blob: c020b094fe7d952d91f1f977a02d35de52dff451 [file] [log] [blame]
/*
* xHCI host controller driver
*
* Copyright (C) 2008 Intel Corp.
*
* Author: Sarah Sharp
* Some code borrowed from the Linux EHCI driver.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <linux/pci.h>
#include <linux/irq.h>
#include <linux/log2.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/slab.h>
#include <linux/dmi.h>
#include <linux/dma-mapping.h>
#include "xhci.h"
#include "xhci-trace.h"
#define DRIVER_AUTHOR "Sarah Sharp"
#define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
/* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
static int link_quirk;
module_param(link_quirk, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
static unsigned int quirks;
module_param(quirks, uint, S_IRUGO);
MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
/* TODO: copied from ehci-hcd.c - can this be refactored? */
/*
* xhci_handshake - spin reading hc until handshake completes or fails
* @ptr: address of hc register to be read
* @mask: bits to look at in result of read
* @done: value of those bits when handshake succeeds
* @usec: timeout in microseconds
*
* Returns negative errno, or zero on success
*
* Success happens when the "mask" bits have the specified value (hardware
* handshake done). There are two failure modes: "usec" have passed (major
* hardware flakeout), or the register reads as all-ones (hardware removed).
*/
int xhci_handshake(struct xhci_hcd *xhci, void __iomem *ptr,
u32 mask, u32 done, int usec)
{
u32 result;
do {
result = readl(ptr);
if (result == ~(u32)0) /* card removed */
return -ENODEV;
result &= mask;
if (result == done)
return 0;
udelay(1);
usec--;
} while (usec > 0);
return -ETIMEDOUT;
}
/*
* Disable interrupts and begin the xHCI halting process.
*/
void xhci_quiesce(struct xhci_hcd *xhci)
{
u32 halted;
u32 cmd;
u32 mask;
mask = ~(XHCI_IRQS);
halted = readl(&xhci->op_regs->status) & STS_HALT;
if (!halted)
mask &= ~CMD_RUN;
cmd = readl(&xhci->op_regs->command);
cmd &= mask;
writel(cmd, &xhci->op_regs->command);
}
/*
* Force HC into halt state.
*
* Disable any IRQs and clear the run/stop bit.
* HC will complete any current and actively pipelined transactions, and
* should halt within 16 ms of the run/stop bit being cleared.
* Read HC Halted bit in the status register to see when the HC is finished.
*/
int xhci_halt(struct xhci_hcd *xhci)
{
int ret;
xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
xhci_quiesce(xhci);
ret = xhci_handshake(xhci, &xhci->op_regs->status,
STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
if (!ret) {
xhci->xhc_state |= XHCI_STATE_HALTED;
xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
} else
xhci_warn(xhci, "Host not halted after %u microseconds.\n",
XHCI_MAX_HALT_USEC);
return ret;
}
/*
* Set the run bit and wait for the host to be running.
*/
static int xhci_start(struct xhci_hcd *xhci)
{
u32 temp;
int ret;
temp = readl(&xhci->op_regs->command);
temp |= (CMD_RUN);
xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
temp);
writel(temp, &xhci->op_regs->command);
/*
* Wait for the HCHalted Status bit to be 0 to indicate the host is
* running.
*/
ret = xhci_handshake(xhci, &xhci->op_regs->status,
STS_HALT, 0, XHCI_MAX_HALT_USEC);
if (ret == -ETIMEDOUT)
xhci_err(xhci, "Host took too long to start, "
"waited %u microseconds.\n",
XHCI_MAX_HALT_USEC);
if (!ret)
xhci->xhc_state &= ~XHCI_STATE_HALTED;
return ret;
}
/*
* Reset a halted HC.
*
* This resets pipelines, timers, counters, state machines, etc.
* Transactions will be terminated immediately, and operational registers
* will be set to their defaults.
*/
int xhci_reset(struct xhci_hcd *xhci)
{
u32 command;
u32 state;
int ret, i;
state = readl(&xhci->op_regs->status);
if ((state & STS_HALT) == 0) {
xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
return 0;
}
xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
command = readl(&xhci->op_regs->command);
command |= CMD_RESET;
writel(command, &xhci->op_regs->command);
ret = xhci_handshake(xhci, &xhci->op_regs->command,
CMD_RESET, 0, 10 * 1000 * 1000);
if (ret)
return ret;
xhci_dbg_trace(xhci, trace_xhci_dbg_init,
"Wait for controller to be ready for doorbell rings");
/*
* xHCI cannot write to any doorbells or operational registers other
* than status until the "Controller Not Ready" flag is cleared.
*/
ret = xhci_handshake(xhci, &xhci->op_regs->status,
STS_CNR, 0, 10 * 1000 * 1000);
for (i = 0; i < 2; ++i) {
xhci->bus_state[i].port_c_suspend = 0;
xhci->bus_state[i].suspended_ports = 0;
xhci->bus_state[i].resuming_ports = 0;
}
return ret;
}
#ifdef CONFIG_PCI
static int xhci_free_msi(struct xhci_hcd *xhci)
{
int i;
if (!xhci->msix_entries)
return -EINVAL;
for (i = 0; i < xhci->msix_count; i++)
if (xhci->msix_entries[i].vector)
free_irq(xhci->msix_entries[i].vector,
xhci_to_hcd(xhci));
return 0;
}
/*
* Set up MSI
*/
static int xhci_setup_msi(struct xhci_hcd *xhci)
{
int ret;
struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
ret = pci_enable_msi(pdev);
if (ret) {
xhci_dbg_trace(xhci, trace_xhci_dbg_init,
"failed to allocate MSI entry");
return ret;
}
ret = request_irq(pdev->irq, xhci_msi_irq,
0, "xhci_hcd", xhci_to_hcd(xhci));
if (ret) {
xhci_dbg_trace(xhci, trace_xhci_dbg_init,
"disable MSI interrupt");
pci_disable_msi(pdev);
}
return ret;
}
/*
* Free IRQs
* free all IRQs request
*/
static void xhci_free_irq(struct xhci_hcd *xhci)
{
struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
int ret;
/* return if using legacy interrupt */
if (xhci_to_hcd(xhci)->irq > 0)
return;
ret = xhci_free_msi(xhci);
if (!ret)
return;
if (pdev->irq > 0)
free_irq(pdev->irq, xhci_to_hcd(xhci));
return;
}
/*
* Set up MSI-X
*/
static int xhci_setup_msix(struct xhci_hcd *xhci)
{
int i, ret = 0;
struct usb_hcd *hcd = xhci_to_hcd(xhci);
struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
/*
* calculate number of msi-x vectors supported.
* - HCS_MAX_INTRS: the max number of interrupts the host can handle,
* with max number of interrupters based on the xhci HCSPARAMS1.
* - num_online_cpus: maximum msi-x vectors per CPUs core.
* Add additional 1 vector to ensure always available interrupt.
*/
xhci->msix_count = min(num_online_cpus() + 1,
HCS_MAX_INTRS(xhci->hcs_params1));
xhci->msix_entries =
kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
GFP_KERNEL);
if (!xhci->msix_entries) {
xhci_err(xhci, "Failed to allocate MSI-X entries\n");
return -ENOMEM;
}
for (i = 0; i < xhci->msix_count; i++) {
xhci->msix_entries[i].entry = i;
xhci->msix_entries[i].vector = 0;
}
ret = pci_enable_msix_exact(pdev, xhci->msix_entries, xhci->msix_count);
if (ret) {
xhci_dbg_trace(xhci, trace_xhci_dbg_init,
"Failed to enable MSI-X");
goto free_entries;
}
for (i = 0; i < xhci->msix_count; i++) {
ret = request_irq(xhci->msix_entries[i].vector,
xhci_msi_irq,
0, "xhci_hcd", xhci_to_hcd(xhci));
if (ret)
goto disable_msix;
}
hcd->msix_enabled = 1;
return ret;
disable_msix:
xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
xhci_free_irq(xhci);
pci_disable_msix(pdev);
free_entries:
kfree(xhci->msix_entries);
xhci->msix_entries = NULL;
return ret;
}
/* Free any IRQs and disable MSI-X */
static void xhci_cleanup_msix(struct xhci_hcd *xhci)
{
struct usb_hcd *hcd = xhci_to_hcd(xhci);
struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
if (xhci->quirks & XHCI_PLAT)
return;
xhci_free_irq(xhci);
if (xhci->msix_entries) {
pci_disable_msix(pdev);
kfree(xhci->msix_entries);
xhci->msix_entries = NULL;
} else {
pci_disable_msi(pdev);
}
hcd->msix_enabled = 0;
return;
}
static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
{
int i;
if (xhci->msix_entries) {
for (i = 0; i < xhci->msix_count; i++)
synchronize_irq(xhci->msix_entries[i].vector);
}
}
static int xhci_try_enable_msi(struct usb_hcd *hcd)
{
struct xhci_hcd *xhci = hcd_to_xhci(hcd);
struct pci_dev *pdev;
int ret;
/* The xhci platform device has set up IRQs through usb_add_hcd. */
if (xhci->quirks & XHCI_PLAT)
return 0;
pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
/*
* Some Fresco Logic host controllers advertise MSI, but fail to
* generate interrupts. Don't even try to enable MSI.
*/
if (xhci->quirks & XHCI_BROKEN_MSI)
goto legacy_irq;
/* unregister the legacy interrupt */
if (hcd->irq)
free_irq(hcd->irq, hcd);
hcd->irq = 0;
ret = xhci_setup_msix(xhci);
if (ret)
/* fall back to msi*/
ret = xhci_setup_msi(xhci);
if (!ret)
/* hcd->irq is 0, we have MSI */
return 0;
if (!pdev->irq) {
xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
return -EINVAL;
}
legacy_irq:
if (!strlen(hcd->irq_descr))
snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
hcd->driver->description, hcd->self.busnum);
/* fall back to legacy interrupt*/
ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
hcd->irq_descr, hcd);
if (ret) {
xhci_err(xhci, "request interrupt %d failed\n",
pdev->irq);
return ret;
}
hcd->irq = pdev->irq;
return 0;
}
#else
static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
{
return 0;
}
static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
{
}
static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
{
}
#endif
static void compliance_mode_recovery(unsigned long arg)
{
struct xhci_hcd *xhci;
struct usb_hcd *hcd;
u32 temp;
int i;
xhci = (struct xhci_hcd *)arg;
for (i = 0; i < xhci->num_usb3_ports; i++) {
temp = readl(xhci->usb3_ports[i]);
if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
/*
* Compliance Mode Detected. Letting USB Core
* handle the Warm Reset
*/
xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
"Compliance mode detected->port %d",
i + 1);
xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
"Attempting compliance mode recovery");
hcd = xhci->shared_hcd;
if (hcd->state == HC_STATE_SUSPENDED)
usb_hcd_resume_root_hub(hcd);
usb_hcd_poll_rh_status(hcd);
}
}
if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
mod_timer(&xhci->comp_mode_recovery_timer,
jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
}
/*
* Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
* that causes ports behind that hardware to enter compliance mode sometimes.
* The quirk creates a timer that polls every 2 seconds the link state of
* each host controller's port and recovers it by issuing a Warm reset
* if Compliance mode is detected, otherwise the port will become "dead" (no
* device connections or disconnections will be detected anymore). Becasue no
* status event is generated when entering compliance mode (per xhci spec),
* this quirk is needed on systems that have the failing hardware installed.
*/
static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
{
xhci->port_status_u0 = 0;
init_timer(&xhci->comp_mode_recovery_timer);
xhci->comp_mode_recovery_timer.data = (unsigned long) xhci;
xhci->comp_mode_recovery_timer.function = compliance_mode_recovery;
xhci->comp_mode_recovery_timer.expires = jiffies +
msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
set_timer_slack(&xhci->comp_mode_recovery_timer,
msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
add_timer(&xhci->comp_mode_recovery_timer);
xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
"Compliance mode recovery timer initialized");
}
/*
* This function identifies the systems that have installed the SN65LVPE502CP
* USB3.0 re-driver and that need the Compliance Mode Quirk.
* Systems:
* Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
*/
bool xhci_compliance_mode_recovery_timer_quirk_check(void)
{
const char *dmi_product_name, *dmi_sys_vendor;
dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
if (!dmi_product_name || !dmi_sys_vendor)
return false;
if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
return false;
if (strstr(dmi_product_name, "Z420") ||
strstr(dmi_product_name, "Z620") ||
strstr(dmi_product_name, "Z820") ||
strstr(dmi_product_name, "Z1 Workstation"))
return true;
return false;
}
static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
{
return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
}
/*
* Initialize memory for HCD and xHC (one-time init).
*
* Program the PAGESIZE register, initialize the device context array, create
* device contexts (?), set up a command ring segment (or two?), create event
* ring (one for now).
*/
int xhci_init(struct usb_hcd *hcd)
{
struct xhci_hcd *xhci = hcd_to_xhci(hcd);
int retval = 0;
xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
spin_lock_init(&xhci->lock);
if (xhci->hci_version == 0x95 && link_quirk) {
xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
"QUIRK: Not clearing Link TRB chain bits.");
xhci->quirks |= XHCI_LINK_TRB_QUIRK;
} else {
xhci_dbg_trace(xhci, trace_xhci_dbg_init,
"xHCI doesn't need link TRB QUIRK");
}
retval = xhci_mem_init(xhci, GFP_KERNEL);
xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
/* Initializing Compliance Mode Recovery Data If Needed */
if (xhci_compliance_mode_recovery_timer_quirk_check()) {
xhci->quirks |= XHCI_COMP_MODE_QUIRK;
compliance_mode_recovery_timer_init(xhci);
}
return retval;
}
/*-------------------------------------------------------------------------*/
static int xhci_run_finished(struct xhci_hcd *xhci)
{
if (xhci_start(xhci)) {
xhci_halt(xhci);
return -ENODEV;
}
xhci->shared_hcd->state = HC_STATE_RUNNING;
xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
if (xhci->quirks & XHCI_NEC_HOST)
xhci_ring_cmd_db(xhci);
xhci_dbg_trace(xhci, trace_xhci_dbg_init,
"Finished xhci_run for USB3 roothub");
return 0;
}
/*
* Start the HC after it was halted.
