <linux/time.h> |
| #undef PSCHED_GET_TIME |
| #define PSCHED_GET_TIME(stamp) \ |
| do { \ |
| struct timeval tv; \ |
| do_gettimeofday(&tv); \ |
| (stamp) = 1ULL * USEC_PER_SEC * tv.tv_sec + tv.tv_usec; \ |
| } while (0) |
| #endif |
| |
| #if HFSC_DEBUG |
| #define ASSERT(cond) \ |
| do { \ |
| if (unlikely(!(cond))) \ |
| printk("assertion %s failed at %s:%i (%s)\n", \ |
| #cond, __FILE__, __LINE__, __FUNCTION__); \ |
| } while (0) |
| #else |
| #define ASSERT(cond) |
| #endif /* HFSC_DEBUG */ |
| |
| #define HT_INFINITY 0xffffffffffffffffULL /* infinite time value */ |
| |
| |
| /* |
| * eligible tree holds backlogged classes being sorted by their eligible times. |
| * there is one eligible tree per hfsc instance. |
| */ |
| |
| static void |
| eltree_insert(struct hfsc_class *cl) |
| { |
| struct rb_node **p = &cl->sched->eligible.rb_node; |
| struct rb_node *parent = NULL; |
| struct hfsc_class *cl1; |
| |
| while (*p != NULL) { |
| parent = *p; |
| cl1 = rb_entry(parent, struct hfsc_class, el_node); |
| if (cl->cl_e >= cl1->cl_e) |
| p = &parent->rb_right; |
| else |
| p = &parent->rb_left; |
| } |
| rb_link_node(&cl->el_node, parent, p); |
| rb_insert_color(&cl->el_node, &cl->sched->eligible); |
| } |
| |
| static inline void |
| eltree_remove(struct hfsc_class *cl) |
| { |
| rb_erase(&cl->el_node, &cl->sched->eligible); |
| } |
| |
| static inline void |
| eltree_update(struct hfsc_class *cl) |
| { |
| eltree_remove(cl); |
| eltree_insert(cl); |
| } |
| |
| /* find the class with the minimum deadline among the eligible classes */ |
| static inline struct hfsc_class * |
| eltree_get_mindl(struct hfsc_sched *q, u64 cur_time) |
| { |
| struct hfsc_class *p, *cl = NULL; |
| struct rb_node *n; |
| |
| for (n = rb_first(&q->eligible); n != NULL; n = rb_next(n)) { |
| p = rb_entry(n, struct hfsc_class, el_node); |
| if (p->cl_e > cur_time) |
| break; |
| if (cl == NULL || p->cl_d < cl->cl_d) |
| cl = p; |
| } |
| return cl; |
| } |
| |
| /* find the class with minimum eligible time among the eligible classes */ |
| static inline struct hfsc_class * |
| eltree_get_minel(struct hfsc_sched *q) |
| { |
| struct rb_node *n; |
| |
| n = rb_first(&q->eligible); |
| if (n == NULL) |
| return NULL; |
| return rb_entry(n, struct hfsc_class, el_node); |
| } |
| |
| /* |
| * vttree holds holds backlogged child classes being sorted by their virtual |
| * time. each intermediate class has one vttree. |
| */ |
| static void |
| vttree_insert(struct hfsc_class *cl) |
| { |
| struct rb_node **p = &cl->cl_parent->vt_tree.rb_node; |
| struct rb_node *parent = NULL; |
| struct hfsc_class *cl1; |
| |
| while (*p != NULL) { |
| parent = *p; |
| cl1 = rb_entry(parent, struct hfsc_class, vt_node); |
| if (cl->cl_vt >= cl1->cl_vt) |
| p = &parent->rb_right; |
| else |
| p = &parent->rb_left; |
| } |
| rb_link_node(&cl->vt_node, parent, p); |
| rb_insert_color(&cl->vt_node, &cl->cl_parent->vt_tree); |
| } |
| |
| static inline void |
| vttree_remove(struct hfsc_class *cl) |
| { |
| rb_erase(&cl->vt_node, &cl->cl_parent->vt_tree); |
| } |
| |
| static inline void |
| vttree_update(struct hfsc_class *cl) |
| { |
| vttree_remove(cl); |
| vttree_insert(cl); |
| } |
| |
| static inline struct hfsc_class * |
| vttree_firstfit(struct hfsc_class *cl, u64 cur_time) |
| { |
| struct hfsc_class *p; |
| struct rb_node *n; |
| |
| for (n = rb_first(&cl->vt_tree); n != NULL; n = rb_next(n)) { |
| p = rb_entry(n, struct hfsc_class, vt_node); |
| if (p->cl_f <= cur_time) |
| return p; |
| } |
| return NULL; |
| } |
| |
| /* |
| * get the leaf class with the minimum vt in the hierarchy |
| */ |
| static struct hfsc_class * |
| vttree_get_minvt(struct hfsc_class *cl, u64 cur_time) |
| { |
| /* if root-class's cfmin is bigger than cur_time nothing to do */ |
| if (cl->cl_cfmin > cur_time) |
| return NULL; |
| |
| while (cl->level > 0) { |
| cl = vttree_firstfit(cl, cur_time); |
| if (cl == NULL) |
| return NULL; |
| /* |
| * update parent's cl_cvtmin. |
| */ |
| if (cl->cl_parent->cl_cvtmin < cl->cl_vt) |
| cl->cl_parent->cl_cvtmin = cl->cl_vt; |
| } |
| return cl; |
| } |
| |
| static void |
| cftree_insert(struct hfsc_class *cl) |
| { |
| struct rb_node **p = &cl->cl_parent->cf_tree.rb_node; |
| struct rb_node *parent = NULL; |
| struct hfsc_class *cl1; |
| |
| while (*p != NULL) { |
| parent = *p; |
| cl1 = rb_entry(parent, struct hfsc_class, cf_node); |
| if (cl->cl_f >= cl1->cl_f) |
| p = &parent->rb_right; |
| else |
| p = &parent->rb_left; |
| } |
| rb_link_node(&cl->cf_node, parent, p); |
| rb_insert_color(&cl->cf_node, &cl->cl_parent->cf_tree); |
| } |
| |
| static inline void |
| cftree_remove(struct hfsc_class *cl) |
| { |
| rb_erase(&cl->cf_node, &cl->cl_parent->cf_tree); |
| } |
| |
| static inline void |
| cftree_update(struct hfsc_class *cl) |
| { |
| cftree_remove(cl); |
| cftree_insert(cl); |
| } |
| |
| /* |
| * service curve support functions |
| * |
| * external service curve parameters |
