| /* |
| * Implementation of the kernel access vector cache (AVC). |
| * |
| * Authors: Stephen Smalley, <sds@epoch.ncsc.mil> |
| * James Morris <jmorris@redhat.com> |
| * |
| * Update: KaiGai, Kohei <kaigai@ak.jp.nec.com> |
| * Replaced the avc_lock spinlock by RCU. |
| * |
| * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com> |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2, |
| * as published by the Free Software Foundation. |
| */ |
| #include <linux/types.h> |
| #include <linux/stddef.h> |
| #include <linux/kernel.h> |
| #include <linux/slab.h> |
| #include <linux/fs.h> |
| #include <linux/dcache.h> |
| #include <linux/init.h> |
| #include <linux/skbuff.h> |
| #include <linux/percpu.h> |
| #include <net/sock.h> |
| #include <linux/un.h> |
| #include <net/af_unix.h> |
| #include <linux/ip.h> |
| #include <linux/audit.h> |
| #include <linux/ipv6.h> |
| #include <net/ipv6.h> |
| #include "avc.h" |
| #include "avc_ss.h" |
| |
| static const struct av_perm_to_string av_perm_to_string[] = { |
| #define S_(c, v, s) { c, v, s }, |
| #include "av_perm_to_string.h" |
| #undef S_ |
| }; |
| |
| static const char *class_to_string[] = { |
| #define S_(s) s, |
| #include "class_to_string.h" |
| #undef S_ |
| }; |
| |
| #define TB_(s) static const char * s [] = { |
| #define TE_(s) }; |
| #define S_(s) s, |
| #include "common_perm_to_string.h" |
| #undef TB_ |
| #undef TE_ |
| #undef S_ |
| |
| static const struct av_inherit av_inherit[] = { |
| #define S_(c, i, b) { c, common_##i##_perm_to_string, b }, |
| #include "av_inherit.h" |
| #undef S_ |
| }; |
| |
| const struct selinux_class_perm selinux_class_perm = { |
| av_perm_to_string, |
| ARRAY_SIZE(av_perm_to_string), |
| class_to_string, |
| ARRAY_SIZE(class_to_string), |
| av_inherit, |
| ARRAY_SIZE(av_inherit) |
| }; |
| |
| #define AVC_CACHE_SLOTS 512 |
| #define AVC_DEF_CACHE_THRESHOLD 512 |
| #define AVC_CACHE_RECLAIM 16 |
| |
| #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS |
| #define avc_cache_stats_incr(field) \ |
| do { \ |
| per_cpu(avc_cache_stats, get_cpu()).field++; \ |
| put_cpu(); \ |
| } while (0) |
| #else |
| #define avc_cache_stats_incr(field) do {} while (0) |
| #endif |
| |
| struct avc_entry { |
| u32 ssid; |
| u32 tsid; |
| u16 tclass; |
| struct av_decision avd; |
| atomic_t used; /* used recently */ |
| }; |
| |
| struct avc_node { |
| struct avc_entry ae; |
| struct list_head list; |
| struct rcu_head rhead; |
| }; |
| |
| struct avc_cache { |
| struct list_head slots[AVC_CACHE_SLOTS]; |
| spinlock_t slots_lock[AVC_CACHE_SLOTS]; /* lock for writes */ |
| atomic_t lru_hint; /* LRU hint for reclaim scan */ |
| atomic_t active_nodes; |
| u32 latest_notif; /* latest revocation notification */ |
| }; |
| |
| struct avc_callback_node { |
| int (*callback) (u32 event, u32 ssid, u32 tsid, |
| u16 tclass, u32 perms, |
| u32 *out_retained); |
| u32 events; |
| u32 ssid; |
| u32 tsid; |
| u16 tclass; |
| u32 perms; |
| struct avc_callback_node *next; |
| }; |
| |
| /* Exported via selinufs */ |
| unsigned int avc_cache_threshold = AVC_DEF_CACHE_THRESHOLD; |
| |
| #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS |
| DEFINE_PER_CPU(struct avc_cache_stats, avc_cache_stats) = { 0 }; |
| #endif |
| |
| static struct avc_cache avc_cache; |
| static struct avc_callback_node *avc_callbacks; |
| static kmem_cache_t *avc_node_cachep; |
| |
| static inline int avc_hash(u32 ssid, u32 tsid, u16 tclass) |
| { |
| return (ssid ^ (tsid<<2) ^ (tclass<<4)) & (AVC_CACHE_SLOTS - 1); |
| } |
| |
| /** |
| * avc_dump_av - Display an access vector in human-readable form. |
| * @tclass: target security class |
| * @av: access vector |
| */ |
| static void avc_dump_av(struct audit_buffer *ab, u16 tclass, u32 av) |
| { |
| const char **common_pts = NULL; |
| u32 common_base = 0; |
| int i, i2, perm; |
| |
| if (av == 0) { |
| audit_log_format(ab, " null"); |
| return; |
| } |
| |
| for (i = 0; i < ARRAY_SIZE(av_inherit); i++) { |
| if (av_inherit[i].tclass == tclass) { |
| common_pts = av_inherit[i].common_pts; |
| common_base = av_inherit[i].common_base; |
| break; |
| } |
| } |
| |
| audit_log_format(ab, " {"); |
| i = 0; |
| perm = 1; |
| while (perm < common_base) { |
| if (perm & av) { |
| audit_log_format(ab, " %s", common_pts[i]); |
| av &= ~perm; |
| } |
| i++; |
| perm <<= 1; |
| } |
| |
| while (i < sizeof(av) * 8) { |
| if (perm & av) { |
| for (i2 = 0; i2 < ARRAY_SIZE(av_perm_to_string); i2++) { |
| if ((av_perm_to_string[i2].tclass == tclass) && |
| (av_perm_to_string[i2].value == perm)) |
| break; |
| } |
| if (i2 < ARRAY_SIZE(av_perm_to_string)) { |
| audit_log_format(ab, " %s", |
| av_perm_to_string[i2].name); |
| av &= ~perm; |
| } |
| } |
| i++; |
| perm <<= 1; |
| } |
| |
| if (av) |
| audit_log_format(ab, " 0x%x", av); |
| |
| audit_log_format(ab, " }"); |
| } |
| |
| /** |
| * avc_dump_query - Display a SID pair and a class in human-readable form. |
| * @ssid: source security identifier |
| * @tsid: target security identifier |
| * @tclass: target security class |
| */ |
| static void avc_dump_query(struct audit_buffer *ab, u32 ssid, u32 tsid, u16 tclass) |
| { |
| int rc; |
| char *scontext; |
| u32 scontext_len; |
| |
| rc = security_sid_to_context(ssid, &scontext, &scontext_len); |
| if (rc) |
| audit_log_format(ab, "ssid=%d", ssid); |
| else { |
| audit_log_format(ab, "scontext=%s", scontext); |
| kfree(scontext); |
| } |
| |
| rc = security_sid_to_context(tsid, &scontext, &scontext_len); |
| if (rc) |
| audit_log_format(ab, " tsid=%d", tsid); |
| else { |
| audit_log_format(ab, " tcontext=%s", scontext); |
| kfree(scontext); |
| } |
| audit_log_format(ab, " tclass=%s", class_to_string[tclass]); |
| } |
| |
| /** |
| * avc_init - Initialize the AVC. |
| * |
| * Initialize the access vector cache. |
| */ |
| void __init avc_init(void) |
| { |
| int i; |
| |
| for (i = 0; i < AVC_CACHE_SLOTS; i++) { |
| INIT_LIST_HEAD(&avc_cache.slots[i]); |
| spin_lock_init(&avc_cache.slots_lock[i]); |
| } |
| atomic_set(&avc_cache.active_nodes, 0); |
| atomic_set(&avc_cache.lru_hint, 0); |
| |
| avc_node_cachep = kmem_cache_create("avc_node", sizeof(struct avc_node), |
| 0, SLAB_PANIC, NULL, NULL); |
| |
| audit_log(current->audit_context, GFP_KERNEL, AUDIT_KERNEL, "AVC INITIALIZED\n"); |
| } |
| |
| int avc_get_hash_stats(char *page) |
| { |
| int i, chain_len, max_chain_len, slots_used; |