*
* This function is called by the USB core when the HC driver is added.
* Its opposite is xhci_stop().
*
* xhci_init() must be called once before this function can be called.
* Reset the HC, enable device slot contexts, program DCBAAP, and
* set command ring pointer and event ring pointer.
*
* Setup MSI-X vectors and enable interrupts.
*/
int xhci_run(struct usb_hcd *hcd)
{
u32 temp;
u64 temp_64;
int ret;
struct xhci_hcd *xhci = hcd_to_xhci(hcd);
/* Start the xHCI host controller running only after the USB 2.0 roothub
* is setup.
*/
hcd->uses_new_polling = 1;
if (!usb_hcd_is_primary_hcd(hcd))
return xhci_run_finished(xhci);
xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
ret = xhci_try_enable_msi(hcd);
if (ret)
return ret;
xhci_dbg(xhci, "Command ring memory map follows:\n");
xhci_debug_ring(xhci, xhci->cmd_ring);
xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
xhci_dbg_cmd_ptrs(xhci);
xhci_dbg(xhci, "ERST memory map follows:\n");
xhci_dbg_erst(xhci, &xhci->erst);
xhci_dbg(xhci, "Event ring:\n");
xhci_debug_ring(xhci, xhci->event_ring);
xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
temp_64 &= ~ERST_PTR_MASK;
xhci_dbg_trace(xhci, trace_xhci_dbg_init,
"ERST deq = 64'h%0lx", (long unsigned int) temp_64);
xhci_dbg_trace(xhci, trace_xhci_dbg_init,
"// Set the interrupt modulation register");
temp = readl(&xhci->ir_set->irq_control);
temp &= ~ER_IRQ_INTERVAL_MASK;
temp |= (u32) 160;
writel(temp, &xhci->ir_set->irq_control);
/* Set the HCD state before we enable the irqs */
temp = readl(&xhci->op_regs->command);
temp |= (CMD_EIE);
xhci_dbg_trace(xhci, trace_xhci_dbg_init,
"// Enable interrupts, cmd = 0x%x.", temp);
writel(temp, &xhci->op_regs->command);
temp = readl(&xhci->ir_set->irq_pending);
xhci_dbg_trace(xhci, trace_xhci_dbg_init,
"// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
xhci_print_ir_set(xhci, 0);
if (xhci->quirks & XHCI_NEC_HOST) {
struct xhci_command *command;
command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
if (!command)
return -ENOMEM;
xhci_queue_vendor_command(xhci, command, 0, 0, 0,
TRB_TYPE(TRB_NEC_GET_FW));
}
xhci_dbg_trace(xhci, trace_xhci_dbg_init,
"Finished xhci_run for USB2 roothub");
return 0;
}
static void xhci_only_stop_hcd(struct usb_hcd *hcd)
{
struct xhci_hcd *xhci = hcd_to_xhci(hcd);
spin_lock_irq(&xhci->lock);
xhci_halt(xhci);
/* The shared_hcd is going to be deallocated shortly (the USB core only
* calls this function when allocation fails in usb_add_hcd(), or
* usb_remove_hcd() is called). So we need to unset xHCI's pointer.
*/
xhci->shared_hcd = NULL;
spin_unlock_irq(&xhci->lock);
}
/*
* Stop xHCI driver.
*
* This function is called by the USB core when the HC driver is removed.
* Its opposite is xhci_run().
*
* Disable device contexts, disable IRQs, and quiesce the HC.
* Reset the HC, finish any completed transactions, and cleanup memory.
*/
void xhci_stop(struct usb_hcd *hcd)
{
u32 temp;
struct xhci_hcd *xhci = hcd_to_xhci(hcd);
if (!usb_hcd_is_primary_hcd(hcd)) {
xhci_only_stop_hcd(xhci->shared_hcd);
return;
}
spin_lock_irq(&xhci->lock);
/* Make sure the xHC is halted for a USB3 roothub
* (xhci_stop() could be called as part of failed init).
*/
xhci_halt(xhci);
xhci_reset(xhci);
spin_unlock_irq(&xhci->lock);
xhci_cleanup_msix(xhci);
/* Deleting Compliance Mode Recovery Timer */
if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
(!(xhci_all_ports_seen_u0(xhci)))) {
del_timer_sync(&xhci->comp_mode_recovery_timer);
xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
"%s: compliance mode recovery timer deleted",
__func__);
}
if (xhci->quirks & XHCI_AMD_PLL_FIX)
usb_amd_dev_put();
xhci_dbg_trace(xhci, trace_xhci_dbg_init,
"// Disabling event ring interrupts");
temp = readl(&xhci->op_regs->status);
writel(temp & ~STS_EINT, &xhci->op_regs->status);
temp = readl(&xhci->ir_set->irq_pending);
writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
xhci_print_ir_set(xhci, 0);
xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
xhci_mem_cleanup(xhci);
xhci_dbg_trace(xhci, trace_xhci_dbg_init,
"xhci_stop completed - status = %x",
readl(&xhci->op_regs->status));
}
/*
* Shutdown HC (not bus-specific)
*
* This is called when the machine is rebooting or halting. We assume that the
* machine will be powered off, and the HC's internal state will be reset.
* Don't bother to free memory.
*
* This will only ever be called with the main usb_hcd (the USB3 roothub).
*/
void xhci_shutdown(struct usb_hcd *hcd)
{
struct xhci_hcd *xhci = hcd_to_xhci(hcd);
if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
spin_lock_irq(&xhci->lock);
xhci_halt(xhci);
/* Workaround for spurious wakeups at shutdown with HSW */
if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
xhci_reset(xhci);
spin_unlock_irq(&xhci->lock);
xhci_cleanup_msix(xhci);
xhci_dbg_trace(xhci, trace_xhci_dbg_init,
"xhci_shutdown completed - status = %x",
readl(&xhci->op_regs->status));
/* Yet another workaround for spurious wakeups at shutdown with HSW */
if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
pci_set_power_state(to_pci_dev(hcd->self.controller), PCI_D3hot);
}
#ifdef CONFIG_PM
static void xhci_save_registers(struct xhci_hcd *xhci)
{
xhci->s3.command = readl(&xhci->op_regs->command);
xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
}
static void xhci_restore_registers(struct xhci_hcd *xhci)
{
writel(xhci->s3.command, &xhci->op_regs->command);
writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
}
static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
{
u64 val_64;
/* step 2: initialize command ring buffer */
val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
(xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
xhci->cmd_ring->dequeue) &
(u64) ~CMD_RING_RSVD_BITS) |
xhci->cmd_ring->cycle_state;
xhci_dbg_trace(xhci, trace_xhci_dbg_init,
"// Setting command ring address to 0x%llx",
(long unsigned long) val_64);
xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
}
/*
* The whole command ring must be cleared to zero when we suspend the host.
*
* The host doesn't save the command ring pointer in the suspend well, so we
* need to re-program it on resume. Unfortunately, the pointer must be 64-byte
* aligned, because of the reserved bits in the command ring dequeue pointer
* register. Therefore, we can't just set the dequeue pointer back in the
* middle of the ring (TRBs are 16-byte aligned).
*/
static void xhci_clear_command_ring(struct xhci_hcd *xhci)
{
struct xhci_ring *ring;
struct xhci_segment *seg;
ring = xhci->cmd_ring;
seg = ring->deq_seg;
do {
memset(seg->trbs, 0,
sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
cpu_to_le32(~TRB_CYCLE);
seg = seg->next;
} while (seg != ring->deq_seg);
/* Reset the software enqueue and dequeue pointers */
ring->deq_seg = ring->first_seg;
ring->dequeue = ring->first_seg->trbs;
ring->enq_seg = ring->deq_seg;
ring->enqueue = ring->dequeue;
ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
/*
* Ring is now zeroed, so the HW should look for change of ownership
* when the cycle bit is set to 1.
*/
ring->cycle_state = 1;
/*
* Reset the hardware dequeue pointer.
* Yes, this will need to be re-written after resume, but we're paranoid
* and want to make sure the hardware doesn't access bogus memory
* because, say, the BIOS or an SMI started the host without changing
* the command ring pointers.
*/
xhci_set_cmd_ring_deq(xhci);
}
/*
* Stop HC (not bus-specific)
*
* This is called when the machine transition into S3/S4 mode.
*
*/
int xhci_suspend(struct xhci_hcd *xhci)
{
int rc = 0;
unsigned int delay = XHCI_MAX_HALT_USEC;
struct usb_hcd *hcd = xhci_to_hcd(xhci);
u32 command;
if (hcd->state != HC_STATE_SUSPENDED ||
xhci->shared_hcd->state != HC_STATE_SUSPENDED)
return -EINVAL;
/* Don't poll the roothubs on bus suspend. */
xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
del_timer_sync(&hcd->rh_timer);
spin_lock_irq(&xhci->lock);
clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
/* step 1: stop endpoint */
/* skipped assuming that port suspend has done */
/* step 2: clear Run/Stop bit */
command = readl(&xhci->op_regs->command);
command &= ~CMD_RUN;
writel(command, &xhci->op_regs->command);
/* Some chips from Fresco Logic need an extraordinary delay */
delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
if (xhci_handshake(xhci, &xhci->op_regs->status,
STS_HALT, STS_HALT, delay)) {
xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
spin_unlock_irq(&xhci->lock);
return -ETIMEDOUT;
}
xhci_clear_command_ring(xhci);
/* step 3: save registers */
xhci_save_registers(xhci);
/* step 4: set CSS flag */
command = readl(&xhci->op_regs->command);
command |= CMD_CSS;
writel(command, &xhci->op_regs->command);
if (xhci_handshake(xhci, &xhci->op_regs->status,
STS_SAVE, 0, 10 * 1000)) {
xhci_warn(xhci, "WARN: xHC save state timeout\n");
spin_unlock_irq(&xhci->lock);
return -ETIMEDOUT;
}
spin_unlock_irq(&xhci->lock);
/*
* Deleting Compliance Mode Recovery Timer because the xHCI Host
* is about to be suspended.
*/
if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
(!(xhci_all_ports_seen_u0(xhci)))) {
del_timer_sync(&xhci->comp_mode_recovery_timer);
xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
"%s: compliance mode recovery timer deleted",
__func__);
}
/* step 5: remove core well power */
/* synchronize irq when using MSI-X */
xhci_msix_sync_irqs(xhci);
return rc;
}
/*
* start xHC (not bus-specific)
*
* This is called when the machine transition from S3/S4 mode.
*
*/
int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
{
u32 command, temp = 0, status;
struct usb_hcd *hcd = xhci_to_hcd(xhci);
struct usb_hcd *secondary_hcd;
int retval = 0;
bool comp_timer_running = false;
/* Wait a bit if either of the roothubs need to settle from the
* transition into bus suspend.
*/
if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
time_before(jiffies,
xhci->bus_state[1].next_statechange))
msleep(100);
set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
spin_lock_irq(&xhci->lock);
if (xhci->quirks & XHCI_RESET_ON_RESUME)
hibernated = true;
if (!hibernated) {
/* step 1: restore register */
xhci_restore_registers(xhci);
/* step 2: initialize command ring buffer */
xhci_set_cmd_ring_deq(xhci);
/* step 3: restore state and start state*/
/* step 3: set CRS flag */
command = readl(&xhci->op_regs->command);
command |= CMD_CRS;
writel(command, &xhci->op_regs->command);
if (xhci_handshake(xhci, &xhci->op_regs->status,
STS_RESTORE, 0, 10 * 1000)) {
xhci_warn(xhci, "WARN: xHC restore state timeout\n");
spin_unlock_irq(&xhci->lock);
return -ETIMEDOUT;
}
temp = readl(&xhci->op_regs->status);
}
/* If restore operation fails, re-initialize the HC during resume */
if ((temp & STS_SRE) || hibernated) {
if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
!(xhci_all_ports_seen_u0(xhci))) {
del_timer_sync(&xhci->comp_mode_recovery_timer);
xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
"Compliance Mode Recovery Timer deleted!");
}
/* Let the USB core know _both_ roothubs lost power. */
usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
xhci_dbg(xhci, "Stop HCD\n");
xhci_halt(xhci);
xhci_reset(xhci);
spin_unlock_irq(&xhci->lock);
xhci_cleanup_msix(xhci);
xhci_dbg(xhci, "// Disabling event ring interrupts\n");
temp = readl(&xhci->op_regs->status);
writel(temp & ~STS_EINT, &xhci->op_regs->status);
temp = readl(&xhci->ir_set->irq_pending);
writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
xhci_print_ir_set(xhci, 0);
xhci_dbg(xhci, "cleaning up memory\n");
xhci_mem_cleanup(xhci);
xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
readl(&xhci->op_regs->status));
/* USB core calls the PCI reinit and start functions twice:
* first with the primary HCD, and then with the secondary HCD.
* If we don't do the same, the host will never be started.
*/
if (!usb_hcd_is_primary_hcd(hcd))
secondary_hcd = hcd;
else
secondary_hcd = xhci->shared_hcd;
xhci_dbg(xhci, "Initialize the xhci_hcd\n");
retval = xhci_init(hcd->primary_hcd);
if (retval)
return retval;
comp_timer_running = true;
xhci_dbg(xhci, "Start the primary HCD\n");
retval = xhci_run(hcd->primary_hcd);
if (!retval) {
xhci_dbg(xhci, "Start the secondary HCD\n");
retval = xhci_run(secondary_hcd);
}
hcd->state = HC_STATE_SUSPENDED;
xhci->shared_hcd->state = HC_STATE_SUSPENDED;
goto done;
}
/* step 4: set Run/Stop bit */
command = readl(&xhci->op_regs->command);
command |= CMD_RUN;
writel(command, &xhci->op_regs->command);
xhci_handshake(xhci, &xhci->op_regs->status, STS_HALT,
0, 250 * 1000);
/* step 5: walk topology and initialize portsc,
* portpmsc and portli
*/
/* this is done in bus_resume */
/* step 6: restart each of the previously
* Running endpoints by ringing their doorbells
*/
spin_unlock_irq(&xhci->lock);
done:
if (retval == 0) {
/* Resume root hubs only when have pending events. */
status = readl(&xhci->op_regs->status);
if (status & STS_EINT) {
usb_hcd_resume_root_hub(hcd);
usb_hcd_resume_root_hub(xhci->shared_hcd);
}
}
/*
* If system is subject to the Quirk, Compliance Mode Timer needs to
* be re-initialized Always after a system resume. Ports are subject
* to suffer the Compliance Mode issue again. It doesn't matter if
* ports have entered previously to U0 before system's suspension.