| * m: bps |
| * d: us |
| * internal service curve parameters |
| * sm: (bytes/psched_us) << SM_SHIFT |
| * ism: (psched_us/byte) << ISM_SHIFT |
| * dx: psched_us |
| * |
| * Clock source resolution (CONFIG_NET_SCH_CLK_*) |
| * JIFFIES: for 48<=HZ<=1534 resolution is between 0.63us and 1.27us. |
| * CPU: resolution is between 0.5us and 1us. |
| * GETTIMEOFDAY: resolution is exactly 1us. |
| * |
| * sm and ism are scaled in order to keep effective digits. |
| * SM_SHIFT and ISM_SHIFT are selected to keep at least 4 effective |
| * digits in decimal using the following table. |
| * |
| * Note: We can afford the additional accuracy (altq hfsc keeps at most |
| * 3 effective digits) thanks to the fact that linux clock is bounded |
| * much more tightly. |
| * |
| * bits/sec 100Kbps 1Mbps 10Mbps 100Mbps 1Gbps |
| * ------------+------------------------------------------------------- |
| * bytes/0.5us 6.25e-3 62.5e-3 625e-3 6250e-e 62500e-3 |
| * bytes/us 12.5e-3 125e-3 1250e-3 12500e-3 125000e-3 |
| * bytes/1.27us 15.875e-3 158.75e-3 1587.5e-3 15875e-3 158750e-3 |
| * |
| * 0.5us/byte 160 16 1.6 0.16 0.016 |
| * us/byte 80 8 0.8 0.08 0.008 |
| * 1.27us/byte 63 6.3 0.63 0.063 0.0063 |
| */ |
| #define SM_SHIFT 20 |
| #define ISM_SHIFT 18 |
| |
| #define SM_MASK ((1ULL << SM_SHIFT) - 1) |
| #define ISM_MASK ((1ULL << ISM_SHIFT) - 1) |
| |
| static inline u64 |
| seg_x2y(u64 x, u64 sm) |
| { |
| u64 y; |
| |
| /* |
| * compute |
| * y = x * sm >> SM_SHIFT |
| * but divide it for the upper and lower bits to avoid overflow |
| */ |
| y = (x >> SM_SHIFT) * sm + (((x & SM_MASK) * sm) >> SM_SHIFT); |
| return y; |
| } |
| |
| static inline u64 |
| seg_y2x(u64 y, u64 ism) |
| { |
| u64 x; |
| |
| if (y == 0) |
| x = 0; |
| else if (ism == HT_INFINITY) |
| x = HT_INFINITY; |
| else { |
| x = (y >> ISM_SHIFT) * ism |
| + (((y & ISM_MASK) * ism) >> ISM_SHIFT); |
| } |
| return x; |
| } |
| |
| /* Convert m (bps) into sm (bytes/psched us) */ |
| static u64 |
| m2sm(u32 m) |
| { |
| u64 sm; |
| |
| sm = ((u64)m << SM_SHIFT); |
| sm += PSCHED_JIFFIE2US(HZ) - 1; |
| do_div(sm, PSCHED_JIFFIE2US(HZ)); |
| return sm; |
| } |
| |
| /* convert m (bps) into ism (psched us/byte) */ |
| static u64 |
| m2ism(u32 m) |
| { |
| u64 ism; |
| |
| if (m == 0) |
| ism = HT_INFINITY; |
| else { |
| ism = ((u64)PSCHED_JIFFIE2US(HZ) << ISM_SHIFT); |
| ism += m - 1; |
| do_div(ism, m); |
| } |
| return ism; |
| } |
| |
| /* convert d (us) into dx (psched us) */ |
| static u64 |
| d2dx(u32 d) |
| { |
| u64 dx; |
| |
| dx = ((u64)d * PSCHED_JIFFIE2US(HZ)); |
| dx += USEC_PER_SEC - 1; |
| do_div(dx, USEC_PER_SEC); |
| return dx; |
| } |
| |
| /* convert sm (bytes/psched us) into m (bps) */ |
| static u32 |
| sm2m(u64 sm) |
| { |
| u64 m; |
| |
| m = (sm * PSCHED_JIFFIE2US(HZ)) >> SM_SHIFT; |
| return (u32)m; |
| } |
| |
| /* convert dx (psched us) into d (us) */ |
| static u32 |
| dx2d(u64 dx) |
| { |
| u64 d; |
| |
| d = dx * USEC_PER_SEC; |
| do_div(d, PSCHED_JIFFIE2US(HZ)); |
| return (u32)d; |
| } |
| |
| static void |
| sc2isc(struct tc_service_curve *sc, struct internal_sc *isc) |
| { |
| isc->sm1 = m2sm(sc->m1); |
| isc->ism1 = m2ism(sc->m1); |
| isc->dx = d2dx(sc->d); |
| isc->dy = seg_x2y(isc->dx, isc->sm1); |
| isc->sm2 = m2sm(sc->m2); |
| isc->ism2 = m2ism(sc->m2); |
| } |
| |
| /* |
| * initialize the runtime service curve with the given internal |
| * service curve starting at (x, y). |
| */ |
| static void |
| rtsc_init(struct runtime_sc *rtsc, struct internal_sc *isc, u64 x, u64 y) |
| { |
| rtsc->x = x; |
| rtsc->y = y; |
| rtsc->sm1 = isc->sm1; |
| rtsc->ism1 = isc->ism1; |
| rtsc->dx = isc->dx; |
| rtsc->dy = isc->dy; |
| rtsc->sm2 = isc->sm2; |
| rtsc->ism2 = isc->ism2; |
| } |
| |
| /* |
| * calculate the y-projection of the runtime service curve by the |
| * given x-projection value |
| */ |
| static u64 |
| rtsc_y2x(struct runtime_sc *rtsc, u64 y) |
| { |
| u64 x; |
| |
| if (y < rtsc->y) |
| x = rtsc->x; |
| else if (y <= rtsc->y + rtsc->dy) { |
| /* x belongs to the 1st segment */ |
| if (rtsc->dy == 0) |
| x = rtsc->x + rtsc->dx; |
| else |
| x = rtsc->x + seg_y2x(y - rtsc->y, rtsc->ism1); |
| } else { |
| /* x belongs to the 2nd segment */ |
| x = rtsc->x + rtsc->dx |
| + seg_y2x(y - rtsc->y - rtsc->dy, rtsc->ism2); |
| } |
| return x; |
| } |
| |
| static u64 |
| rtsc_x2y(struct runtime_sc *rtsc, u64 x) |
| { |
| u64 y; |
| |
| if (x <= rtsc->x) |
| y = rtsc->y; |
| else if (x <= rtsc->x + rtsc->dx) |
| /* y belongs to the 1st segment */ |
| y = rtsc->y + seg_x2y(x - rtsc->x, rtsc->sm1); |
| else |
| /* y belongs to the 2nd segment */ |
| y = rtsc->y + rtsc->dy |
| + seg_x2y(x - rtsc->x - rtsc->dx, rtsc->sm2); |
| return y; |
| } |
| |
| /* |
| * update the runtime service curve by taking the minimum of the current |
| * runtime service curve and the service curve starting at (x, y). |
| */ |
| static void |
| rtsc_min(struct runtime_sc *rtsc, struct internal_sc *isc, u64 x, u64 y) |