| struct avc_node *node; |
| |
| rcu_read_lock(); |
| |
| slots_used = 0; |
| max_chain_len = 0; |
| for (i = 0; i < AVC_CACHE_SLOTS; i++) { |
| if (!list_empty(&avc_cache.slots[i])) { |
| slots_used++; |
| chain_len = 0; |
| list_for_each_entry_rcu(node, &avc_cache.slots[i], list) |
| chain_len++; |
| if (chain_len > max_chain_len) |
| max_chain_len = chain_len; |
| } |
| } |
| |
| rcu_read_unlock(); |
| |
| return scnprintf(page, PAGE_SIZE, "entries: %d\nbuckets used: %d/%d\n" |
| "longest chain: %d\n", |
| atomic_read(&avc_cache.active_nodes), |
| slots_used, AVC_CACHE_SLOTS, max_chain_len); |
| } |
| |
| static void avc_node_free(struct rcu_head *rhead) |
| { |
| struct avc_node *node = container_of(rhead, struct avc_node, rhead); |
| kmem_cache_free(avc_node_cachep, node); |
| avc_cache_stats_incr(frees); |
| } |
| |
| static void avc_node_delete(struct avc_node *node) |
| { |
| list_del_rcu(&node->list); |
| call_rcu(&node->rhead, avc_node_free); |
| atomic_dec(&avc_cache.active_nodes); |
| } |
| |
| static void avc_node_kill(struct avc_node *node) |
| { |
| kmem_cache_free(avc_node_cachep, node); |
| avc_cache_stats_incr(frees); |
| atomic_dec(&avc_cache.active_nodes); |
| } |
| |
| static void avc_node_replace(struct avc_node *new, struct avc_node *old) |
| { |
| list_replace_rcu(&old->list, &new->list); |
| call_rcu(&old->rhead, avc_node_free); |
| atomic_dec(&avc_cache.active_nodes); |
| } |
| |
| static inline int avc_reclaim_node(void) |
| { |
| struct avc_node *node; |
| int hvalue, try, ecx; |
| unsigned long flags; |
| |
| for (try = 0, ecx = 0; try < AVC_CACHE_SLOTS; try++ ) { |
| hvalue = atomic_inc_return(&avc_cache.lru_hint) & (AVC_CACHE_SLOTS - 1); |
| |
| if (!spin_trylock_irqsave(&avc_cache.slots_lock[hvalue], flags)) |
| continue; |
| |
| list_for_each_entry(node, &avc_cache.slots[hvalue], list) { |
| if (atomic_dec_and_test(&node->ae.used)) { |
| /* Recently Unused */ |
| avc_node_delete(node); |
| avc_cache_stats_incr(reclaims); |
| ecx++; |
| if (ecx >= AVC_CACHE_RECLAIM) { |
| spin_unlock_irqrestore(&avc_cache.slots_lock[hvalue], flags); |
| goto out; |
| } |
| } |
| } |
| spin_unlock_irqrestore(&avc_cache.slots_lock[hvalue], flags); |
| } |
| out: |
| return ecx; |
| } |
| |
| static struct avc_node *avc_alloc_node(void) |
| { |
| struct avc_node *node; |
| |
| node = kmem_cache_alloc(avc_node_cachep, GFP_ATOMIC); |
| if (!node) |
| goto out; |
| |
| memset(node, 0, sizeof(*node)); |
| INIT_RCU_HEAD(&node->rhead); |
| INIT_LIST_HEAD(&node->list); |
| atomic_set(&node->ae.used, 1); |
| avc_cache_stats_incr(allocations); |
| |
| if (atomic_inc_return(&avc_cache.active_nodes) > avc_cache_threshold) |
| avc_reclaim_node(); |
| |
| out: |
| return node; |
| } |
| |
| static void avc_node_populate(struct avc_node *node, u32 ssid, u32 tsid, u16 tclass, struct avc_entry *ae) |
| { |
| node->ae.ssid = ssid; |
| node->ae.tsid = tsid; |
| node->ae.tclass = tclass; |
| memcpy(&node->ae.avd, &ae->avd, sizeof(node->ae.avd)); |
| } |
| |
| static inline struct avc_node *avc_search_node(u32 ssid, u32 tsid, u16 tclass) |
| { |
| struct avc_node *node, *ret = NULL; |
| int hvalue; |
| |