*/
if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
compliance_mode_recovery_timer_init(xhci);
/* Re-enable port polling. */
xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
usb_hcd_poll_rh_status(hcd);
return retval;
}
#endif /* CONFIG_PM */
/*-------------------------------------------------------------------------*/
/**
* xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
* HCDs. Find the index for an endpoint given its descriptor. Use the return
* value to right shift 1 for the bitmask.
*
* Index = (epnum * 2) + direction - 1,
* where direction = 0 for OUT, 1 for IN.
* For control endpoints, the IN index is used (OUT index is unused), so
* index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
*/
unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
{
unsigned int index;
if (usb_endpoint_xfer_control(desc))
index = (unsigned int) (usb_endpoint_num(desc)*2);
else
index = (unsigned int) (usb_endpoint_num(desc)*2) +
(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
return index;
}
/* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
* address from the XHCI endpoint index.
*/
unsigned int xhci_get_endpoint_address(unsigned int ep_index)
{
unsigned int number = DIV_ROUND_UP(ep_index, 2);
unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
return direction | number;
}
/* Find the flag for this endpoint (for use in the control context). Use the
* endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
* bit 1, etc.
*/
unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
{
return 1 << (xhci_get_endpoint_index(desc) + 1);
}
/* Find the flag for this endpoint (for use in the control context). Use the
* endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
* bit 1, etc.
*/
unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
{
return 1 << (ep_index + 1);
}
/* Compute the last valid endpoint context index. Basically, this is the
* endpoint index plus one. For slot contexts with more than valid endpoint,
* we find the most significant bit set in the added contexts flags.
* e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
* fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
*/
unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
{
return fls(added_ctxs) - 1;
}
/* Returns 1 if the arguments are OK;
* returns 0 this is a root hub; returns -EINVAL for NULL pointers.
*/
static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
const char *func) {
struct xhci_hcd *xhci;
struct xhci_virt_device *virt_dev;
if (!hcd || (check_ep && !ep) || !udev) {
pr_debug("xHCI %s called with invalid args\n", func);
return -EINVAL;
}
if (!udev->parent) {
pr_debug("xHCI %s called for root hub\n", func);
return 0;
}
xhci = hcd_to_xhci(hcd);
if (check_virt_dev) {
if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
func);
return -EINVAL;
}
virt_dev = xhci->devs[udev->slot_id];
if (virt_dev->udev != udev) {
xhci_dbg(xhci, "xHCI %s called with udev and "
"virt_dev does not match\n", func);
return -EINVAL;
}
}
if (xhci->xhc_state & XHCI_STATE_HALTED)
return -ENODEV;
return 1;
}
static int xhci_configure_endpoint(struct xhci_hcd *xhci,
struct usb_device *udev, struct xhci_command *command,
bool ctx_change, bool must_succeed);
/*
* Full speed devices may have a max packet size greater than 8 bytes, but the
* USB core doesn't know that until it reads the first 8 bytes of the
* descriptor. If the usb_device's max packet size changes after that point,
* we need to issue an evaluate context command and wait on it.
*/
static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
unsigned int ep_index, struct urb *urb)
{
struct xhci_container_ctx *out_ctx;
struct xhci_input_control_ctx *ctrl_ctx;
struct xhci_ep_ctx *ep_ctx;
struct xhci_command *command;
int max_packet_size;
int hw_max_packet_size;
int ret = 0;
out_ctx = xhci->devs[slot_id]->out_ctx;
ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
if (hw_max_packet_size != max_packet_size) {
xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
"Max Packet Size for ep 0 changed.");
xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
"Max packet size in usb_device = %d",
max_packet_size);
xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
"Max packet size in xHCI HW = %d",
hw_max_packet_size);
xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
"Issuing evaluate context command.");
/* Set up the input context flags for the command */
/* FIXME: This won't work if a non-default control endpoint
* changes max packet sizes.
*/
command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
if (!command)
return -ENOMEM;
command->in_ctx = xhci->devs[slot_id]->in_ctx;
ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
if (!ctrl_ctx) {
xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
__func__);
ret = -ENOMEM;
goto command_cleanup;
}
/* Set up the modified control endpoint 0 */
xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
xhci->devs[slot_id]->out_ctx, ep_index);
ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
ctrl_ctx->drop_flags = 0;
xhci_dbg(xhci, "Slot %d input context\n", slot_id);
xhci_dbg_ctx(xhci, command->in_ctx, ep_index);
xhci_dbg(xhci, "Slot %d output context\n", slot_id);
xhci_dbg_ctx(xhci, out_ctx, ep_index);
ret = xhci_configure_endpoint(xhci, urb->dev, command,
true, false);
/* Clean up the input context for later use by bandwidth
* functions.
*/
ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
command_cleanup:
kfree(command->completion);
kfree(command);
}
return ret;
}
/*
* non-error returns are a promise to giveback() the urb later
* we drop ownership so next owner (or urb unlink) can get it
*/
int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
{
struct xhci_hcd *xhci = hcd_to_xhci(hcd);
struct xhci_td *buffer;
unsigned long flags;
int ret = 0;
unsigned int slot_id, ep_index;
struct urb_priv *urb_priv;
int size, i;
if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
true, true, __func__) <= 0)
return -EINVAL;
slot_id = urb->dev->slot_id;
ep_index = xhci_get_endpoint_index(&urb->ep->desc);
if (!HCD_HW_ACCESSIBLE(hcd)) {
if (!in_interrupt())
xhci_dbg(xhci, "urb submitted during PCI suspend\n");
ret = -ESHUTDOWN;
goto exit;
}
if (usb_endpoint_xfer_isoc(&urb->ep->desc))
size = urb->number_of_packets;
else
size = 1;
urb_priv = kzalloc(sizeof(struct urb_priv) +
size * sizeof(struct xhci_td *), mem_flags);
if (!urb_priv)
return -ENOMEM;
buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
if (!buffer) {
kfree(urb_priv);
return -ENOMEM;
}
for (i = 0; i < size; i++) {
urb_priv->td[i] = buffer;
buffer++;
}
urb_priv->length = size;
urb_priv->td_cnt = 0;
urb->hcpriv = urb_priv;
if (usb_endpoint_xfer_control(&urb->ep->desc)) {
/* Check to see if the max packet size for the default control
* endpoint changed during FS device enumeration
*/
if (urb->dev->speed == USB_SPEED_FULL) {
ret = xhci_check_maxpacket(xhci, slot_id,
ep_index, urb);
if (ret < 0) {
xhci_urb_free_priv(xhci, urb_priv);
urb->hcpriv = NULL;
return ret;
}
}
/* We have a spinlock and interrupts disabled, so we must pass
* atomic context to this function, which may allocate memory.
*/
spin_lock_irqsave(&xhci->lock, flags);
if (xhci->xhc_state & XHCI_STATE_DYING)
goto dying;
ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
slot_id, ep_index);
if (ret)
goto free_priv;
spin_unlock_irqrestore(&xhci->lock, flags);
} else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
spin_lock_irqsave(&xhci->lock, flags);
if (xhci->xhc_state & XHCI_STATE_DYING)
goto dying;
if (xhci->devs[slot_id]->eps[ep_index].ep_state &
EP_GETTING_STREAMS) {
xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
"is transitioning to using streams.\n");
ret = -EINVAL;
} else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
EP_GETTING_NO_STREAMS) {
xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
"is transitioning to "
"not having streams.\n");
ret = -EINVAL;
} else {
ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
slot_id, ep_index);
}
if (ret)
goto free_priv;
spin_unlock_irqrestore(&xhci->lock, flags);
} else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
spin_lock_irqsave(&xhci->lock, flags);
if (xhci->xhc_state & XHCI_STATE_DYING)
goto dying;
ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
slot_id, ep_index);
if (ret)
goto free_priv;
spin_unlock_irqrestore(&xhci->lock, flags);
} else {
spin_lock_irqsave(&xhci->lock, flags);
if (xhci->xhc_state & XHCI_STATE_DYING)
goto dying;
ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
slot_id, ep_index);
if (ret)
goto free_priv;
spin_unlock_irqrestore(&xhci->lock, flags);
}
exit:
return ret;
dying:
xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
"non-responsive xHCI host.\n",
urb->ep->desc.bEndpointAddress, urb);
ret = -ESHUTDOWN;
free_priv:
xhci_urb_free_priv(xhci, urb_priv);
urb->hcpriv = NULL;
spin_unlock_irqrestore(&xhci->lock, flags);
return ret;
}
/* Get the right ring for the given URB.
* If the endpoint supports streams, boundary check the URB's stream ID.
* If the endpoint doesn't support streams, return the singular endpoint ring.
*/
static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
struct urb *urb)
{
unsigned int slot_id;
unsigned int ep_index;
unsigned int stream_id;
struct xhci_virt_ep *ep;
slot_id = urb->dev->slot_id;
ep_index = xhci_get_endpoint_index(&urb->ep->desc);
stream_id = urb->stream_id;
ep = &xhci->devs[slot_id]->eps[ep_index];
/* Common case: no streams */
if (!(ep->ep_state & EP_HAS_STREAMS))
return ep->ring;
if (stream_id == 0) {
xhci_warn(xhci,
"WARN: Slot ID %u, ep index %u has streams, "
"but URB has no stream ID.\n",
slot_id, ep_index);
return NULL;
}
if (stream_id < ep->stream_info->num_streams)
return ep->stream_info->stream_rings[stream_id];
xhci_warn(xhci,
"WARN: Slot ID %u, ep index %u has "
"stream IDs 1 to %u allocated, "
"but stream ID %u is requested.\n",
slot_id, ep_index,
ep->stream_info->num_streams - 1,
stream_id);
return NULL;
}
/*
* Remove the URB's TD from the endpoint ring. This may cause the HC to stop
* USB transfers, potentially stopping in the middle of a TRB buffer. The HC
* should pick up where it left off in the TD, unless a Set Transfer Ring
* Dequeue Pointer is issued.
*
* The TRBs that make up the buffers for the canceled URB will be "removed" from
* the ring. Since the ring is a contiguous structure, they can't be physically
* removed. Instead, there are two options:
*
* 1) If the HC is in the middle of processing the URB to be canceled, we
* simply move the ring's dequeue pointer past those TRBs using the Set
* Transfer Ring Dequeue Pointer command. This will be the common case,
* when drivers timeout on the last submitted URB and attempt to cancel.
*
* 2) If the HC is in the middle of a different TD, we turn the TRBs into a
* series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The
* HC will need to invalidate the any TRBs it has cached after the stop
* endpoint command, as noted in the xHCI 0.95 errata.
*
* 3) The TD may have completed by the time the Stop Endpoint Command
* completes, so software needs to handle that case too.
*
* This function should protect against the TD enqueueing code ringing the
* doorbell while this code is waiting for a Stop Endpoint command to complete.
* It also needs to account for multiple cancellations on happening at the same
* time for the same endpoint.
*
* Note that this function can be called in any context, or so says
* usb_hcd_unlink_urb()
*/
int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
{
unsigned long flags;
int ret, i;
u32 temp;
struct xhci_hcd *xhci;
struct urb_priv *urb_priv;
struct xhci_td *td;
unsigned int ep_index;
struct xhci_ring *ep_ring;
struct xhci_virt_ep *ep;
struct xhci_command *command;
xhci = hcd_to_xhci(hcd);
spin_lock_irqsave(&xhci->lock, flags);
/* Make sure the URB hasn't completed or been unlinked already */
ret = usb_hcd_check_unlink_urb(hcd, urb, status);
if (ret || !urb->hcpriv)
goto done;
temp = readl(&xhci->op_regs->status);
if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
"HW died, freeing TD.");
urb_priv = urb->hcpriv;
for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
td = urb_priv->td[i];
if (!list_empty(&td->td_list))
list_del_init(&td->td_list);
if (!list_empty(&td->cancelled_td_list))
list_del_init(&td->cancelled_td_list);
}
usb_hcd_unlink_urb_from_ep(hcd, urb);
spin_unlock_irqrestore(&xhci->lock, flags);
usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
xhci_urb_free_priv(xhci, urb_priv);
return ret;
}
if ((xhci->xhc_state & XHCI_STATE_DYING) ||
(xhci->xhc_state & XHCI_STATE_HALTED)) {
xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
"Ep 0x%x: URB %p to be canceled on "
"non-responsive xHCI host.",
urb->ep->desc.bEndpointAddress, urb);
/* Let the stop endpoint command watchdog timer (which set this
* state) finish cleaning up the endpoint TD lists. We must
* have caught it in the middle of dropping a lock and giving
* back an URB.
*/
goto done;
}
ep_index = xhci_get_endpoint_index(&urb->ep->desc);
ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
if (!ep_ring) {
ret = -EINVAL;
goto done;
}
urb_priv = urb->hcpriv;
i = urb_priv->td_cnt;
if (i < urb_priv->length)
xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
"Cancel URB %p, dev %s, ep 0x%x, "
"starting at offset 0x%llx",
urb, urb->dev->devpath,
urb->ep->desc.bEndpointAddress,
(unsigned long long) xhci_trb_virt_to_dma(
urb_priv->td[i]->start_seg,
urb_priv->td[i]->first_trb));
for (; i < urb_priv->length; i++) {
td = urb_priv->td[i];
list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
}
/* Queue a stop endpoint command, but only if this is
* the first cancellation to be handled.
*/
if (!(ep->ep_state & EP_HALT_PENDING)) {
command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
if (!command) {
ret = -ENOMEM;
goto done;
}
ep->ep_state |= EP_HALT_PENDING;
ep->stop_cmds_pending++;
ep->stop_cmd_timer.expires = jiffies +
XHCI_STOP_EP_CMD_TIMEOUT * HZ;
add_timer(&ep->stop_cmd_timer);
xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
ep_index, 0);
xhci_ring_cmd_db(xhci);
}
done:
spin_unlock_irqrestore(&xhci->lock, flags);
return ret;
}
/* Drop an endpoint from a new bandwidth configuration for this device.