| { |
| u64 y1, y2, dx, dy; |
| u32 dsm; |
| |
| if (isc->sm1 <= isc->sm2) { |
| /* service curve is convex */ |
| y1 = rtsc_x2y(rtsc, x); |
| if (y1 < y) |
| /* the current rtsc is smaller */ |
| return; |
| rtsc->x = x; |
| rtsc->y = y; |
| return; |
| } |
| |
| /* |
| * service curve is concave |
| * compute the two y values of the current rtsc |
| * y1: at x |
| * y2: at (x + dx) |
| */ |
| y1 = rtsc_x2y(rtsc, x); |
| if (y1 <= y) { |
| /* rtsc is below isc, no change to rtsc */ |
| return; |
| } |
| |
| y2 = rtsc_x2y(rtsc, x + isc->dx); |
| if (y2 >= y + isc->dy) { |
| /* rtsc is above isc, replace rtsc by isc */ |
| rtsc->x = x; |
| rtsc->y = y; |
| rtsc->dx = isc->dx; |
| rtsc->dy = isc->dy; |
| return; |
| } |
| |
| /* |
| * the two curves intersect |
| * compute the offsets (dx, dy) using the reverse |
| * function of seg_x2y() |
| * seg_x2y(dx, sm1) == seg_x2y(dx, sm2) + (y1 - y) |
| */ |
| dx = (y1 - y) << SM_SHIFT; |
| dsm = isc->sm1 - isc->sm2; |
| do_div(dx, dsm); |
| /* |
| * check if (x, y1) belongs to the 1st segment of rtsc. |
| * if so, add the offset. |
| */ |
| if (rtsc->x + rtsc->dx > x) |
| dx += rtsc->x + rtsc->dx - x; |
| dy = seg_x2y(dx, isc->sm1); |
| |
| rtsc->x = x; |
| rtsc->y = y; |
| rtsc->dx = dx; |
| rtsc->dy = dy; |
| return; |
| } |
| |
| static void |
| init_ed(struct hfsc_class *cl, unsigned int next_len) |
| { |
| u64 cur_time; |
| |
| PSCHED_GET_TIME(cur_time); |
| |
| /* update the deadline curve */ |
| rtsc_min(&cl->cl_deadline, &cl->cl_rsc, cur_time, cl->cl_cumul); |
| |
| /* |
| * update the eligible curve. |
| * for concave, it is equal to the deadline curve. |
| * for convex, it is a linear curve with slope m2. |
| */ |
| cl->cl_eligible = cl->cl_deadline; |
| if (cl->cl_rsc.sm1 <= cl->cl_rsc.sm2) { |
| cl->cl_eligible.dx = 0; |
| cl->cl_eligible.dy = 0; |
| } |
| |
| /* compute e and d */ |
| cl->cl_e = rtsc_y2x(&cl->cl_eligible, cl->cl_cumul); |
| cl->cl_d = rtsc_y2x(&cl->cl_deadline, cl->cl_cumul + next_len); |
| |
| eltree_insert(cl); |
| } |
| |
| static void |
| update_ed(struct hfsc_class *cl, unsigned int next_len) |
| { |
| cl->cl_e = rtsc_y2x(&cl->cl_eligible, cl->cl_cumul); |
| cl->cl_d = rtsc_y2x(&cl->cl_deadline, cl->cl_cumul + next_len); |
| |
| eltree_update(cl); |
| } |
| |
| static inline void |
| update_d(struct hfsc_class *cl, unsigned int next_len) |
| { |
| cl->cl_d = rtsc_y2x(&cl->cl_deadline, cl->cl_cumul + next_len); |
| } |
| |
| static inline void |
| update_cfmin(struct hfsc_class *cl) |
| { |
| struct rb_node *n = rb_first(&cl->cf_tree); |
| struct hfsc_class *p; |
| |
| if (n == NULL) { |
| cl->cl_cfmin = 0; |
| return; |
| } |
| p = rb_entry(n, struct hfsc_class, cf_node); |
| cl->cl_cfmin = p->cl_f; |
| } |
| |
| static void |
| init_vf(struct hfsc_class *cl, unsigned int len) |
| { |
| struct hfsc_class *max_cl; |
| struct rb_node *n; |
| u64 vt, f, cur_time; |
| int go_active; |
| |
| cur_time = 0; |
| go_active = 1; |
| for (; cl->cl_parent != NULL; cl = cl->cl_parent) { |
| if (go_active && cl->cl_nactive++ == 0) |
| go_active = 1; |
| else |
| go_active = 0; |
| |
| if (go_active) { |
| n = rb_last(&cl->cl_parent->vt_tree); |
| if (n != NULL) { |
| max_cl = rb_entry(n, struct hfsc_class,vt_node); |
| /* |
| * set vt to the average of the min and max |
| * classes. if the parent's period didn't |
| * change, don't decrease vt of the class. |
| */ |
| vt = max_cl->cl_vt; |
| if (cl->cl_parent->cl_cvtmin != 0) |
| vt = (cl->cl_parent->cl_cvtmin + vt)/2; |
| |
| if (cl->cl_parent->cl_vtperiod != |
| cl->cl_parentperiod || vt > cl->cl_vt) |
| cl->cl_vt = vt; |
| } else { |
| /* |
| * first child for a new parent backlog period. |
| * add parent's cvtmax to cvtoff to make a new |
| * vt (vtoff + vt) larger than the vt in the |
| * last period for all children. |
| */ |
| vt = cl->cl_parent->cl_cvtmax; |
| cl->cl_parent->cl_cvtoff += vt; |
| cl->cl_parent->cl_cvtmax = 0; |
| cl->cl_parent->cl_cvtmin = 0; |
| cl->cl_vt = 0; |
| } |
| |
| cl->cl_vtoff = cl->cl_parent->cl_cvtoff - |
| cl->cl_pcvtoff; |
| |
| /* update the virtual curve */ |
| vt = cl->cl_vt + cl->cl_vtoff; |
| rtsc_min(&cl->cl_virtual, &cl->cl_fsc, vt, |
| cl->cl_total); |
| if (cl->cl_virtual.x == vt) { |
| cl->cl_virtual.x -= cl->cl_vtoff; |
| cl->cl_vtoff = 0; |
| } |
| cl->cl_vtadj = 0; |
| |
| cl->cl_vtperiod++; /* increment vt period */ |
| cl->cl_parentperiod = cl->cl_parent->cl_vtperiod; |
| if (cl->cl_parent->cl_nactive == 0) |
| cl->cl_parentperiod++; |
| cl->cl_f = 0; |
| |
| vttree_insert(cl); |
| cftree_insert(cl); |
| |
| if (cl->cl_flags & HFSC_USC) { |
| /* class has upper limit curve */ |
| if (cur_time == 0) |
| PSCHED_GET_TIME(cur_time); |
| |
| /* update the ulimit curve */ |
| rtsc_min(&cl->cl_ulimit, &cl->cl_usc, cur_time, |
| cl->cl_total); |
| /* compute myf */ |
| cl->cl_myf = rtsc_y2x(&cl->cl_ulimit, |
| cl->cl_total); |
| cl->cl_myfadj = 0; |
| } |
| } |
| |
| f = max(cl->cl_myf, cl->cl_cfmin); |