| hvalue = avc_hash(ssid, tsid, tclass); |
| list_for_each_entry_rcu(node, &avc_cache.slots[hvalue], list) { |
| if (ssid == node->ae.ssid && |
| tclass == node->ae.tclass && |
| tsid == node->ae.tsid) { |
| ret = node; |
| break; |
| } |
| } |
| |
| if (ret == NULL) { |
| /* cache miss */ |
| goto out; |
| } |
| |
| /* cache hit */ |
| if (atomic_read(&ret->ae.used) != 1) |
| atomic_set(&ret->ae.used, 1); |
| out: |
| return ret; |
| } |
| |
| /** |
| * avc_lookup - Look up an AVC entry. |
| * @ssid: source security identifier |
| * @tsid: target security identifier |
| * @tclass: target security class |
| * @requested: requested permissions, interpreted based on @tclass |
| * |
| * Look up an AVC entry that is valid for the |
| * @requested permissions between the SID pair |
| * (@ssid, @tsid), interpreting the permissions |
| * based on @tclass. If a valid AVC entry exists, |
| * then this function return the avc_node. |
| * Otherwise, this function returns NULL. |
| */ |
| static struct avc_node *avc_lookup(u32 ssid, u32 tsid, u16 tclass, u32 requested) |
| { |
| struct avc_node *node; |
| |
| avc_cache_stats_incr(lookups); |
| node = avc_search_node(ssid, tsid, tclass); |
| |
| if (node && ((node->ae.avd.decided & requested) == requested)) { |
| avc_cache_stats_incr(hits); |
| goto out; |
| } |
| |
| node = NULL; |
| avc_cache_stats_incr(misses); |
| out: |
| return node; |
| } |
| |
| static int avc_latest_notif_update(int seqno, int is_insert) |
| { |
| int ret = 0; |
| static DEFINE_SPINLOCK(notif_lock); |
| unsigned long flag; |
| |
| spin_lock_irqsave(¬if_lock, flag); |
| if (is_insert) { |
| if (seqno < avc_cache.latest_notif) { |
| printk(KERN_WARNING "avc: seqno %d < latest_notif %d\n", |
| seqno, avc_cache.latest_notif); |
| ret = -EAGAIN; |
| } |
| } else { |
| if (seqno > avc_cache.latest_notif) |
| avc_cache.latest_notif = seqno; |
| } |
| spin_unlock_irqrestore(¬if_lock, flag); |
| |
| return ret; |
| } |
| |
| /** |
| * avc_insert - Insert an AVC entry. |
| * @ssid: source security identifier |
| * @tsid: target security identifier |
| * @tclass: target security class |
| * @ae: AVC entry |
| * |
| * Insert an AVC entry for the SID pair |
| * (@ssid, @tsid) and class @tclass. |
| * The access vectors and the sequence number are |
| * normally provided by the security server in |
| * response to a security_compute_av() call. If the |
| * sequence number @ae->avd.seqno is not less than the latest |
| * revocation notification, then the function copies |
| * the access vectors into a cache entry, returns |
| * avc_node inserted. Otherwise, this function returns NULL. |
| */ |
| static struct avc_node *avc_insert(u32 ssid, u32 tsid, u16 tclass, struct avc_entry *ae) |
| { |
| struct avc_node *pos, *node = NULL; |
| int hvalue; |
| unsigned long flag; |
| |
| if (avc_latest_notif_update(ae->avd.seqno, 1)) |
| goto out; |
| |
| node = avc_alloc_node(); |
| if (node) { |
| hvalue = avc_hash(ssid, tsid, tclass); |
| avc_node_populate(node, ssid, tsid, tclass, ae); |
| |
| spin_lock_irqsave(&avc_cache.slots_lock[hvalue], flag); |
| list_for_each_entry(pos, &avc_cache.slots[hvalue], list) { |
| if (pos->ae.ssid == ssid && |