* Only one call to this function is allowed per endpoint before
* check_bandwidth() or reset_bandwidth() must be called.
* A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
* add the endpoint to the schedule with possibly new parameters denoted by a
* different endpoint descriptor in usb_host_endpoint.
* A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
* not allowed.
*
* The USB core will not allow URBs to be queued to an endpoint that is being
* disabled, so there's no need for mutual exclusion to protect
* the xhci->devs[slot_id] structure.
*/
int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
struct usb_host_endpoint *ep)
{
struct xhci_hcd *xhci;
struct xhci_container_ctx *in_ctx, *out_ctx;
struct xhci_input_control_ctx *ctrl_ctx;
unsigned int ep_index;
struct xhci_ep_ctx *ep_ctx;
u32 drop_flag;
u32 new_add_flags, new_drop_flags;
int ret;
ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
if (ret <= 0)
return ret;
xhci = hcd_to_xhci(hcd);
if (xhci->xhc_state & XHCI_STATE_DYING)
return -ENODEV;
xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
drop_flag = xhci_get_endpoint_flag(&ep->desc);
if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
__func__, drop_flag);
return 0;
}
in_ctx = xhci->devs[udev->slot_id]->in_ctx;
out_ctx = xhci->devs[udev->slot_id]->out_ctx;
ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
if (!ctrl_ctx) {
xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
__func__);
return 0;
}
ep_index = xhci_get_endpoint_index(&ep->desc);
ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
/* If the HC already knows the endpoint is disabled,
* or the HCD has noted it is disabled, ignore this request
*/
if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
cpu_to_le32(EP_STATE_DISABLED)) ||
le32_to_cpu(ctrl_ctx->drop_flags) &
xhci_get_endpoint_flag(&ep->desc)) {
xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
__func__, ep);
return 0;
}
ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
(unsigned int) ep->desc.bEndpointAddress,
udev->slot_id,
(unsigned int) new_drop_flags,
(unsigned int) new_add_flags);
return 0;
}
/* Add an endpoint to a new possible bandwidth configuration for this device.
* Only one call to this function is allowed per endpoint before
* check_bandwidth() or reset_bandwidth() must be called.
* A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
* add the endpoint to the schedule with possibly new parameters denoted by a
* different endpoint descriptor in usb_host_endpoint.
* A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
* not allowed.
*
* The USB core will not allow URBs to be queued to an endpoint until the
* configuration or alt setting is installed in the device, so there's no need
* for mutual exclusion to protect the xhci->devs[slot_id] structure.
*/
int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
struct usb_host_endpoint *ep)
{
struct xhci_hcd *xhci;
struct xhci_container_ctx *in_ctx, *out_ctx;
unsigned int ep_index;
struct xhci_input_control_ctx *ctrl_ctx;
u32 added_ctxs;
u32 new_add_flags, new_drop_flags;
struct xhci_virt_device *virt_dev;
int ret = 0;
ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
if (ret <= 0) {
/* So we won't queue a reset ep command for a root hub */
ep->hcpriv = NULL;
return ret;
}
xhci = hcd_to_xhci(hcd);
if (xhci->xhc_state & XHCI_STATE_DYING)
return -ENODEV;
added_ctxs = xhci_get_endpoint_flag(&ep->desc);
if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
/* FIXME when we have to issue an evaluate endpoint command to
* deal with ep0 max packet size changing once we get the
* descriptors
*/
xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
__func__, added_ctxs);
return 0;
}
virt_dev = xhci->devs[udev->slot_id];
in_ctx = virt_dev->in_ctx;
out_ctx = virt_dev->out_ctx;
ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
if (!ctrl_ctx) {
xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
__func__);
return 0;
}
ep_index = xhci_get_endpoint_index(&ep->desc);
/* If this endpoint is already in use, and the upper layers are trying
* to add it again without dropping it, reject the addition.
*/
if (virt_dev->eps[ep_index].ring &&
!(le32_to_cpu(ctrl_ctx->drop_flags) &
xhci_get_endpoint_flag(&ep->desc))) {
xhci_warn(xhci, "Trying to add endpoint 0x%x "
"without dropping it.\n",
(unsigned int) ep->desc.bEndpointAddress);
return -EINVAL;
}
/* If the HCD has already noted the endpoint is enabled,
* ignore this request.
*/
if (le32_to_cpu(ctrl_ctx->add_flags) &
xhci_get_endpoint_flag(&ep->desc)) {
xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
__func__, ep);
return 0;
}
/*
* Configuration and alternate setting changes must be done in
* process context, not interrupt context (or so documenation
* for usb_set_interface() and usb_set_configuration() claim).
*/
if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
__func__, ep->desc.bEndpointAddress);
return -ENOMEM;
}
ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
/* If xhci_endpoint_disable() was called for this endpoint, but the
* xHC hasn't been notified yet through the check_bandwidth() call,
* this re-adds a new state for the endpoint from the new endpoint
* descriptors. We must drop and re-add this endpoint, so we leave the
* drop flags alone.
*/
new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
/* Store the usb_device pointer for later use */
ep->hcpriv = udev;
xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
(unsigned int) ep->desc.bEndpointAddress,
udev->slot_id,
(unsigned int) new_drop_flags,
(unsigned int) new_add_flags);
return 0;
}
static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
{
struct xhci_input_control_ctx *ctrl_ctx;
struct xhci_ep_ctx *ep_ctx;
struct xhci_slot_ctx *slot_ctx;
int i;
ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
if (!ctrl_ctx) {
xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
__func__);
return;
}
/* When a device's add flag and drop flag are zero, any subsequent
* configure endpoint command will leave that endpoint's state
* untouched. Make sure we don't leave any old state in the input
* endpoint contexts.
*/
ctrl_ctx->drop_flags = 0;
ctrl_ctx->add_flags = 0;
slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
/* Endpoint 0 is always valid */
slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
for (i = 1; i < 31; ++i) {
ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
ep_ctx->ep_info = 0;
ep_ctx->ep_info2 = 0;
ep_ctx->deq = 0;
ep_ctx->tx_info = 0;
}
}
static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
struct usb_device *udev, u32 *cmd_status)
{
int ret;
switch (*cmd_status) {
case COMP_CMD_ABORT:
case COMP_CMD_STOP:
xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
ret = -ETIME;
break;
case COMP_ENOMEM:
dev_warn(&udev->dev,
"Not enough host controller resources for new device state.\n");
ret = -ENOMEM;
/* FIXME: can we allocate more resources for the HC? */
break;
case COMP_BW_ERR:
case COMP_2ND_BW_ERR:
dev_warn(&udev->dev,
"Not enough bandwidth for new device state.\n");
ret = -ENOSPC;
/* FIXME: can we go back to the old state? */
break;
case COMP_TRB_ERR:
/* the HCD set up something wrong */
dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
"add flag = 1, "
"and endpoint is not disabled.\n");
ret = -EINVAL;
break;
case COMP_DEV_ERR:
dev_warn(&udev->dev,
"ERROR: Incompatible device for endpoint configure command.\n");
ret = -ENODEV;
break;
case COMP_SUCCESS:
xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
"Successful Endpoint Configure command");
ret = 0;
break;
default:
xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
*cmd_status);
ret = -EINVAL;
break;
}
return ret;
}
static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
struct usb_device *udev, u32 *cmd_status)
{
int ret;
struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
switch (*cmd_status) {
case COMP_CMD_ABORT:
case COMP_CMD_STOP:
xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
ret = -ETIME;
break;
case COMP_EINVAL:
dev_warn(&udev->dev,
"WARN: xHCI driver setup invalid evaluate context command.\n");
ret = -EINVAL;
break;
case COMP_EBADSLT:
dev_warn(&udev->dev,
"WARN: slot not enabled for evaluate context command.\n");
ret = -EINVAL;
break;
case COMP_CTX_STATE:
dev_warn(&udev->dev,
"WARN: invalid context state for evaluate context command.\n");
xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
ret = -EINVAL;
break;
case COMP_DEV_ERR:
dev_warn(&udev->dev,
"ERROR: Incompatible device for evaluate context command.\n");
ret = -ENODEV;
break;
case COMP_MEL_ERR:
/* Max Exit Latency too large error */
dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
ret = -EINVAL;
break;
case COMP_SUCCESS:
xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
"Successful evaluate context command");
ret = 0;
break;
default:
xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
*cmd_status);
ret = -EINVAL;
break;
}
return ret;
}
static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
struct xhci_input_control_ctx *ctrl_ctx)
{
u32 valid_add_flags;
u32 valid_drop_flags;
/* Ignore the slot flag (bit 0), and the default control endpoint flag
* (bit 1). The default control endpoint is added during the Address
* Device command and is never removed until the slot is disabled.
*/
valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
/* Use hweight32 to count the number of ones in the add flags, or
* number of endpoints added. Don't count endpoints that are changed
* (both added and dropped).
*/
return hweight32(valid_add_flags) -
hweight32(valid_add_flags & valid_drop_flags);
}
static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
struct xhci_input_control_ctx *ctrl_ctx)
{
u32 valid_add_flags;
u32 valid_drop_flags;
valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
return hweight32(valid_drop_flags) -
hweight32(valid_add_flags & valid_drop_flags);
}
/*
* We need to reserve the new number of endpoints before the configure endpoint
* command completes. We can't subtract the dropped endpoints from the number
* of active endpoints until the command completes because we can oversubscribe
* the host in this case:
*
* - the first configure endpoint command drops more endpoints than it adds
* - a second configure endpoint command that adds more endpoints is queued
* - the first configure endpoint command fails, so the config is unchanged
* - the second command may succeed, even though there isn't enough resources
*
* Must be called with xhci->lock held.
*/
static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
struct xhci_input_control_ctx *ctrl_ctx)
{
u32 added_eps;
added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
"Not enough ep ctxs: "
"%u active, need to add %u, limit is %u.",
xhci->num_active_eps, added_eps,
xhci->limit_active_eps);
return -ENOMEM;
}
xhci->num_active_eps += added_eps;
xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
"Adding %u ep ctxs, %u now active.", added_eps,
xhci->num_active_eps);
return 0;
}
/*
* The configure endpoint was failed by the xHC for some other reason, so we
* need to revert the resources that failed configuration would have used.
*
* Must be called with xhci->lock held.
*/
static void xhci_free_host_resources(struct xhci_hcd *xhci,
struct xhci_input_control_ctx *ctrl_ctx)
{
u32 num_failed_eps;
num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
xhci->num_active_eps -= num_failed_eps;
xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
"Removing %u failed ep ctxs, %u now active.",
num_failed_eps,
xhci->num_active_eps);
}
/*
* Now that the command has completed, clean up the active endpoint count by
* subtracting out the endpoints that were dropped (but not changed).
*
* Must be called with xhci->lock held.
*/
static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
struct xhci_input_control_ctx *ctrl_ctx)
{
u32 num_dropped_eps;
num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
xhci->num_active_eps -= num_dropped_eps;
if (num_dropped_eps)
xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
"Removing %u dropped ep ctxs, %u now active.",
num_dropped_eps,
xhci->num_active_eps);
}
static unsigned int xhci_get_block_size(struct usb_device *udev)
{
switch (udev->speed) {
case USB_SPEED_LOW:
case USB_SPEED_FULL:
return FS_BLOCK;
case USB_SPEED_HIGH:
return HS_BLOCK;
case USB_SPEED_SUPER:
return SS_BLOCK;
case USB_SPEED_UNKNOWN:
case USB_SPEED_WIRELESS:
default:
/* Should never happen */
return 1;
}
}
static unsigned int
xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
{
if (interval_bw->overhead[LS_OVERHEAD_TYPE])
return LS_OVERHEAD;
if (interval_bw->overhead[FS_OVERHEAD_TYPE])
return FS_OVERHEAD;
return HS_OVERHEAD;
}
/* If we are changing a LS/FS device under a HS hub,
* make sure (if we are activating a new TT) that the HS bus has enough
* bandwidth for this new TT.
*/
static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
struct xhci_virt_device *virt_dev,
int old_active_eps)
{
struct xhci_interval_bw_table *bw_table;
struct xhci_tt_bw_info *tt_info;
/* Find the bandwidth table for the root port this TT is attached to. */
bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
tt_info = virt_dev->tt_info;
/* If this TT already had active endpoints, the bandwidth for this TT
* has already been added. Removing all periodic endpoints (and thus
* making the TT enactive) will only decrease the bandwidth used.
*/
if (old_active_eps)
return 0;
if (old_active_eps == 0 && tt_info->active_eps != 0) {
if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
return -ENOMEM;
return 0;
}
/* Not sure why we would have no new active endpoints...
*
* Maybe because of an Evaluate Context change for a hub update or a
* control endpoint 0 max packet size change?
* FIXME: skip the bandwidth calculation in that case.
*/
return 0;
}
static int xhci_check_ss_bw(struct xhci_hcd *xhci,
struct xhci_virt_device *virt_dev)
{
unsigned int bw_reserved;
bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
return -ENOMEM;
bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
return -ENOMEM;
return 0;
}
/*
* This algorithm is a very conservative estimate of the worst-case scheduling
* scenario for any one interval. The hardware dynamically schedules the
* packets, so we can't tell which microframe could be the limiting factor in
* the bandwidth scheduling. This only takes into account periodic endpoints.
*
* Obviously, we can't solve an NP complete problem to find the minimum worst
* case scenario. Instead, we come up with an estimate that is no less than
* the worst case bandwidth used for any one microframe, but may be an
* over-estimate.
*
* We walk the requirements for each endpoint by interval, starting with the
* smallest interval, and place packets in the schedule where there is only one
* possible way to schedule packets for that interval. In order to simplify
* this algorithm, we record the largest max packet size for each interval, and
* assume all packets will be that size.
*
* For interval 0, we obviously must schedule all packets for each interval.
* The bandwidth for interval 0 is just the amount of data to be transmitted
* (the sum of all max ESIT payload sizes, plus any overhead per packet times
* the number of packets).
*
* For interval 1, we have two possible microframes to schedule those packets
* in. For this algorithm, if we can schedule the same number of packets for
* each possible scheduling opportunity (each microframe), we will do so. The
* remaining number of packets will be saved to be transmitted in the gaps in
* the next interval's scheduling sequence.