| if (f != cl->cl_f) { |
| cl->cl_f = f; |
| cftree_update(cl); |
| update_cfmin(cl->cl_parent); |
| } |
| } |
| } |
| |
| static void |
| update_vf(struct hfsc_class *cl, unsigned int len, u64 cur_time) |
| { |
| u64 f; /* , myf_bound, delta; */ |
| int go_passive = 0; |
| |
| if (cl->qdisc->q.qlen == 0 && cl->cl_flags & HFSC_FSC) |
| go_passive = 1; |
| |
| for (; cl->cl_parent != NULL; cl = cl->cl_parent) { |
| cl->cl_total += len; |
| |
| if (!(cl->cl_flags & HFSC_FSC) || cl->cl_nactive == 0) |
| continue; |
| |
| if (go_passive && --cl->cl_nactive == 0) |
| go_passive = 1; |
| else |
| go_passive = 0; |
| |
| if (go_passive) { |
| /* no more active child, going passive */ |
| |
| /* update cvtmax of the parent class */ |
| if (cl->cl_vt > cl->cl_parent->cl_cvtmax) |
| cl->cl_parent->cl_cvtmax = cl->cl_vt; |
| |
| /* remove this class from the vt tree */ |
| vttree_remove(cl); |
| |
| cftree_remove(cl); |
| update_cfmin(cl->cl_parent); |
| |
| continue; |
| } |
| |
| /* |
| * update vt and f |
| */ |
| cl->cl_vt = rtsc_y2x(&cl->cl_virtual, cl->cl_total) |
| - cl->cl_vtoff + cl->cl_vtadj; |
| |
| /* |
| * if vt of the class is smaller than cvtmin, |
| * the class was skipped in the past due to non-fit. |
| * if so, we need to adjust vtadj. |
| */ |
| if (cl->cl_vt < cl->cl_parent->cl_cvtmin) { |
| cl->cl_vtadj += cl->cl_parent->cl_cvtmin - cl->cl_vt; |
| cl->cl_vt = cl->cl_parent->cl_cvtmin; |
| } |
| |
| /* update the vt tree */ |
| vttree_update(cl); |
| |
| if (cl->cl_flags & HFSC_USC) { |
| cl->cl_myf = cl->cl_myfadj + rtsc_y2x(&cl->cl_ulimit, |
| cl->cl_total); |
| #if 0 |
| /* |
| * This code causes classes to stay way under their |
| * limit when multiple classes are used at gigabit |
| * speed. needs investigation. -kaber |
| */ |
| /* |
| * if myf lags behind by more than one clock tick |
| * from the current time, adjust myfadj to prevent |
| * a rate-limited class from going greedy. |
| * in a steady state under rate-limiting, myf |
| * fluctuates within one clock tick. |
| */ |
| myf_bound = cur_time - PSCHED_JIFFIE2US(1); |
| if (cl->cl_myf < myf_bound) { |
| delta = cur_time - cl->cl_myf; |
| cl->cl_myfadj += delta; |
| cl->cl_myf += delta; |
| } |
| #endif |
| } |
| |
| f = max(cl->cl_myf, cl->cl_cfmin); |
| if (f != cl->cl_f) { |
| cl->cl_f = f; |
| cftree_update(cl); |
| update_cfmin(cl->cl_parent); |
| } |
| } |
| } |
| |
| static void |
| set_active(struct hfsc_class *cl, unsigned int len) |
| { |
| if (cl->cl_flags & HFSC_RSC) |
| init_ed(cl, len); |
| if (cl->cl_flags & HFSC_FSC) |
| init_vf(cl, len); |
| |
| list_add_tail(&cl->dlist, &cl->sched->droplist); |
| } |
| |
| static void |
| set_passive(struct hfsc_class *cl) |
| { |
| if (cl->cl_flags & HFSC_RSC) |
| eltree_remove(cl); |
| |
| list_del(&cl->dlist); |
| |
| /* |
| * vttree is now handled in update_vf() so that update_vf(cl, 0, 0) |
| * needs to be called explicitly to remove a class from vttree. |
| */ |
| } |
| |
| /* |
| * hack to get length of first packet in queue. |
| */ |
| static unsigned int |
| qdisc_peek_len(struct Qdisc *sch) |
| { |
| struct sk_buff *skb; |
| unsigned int len; |
| |
| skb = sch->dequeue(sch); |
| if (skb == NULL) { |
| if (net_ratelimit()) |
| printk("qdisc_peek_len: non work-conserving qdisc ?\n"); |
| return 0; |
| } |
| len = skb->len; |
| if (unlikely(sch->ops->requeue(skb, sch) != NET_XMIT_SUCCESS)) { |
| if (net_ratelimit()) |
| printk("qdisc_peek_len: failed to requeue\n"); |
| return 0; |
| } |
| return len; |
| } |
| |
| static void |
| hfsc_purge_queue(struct Qdisc *sch, struct hfsc_class *cl) |
| { |
| unsigned int len = cl->qdisc->q.qlen; |
| |
| qdisc_reset(cl->qdisc); |
| if (len > 0) { |
| update_vf(cl, 0, 0); |
| set_passive(cl); |
| sch->q.qlen -= len; |
| } |
| } |
| |
| static void |
| hfsc_adjust_levels(struct hfsc_class *cl) |
| { |
| struct hfsc_class *p; |
| unsigned int level; |
| |
| do { |
| level = 0; |
| list_for_each_entry(p, &cl->children, siblings) { |
| if (p->level >= level) |
| level = p->level + 1; |
| } |
| cl->level = level; |
| } while ((cl = cl->cl_parent) != NULL); |
| } |
| |
| static inline unsigned int |
| hfsc_hash(u32 h) |
| { |
| h ^= h >> 8; |
| h ^= h >> 4; |
| |
| return h & (HFSC_HSIZE - 1); |
| } |
| |
| static inline struct hfsc_class * |
| hfsc_find_class(u32 classid, struct Qdisc *sch) |
| { |
| struct hfsc_sched *q = qdisc_priv(sch); |
| struct hfsc_class *cl; |
| |
| list_for_each_entry(cl, &q->clhash[hfsc_hash(classid)], hlist) { |
| if (cl->classid == classid) |
| return cl; |
| } |
| return NULL; |
| } |
| |
| static void |
| hfsc_change_rsc(struct hfsc_class *cl, struct tc_service_curve *rsc, |
| u64 cur_time) |
| { |
| sc2isc(rsc, &cl->cl_rsc); |
| rtsc_init(&cl->cl_deadline, &cl->cl_rsc, cur_time, cl->cl_cumul); |
| cl->cl_eligible = cl->cl_deadline; |
| if (cl->cl_rsc.sm1 <= cl->cl_rsc.sm2) { |
| cl->cl_eligible.dx = 0; |
| cl->cl_eligible.dy = 0; |
| } |
| cl->cl_flags |= HFSC_RSC; |