| pos->ae.tsid == tsid && |
| pos->ae.tclass == tclass) { |
| avc_node_replace(node, pos); |
| goto found; |
| } |
| } |
| list_add_rcu(&node->list, &avc_cache.slots[hvalue]); |
| found: |
| spin_unlock_irqrestore(&avc_cache.slots_lock[hvalue], flag); |
| } |
| out: |
| return node; |
| } |
| |
| static inline void avc_print_ipv6_addr(struct audit_buffer *ab, |
| struct in6_addr *addr, __be16 port, |
| char *name1, char *name2) |
| { |
| if (!ipv6_addr_any(addr)) |
| audit_log_format(ab, " %s=" NIP6_FMT, name1, NIP6(*addr)); |
| if (port) |
| audit_log_format(ab, " %s=%d", name2, ntohs(port)); |
| } |
| |
| static inline void avc_print_ipv4_addr(struct audit_buffer *ab, __be32 addr, |
| __be16 port, char *name1, char *name2) |
| { |
| if (addr) |
| audit_log_format(ab, " %s=" NIPQUAD_FMT, name1, NIPQUAD(addr)); |
| if (port) |
| audit_log_format(ab, " %s=%d", name2, ntohs(port)); |
| } |
| |
| /** |
| * avc_audit - Audit the granting or denial of permissions. |
| * @ssid: source security identifier |
| * @tsid: target security identifier |
| * @tclass: target security class |
| * @requested: requested permissions |
| * @avd: access vector decisions |
| * @result: result from avc_has_perm_noaudit |
| * @a: auxiliary audit data |
| * |
| * Audit the granting or denial of permissions in accordance |
| * with the policy. This function is typically called by |
| * avc_has_perm() after a permission check, but can also be |
| * called directly by callers who use avc_has_perm_noaudit() |
| * in order to separate the permission check from the auditing. |
| * For example, this separation is useful when the permission check must |
| * be performed under a lock, to allow the lock to be released |
| * before calling the auditing code. |
| */ |
| void avc_audit(u32 ssid, u32 tsid, |
| u16 tclass, u32 requested, |
| struct av_decision *avd, int result, struct avc_audit_data *a) |
| { |
| struct task_struct *tsk = current; |
| struct inode *inode = NULL; |
| u32 denied, audited; |
| struct audit_buffer *ab; |
| |
| denied = requested & ~avd->allowed; |
| if (denied) { |
| audited = denied; |
| if (!(audited & avd->auditdeny)) |
| return; |
| } else if (result) { |
| audited = denied = requested; |
| } else { |
| audited = requested; |
| if (!(audited & avd->auditallow)) |
| return; |
| } |
| |
| ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_AVC); |
| if (!ab) |
| return; /* audit_panic has been called */ |
| audit_log_format(ab, "avc: %s ", denied ? "denied" : "granted"); |
| avc_dump_av(ab, tclass,audited); |
| audit_log_format(ab, " for "); |
| if (a && a->tsk) |
| tsk = a->tsk; |
| if (tsk && tsk->pid) { |
| audit_log_format(ab, " pid=%d comm=", tsk->pid); |
| audit_log_untrustedstring(ab, tsk->comm); |
| } |
| if (a) { |
| switch (a->type) { |
| case AVC_AUDIT_DATA_IPC: |
| audit_log_format(ab, " key=%d", a->u.ipc_id); |
| break; |
| case AVC_AUDIT_DATA_CAP: |
| audit_log_format(ab, " capability=%d", a->u.cap); |
| break; |
| case AVC_AUDIT_DATA_FS: |
| if (a->u.fs.dentry) { |
| struct dentry *dentry = a->u.fs.dentry; |
| if (a->u.fs.mnt) |
| audit_avc_path(dentry, a->u.fs.mnt); |
| audit_log_format(ab, " name="); |