*
* As we move those remaining packets to be scheduled with interval 2 packets,
* we have to double the number of remaining packets to transmit. This is
* because the intervals are actually powers of 2, and we would be transmitting
* the previous interval's packets twice in this interval. We also have to be
* sure that when we look at the largest max packet size for this interval, we
* also look at the largest max packet size for the remaining packets and take
* the greater of the two.
*
* The algorithm continues to evenly distribute packets in each scheduling
* opportunity, and push the remaining packets out, until we get to the last
* interval. Then those packets and their associated overhead are just added
* to the bandwidth used.
*/
static int xhci_check_bw_table(struct xhci_hcd *xhci,
struct xhci_virt_device *virt_dev,
int old_active_eps)
{
unsigned int bw_reserved;
unsigned int max_bandwidth;
unsigned int bw_used;
unsigned int block_size;
struct xhci_interval_bw_table *bw_table;
unsigned int packet_size = 0;
unsigned int overhead = 0;
unsigned int packets_transmitted = 0;
unsigned int packets_remaining = 0;
unsigned int i;
if (virt_dev->udev->speed == USB_SPEED_SUPER)
return xhci_check_ss_bw(xhci, virt_dev);
if (virt_dev->udev->speed == USB_SPEED_HIGH) {
max_bandwidth = HS_BW_LIMIT;
/* Convert percent of bus BW reserved to blocks reserved */
bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
} else {
max_bandwidth = FS_BW_LIMIT;
bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
}
bw_table = virt_dev->bw_table;
/* We need to translate the max packet size and max ESIT payloads into
* the units the hardware uses.
*/
block_size = xhci_get_block_size(virt_dev->udev);
/* If we are manipulating a LS/FS device under a HS hub, double check
* that the HS bus has enough bandwidth if we are activing a new TT.
*/
if (virt_dev->tt_info) {
xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
"Recalculating BW for rootport %u",
virt_dev->real_port);
if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
xhci_warn(xhci, "Not enough bandwidth on HS bus for "
"newly activated TT.\n");
return -ENOMEM;
}
xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
"Recalculating BW for TT slot %u port %u",
virt_dev->tt_info->slot_id,
virt_dev->tt_info->ttport);
} else {
xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
"Recalculating BW for rootport %u",
virt_dev->real_port);
}
/* Add in how much bandwidth will be used for interval zero, or the
* rounded max ESIT payload + number of packets * largest overhead.
*/
bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
bw_table->interval_bw[0].num_packets *
xhci_get_largest_overhead(&bw_table->interval_bw[0]);
for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
unsigned int bw_added;
unsigned int largest_mps;
unsigned int interval_overhead;
/*
* How many packets could we transmit in this interval?
* If packets didn't fit in the previous interval, we will need
* to transmit that many packets twice within this interval.
*/
packets_remaining = 2 * packets_remaining +
bw_table->interval_bw[i].num_packets;
/* Find the largest max packet size of this or the previous
* interval.
*/
if (list_empty(&bw_table->interval_bw[i].endpoints))
largest_mps = 0;
else {
struct xhci_virt_ep *virt_ep;
struct list_head *ep_entry;
ep_entry = bw_table->interval_bw[i].endpoints.next;
virt_ep = list_entry(ep_entry,
struct xhci_virt_ep, bw_endpoint_list);
/* Convert to blocks, rounding up */
largest_mps = DIV_ROUND_UP(
virt_ep->bw_info.max_packet_size,
block_size);
}
if (largest_mps > packet_size)
packet_size = largest_mps;
/* Use the larger overhead of this or the previous interval. */
interval_overhead = xhci_get_largest_overhead(
&bw_table->interval_bw[i]);
if (interval_overhead > overhead)
overhead = interval_overhead;
/* How many packets can we evenly distribute across
* (1 << (i + 1)) possible scheduling opportunities?
*/
packets_transmitted = packets_remaining >> (i + 1);
/* Add in the bandwidth used for those scheduled packets */
bw_added = packets_transmitted * (overhead + packet_size);
/* How many packets do we have remaining to transmit? */
packets_remaining = packets_remaining % (1 << (i + 1));
/* What largest max packet size should those packets have? */
/* If we've transmitted all packets, don't carry over the
* largest packet size.
*/
if (packets_remaining == 0) {
packet_size = 0;
overhead = 0;
} else if (packets_transmitted > 0) {
/* Otherwise if we do have remaining packets, and we've
* scheduled some packets in this interval, take the
* largest max packet size from endpoints with this
* interval.
*/
packet_size = largest_mps;
overhead = interval_overhead;
}
/* Otherwise carry over packet_size and overhead from the last
* time we had a remainder.
*/
bw_used += bw_added;
if (bw_used > max_bandwidth) {
xhci_warn(xhci, "Not enough bandwidth. "
"Proposed: %u, Max: %u\n",
bw_used, max_bandwidth);
return -ENOMEM;
}
}
/*
* Ok, we know we have some packets left over after even-handedly
* scheduling interval 15. We don't know which microframes they will
* fit into, so we over-schedule and say they will be scheduled every
* microframe.
*/
if (packets_remaining > 0)
bw_used += overhead + packet_size;
if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
unsigned int port_index = virt_dev->real_port - 1;
/* OK, we're manipulating a HS device attached to a
* root port bandwidth domain. Include the number of active TTs
* in the bandwidth used.
*/
bw_used += TT_HS_OVERHEAD *
xhci->rh_bw[port_index].num_active_tts;
}
xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
"Final bandwidth: %u, Limit: %u, Reserved: %u, "
"Available: %u " "percent",
bw_used, max_bandwidth, bw_reserved,
(max_bandwidth - bw_used - bw_reserved) * 100 /
max_bandwidth);
bw_used += bw_reserved;
if (bw_used > max_bandwidth) {
xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
bw_used, max_bandwidth);
return -ENOMEM;
}
bw_table->bw_used = bw_used;
return 0;
}
static bool xhci_is_async_ep(unsigned int ep_type)
{
return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
ep_type != ISOC_IN_EP &&
ep_type != INT_IN_EP);
}
static bool xhci_is_sync_in_ep(unsigned int ep_type)
{
return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
}
static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
{
unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
if (ep_bw->ep_interval == 0)
return SS_OVERHEAD_BURST +
(ep_bw->mult * ep_bw->num_packets *
(SS_OVERHEAD + mps));
return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
(SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
1 << ep_bw->ep_interval);
}
void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
struct xhci_bw_info *ep_bw,
struct xhci_interval_bw_table *bw_table,
struct usb_device *udev,
struct xhci_virt_ep *virt_ep,
struct xhci_tt_bw_info *tt_info)
{
struct xhci_interval_bw *interval_bw;
int normalized_interval;
if (xhci_is_async_ep(ep_bw->type))
return;
if (udev->speed == USB_SPEED_SUPER) {
if (xhci_is_sync_in_ep(ep_bw->type))
xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
xhci_get_ss_bw_consumed(ep_bw);
else
xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
xhci_get_ss_bw_consumed(ep_bw);
return;
}
/* SuperSpeed endpoints never get added to intervals in the table, so
* this check is only valid for HS/FS/LS devices.
*/
if (list_empty(&virt_ep->bw_endpoint_list))
return;
/* For LS/FS devices, we need to translate the interval expressed in
* microframes to frames.
*/
if (udev->speed == USB_SPEED_HIGH)
normalized_interval = ep_bw->ep_interval;
else
normalized_interval = ep_bw->ep_interval - 3;
if (normalized_interval == 0)
bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
interval_bw = &bw_table->interval_bw[normalized_interval];
interval_bw->num_packets -= ep_bw->num_packets;
switch (udev->speed) {
case USB_SPEED_LOW:
interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
break;
case USB_SPEED_FULL:
interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
break;
case USB_SPEED_HIGH:
interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
break;
case USB_SPEED_SUPER:
case USB_SPEED_UNKNOWN:
case USB_SPEED_WIRELESS:
/* Should never happen because only LS/FS/HS endpoints will get
* added to the endpoint list.
*/
return;
}
if (tt_info)
tt_info->active_eps -= 1;
list_del_init(&virt_ep->bw_endpoint_list);
}
static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
struct xhci_bw_info *ep_bw,
struct xhci_interval_bw_table *bw_table,
struct usb_device *udev,
struct xhci_virt_ep *virt_ep,
struct xhci_tt_bw_info *tt_info)
{
struct xhci_interval_bw *interval_bw;
struct xhci_virt_ep *smaller_ep;
int normalized_interval;
if (xhci_is_async_ep(ep_bw->type))
return;
if (udev->speed == USB_SPEED_SUPER) {
if (xhci_is_sync_in_ep(ep_bw->type))
xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
xhci_get_ss_bw_consumed(ep_bw);
else
xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
xhci_get_ss_bw_consumed(ep_bw);
return;
}
/* For LS/FS devices, we need to translate the interval expressed in
* microframes to frames.
*/
if (udev->speed == USB_SPEED_HIGH)
normalized_interval = ep_bw->ep_interval;
else
normalized_interval = ep_bw->ep_interval - 3;
if (normalized_interval == 0)
bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
interval_bw = &bw_table->interval_bw[normalized_interval];
interval_bw->num_packets += ep_bw->num_packets;
switch (udev->speed) {
case USB_SPEED_LOW:
interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
break;
case USB_SPEED_FULL:
interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
break;
case USB_SPEED_HIGH:
interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
break;
case USB_SPEED_SUPER:
case USB_SPEED_UNKNOWN:
case USB_SPEED_WIRELESS:
/* Should never happen because only LS/FS/HS endpoints will get
* added to the endpoint list.
*/
return;
}
if (tt_info)
tt_info->active_eps += 1;
/* Insert the endpoint into the list, largest max packet size first. */
list_for_each_entry(smaller_ep, &interval_bw->endpoints,
bw_endpoint_list) {
if (ep_bw->max_packet_size >=
smaller_ep->bw_info.max_packet_size) {
/* Add the new ep before the smaller endpoint */
list_add_tail(&virt_ep->bw_endpoint_list,
&smaller_ep->bw_endpoint_list);
return;
}
}
/* Add the new endpoint at the end of the list. */
list_add_tail(&virt_ep->bw_endpoint_list,
&interval_bw->endpoints);
}
void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
struct xhci_virt_device *virt_dev,
int old_active_eps)
{
struct xhci_root_port_bw_info *rh_bw_info;
if (!virt_dev->tt_info)
return;
rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
if (old_active_eps == 0 &&
virt_dev->tt_info->active_eps != 0) {
rh_bw_info->num_active_tts += 1;
rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
} else if (old_active_eps != 0 &&
virt_dev->tt_info->active_eps == 0) {
rh_bw_info->num_active_tts -= 1;
rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
}
}
static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
struct xhci_virt_device *virt_dev,
struct xhci_container_ctx *in_ctx)
{
struct xhci_bw_info ep_bw_info[31];
int i;
struct xhci_input_control_ctx *ctrl_ctx;
int old_active_eps = 0;
if (virt_dev->tt_info)
old_active_eps = virt_dev->tt_info->active_eps;
ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
if (!ctrl_ctx) {
xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
__func__);
return -ENOMEM;
}
for (i = 0; i < 31; i++) {
if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
continue;
/* Make a copy of the BW info in case we need to revert this */
memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
sizeof(ep_bw_info[i]));
/* Drop the endpoint from the interval table if the endpoint is
* being dropped or changed.
*/
if (EP_IS_DROPPED(ctrl_ctx, i))
xhci_drop_ep_from_interval_table(xhci,
&virt_dev->eps[i].bw_info,
virt_dev->bw_table,
virt_dev->udev,
&virt_dev->eps[i],
virt_dev->tt_info);
}
/* Overwrite the information stored in the endpoints' bw_info */
xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
for (i = 0; i < 31; i++) {
/* Add any changed or added endpoints to the interval table */
if (EP_IS_ADDED(ctrl_ctx, i))
xhci_add_ep_to_interval_table(xhci,
&virt_dev->eps[i].bw_info,
virt_dev->bw_table,
virt_dev->udev,
&virt_dev->eps[i],
virt_dev->tt_info);
}
if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
/* Ok, this fits in the bandwidth we have.
* Update the number of active TTs.
*/
xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
return 0;
}
/* We don't have enough bandwidth for this, revert the stored info. */
for (i = 0; i < 31; i++) {
if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
continue;
/* Drop the new copies of any added or changed endpoints from
* the interval table.
*/
if (EP_IS_ADDED(ctrl_ctx, i)) {
xhci_drop_ep_from_interval_table(xhci,
&virt_dev->eps[i].bw_info,
virt_dev->bw_table,
virt_dev->udev,
&virt_dev->eps[i],
virt_dev->tt_info);
}
/* Revert the endpoint back to its old information */
memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
sizeof(ep_bw_info[i]));
/* Add any changed or dropped endpoints back into the table */
if (EP_IS_DROPPED(ctrl_ctx, i))
xhci_add_ep_to_interval_table(xhci,
&virt_dev->eps[i].bw_info,
virt_dev->bw_table,
virt_dev->udev,
&virt_dev->eps[i],
virt_dev->tt_info);
}
return -ENOMEM;
}
/* Issue a configure endpoint command or evaluate context command
* and wait for it to finish.
*/
static int xhci_configure_endpoint(struct xhci_hcd *xhci,
struct usb_device *udev,
struct xhci_command *command,
bool ctx_change, bool must_succeed)
{
int ret;
unsigned long flags;
struct xhci_input_control_ctx *ctrl_ctx;
struct xhci_virt_device *virt_dev;
if (!command)
return -EINVAL;
spin_lock_irqsave(&xhci->lock, flags);
virt_dev = xhci->devs[udev->slot_id];
ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
if (!ctrl_ctx) {
spin_unlock_irqrestore(&xhci->lock, flags);
xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
__func__);
return -ENOMEM;
}
if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
xhci_reserve_host_resources(xhci, ctrl_ctx)) {
spin_unlock_irqrestore(&xhci->lock, flags);
xhci_warn(xhci, "Not enough host resources, "
"active endpoint contexts = %u\n",
xhci->num_active_eps);
return -ENOMEM;
}
if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
xhci_free_host_resources(xhci, ctrl_ctx);
spin_unlock_irqrestore(&xhci->lock, flags);
xhci_warn(xhci, "Not enough bandwidth\n");
return -ENOMEM;
}
if (!ctx_change)
ret = xhci_queue_configure_endpoint(xhci, command,
command->in_ctx->dma,
udev->slot_id, must_succeed);
else
ret = xhci_queue_evaluate_context(xhci, command,
command->in_ctx->dma,
udev->slot_id, must_succeed);
if (ret < 0) {
if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
xhci_free_host_resources(xhci, ctrl_ctx);
spin_unlock_irqrestore(&xhci->lock, flags);
xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
"FIXME allocate a new ring segment");
return -ENOMEM;
}
xhci_ring_cmd_db(xhci);
spin_unlock_irqrestore(&xhci->lock, flags);
/* Wait for the configure endpoint command to complete */
wait_for_completion(command->completion);
if (!ctx_change)
ret = xhci_configure_endpoint_result(xhci, udev,
&command->status);
else
ret = xhci_evaluate_context_result(xhci, udev,
&command->status);
if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
spin_lock_irqsave(&xhci->lock, flags);
/* If the command failed, remove the reserved resources.