| } |
| |
| static void |
| hfsc_change_fsc(struct hfsc_class *cl, struct tc_service_curve *fsc) |
| { |
| sc2isc(fsc, &cl->cl_fsc); |
| rtsc_init(&cl->cl_virtual, &cl->cl_fsc, cl->cl_vt, cl->cl_total); |
| cl->cl_flags |= HFSC_FSC; |
| } |
| |
| static void |
| hfsc_change_usc(struct hfsc_class *cl, struct tc_service_curve *usc, |
| u64 cur_time) |
| { |
| sc2isc(usc, &cl->cl_usc); |
| rtsc_init(&cl->cl_ulimit, &cl->cl_usc, cur_time, cl->cl_total); |
| cl->cl_flags |= HFSC_USC; |
| } |
| |
| static int |
| hfsc_change_class(struct Qdisc *sch, u32 classid, u32 parentid, |
| struct rtattr **tca, unsigned long *arg) |
| { |
| struct hfsc_sched *q = qdisc_priv(sch); |
| struct hfsc_class *cl = (struct hfsc_class *)*arg; |
| struct hfsc_class *parent = NULL; |
| struct rtattr *opt = tca[TCA_OPTIONS-1]; |
| struct rtattr *tb[TCA_HFSC_MAX]; |
| struct tc_service_curve *rsc = NULL, *fsc = NULL, *usc = NULL; |
| u64 cur_time; |
| |
| if (opt == NULL || rtattr_parse_nested(tb, TCA_HFSC_MAX, opt)) |
| return -EINVAL; |
| |
| if (tb[TCA_HFSC_RSC-1]) { |
| if (RTA_PAYLOAD(tb[TCA_HFSC_RSC-1]) < sizeof(*rsc)) |
| return -EINVAL; |
| rsc = RTA_DATA(tb[TCA_HFSC_RSC-1]); |
| if (rsc->m1 == 0 && rsc->m2 == 0) |
| rsc = NULL; |
| } |
| |
| if (tb[TCA_HFSC_FSC-1]) { |
| if (RTA_PAYLOAD(tb[TCA_HFSC_FSC-1]) < sizeof(*fsc)) |
| return -EINVAL; |
| fsc = RTA_DATA(tb[TCA_HFSC_FSC-1]); |
| if (fsc->m1 == 0 && fsc->m2 == 0) |
| fsc = NULL; |
| } |
| |
| if (tb[TCA_HFSC_USC-1]) { |
| if (RTA_PAYLOAD(tb[TCA_HFSC_USC-1]) < sizeof(*usc)) |
| return -EINVAL; |
| usc = RTA_DATA(tb[TCA_HFSC_USC-1]); |
| if (usc->m1 == 0 && usc->m2 == 0) |
| usc = NULL; |
| } |
| |
| if (cl != NULL) { |
| if (parentid) { |
| if (cl->cl_parent && cl->cl_parent->classid != parentid) |
| return -EINVAL; |
| if (cl->cl_parent == NULL && parentid != TC_H_ROOT) |
| return -EINVAL; |
| } |
| PSCHED_GET_TIME(cur_time); |
| |
| sch_tree_lock(sch); |
| if (rsc != NULL) |
| hfsc_change_rsc(cl, rsc, cur_time); |
| if (fsc != NULL) |
| hfsc_change_fsc(cl, fsc); |
| if (usc != NULL) |
| hfsc_change_usc(cl, usc, cur_time); |
| |
| if (cl->qdisc->q.qlen != 0) { |
| if (cl->cl_flags & HFSC_RSC) |
| update_ed(cl, qdisc_peek_len(cl->qdisc)); |
| if (cl->cl_flags & HFSC_FSC) |
| update_vf(cl, 0, cur_time); |
| } |
| sch_tree_unlock(sch); |
| |
| #ifdef CONFIG_NET_ESTIMATOR |
| if (tca[TCA_RATE-1]) |
| gen_replace_estimator(&cl->bstats, &cl->rate_est, |
| cl->stats_lock, tca[TCA_RATE-1]); |
| #endif |
| return 0; |
| } |
| |
| if (parentid == TC_H_ROOT) |
| return -EEXIST; |
| |
| parent = &q->root; |
| if (parentid) { |
| parent = hfsc_find_class(parentid, sch); |
| if (parent == NULL) |
| return -ENOENT; |
| } |
| |
| if (classid == 0 || TC_H_MAJ(classid ^ sch->handle) != 0) |
| return -EINVAL; |
| if (hfsc_find_class(classid, sch)) |
| return -EEXIST; |
| |
| if (rsc == NULL && fsc == NULL) |
| return -EINVAL; |
| |
| cl = kzalloc(sizeof(struct hfsc_class), GFP_KERNEL); |
| if (cl == NULL) |
| return -ENOBUFS; |
| |
| if (rsc != NULL) |
| hfsc_change_rsc(cl, rsc, 0); |
| if (fsc != NULL) |
| hfsc_change_fsc(cl, fsc); |
| if (usc != NULL) |
| hfsc_change_usc(cl, usc, 0); |
| |
| cl->refcnt = 1; |
| cl->classid = classid; |
| cl->sched = q; |
| cl->cl_parent = parent; |
| cl->qdisc = qdisc_create_dflt(sch->dev, &pfifo_qdisc_ops, classid); |
| if (cl->qdisc == NULL) |
| cl->qdisc = &noop_qdisc; |
| cl->stats_lock = &sch->dev->queue_lock; |
| INIT_LIST_HEAD(&cl->children); |
| cl->vt_tree = RB_ROOT; |
| cl->cf_tree = RB_ROOT; |
| |
| sch_tree_lock(sch); |
| list_add_tail(&cl->hlist, &q->clhash[hfsc_hash(classid)]); |
| list_add_tail(&cl->siblings, &parent->children); |
| if (parent->level == 0) |
| hfsc_purge_queue(sch, parent); |
| hfsc_adjust_levels(parent); |
| cl->cl_pcvtoff = parent->cl_cvtoff; |
| sch_tree_unlock(sch); |
| |
| #ifdef CONFIG_NET_ESTIMATOR |
| if (tca[TCA_RATE-1]) |
| gen_new_estimator(&cl->bstats, &cl->rate_est, |
| cl->stats_lock, tca[TCA_RATE-1]); |
| #endif |
| *arg = (unsigned long)cl; |
| return 0; |
| } |
| |
| static void |
| hfsc_destroy_filters(struct tcf_proto **fl) |
| { |
| struct tcf_proto *tp; |
| |
| while ((tp = *fl) != NULL) { |
| *fl = tp->next; |
| tcf_destroy(tp); |
| } |
| } |
| |
| static void |
| hfsc_destroy_class(struct Qdisc *sch, struct hfsc_class *cl) |
| { |
| struct hfsc_sched *q = qdisc_priv(sch); |
| |
| hfsc_destroy_filters(&cl->filter_list); |
| qdisc_destroy(cl->qdisc); |
| #ifdef CONFIG_NET_ESTIMATOR |
| gen_kill_estimator(&cl->bstats, &cl->rate_est); |
| #endif |
| if (cl != &q->root) |
| kfree(cl); |
| } |
| |
| static int |
| hfsc_delete_class(struct Qdisc *sch, unsigned long arg) |
| { |
| struct hfsc_sched *q = qdisc_priv(sch); |
| struct hfsc_class *cl = (struct hfsc_class *)arg; |
| |
| if (cl->level > 0 || cl->filter_cnt > 0 || cl == &q->root) |
| return -EBUSY; |
| |
| sch_tree_lock(sch); |
| |
| list_del(&cl->hlist); |
| list_del(&cl->siblings); |