| audit_log_untrustedstring(ab, dentry->d_name.name); |
| inode = dentry->d_inode; |
| } else if (a->u.fs.inode) { |
| struct dentry *dentry; |
| inode = a->u.fs.inode; |
| dentry = d_find_alias(inode); |
| if (dentry) { |
| audit_log_format(ab, " name="); |
| audit_log_untrustedstring(ab, dentry->d_name.name); |
| dput(dentry); |
| } |
| } |
| if (inode) |
| audit_log_format(ab, " dev=%s ino=%ld", |
| inode->i_sb->s_id, |
| inode->i_ino); |
| break; |
| case AVC_AUDIT_DATA_NET: |
| if (a->u.net.sk) { |
| struct sock *sk = a->u.net.sk; |
| struct unix_sock *u; |
| int len = 0; |
| char *p = NULL; |
| |
| switch (sk->sk_family) { |
| case AF_INET: { |
| struct inet_sock *inet = inet_sk(sk); |
| |
| avc_print_ipv4_addr(ab, inet->rcv_saddr, |
| inet->sport, |
| "laddr", "lport"); |
| avc_print_ipv4_addr(ab, inet->daddr, |
| inet->dport, |
| "faddr", "fport"); |
| break; |
| } |
| case AF_INET6: { |
| struct inet_sock *inet = inet_sk(sk); |
| struct ipv6_pinfo *inet6 = inet6_sk(sk); |
| |
| avc_print_ipv6_addr(ab, &inet6->rcv_saddr, |
| inet->sport, |
| "laddr", "lport"); |
| avc_print_ipv6_addr(ab, &inet6->daddr, |
| inet->dport, |
| "faddr", "fport"); |
| break; |
| } |
| case AF_UNIX: |
| u = unix_sk(sk); |
| if (u->dentry) { |
| audit_avc_path(u->dentry, u->mnt); |
| audit_log_format(ab, " name="); |
| audit_log_untrustedstring(ab, u->dentry->d_name.name); |
| break; |
| } |
| if (!u->addr) |
| break; |
| len = u->addr->len-sizeof(short); |
| p = &u->addr->name->sun_path[0]; |
| audit_log_format(ab, " path="); |
| if (*p) |
| audit_log_untrustedstring(ab, p); |
| else |
| audit_log_hex(ab, p, len); |
| break; |
| } |
| } |
| |
| switch (a->u.net.family) { |
| case AF_INET: |
| avc_print_ipv4_addr(ab, a->u.net.v4info.saddr, |
| a->u.net.sport, |
| "saddr", "src"); |
| avc_print_ipv4_addr(ab, a->u.net.v4info.daddr, |
| a->u.net.dport, |
| "daddr", "dest"); |
| break; |
| case AF_INET6: |
| avc_print_ipv6_addr(ab, &a->u.net.v6info.saddr, |
| a->u.net.sport, |
| "saddr", "src"); |
| avc_print_ipv6_addr(ab, &a->u.net.v6info.daddr, |
| a->u.net.dport, |
| "daddr", "dest"); |
| break; |
| } |
| if (a->u.net.netif) |
| audit_log_format(ab, " netif=%s", |
| a->u.net.netif); |
| break; |
| } |
| } |
| audit_log_format(ab, " "); |
| avc_dump_query(ab, ssid, tsid, tclass); |
| audit_log_end(ab); |
| } |
| |
| /** |
| * avc_add_callback - Register a callback for security events. |
| * @callback: callback function |
| * @events: security events |
| * @ssid: source security identifier or %SECSID_WILD |
| * @tsid: target security identifier or %SECSID_WILD |
| * @tclass: target security class |
| * @perms: permissions |
| * |
| * Register a callback function for events in the set @events |
| * related to the SID pair (@ssid, @tsid) and |
| * and the permissions @perms, interpreting |
| * @perms based on @tclass. Returns %0 on success or |
| * -%ENOMEM if insufficient memory exists to add the callback. |
| */ |
| int avc_add_callback(int (*callback)(u32 event, u32 ssid, u32 tsid, |
| u16 tclass, u32 perms, |
| u32 *out_retained), |
| u32 events, u32 ssid, u32 tsid, |
| u16 tclass, u32 perms) |
| { |
| struct avc_callback_node *c; |
| int rc = 0; |
| |