* Otherwise, clean up the estimate to include dropped eps.
*/
if (ret)
xhci_free_host_resources(xhci, ctrl_ctx);
else
xhci_finish_resource_reservation(xhci, ctrl_ctx);
spin_unlock_irqrestore(&xhci->lock, flags);
}
return ret;
}
static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
struct xhci_virt_device *vdev, int i)
{
struct xhci_virt_ep *ep = &vdev->eps[i];
if (ep->ep_state & EP_HAS_STREAMS) {
xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
xhci_get_endpoint_address(i));
xhci_free_stream_info(xhci, ep->stream_info);
ep->stream_info = NULL;
ep->ep_state &= ~EP_HAS_STREAMS;
}
}
/* Called after one or more calls to xhci_add_endpoint() or
* xhci_drop_endpoint(). If this call fails, the USB core is expected
* to call xhci_reset_bandwidth().
*
* Since we are in the middle of changing either configuration or
* installing a new alt setting, the USB core won't allow URBs to be
* enqueued for any endpoint on the old config or interface. Nothing
* else should be touching the xhci->devs[slot_id] structure, so we
* don't need to take the xhci->lock for manipulating that.
*/
int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
{
int i;
int ret = 0;
struct xhci_hcd *xhci;
struct xhci_virt_device *virt_dev;
struct xhci_input_control_ctx *ctrl_ctx;
struct xhci_slot_ctx *slot_ctx;
struct xhci_command *command;
ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
if (ret <= 0)
return ret;
xhci = hcd_to_xhci(hcd);
if (xhci->xhc_state & XHCI_STATE_DYING)
return -ENODEV;
xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
virt_dev = xhci->devs[udev->slot_id];
command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
if (!command)
return -ENOMEM;
command->in_ctx = virt_dev->in_ctx;
/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
if (!ctrl_ctx) {
xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
__func__);
ret = -ENOMEM;
goto command_cleanup;
}
ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
/* Don't issue the command if there's no endpoints to update. */
if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
ctrl_ctx->drop_flags == 0) {
ret = 0;
goto command_cleanup;
}
/* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
for (i = 31; i >= 1; i--) {
__le32 le32 = cpu_to_le32(BIT(i));
if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
|| (ctrl_ctx->add_flags & le32) || i == 1) {
slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
break;
}
}
xhci_dbg(xhci, "New Input Control Context:\n");
xhci_dbg_ctx(xhci, virt_dev->in_ctx,
LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
ret = xhci_configure_endpoint(xhci, udev, command,
false, false);
if (ret)
/* Callee should call reset_bandwidth() */
goto command_cleanup;
xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
xhci_dbg_ctx(xhci, virt_dev->out_ctx,
LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
/* Free any rings that were dropped, but not changed. */
for (i = 1; i < 31; ++i) {
if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
!(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
}
}
xhci_zero_in_ctx(xhci, virt_dev);
/*
* Install any rings for completely new endpoints or changed endpoints,
* and free or cache any old rings from changed endpoints.
*/
for (i = 1; i < 31; ++i) {
if (!virt_dev->eps[i].new_ring)
continue;
/* Only cache or free the old ring if it exists.
* It may not if this is the first add of an endpoint.
*/
if (virt_dev->eps[i].ring) {
xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
}
xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
virt_dev->eps[i].new_ring = NULL;
}
command_cleanup:
kfree(command->completion);
kfree(command);
return ret;
}
void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
{
struct xhci_hcd *xhci;
struct xhci_virt_device *virt_dev;
int i, ret;
ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
if (ret <= 0)
return;
xhci = hcd_to_xhci(hcd);
xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
virt_dev = xhci->devs[udev->slot_id];
/* Free any rings allocated for added endpoints */
for (i = 0; i < 31; ++i) {
if (virt_dev->eps[i].new_ring) {
xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
virt_dev->eps[i].new_ring = NULL;
}
}
xhci_zero_in_ctx(xhci, virt_dev);
}
static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
struct xhci_container_ctx *in_ctx,
struct xhci_container_ctx *out_ctx,
struct xhci_input_control_ctx *ctrl_ctx,
u32 add_flags, u32 drop_flags)
{
ctrl_ctx->add_flags = cpu_to_le32(add_flags);
ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
xhci_slot_copy(xhci, in_ctx, out_ctx);
ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
xhci_dbg(xhci, "Input Context:\n");
xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
}
static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
unsigned int slot_id, unsigned int ep_index,
struct xhci_dequeue_state *deq_state)
{
struct xhci_input_control_ctx *ctrl_ctx;
struct xhci_container_ctx *in_ctx;
struct xhci_ep_ctx *ep_ctx;
u32 added_ctxs;
dma_addr_t addr;
in_ctx = xhci->devs[slot_id]->in_ctx;
ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
if (!ctrl_ctx) {
xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
__func__);
return;
}
xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
xhci->devs[slot_id]->out_ctx, ep_index);
ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
deq_state->new_deq_ptr);
if (addr == 0) {
xhci_warn(xhci, "WARN Cannot submit config ep after "
"reset ep command\n");
xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
deq_state->new_deq_seg,
deq_state->new_deq_ptr);
return;
}
ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
xhci->devs[slot_id]->out_ctx, ctrl_ctx,
added_ctxs, added_ctxs);
}
void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
struct usb_device *udev, unsigned int ep_index)
{
struct xhci_dequeue_state deq_state;
struct xhci_virt_ep *ep;
xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
"Cleaning up stalled endpoint ring");
ep = &xhci->devs[udev->slot_id]->eps[ep_index];
/* We need to move the HW's dequeue pointer past this TD,
* or it will attempt to resend it on the next doorbell ring.
*/
xhci_find_new_dequeue_state(xhci, udev->slot_id,
ep_index, ep->stopped_stream, ep->stopped_td,
&deq_state);
if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
return;
/* HW with the reset endpoint quirk will use the saved dequeue state to
* issue a configure endpoint command later.
*/
if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
struct xhci_command *command;
/* Can't sleep if we're called from cleanup_halted_endpoint() */
command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
if (!command)
return;
xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
"Queueing new dequeue state");
xhci_queue_new_dequeue_state(xhci, command, udev->slot_id,
ep_index, ep->stopped_stream, &deq_state);
} else {
/* Better hope no one uses the input context between now and the
* reset endpoint completion!
* XXX: No idea how this hardware will react when stream rings
* are enabled.
*/
xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
"Setting up input context for "
"configure endpoint command");
xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
ep_index, &deq_state);
}
}
/* Deal with stalled endpoints. The core should have sent the control message
* to clear the halt condition. However, we need to make the xHCI hardware
* reset its sequence number, since a device will expect a sequence number of
* zero after the halt condition is cleared.
* Context: in_interrupt
*/
void xhci_endpoint_reset(struct usb_hcd *hcd,
struct usb_host_endpoint *ep)
{
struct xhci_hcd *xhci;
struct usb_device *udev;
unsigned int ep_index;
unsigned long flags;
int ret;
struct xhci_virt_ep *virt_ep;
struct xhci_command *command;
xhci = hcd_to_xhci(hcd);
udev = (struct usb_device *) ep->hcpriv;
/* Called with a root hub endpoint (or an endpoint that wasn't added
* with xhci_add_endpoint()
*/
if (!ep->hcpriv)
return;
ep_index = xhci_get_endpoint_index(&ep->desc);
virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index];
if (!virt_ep->stopped_td) {
xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
"Endpoint 0x%x not halted, refusing to reset.",
ep->desc.bEndpointAddress);
return;
}
if (usb_endpoint_xfer_control(&ep->desc)) {
xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
"Control endpoint stall already handled.");
return;
}
command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
if (!command)
return;
xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
"Queueing reset endpoint command");
spin_lock_irqsave(&xhci->lock, flags);
ret = xhci_queue_reset_ep(xhci, command, udev->slot_id, ep_index);
/*
* Can't change the ring dequeue pointer until it's transitioned to the
* stopped state, which is only upon a successful reset endpoint
* command. Better hope that last command worked!
*/
if (!ret) {
xhci_cleanup_stalled_ring(xhci, udev, ep_index);
kfree(virt_ep->stopped_td);
xhci_ring_cmd_db(xhci);
}
virt_ep->stopped_td = NULL;
virt_ep->stopped_stream = 0;
spin_unlock_irqrestore(&xhci->lock, flags);
if (ret)
xhci_warn(xhci, "FIXME allocate a new ring segment\n");
}
static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
struct usb_device *udev, struct usb_host_endpoint *ep,
unsigned int slot_id)
{
int ret;
unsigned int ep_index;
unsigned int ep_state;
if (!ep)
return -EINVAL;
ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
if (ret <= 0)
return -EINVAL;
if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
" descriptor for ep 0x%x does not support streams\n",
ep->desc.bEndpointAddress);
return -EINVAL;
}
ep_index = xhci_get_endpoint_index(&ep->desc);
ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
if (ep_state & EP_HAS_STREAMS ||
ep_state & EP_GETTING_STREAMS) {
xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
"already has streams set up.\n",
ep->desc.bEndpointAddress);
xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
"dynamic stream context array reallocation.\n");
return -EINVAL;
}
if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
"endpoint 0x%x; URBs are pending.\n",
ep->desc.bEndpointAddress);
return -EINVAL;
}
return 0;
}
static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
unsigned int *num_streams, unsigned int *num_stream_ctxs)
{
unsigned int max_streams;
/* The stream context array size must be a power of two */
*num_stream_ctxs = roundup_pow_of_two(*num_streams);
/*
* Find out how many primary stream array entries the host controller
* supports. Later we may use secondary stream arrays (similar to 2nd
* level page entries), but that's an optional feature for xHCI host
* controllers. xHCs must support at least 4 stream IDs.
*/
max_streams = HCC_MAX_PSA(xhci->hcc_params);
if (*num_stream_ctxs > max_streams) {
xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
max_streams);
*num_stream_ctxs = max_streams;
*num_streams = max_streams;
}
}
/* Returns an error code if one of the endpoint already has streams.
* This does not change any data structures, it only checks and gathers
* information.
*/
static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
struct usb_device *udev,
struct usb_host_endpoint **eps, unsigned int num_eps,
unsigned int *num_streams, u32 *changed_ep_bitmask)
{
unsigned int max_streams;
unsigned int endpoint_flag;
int i;
int ret;
for (i = 0; i < num_eps; i++) {
ret = xhci_check_streams_endpoint(xhci, udev,
eps[i], udev->slot_id);
if (ret < 0)
return ret;
max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
if (max_streams < (*num_streams - 1)) {
xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
eps[i]->desc.bEndpointAddress,
max_streams);
*num_streams = max_streams+1;
}
endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
if (*changed_ep_bitmask & endpoint_flag)
return -EINVAL;
*changed_ep_bitmask |= endpoint_flag;
}
return 0;
}
static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
struct usb_device *udev,
struct usb_host_endpoint **eps, unsigned int num_eps)
{
u32 changed_ep_bitmask = 0;
unsigned int slot_id;
unsigned int ep_index;
unsigned int ep_state;
int i;
slot_id = udev->slot_id;
if (!xhci->devs[slot_id])
return 0;
for (i = 0; i < num_eps; i++) {
ep_index = xhci_get_endpoint_index(&eps[i]->desc);
ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
/* Are streams already being freed for the endpoint? */
if (ep_state & EP_GETTING_NO_STREAMS) {
xhci_warn(xhci, "WARN Can't disable streams for "
"endpoint 0x%x, "
"streams are being disabled already\n",
eps[i]->desc.bEndpointAddress);
return 0;
}
/* Are there actually any streams to free? */
if (!(ep_state & EP_HAS_STREAMS) &&
!(ep_state & EP_GETTING_STREAMS)) {
xhci_warn(xhci, "WARN Can't disable streams for "
"endpoint 0x%x, "
"streams are already disabled!\n",
eps[i]->desc.bEndpointAddress);
xhci_warn(xhci, "WARN xhci_free_streams() called "
"with non-streams endpoint\n");
return 0;
}
changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
}
return changed_ep_bitmask;
}
/*
* The USB device drivers use this function (though the HCD interface in USB
* core) to prepare a set of bulk endpoints to use streams. Streams are used to
* coordinate mass storage command queueing across multiple endpoints (basically
* a stream ID == a task ID).
*
* Setting up streams involves allocating the same size stream context array
* for each endpoint and issuing a configure endpoint command for all endpoints.
*
* Don't allow the call to succeed if one endpoint only supports one stream
* (which means it doesn't support streams at all).
*
* Drivers may get less stream IDs than they asked for, if the host controller
* hardware or endpoints claim they can't support the number of requested
* stream IDs.
*/
int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
struct usb_host_endpoint **eps, unsigned int num_eps,
unsigned int num_streams, gfp_t mem_flags)
{
int i, ret;
struct xhci_hcd *xhci;
struct xhci_virt_device *vdev;
struct xhci_command *config_cmd;
struct xhci_input_control_ctx *ctrl_ctx;
unsigned int ep_index;
unsigned int num_stream_ctxs;
unsigned long flags;
u32 changed_ep_bitmask = 0;
if (!eps)
return -EINVAL;
/* Add one to the number of streams requested to account for
* stream 0 that is reserved for xHCI usage.