| hfsc_adjust_levels(cl->cl_parent); |
| hfsc_purge_queue(sch, cl); |
| if (--cl->refcnt == 0) |
| hfsc_destroy_class(sch, cl); |
| |
| sch_tree_unlock(sch); |
| return 0; |
| } |
| |
| static struct hfsc_class * |
| hfsc_classify(struct sk_buff *skb, struct Qdisc *sch, int *qerr) |
| { |
| struct hfsc_sched *q = qdisc_priv(sch); |
| struct hfsc_class *cl; |
| struct tcf_result res; |
| struct tcf_proto *tcf; |
| int result; |
| |
| if (TC_H_MAJ(skb->priority ^ sch->handle) == 0 && |
| (cl = hfsc_find_class(skb->priority, sch)) != NULL) |
| if (cl->level == 0) |
| return cl; |
| |
| *qerr = NET_XMIT_BYPASS; |
| tcf = q->root.filter_list; |
| while (tcf && (result = tc_classify(skb, tcf, &res)) >= 0) { |
| #ifdef CONFIG_NET_CLS_ACT |
| switch (result) { |
| case TC_ACT_QUEUED: |
| case TC_ACT_STOLEN: |
| *qerr = NET_XMIT_SUCCESS; |
| case TC_ACT_SHOT: |
| return NULL; |
| } |
| #elif defined(CONFIG_NET_CLS_POLICE) |
| if (result == TC_POLICE_SHOT) |
| return NULL; |
| #endif |
| if ((cl = (struct hfsc_class *)res.class) == NULL) { |
| if ((cl = hfsc_find_class(res.classid, sch)) == NULL) |
| break; /* filter selected invalid classid */ |
| } |
| |
| if (cl->level == 0) |
| return cl; /* hit leaf class */ |
| |
| /* apply inner filter chain */ |
| tcf = cl->filter_list; |
| } |
| |
| /* classification failed, try default class */ |
| cl = hfsc_find_class(TC_H_MAKE(TC_H_MAJ(sch->handle), q->defcls), sch); |
| if (cl == NULL || cl->level > 0) |
| return NULL; |
| |
| return cl; |
| } |
| |
| static int |
| hfsc_graft_class(struct Qdisc *sch, unsigned long arg, struct Qdisc *new, |
| struct Qdisc **old) |
| { |
| struct hfsc_class *cl = (struct hfsc_class *)arg; |
| |
| if (cl == NULL) |
| return -ENOENT; |
| if (cl->level > 0) |
| return -EINVAL; |
| if (new == NULL) { |
| new = qdisc_create_dflt(sch->dev, &pfifo_qdisc_ops, |
| cl->classid); |
| if (new == NULL) |
| new = &noop_qdisc; |
| } |
| |
| sch_tree_lock(sch); |
| hfsc_purge_queue(sch, cl); |
| *old = xchg(&cl->qdisc, new); |
| sch_tree_unlock(sch); |
| return 0; |
| } |
| |
| static struct Qdisc * |
| hfsc_class_leaf(struct Qdisc *sch, unsigned long arg) |
| { |
| struct hfsc_class *cl = (struct hfsc_class *)arg; |
| |
| if (cl != NULL && cl->level == 0) |
| return cl->qdisc; |
| |
| return NULL; |
| } |
| |
| static unsigned long |
| hfsc_get_class(struct Qdisc *sch, u32 classid) |
| { |
| struct hfsc_class *cl = hfsc_find_class(classid, sch); |
| |
| if (cl != NULL) |
| cl->refcnt++; |
| |
| return (unsigned long)cl; |
| } |
| |
| static void |
| hfsc_put_class(struct Qdisc *sch, unsigned long arg) |
| { |
| struct hfsc_class *cl = (struct hfsc_class *)arg; |
| |
| if (--cl->refcnt == 0) |
| hfsc_destroy_class(sch, cl); |
| } |
| |
| static unsigned long |
| hfsc_bind_tcf(struct Qdisc *sch, unsigned long parent, u32 classid) |
| { |
| struct hfsc_class *p = (struct hfsc_class *)parent; |
| struct hfsc_class *cl = hfsc_find_class(classid, sch); |
| |
| if (cl != NULL) { |
| if (p != NULL && p->level <= cl->level) |
| return 0; |
| cl->filter_cnt++; |
| } |
| |
| return (unsigned long)cl; |
| } |
| |
| static void |
| hfsc_unbind_tcf(struct Qdisc *sch, unsigned long arg) |
| { |
| struct hfsc_class *cl = (struct hfsc_class *)arg; |
| |
| cl->filter_cnt--; |
| } |
| |
| static struct tcf_proto ** |
| hfsc_tcf_chain(struct Qdisc *sch, unsigned long arg) |
| { |
| struct hfsc_sched *q = qdisc_priv(sch); |
| struct hfsc_class *cl = (struct hfsc_class *)arg; |
| |
| if (cl == NULL) |
| cl = &q->root; |
| |
| return &cl->filter_list; |
| } |
| |
| static int |
| hfsc_dump_sc(struct sk_buff *skb, int attr, struct internal_sc *sc) |
| { |
| struct tc_service_curve tsc; |
| |
| tsc.m1 = sm2m(sc->sm1); |
| tsc.d = dx2d(sc->dx); |
| tsc.m2 = sm2m(sc->sm2); |
| RTA_PUT(skb, attr, sizeof(tsc), &tsc); |
| |
| return skb->len; |
| |
| rtattr_failure: |
| return -1; |
| } |
| |
| static inline int |
| hfsc_dump_curves(struct sk_buff *skb, struct hfsc_class *cl) |
| { |
| if ((cl->cl_flags & HFSC_RSC) && |
| (hfsc_dump_sc(skb, TCA_HFSC_RSC, &cl->cl_rsc) < 0)) |
| goto rtattr_failure; |
| |
| if ((cl->cl_flags & HFSC_FSC) && |
| (hfsc_dump_sc(skb, TCA_HFSC_FSC, &cl->cl_fsc) < 0)) |
| goto rtattr_failure; |
| |
| if ((cl->cl_flags & HFSC_USC) && |
| (hfsc_dump_sc(skb, TCA_HFSC_USC, &cl->cl_usc) < 0)) |
| goto rtattr_failure; |
| |
| return skb->len; |
| |
| rtattr_failure: |
| return -1; |
| } |
| |
| static int |
| hfsc_dump_class(struct Qdisc *sch, unsigned long arg, struct sk_buff *skb, |
| struct tcmsg *tcm) |
| { |
| struct hfsc_class *cl = (struct hfsc_class *)arg; |
| unsigned char *b = skb->tail; |
| struct rtattr *rta = (struct rtattr *)b; |
| |
| tcm->tcm_parent = cl->cl_parent ? cl->cl_parent->classid : TC_H_ROOT; |
| tcm->tcm_handle = cl->classid; |
| if (cl->level == 0) |
| tcm->tcm_info = cl->qdisc->handle; |
| |
| RTA_PUT(skb, TCA_OPTIONS, 0, NULL); |
| if (hfsc_dump_curves(skb, cl) < 0) |
| goto rtattr_failure; |