| c = kmalloc(sizeof(*c), GFP_ATOMIC); |
| if (!c) { |
| rc = -ENOMEM; |
| goto out; |
| } |
| |
| c->callback = callback; |
| c->events = events; |
| c->ssid = ssid; |
| c->tsid = tsid; |
| c->perms = perms; |
| c->next = avc_callbacks; |
| avc_callbacks = c; |
| out: |
| return rc; |
| } |
| |
| static inline int avc_sidcmp(u32 x, u32 y) |
| { |
| return (x == y || x == SECSID_WILD || y == SECSID_WILD); |
| } |
| |
| /** |
| * avc_update_node Update an AVC entry |
| * @event : Updating event |
| * @perms : Permission mask bits |
| * @ssid,@tsid,@tclass : identifier of an AVC entry |
| * |
| * if a valid AVC entry doesn't exist,this function returns -ENOENT. |
| * if kmalloc() called internal returns NULL, this function returns -ENOMEM. |
| * otherwise, this function update the AVC entry. The original AVC-entry object |
| * will release later by RCU. |
| */ |
| static int avc_update_node(u32 event, u32 perms, u32 ssid, u32 tsid, u16 tclass) |
| { |
| int hvalue, rc = 0; |
| unsigned long flag; |
| struct avc_node *pos, *node, *orig = NULL; |
| |
| node = avc_alloc_node(); |
| if (!node) { |
| rc = -ENOMEM; |
| goto out; |
| } |
| |
| /* Lock the target slot */ |
| hvalue = avc_hash(ssid, tsid, tclass); |
| spin_lock_irqsave(&avc_cache.slots_lock[hvalue], flag); |
| |
| list_for_each_entry(pos, &avc_cache.slots[hvalue], list){ |
| if ( ssid==pos->ae.ssid && |
| tsid==pos->ae.tsid && |
| tclass==pos->ae.tclass ){ |
| orig = pos; |
| break; |
| } |
| } |
| |
| if (!orig) { |
| rc = -ENOENT; |
| avc_node_kill(node); |
| goto out_unlock; |
| } |
| |
| /* |
| * Copy and replace original node. |
| */ |
| |
| avc_node_populate(node, ssid, tsid, tclass, &orig->ae); |
| |
| switch (event) { |
| case AVC_CALLBACK_GRANT: |
| node->ae.avd.allowed |= perms; |
| break; |
| case AVC_CALLBACK_TRY_REVOKE: |
| case AVC_CALLBACK_REVOKE: |
| node->ae.avd.allowed &= ~perms; |
| break; |
| case AVC_CALLBACK_AUDITALLOW_ENABLE: |
| node->ae.avd.auditallow |= perms; |
| break; |
| case AVC_CALLBACK_AUDITALLOW_DISABLE: |
| node->ae.avd.auditallow &= ~perms; |
| break; |
| case AVC_CALLBACK_AUDITDENY_ENABLE: |
| node->ae.avd.auditdeny |= perms; |
| break; |
| case AVC_CALLBACK_AUDITDENY_DISABLE: |
| node->ae.avd.auditdeny &= ~perms; |
| break; |
| } |
| avc_node_replace(node, orig); |
| out_unlock: |
| spin_unlock_irqrestore(&avc_cache.slots_lock[hvalue], flag); |
| out: |
| return rc; |
| } |
| |
| /** |
| * avc_ss_reset - Flush the cache and revalidate migrated permissions. |
| * @seqno: policy sequence number |
| */ |
| int avc_ss_reset(u32 seqno) |
| { |
| struct avc_callback_node *c; |
| int i, rc = 0, tmprc; |
| unsigned long flag; |
| struct avc_node *node; |
| |
| for (i = 0; i < AVC_CACHE_SLOTS; i++) { |
| spin_lock_irqsave(&avc_cache.slots_lock[i], flag); |
| list_for_each_entry(node, &avc_cache.slots[i], list) |
| avc_node_delete(node); |
| spin_unlock_irqrestore(&avc_cache.slots_lock[i], flag); |
| } |
| |
| for (c = avc_callbacks; c; c = c->next) { |
| if (c->events & AVC_CALLBACK_RESET) { |
| tmprc = c->callback(AVC_CALLBACK_RESET, |
| 0, 0, 0, 0, NULL); |
| /* save the first error encountered for the return |
| value and continue processing the callbacks */ |