*/
num_streams += 1;
xhci = hcd_to_xhci(hcd);
xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
num_streams);
/* MaxPSASize value 0 (2 streams) means streams are not supported */
if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
HCC_MAX_PSA(xhci->hcc_params) < 4) {
xhci_dbg(xhci, "xHCI controller does not support streams.\n");
return -ENOSYS;
}
config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
if (!config_cmd) {
xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
return -ENOMEM;
}
ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
if (!ctrl_ctx) {
xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
__func__);
xhci_free_command(xhci, config_cmd);
return -ENOMEM;
}
/* Check to make sure all endpoints are not already configured for
* streams. While we're at it, find the maximum number of streams that
* all the endpoints will support and check for duplicate endpoints.
*/
spin_lock_irqsave(&xhci->lock, flags);
ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
num_eps, &num_streams, &changed_ep_bitmask);
if (ret < 0) {
xhci_free_command(xhci, config_cmd);
spin_unlock_irqrestore(&xhci->lock, flags);
return ret;
}
if (num_streams <= 1) {
xhci_warn(xhci, "WARN: endpoints can't handle "
"more than one stream.\n");
xhci_free_command(xhci, config_cmd);
spin_unlock_irqrestore(&xhci->lock, flags);
return -EINVAL;
}
vdev = xhci->devs[udev->slot_id];
/* Mark each endpoint as being in transition, so
* xhci_urb_enqueue() will reject all URBs.
*/
for (i = 0; i < num_eps; i++) {
ep_index = xhci_get_endpoint_index(&eps[i]->desc);
vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
}
spin_unlock_irqrestore(&xhci->lock, flags);
/* Setup internal data structures and allocate HW data structures for
* streams (but don't install the HW structures in the input context
* until we're sure all memory allocation succeeded).
*/
xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
num_stream_ctxs, num_streams);
for (i = 0; i < num_eps; i++) {
ep_index = xhci_get_endpoint_index(&eps[i]->desc);
vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
num_stream_ctxs,
num_streams, mem_flags);
if (!vdev->eps[ep_index].stream_info)
goto cleanup;
/* Set maxPstreams in endpoint context and update deq ptr to
* point to stream context array. FIXME
*/
}
/* Set up the input context for a configure endpoint command. */
for (i = 0; i < num_eps; i++) {
struct xhci_ep_ctx *ep_ctx;
ep_index = xhci_get_endpoint_index(&eps[i]->desc);
ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
xhci_endpoint_copy(xhci, config_cmd->in_ctx,
vdev->out_ctx, ep_index);
xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
vdev->eps[ep_index].stream_info);
}
/* Tell the HW to drop its old copy of the endpoint context info
* and add the updated copy from the input context.
*/
xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
vdev->out_ctx, ctrl_ctx,
changed_ep_bitmask, changed_ep_bitmask);
/* Issue and wait for the configure endpoint command */
ret = xhci_configure_endpoint(xhci, udev, config_cmd,
false, false);
/* xHC rejected the configure endpoint command for some reason, so we
* leave the old ring intact and free our internal streams data
* structure.
*/
if (ret < 0)
goto cleanup;
spin_lock_irqsave(&xhci->lock, flags);
for (i = 0; i < num_eps; i++) {
ep_index = xhci_get_endpoint_index(&eps[i]->desc);
vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
udev->slot_id, ep_index);
vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
}
xhci_free_command(xhci, config_cmd);
spin_unlock_irqrestore(&xhci->lock, flags);
/* Subtract 1 for stream 0, which drivers can't use */
return num_streams - 1;
cleanup:
/* If it didn't work, free the streams! */
for (i = 0; i < num_eps; i++) {
ep_index = xhci_get_endpoint_index(&eps[i]->desc);
xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
vdev->eps[ep_index].stream_info = NULL;
/* FIXME Unset maxPstreams in endpoint context and
* update deq ptr to point to normal string ring.
*/
vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
xhci_endpoint_zero(xhci, vdev, eps[i]);
}
xhci_free_command(xhci, config_cmd);
return -ENOMEM;
}
/* Transition the endpoint from using streams to being a "normal" endpoint
* without streams.
*
* Modify the endpoint context state, submit a configure endpoint command,
* and free all endpoint rings for streams if that completes successfully.
*/
int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
struct usb_host_endpoint **eps, unsigned int num_eps,
gfp_t mem_flags)
{
int i, ret;
struct xhci_hcd *xhci;
struct xhci_virt_device *vdev;
struct xhci_command *command;
struct xhci_input_control_ctx *ctrl_ctx;
unsigned int ep_index;
unsigned long flags;
u32 changed_ep_bitmask;
xhci = hcd_to_xhci(hcd);
vdev = xhci->devs[udev->slot_id];
/* Set up a configure endpoint command to remove the streams rings */
spin_lock_irqsave(&xhci->lock, flags);
changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
udev, eps, num_eps);
if (changed_ep_bitmask == 0) {
spin_unlock_irqrestore(&xhci->lock, flags);
return -EINVAL;
}
/* Use the xhci_command structure from the first endpoint. We may have
* allocated too many, but the driver may call xhci_free_streams() for
* each endpoint it grouped into one call to xhci_alloc_streams().
*/
ep_index = xhci_get_endpoint_index(&eps[0]->desc);
command = vdev->eps[ep_index].stream_info->free_streams_command;
ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
if (!ctrl_ctx) {
spin_unlock_irqrestore(&xhci->lock, flags);
xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
__func__);
return -EINVAL;
}
for (i = 0; i < num_eps; i++) {
struct xhci_ep_ctx *ep_ctx;
ep_index = xhci_get_endpoint_index(&eps[i]->desc);
ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
EP_GETTING_NO_STREAMS;
xhci_endpoint_copy(xhci, command->in_ctx,
vdev->out_ctx, ep_index);
xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx,
&vdev->eps[ep_index]);
}
xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
vdev->out_ctx, ctrl_ctx,
changed_ep_bitmask, changed_ep_bitmask);
spin_unlock_irqrestore(&xhci->lock, flags);
/* Issue and wait for the configure endpoint command,
* which must succeed.
*/
ret = xhci_configure_endpoint(xhci, udev, command,
false, true);
/* xHC rejected the configure endpoint command for some reason, so we
* leave the streams rings intact.
*/
if (ret < 0)
return ret;
spin_lock_irqsave(&xhci->lock, flags);
for (i = 0; i < num_eps; i++) {
ep_index = xhci_get_endpoint_index(&eps[i]->desc);
xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
vdev->eps[ep_index].stream_info = NULL;
/* FIXME Unset maxPstreams in endpoint context and
* update deq ptr to point to normal string ring.
*/
vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
}
spin_unlock_irqrestore(&xhci->lock, flags);
return 0;
}
/*
* Deletes endpoint resources for endpoints that were active before a Reset
* Device command, or a Disable Slot command. The Reset Device command leaves
* the control endpoint intact, whereas the Disable Slot command deletes it.
*
* Must be called with xhci->lock held.
*/
void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
struct xhci_virt_device *virt_dev, bool drop_control_ep)
{
int i;
unsigned int num_dropped_eps = 0;
unsigned int drop_flags = 0;
for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
if (virt_dev->eps[i].ring) {
drop_flags |= 1 << i;
num_dropped_eps++;
}
}
xhci->num_active_eps -= num_dropped_eps;
if (num_dropped_eps)
xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
"Dropped %u ep ctxs, flags = 0x%x, "
"%u now active.",
num_dropped_eps, drop_flags,
xhci->num_active_eps);
}
/*
* This submits a Reset Device Command, which will set the device state to 0,
* set the device address to 0, and disable all the endpoints except the default
* control endpoint. The USB core should come back and call
* xhci_address_device(), and then re-set up the configuration. If this is
* called because of a usb_reset_and_verify_device(), then the old alternate
* settings will be re-installed through the normal bandwidth allocation
* functions.
*
* Wait for the Reset Device command to finish. Remove all structures
* associated with the endpoints that were disabled. Clear the input device
* structure? Cache the rings? Reset the control endpoint 0 max packet size?
*
* If the virt_dev to be reset does not exist or does not match the udev,
* it means the device is lost, possibly due to the xHC restore error and
* re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
* re-allocate the device.
*/
int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
{
int ret, i;
unsigned long flags;
struct xhci_hcd *xhci;
unsigned int slot_id;
struct xhci_virt_device *virt_dev;
struct xhci_command *reset_device_cmd;
int last_freed_endpoint;
struct xhci_slot_ctx *slot_ctx;
int old_active_eps = 0;
ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
if (ret <= 0)
return ret;
xhci = hcd_to_xhci(hcd);
slot_id = udev->slot_id;
virt_dev = xhci->devs[slot_id];
if (!virt_dev) {
xhci_dbg(xhci, "The device to be reset with slot ID %u does "
"not exist. Re-allocate the device\n", slot_id);
ret = xhci_alloc_dev(hcd, udev);
if (ret == 1)
return 0;
else
return -EINVAL;
}
if (virt_dev->udev != udev) {
/* If the virt_dev and the udev does not match, this virt_dev
* may belong to another udev.
* Re-allocate the device.
*/
xhci_dbg(xhci, "The device to be reset with slot ID %u does "
"not match the udev. Re-allocate the device\n",
slot_id);
ret = xhci_alloc_dev(hcd, udev);
if (ret == 1)
return 0;
else
return -EINVAL;
}
/* If device is not setup, there is no point in resetting it */
slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
SLOT_STATE_DISABLED)
return 0;
xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
/* Allocate the command structure that holds the struct completion.
* Assume we're in process context, since the normal device reset
* process has to wait for the device anyway. Storage devices are
* reset as part of error handling, so use GFP_NOIO instead of
* GFP_KERNEL.
*/
reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
if (!reset_device_cmd) {
xhci_dbg(xhci, "Couldn't allocate command structure.\n");
return -ENOMEM;
}
/* Attempt to submit the Reset Device command to the command ring */
spin_lock_irqsave(&xhci->lock, flags);
ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
if (ret) {
xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
spin_unlock_irqrestore(&xhci->lock, flags);
goto command_cleanup;
}
xhci_ring_cmd_db(xhci);
spin_unlock_irqrestore(&xhci->lock, flags);
/* Wait for the Reset Device command to finish */
wait_for_completion(reset_device_cmd->completion);
/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
* unless we tried to reset a slot ID that wasn't enabled,
* or the device wasn't in the addressed or configured state.
*/
ret = reset_device_cmd->status;
switch (ret) {
case COMP_CMD_ABORT:
case COMP_CMD_STOP:
xhci_warn(xhci, "Timeout waiting for reset device command\n");
ret = -ETIME;
goto command_cleanup;
case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
case COMP_CTX_STATE: /* 0.96 completion code for same thing */
xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
slot_id,
xhci_get_slot_state(xhci, virt_dev->out_ctx));
xhci_dbg(xhci, "Not freeing device rings.\n");
/* Don't treat this as an error. May change my mind later. */
ret = 0;
goto command_cleanup;
case COMP_SUCCESS:
xhci_dbg(xhci, "Successful reset device command.\n");
break;
default:
if (xhci_is_vendor_info_code(xhci, ret))
break;
xhci_warn(xhci, "Unknown completion code %u for "
"reset device command.\n", ret);
ret = -EINVAL;
goto command_cleanup;
}
/* Free up host controller endpoint resources */
if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
spin_lock_irqsave(&xhci->lock, flags);
/* Don't delete the default control endpoint resources */
xhci_free_device_endpoint_resources(xhci, virt_dev, false);
spin_unlock_irqrestore(&xhci->lock, flags);
}
/* Everything but endpoint 0 is disabled, so free or cache the rings. */
last_freed_endpoint = 1;
for (i = 1; i < 31; ++i) {
struct xhci_virt_ep *ep = &virt_dev->eps[i];
if (ep->ep_state & EP_HAS_STREAMS) {
xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
xhci_get_endpoint_address(i));
xhci_free_stream_info(xhci, ep->stream_info);
ep->stream_info = NULL;
ep->ep_state &= ~EP_HAS_STREAMS;
}
if (ep->ring) {
xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
last_freed_endpoint = i;
}
if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
xhci_drop_ep_from_interval_table(xhci,
&virt_dev->eps[i].bw_info,
virt_dev->bw_table,
udev,
&virt_dev->eps[i],
virt_dev->tt_info);
xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
}
/* If necessary, update the number of active TTs on this root port */
xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
ret = 0;
command_cleanup:
xhci_free_command(xhci, reset_device_cmd);
return ret;
}
/*
* At this point, the struct usb_device is about to go away, the device has
* disconnected, and all traffic has been stopped and the endpoints have been
* disabled. Free any HC data structures associated with that device.
*/
void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
{
struct xhci_hcd *xhci = hcd_to_xhci(hcd);
struct xhci_virt_device *virt_dev;
unsigned long flags;
u32 state;
int i, ret;
struct xhci_command *command;
command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
if (!command)
return;
#ifndef CONFIG_USB_DEFAULT_PERSIST
/*
* We called pm_runtime_get_noresume when the device was attached.
* Decrement the counter here to allow controller to runtime suspend
* if no devices remain.
*/
if (xhci->quirks & XHCI_RESET_ON_RESUME)
pm_runtime_put_noidle(hcd->self.controller);
#endif
ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
/* If the host is halted due to driver unload, we still need to free the
* device.
*/
if (ret <= 0 && ret != -ENODEV) {
kfree(command);
return;
}
virt_dev = xhci->devs[udev->slot_id];
/* Stop any wayward timer functions (which may grab the lock) */
for (i = 0; i < 31; ++i) {
virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
}
spin_lock_irqsave(&xhci->lock, flags);
/* Don't disable the slot if the host controller is dead. */
state = readl(&xhci->op_regs->status);
if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
(xhci->xhc_state & XHCI_STATE_HALTED)) {
xhci_free_virt_device(xhci, udev->slot_id);
spin_unlock_irqrestore(&xhci->lock, flags);
kfree(command);
return;
}
if (xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
udev->slot_id)) {
spin_unlock_irqrestore(&xhci->lock, flags);
xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
return;
}
xhci_ring_cmd_db(xhci);
spin_unlock_irqrestore(&xhci->lock, flags);
/*
* Event command completion handler will free any data structures
* associated with the slot. XXX Can free sleep?