| rta->rta_len = skb->tail - b; |
| return skb->len; |
| |
| rtattr_failure: |
| skb_trim(skb, b - skb->data); |
| return -1; |
| } |
| |
| static int |
| hfsc_dump_class_stats(struct Qdisc *sch, unsigned long arg, |
| struct gnet_dump *d) |
| { |
| struct hfsc_class *cl = (struct hfsc_class *)arg; |
| struct tc_hfsc_stats xstats; |
| |
| cl->qstats.qlen = cl->qdisc->q.qlen; |
| xstats.level = cl->level; |
| xstats.period = cl->cl_vtperiod; |
| xstats.work = cl->cl_total; |
| xstats.rtwork = cl->cl_cumul; |
| |
| if (gnet_stats_copy_basic(d, &cl->bstats) < 0 || |
| #ifdef CONFIG_NET_ESTIMATOR |
| gnet_stats_copy_rate_est(d, &cl->rate_est) < 0 || |
| #endif |
| gnet_stats_copy_queue(d, &cl->qstats) < 0) |
| return -1; |
| |
| return gnet_stats_copy_app(d, &xstats, sizeof(xstats)); |
| } |
| |
| |
| |
| static void |
| hfsc_walk(struct Qdisc *sch, struct qdisc_walker *arg) |
| { |
| struct hfsc_sched *q = qdisc_priv(sch); |
| struct hfsc_class *cl; |
| unsigned int i; |
| |
| if (arg->stop) |
| return; |
| |
| for (i = 0; i < HFSC_HSIZE; i++) { |
| list_for_each_entry(cl, &q->clhash[i], hlist) { |
| if (arg->count < arg->skip) { |
| arg->count++; |
| continue; |
| } |
| if (arg->fn(sch, (unsigned long)cl, arg) < 0) { |
| arg->stop = 1; |
| return; |
| } |
| arg->count++; |
| } |
| } |
| } |
| |
| static void |
| hfsc_watchdog(unsigned long arg) |
| { |
| struct Qdisc *sch = (struct Qdisc *)arg; |
| |
| sch->flags &= ~TCQ_F_THROTTLED; |
| netif_schedule(sch->dev); |
| } |
| |
| static void |
| hfsc_schedule_watchdog(struct Qdisc *sch, u64 cur_time) |
| { |
| struct hfsc_sched *q = qdisc_priv(sch); |
| struct hfsc_class *cl; |
| u64 next_time = 0; |
| long delay; |
| |
| if ((cl = eltree_get_minel(q)) != NULL) |
| next_time = cl->cl_e; |
| if (q->root.cl_cfmin != 0) { |
| if (next_time == 0 || next_time > q->root.cl_cfmin) |
| next_time = q->root.cl_cfmin; |
| } |
| ASSERT(next_time != 0); |
| delay = next_time - cur_time; |
| delay = PSCHED_US2JIFFIE(delay); |
| |
| sch->flags |= TCQ_F_THROTTLED; |
| mod_timer(&q->wd_timer, jiffies + delay); |
| } |
| |
| static int |
| hfsc_init_qdisc(struct Qdisc *sch, struct rtattr *opt) |
| { |
| struct hfsc_sched *q = qdisc_priv(sch); |
| struct tc_hfsc_qopt *qopt; |
| unsigned int i; |
| |
| if (opt == NULL || RTA_PAYLOAD(opt) < sizeof(*qopt)) |
| return -EINVAL; |
| qopt = RTA_DATA(opt); |
| |
| sch->stats_lock = &sch->dev->queue_lock; |
| |
| q->defcls = qopt->defcls; |
| for (i = 0; i < HFSC_HSIZE; i++) |
| INIT_LIST_HEAD(&q->clhash[i]); |
| q->eligible = RB_ROOT; |
| INIT_LIST_HEAD(&q->droplist); |
| skb_queue_head_init(&q->requeue); |
| |
| q->root.refcnt = 1; |
| q->root.classid = sch->handle; |
| q->root.sched = q; |
| q->root.qdisc = qdisc_create_dflt(sch->dev, &pfifo_qdisc_ops, |
| sch->handle); |
| if (q->root.qdisc == NULL) |
| q->root.qdisc = &noop_qdisc; |
| q->root.stats_lock = &sch->dev->queue_lock; |
| INIT_LIST_HEAD(&q->root.children); |
| q->root.vt_tree = RB_ROOT; |
| q->root.cf_tree = RB_ROOT; |
| |
| list_add(&q->root.hlist, &q->clhash[hfsc_hash(q->root.classid)]); |
| |
| init_timer(&q->wd_timer); |
| q->wd_timer.function = hfsc_watchdog; |
| q->wd_timer.data = (unsigned long)sch; |
| |
| return 0; |
| } |
| |
| static int |
| hfsc_change_qdisc(struct Qdisc *sch, struct rtattr *opt) |
| { |
| struct hfsc_sched *q = qdisc_priv(sch); |
| struct tc_hfsc_qopt *qopt; |
| |
| if (opt == NULL || RTA_PAYLOAD(opt) < sizeof(*qopt)) |
| return -EINVAL; |
| qopt = RTA_DATA(opt); |
| |
| sch_tree_lock(sch); |
| q->defcls = qopt->defcls; |
| sch_tree_unlock(sch); |
| |
| return 0; |
| } |
| |
| static void |
| hfsc_reset_class(struct hfsc_class *cl) |
| { |
| cl->cl_total = 0; |
| cl->cl_cumul = 0; |
| cl->cl_d = 0; |
| cl->cl_e = 0; |
| cl->cl_vt = 0; |
| cl->cl_vtadj = 0; |
| cl->cl_vtoff = 0; |
| cl->cl_cvtmin = 0; |
| cl->cl_cvtmax = 0; |
| cl->cl_cvtoff = 0; |
| cl->cl_pcvtoff = 0; |
| cl->cl_vtperiod = 0; |
| cl->cl_parentperiod = 0; |
| cl->cl_f = 0; |
| cl->cl_myf = 0; |
| cl->cl_myfadj = 0; |
| cl->cl_cfmin = 0; |
| cl->cl_nactive = 0; |
| |
| cl->vt_tree = RB_ROOT; |
| cl->cf_tree = RB_ROOT; |
| qdisc_reset(cl->qdisc); |
| |
| if (cl->cl_flags & HFSC_RSC) |
| rtsc_init(&cl->cl_deadline, &cl->cl_rsc, 0, 0); |
| if (cl->cl_flags & HFSC_FSC) |
| rtsc_init(&cl->cl_virtual, &cl->cl_fsc, 0, 0); |
| if (cl->cl_flags & HFSC_USC) |
| rtsc_init(&cl->cl_ulimit, &cl->cl_usc, 0, 0); |
| } |
| |
| static void |
| hfsc_reset_qdisc(struct Qdisc *sch) |
| { |
| struct hfsc_sched *q = qdisc_priv(sch); |
| struct hfsc_class *cl; |
| unsigned int i; |
| |
| for (i = 0; i < HFSC_HSIZE; i++) { |
| list_for_each_entry(cl, &q->clhash[i], hlist) |
| hfsc_reset_class(cl); |
| } |
| __skb_queue_purge(&q->requeue); |
| q->eligible = RB_ROOT; |
| INIT_LIST_HEAD(&q->droplist); |
| del_timer(&q->wd_timer); |
| sch->flags &= ~TCQ_F_THROTTLED; |
| sch->q.qlen = 0; |
| } |
| |
| static void |
| hfsc_destroy_qdisc(struct Qdisc *sch) |
| { |