| if (!rc) |
| rc = tmprc; |
| } |
| } |
| |
| avc_latest_notif_update(seqno, 0); |
| return rc; |
| } |
| |
| /** |
| * avc_has_perm_noaudit - Check permissions but perform no auditing. |
| * @ssid: source security identifier |
| * @tsid: target security identifier |
| * @tclass: target security class |
| * @requested: requested permissions, interpreted based on @tclass |
| * @avd: access vector decisions |
| * |
| * Check the AVC to determine whether the @requested permissions are granted |
| * for the SID pair (@ssid, @tsid), interpreting the permissions |
| * based on @tclass, and call the security server on a cache miss to obtain |
| * a new decision and add it to the cache. Return a copy of the decisions |
| * in @avd. Return %0 if all @requested permissions are granted, |
| * -%EACCES if any permissions are denied, or another -errno upon |
| * other errors. This function is typically called by avc_has_perm(), |
| * but may also be called directly to separate permission checking from |
| * auditing, e.g. in cases where a lock must be held for the check but |
| * should be released for the auditing. |
| */ |
| int avc_has_perm_noaudit(u32 ssid, u32 tsid, |
| u16 tclass, u32 requested, |
| struct av_decision *avd) |
| { |
| struct avc_node *node; |
| struct avc_entry entry, *p_ae; |
| int rc = 0; |
| u32 denied; |
| |
| rcu_read_lock(); |
| |
| node = avc_lookup(ssid, tsid, tclass, requested); |
| if (!node) { |
| rcu_read_unlock(); |
| rc = security_compute_av(ssid,tsid,tclass,requested,&entry.avd); |
| if (rc) |
| goto out; |
| rcu_read_lock(); |
| node = avc_insert(ssid,tsid,tclass,&entry); |
| } |
| |
| p_ae = node ? &node->ae : &entry; |
| |
| if (avd) |
| memcpy(avd, &p_ae->avd, sizeof(*avd)); |
| |
| denied = requested & ~(p_ae->avd.allowed); |
| |
| if (!requested || denied) { |
| if (selinux_enforcing) |
| rc = -EACCES; |
| else |
| if (node) |
| avc_update_node(AVC_CALLBACK_GRANT,requested, |
| ssid,tsid,tclass); |
| } |
| |
| rcu_read_unlock(); |
| out: |
| return rc; |
| } |
| |
| /** |
| * avc_has_perm - Check permissions and perform any appropriate auditing. |
| * @ssid: source security identifier |
| * @tsid: target security identifier |
| * @tclass: target security class |
| * @requested: requested permissions, interpreted based on @tclass |
| * @auditdata: auxiliary audit data |
| * |
| * Check the AVC to determine whether the @requested permissions are granted |
| * for the SID pair (@ssid, @tsid), interpreting the permissions |
| * based on @tclass, and call the security server on a cache miss to obtain |
| * a new decision and add it to the cache. Audit the granting or denial of |
| * permissions in accordance with the policy. Return %0 if all @requested |
| * permissions are granted, -%EACCES if any permissions are denied, or |
| * another -errno upon other errors. |
| */ |
| int avc_has_perm(u32 ssid, u32 tsid, u16 tclass, |
| u32 requested, struct avc_audit_data *auditdata) |
| { |
| struct av_decision avd; |
| int rc; |
| |
| rc = avc_has_perm_noaudit(ssid, tsid, tclass, requested, &avd); |
| avc_audit(ssid, tsid, tclass, requested, &avd, rc, auditdata); |
| return rc; |
| } |