| struct hfsc_sched *q = qdisc_priv(sch); |
| struct hfsc_class *cl, *next; |
| unsigned int i; |
| |
| for (i = 0; i < HFSC_HSIZE; i++) { |
| list_for_each_entry_safe(cl, next, &q->clhash[i], hlist) |
| hfsc_destroy_class(sch, cl); |
| } |
| __skb_queue_purge(&q->requeue); |
| del_timer(&q->wd_timer); |
| } |
| |
| static int |
| hfsc_dump_qdisc(struct Qdisc *sch, struct sk_buff *skb) |
| { |
| struct hfsc_sched *q = qdisc_priv(sch); |
| unsigned char *b = skb->tail; |
| struct tc_hfsc_qopt qopt; |
| |
| qopt.defcls = q->defcls; |
| RTA_PUT(skb, TCA_OPTIONS, sizeof(qopt), &qopt); |
| return skb->len; |
| |
| rtattr_failure: |
| skb_trim(skb, b - skb->data); |
| return -1; |
| } |
| |
| static int |
| hfsc_enqueue(struct sk_buff *skb, struct Qdisc *sch) |
| { |
| struct hfsc_class *cl; |
| unsigned int len; |
| int err; |
| |
| cl = hfsc_classify(skb, sch, &err); |
| if (cl == NULL) { |
| if (err == NET_XMIT_BYPASS) |
| sch->qstats.drops++; |
| kfree_skb(skb); |
| return err; |
| } |
| |
| len = skb->len; |
| err = cl->qdisc->enqueue(skb, cl->qdisc); |
| if (unlikely(err != NET_XMIT_SUCCESS)) { |
| cl->qstats.drops++; |
| sch->qstats.drops++; |
| return err; |
| } |
| |
| if (cl->qdisc->q.qlen == 1) |
| set_active(cl, len); |
| |
| cl->bstats.packets++; |
| cl->bstats.bytes += len; |
| sch->bstats.packets++; |
| sch->bstats.bytes += len; |
| sch->q.qlen++; |
| |
| return NET_XMIT_SUCCESS; |
| } |
| |
| static struct sk_buff * |
| hfsc_dequeue(struct Qdisc *sch) |
| { |
| struct hfsc_sched *q = qdisc_priv(sch); |
| struct hfsc_class *cl; |
| struct sk_buff *skb; |
| u64 cur_time; |
| unsigned int next_len; |
| int realtime = 0; |
| |
| if (sch->q.qlen == 0) |
| return NULL; |
| if ((skb = __skb_dequeue(&q->requeue))) |
| goto out; |
| |
| PSCHED_GET_TIME(cur_time); |
| |
| /* |
| * if there are eligible classes, use real-time criteria. |
| * find the class with the minimum deadline among |
| * the eligible classes. |
| */ |
| if ((cl = eltree_get_mindl(q, cur_time)) != NULL) { |
| realtime = 1; |
| } else { |
| /* |
| * use link-sharing criteria |
| * get the class with the minimum vt in the hierarchy |
| */ |
| cl = vttree_get_minvt(&q->root, cur_time); |
| if (cl == NULL) { |
| sch->qstats.overlimits++; |
| hfsc_schedule_watchdog(sch, cur_time); |
| return NULL; |
| } |
| } |
| |
| skb = cl->qdisc->dequeue(cl->qdisc); |
| if (skb == NULL) { |
| if (net_ratelimit()) |
| printk("HFSC: Non-work-conserving qdisc ?\n"); |
| return NULL; |
| } |
| |
| update_vf(cl, skb->len, cur_time); |
| if (realtime) |
| cl->cl_cumul += skb->len; |
| |
| if (cl->qdisc->q.qlen != 0) { |
| if (cl->cl_flags & HFSC_RSC) { |
| /* update ed */ |
| next_len = qdisc_peek_len(cl->qdisc); |
| if (realtime) |
| update_ed(cl, next_len); |
| else |
| update_d(cl, next_len); |
| } |
| } else { |
| /* the class becomes passive */ |
| set_passive(cl); |
| } |
| |
| out: |
| sch->flags &= ~TCQ_F_THROTTLED; |
| sch->q.qlen--; |
| |
| return skb; |
| } |
| |
| static int |
| hfsc_requeue(struct sk_buff *skb, struct Qdisc *sch) |
| { |
| struct hfsc_sched *q = qdisc_priv(sch); |
| |
| __skb_queue_head(&q->requeue, skb); |
| sch->q.qlen++; |
| sch->qstats.requeues++; |
| return NET_XMIT_SUCCESS; |
| } |
| |
| static unsigned int |
| hfsc_drop(struct Qdisc *sch) |
| { |
| struct hfsc_sched *q = qdisc_priv(sch); |
| struct hfsc_class *cl; |
| unsigned int len; |
| |
| list_for_each_entry(cl, &q->droplist, dlist) { |
| if (cl->qdisc->ops->drop != NULL && |
| (len = cl->qdisc->ops->drop(cl->qdisc)) > 0) { |
| if (cl->qdisc->q.qlen == 0) { |
| update_vf(cl, 0, 0); |
| set_passive(cl); |
| } else { |
| list_move_tail(&cl->dlist, &q->droplist); |
| } |
| cl->qstats.drops++; |
| sch->qstats.drops++; |
| sch->q.qlen--; |
| return len; |
| } |
| } |
| return 0; |
| } |
| |
| static struct Qdisc_class_ops hfsc_class_ops = { |
| .change = hfsc_change_class, |
| .delete = hfsc_delete_class, |
| .graft = hfsc_graft_class, |
| .leaf = hfsc_class_leaf, |
| .get = hfsc_get_class, |
| .put = hfsc_put_class, |
| .bind_tcf = hfsc_bind_tcf, |
| .unbind_tcf = hfsc_unbind_tcf, |
| .tcf_chain = hfsc_tcf_chain, |
| .dump = hfsc_dump_class, |
| .dump_stats = hfsc_dump_class_stats, |
| .walk = hfsc_walk |
| }; |
| |
| static struct Qdisc_ops hfsc_qdisc_ops = { |
| .id = "hfsc", |
| .init = hfsc_init_qdisc, |
| .change = hfsc_change_qdisc, |
| .reset = hfsc_reset_qdisc, |
| .destroy = hfsc_destroy_qdisc, |
| .dump = hfsc_dump_qdisc, |
| .enqueue = hfsc_enqueue, |
| .dequeue = hfsc_dequeue, |
| .requeue = hfsc_requeue, |
| .drop = hfsc_drop, |
| .cl_ops = &hfsc_class_ops, |
| .priv_size = sizeof(struct hfsc_sched), |
| .owner = THIS_MODULE |
| }; |
| |
| static int __init |
| hfsc_init(void) |
| { |
| return register_qdisc(&hfsc_qdisc_ops); |
| } |
| |
| static void __exit |
| hfsc_cleanup(void) |
| { |
| unregister_qdisc(&hfsc_qdisc_ops); |
| } |
| |
| MODULE_LICENSE("GPL"); |
| module_init(hfsc_init); |
| module_exit(hfsc_cleanup); |