*/
}
/*
* Checks if we have enough host controller resources for the default control
* endpoint.
*
* Must be called with xhci->lock held.
*/
static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
{
if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
"Not enough ep ctxs: "
"%u active, need to add 1, limit is %u.",
xhci->num_active_eps, xhci->limit_active_eps);
return -ENOMEM;
}
xhci->num_active_eps += 1;
xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
"Adding 1 ep ctx, %u now active.",
xhci->num_active_eps);
return 0;
}
/*
* Returns 0 if the xHC ran out of device slots, the Enable Slot command
* timed out, or allocating memory failed. Returns 1 on success.
*/
int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
{
struct xhci_hcd *xhci = hcd_to_xhci(hcd);
unsigned long flags;
int ret;
struct xhci_command *command;
command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
if (!command)
return 0;
spin_lock_irqsave(&xhci->lock, flags);
command->completion = &xhci->addr_dev;
ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
if (ret) {
spin_unlock_irqrestore(&xhci->lock, flags);
xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
kfree(command);
return 0;
}
xhci_ring_cmd_db(xhci);
spin_unlock_irqrestore(&xhci->lock, flags);
wait_for_completion(command->completion);
if (!xhci->slot_id || command->status != COMP_SUCCESS) {
xhci_err(xhci, "Error while assigning device slot ID\n");
xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
HCS_MAX_SLOTS(
readl(&xhci->cap_regs->hcs_params1)));
kfree(command);
return 0;
}
if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
spin_lock_irqsave(&xhci->lock, flags);
ret = xhci_reserve_host_control_ep_resources(xhci);
if (ret) {
spin_unlock_irqrestore(&xhci->lock, flags);
xhci_warn(xhci, "Not enough host resources, "
"active endpoint contexts = %u\n",
xhci->num_active_eps);
goto disable_slot;
}
spin_unlock_irqrestore(&xhci->lock, flags);
}
/* Use GFP_NOIO, since this function can be called from
* xhci_discover_or_reset_device(), which may be called as part of
* mass storage driver error handling.
*/
if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) {
xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
goto disable_slot;
}
udev->slot_id = xhci->slot_id;
#ifndef CONFIG_USB_DEFAULT_PERSIST
/*
* If resetting upon resume, we can't put the controller into runtime
* suspend if there is a device attached.
*/
if (xhci->quirks & XHCI_RESET_ON_RESUME)
pm_runtime_get_noresume(hcd->self.controller);
#endif
kfree(command);
/* Is this a LS or FS device under a HS hub? */
/* Hub or peripherial? */
return 1;
disable_slot:
/* Disable slot, if we can do it without mem alloc */
spin_lock_irqsave(&xhci->lock, flags);
command->completion = NULL;
command->status = 0;
if (!xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
udev->slot_id))
xhci_ring_cmd_db(xhci);
spin_unlock_irqrestore(&xhci->lock, flags);
return 0;
}
/*
* Issue an Address Device command and optionally send a corresponding
* SetAddress request to the device.
* We should be protected by the usb_address0_mutex in khubd's hub_port_init, so
* we should only issue and wait on one address command at the same time.
*/
static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
enum xhci_setup_dev setup)
{
const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
unsigned long flags;
struct xhci_virt_device *virt_dev;
int ret = 0;
struct xhci_hcd *xhci = hcd_to_xhci(hcd);
struct xhci_slot_ctx *slot_ctx;
struct xhci_input_control_ctx *ctrl_ctx;
u64 temp_64;
struct xhci_command *command;
if (!udev->slot_id) {
xhci_dbg_trace(xhci, trace_xhci_dbg_address,
"Bad Slot ID %d", udev->slot_id);
return -EINVAL;
}
virt_dev = xhci->devs[udev->slot_id];
if (WARN_ON(!virt_dev)) {
/*
* In plug/unplug torture test with an NEC controller,
* a zero-dereference was observed once due to virt_dev = 0.
* Print useful debug rather than crash if it is observed again!
*/
xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
udev->slot_id);
return -EINVAL;
}
command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
if (!command)
return -ENOMEM;
command->in_ctx = virt_dev->in_ctx;
command->completion = &xhci->addr_dev;
slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
if (!ctrl_ctx) {
xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
__func__);
kfree(command);
return -EINVAL;
}
/*
* If this is the first Set Address since device plug-in or
* virt_device realloaction after a resume with an xHCI power loss,
* then set up the slot context.
*/
if (!slot_ctx->dev_info)
xhci_setup_addressable_virt_dev(xhci, udev);
/* Otherwise, update the control endpoint ring enqueue pointer. */
else
xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
ctrl_ctx->drop_flags = 0;
xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
le32_to_cpu(slot_ctx->dev_info) >> 27);
spin_lock_irqsave(&xhci->lock, flags);
ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
udev->slot_id, setup);
if (ret) {
spin_unlock_irqrestore(&xhci->lock, flags);
xhci_dbg_trace(xhci, trace_xhci_dbg_address,
"FIXME: allocate a command ring segment");
kfree(command);
return ret;
}
xhci_ring_cmd_db(xhci);
spin_unlock_irqrestore(&xhci->lock, flags);
/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
wait_for_completion(command->completion);
/* FIXME: From section 4.3.4: "Software shall be responsible for timing
* the SetAddress() "recovery interval" required by USB and aborting the
* command on a timeout.
*/
switch (command->status) {
case COMP_CMD_ABORT:
case COMP_CMD_STOP:
xhci_warn(xhci, "Timeout while waiting for setup device command\n");
ret = -ETIME;
break;
case COMP_CTX_STATE:
case COMP_EBADSLT:
xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
act, udev->slot_id);
ret = -EINVAL;
break;
case COMP_TX_ERR:
dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
ret = -EPROTO;
break;
case COMP_DEV_ERR:
dev_warn(&udev->dev,
"ERROR: Incompatible device for setup %s command\n", act);
ret = -ENODEV;
break;
case COMP_SUCCESS:
xhci_dbg_trace(xhci, trace_xhci_dbg_address,
"Successful setup %s command", act);
break;
default:
xhci_err(xhci,
"ERROR: unexpected setup %s command completion code 0x%x.\n",
act, command->status);
xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
ret = -EINVAL;
break;
}
if (ret) {
kfree(command);
return ret;
}
temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
xhci_dbg_trace(xhci, trace_xhci_dbg_address,
"Op regs DCBAA ptr = %#016llx", temp_64);
xhci_dbg_trace(xhci, trace_xhci_dbg_address,
"Slot ID %d dcbaa entry @%p = %#016llx",
udev->slot_id,
&xhci->dcbaa->dev_context_ptrs[udev->slot_id],
(unsigned long long)
le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
xhci_dbg_trace(xhci, trace_xhci_dbg_address,
"Output Context DMA address = %#08llx",
(unsigned long long)virt_dev->out_ctx->dma);
xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
le32_to_cpu(slot_ctx->dev_info) >> 27);
xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
/*
* USB core uses address 1 for the roothubs, so we add one to the
* address given back to us by the HC.
*/
slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
le32_to_cpu(slot_ctx->dev_info) >> 27);
/* Zero the input context control for later use */
ctrl_ctx->add_flags = 0;
ctrl_ctx->drop_flags = 0;
xhci_dbg_trace(xhci, trace_xhci_dbg_address,
"Internal device address = %d",
le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
kfree(command);
return 0;
}
int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
{
return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
}
int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
{
return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
}
/*
* Transfer the port index into real index in the HW port status
* registers. Caculate offset between the port's PORTSC register
* and port status base. Divide the number of per port register
* to get the real index. The raw port number bases 1.
*/
int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
{
struct xhci_hcd *xhci = hcd_to_xhci(hcd);
__le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
__le32 __iomem *addr;
int raw_port;
if (hcd->speed != HCD_USB3)
addr = xhci->usb2_ports[port1 - 1];
else
addr = xhci->usb3_ports[port1 - 1];
raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
return raw_port;
}
/*
* Issue an Evaluate Context command to change the Maximum Exit Latency in the
* slot context. If that succeeds, store the new MEL in the xhci_virt_device.
*/
static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
struct usb_device *udev, u16 max_exit_latency)
{
struct xhci_virt_device *virt_dev;
struct xhci_command *command;
struct xhci_input_control_ctx *ctrl_ctx;
struct xhci_slot_ctx *slot_ctx;
unsigned long flags;
int ret;
spin_lock_irqsave(&xhci->lock, flags);
if (max_exit_latency == xhci->devs[udev->slot_id]->current_mel) {
spin_unlock_irqrestore(&xhci->lock, flags);
return 0;
}
/* Attempt to issue an Evaluate Context command to change the MEL. */
virt_dev = xhci->devs[udev->slot_id];
command = xhci->lpm_command;
ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
if (!ctrl_ctx) {
spin_unlock_irqrestore(&xhci->lock, flags);
xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
__func__);
return -ENOMEM;
}
xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
spin_unlock_irqrestore(&xhci->lock, flags);
ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
"Set up evaluate context for LPM MEL change.");
xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
xhci_dbg_ctx(xhci, command->in_ctx, 0);
/* Issue and wait for the evaluate context command. */
ret = xhci_configure_endpoint(xhci, udev, command,
true, true);
xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);
if (!ret) {
spin_lock_irqsave(&xhci->lock, flags);
virt_dev->current_mel = max_exit_latency;
spin_unlock_irqrestore(&xhci->lock, flags);
}
return ret;
}
#ifdef CONFIG_PM_RUNTIME
/* BESL to HIRD Encoding array for USB2 LPM */
static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
/* Calculate HIRD/BESL for USB2 PORTPMSC*/
static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
struct usb_device *udev)
{
int u2del, besl, besl_host;
int besl_device = 0;
u32 field;
u2del = HCS_U2_LATENCY(xhci->hcs_params3);
field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
if (field & USB_BESL_SUPPORT) {
for (besl_host = 0; besl_host < 16; besl_host++) {
if (xhci_besl_encoding[besl_host] >= u2del)
break;
}
/* Use baseline BESL value as default */
if (field & USB_BESL_BASELINE_VALID)
besl_device = USB_GET_BESL_BASELINE(field);
else if (field & USB_BESL_DEEP_VALID)
besl_device = USB_GET_BESL_DEEP(field);
} else {
if (u2del <= 50)
besl_host = 0;
else
besl_host = (u2del - 51) / 75 + 1;
}
besl = besl_host + besl_device;
if (besl > 15)
besl = 15;
return besl;
}
/* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
{
u32 field;
int l1;
int besld = 0;
int hirdm = 0;
field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
/* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
l1 = udev->l1_params.timeout / 256;
/* device has preferred BESLD */
if (field & USB_BESL_DEEP_VALID) {
besld = USB_GET_BESL_DEEP(field);
hirdm = 1;
}
return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
}
int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
struct usb_device *udev, int enable)
{
struct xhci_hcd *xhci = hcd_to_xhci(hcd);
__le32 __iomem **port_array;
__le32 __iomem *pm_addr, *hlpm_addr;
u32 pm_val, hlpm_val, field;
unsigned int port_num;
unsigned long flags;
int hird, exit_latency;
int ret;
if (hcd->speed == HCD_USB3 || !xhci->hw_lpm_support ||
!udev->lpm_capable)
return -EPERM;
if (!udev->parent || udev->parent->parent ||
udev->descriptor.bDeviceClass == USB_CLASS_HUB)
return -EPERM;
if (udev->usb2_hw_lpm_capable != 1)
return -EPERM;
spin_lock_irqsave(&xhci->lock, flags);
port_array = xhci->usb2_ports;
port_num = udev->portnum - 1;
pm_addr = port_array[port_num] + PORTPMSC;
pm_val = readl(pm_addr);
hlpm_addr = port_array[port_num] + PORTHLPMC;
field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
enable ? "enable" : "disable", port_num + 1);
if (enable) {
/* Host supports BESL timeout instead of HIRD */
if (udev->usb2_hw_lpm_besl_capable) {
/* if device doesn't have a preferred BESL value use a
* default one which works with mixed HIRD and BESL
* systems. See XHCI_DEFAULT_BESL definition in xhci.h
*/
if ((field & USB_BESL_SUPPORT) &&
(field & USB_BESL_BASELINE_VALID))
hird = USB_GET_BESL_BASELINE(field);
else
hird = udev->l1_params.besl;
exit_latency = xhci_besl_encoding[hird];
spin_unlock_irqrestore(&xhci->lock, flags);
/* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
* input context for link powermanagement evaluate
* context commands. It is protected by hcd->bandwidth
* mutex and is shared by all devices. We need to set
* the max ext latency in USB 2 BESL LPM as well, so
* use the same mutex and xhci_change_max_exit_latency()
*/
mutex_lock(hcd->bandwidth_mutex);
ret = xhci_change_max_exit_latency(xhci, udev,
exit_latency);
mutex_unlock(hcd->bandwidth_mutex);
if (ret < 0)
return ret;
spin_lock_irqsave(&xhci->lock, flags);
hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
writel(hlpm_val, hlpm_addr);
/* flush write */
readl(hlpm_addr);
} else {
hird = xhci_calculate_hird_besl(xhci, udev);
}
pm_val &= ~PORT_HIRD_MASK;
pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
writel(pm_val, pm_addr);
pm_val = readl(pm_addr);
pm_val |= PORT_HLE;
writel(pm_val, pm_addr);
/* flush write */
readl(pm_addr);
} else {
pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
writel(pm_val, pm_addr);
/* flush write */
readl(pm_addr);
if (udev->usb2_hw_lpm_besl_capable) {
spin_unlock_irqrestore(&xhci->lock, flags);
mutex_lock(hcd->bandwidth_mutex);
xhci_change_max_exit_latency(xhci, udev, 0);
mutex_unlock(hcd->bandwidth_mutex);
return 0;
}
}
spin_unlock_irqrestore(&xhci->lock, flags);
return 0;
}
/* check if a usb2 port supports a given extened capability protocol
* only USB2 ports extended protocol capability values are cached.
* Return 1 if capability is supported
*/
static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
unsigned capability)
{
u32 port_offset, port_count;
int i;
for (i = 0; i < xhci->num_ext_caps; i++) {
if (xhci->ext_caps[i] & capability) {
/* port offsets starts at 1 */
port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
if (port >= port_offset &&
port < port_offset + port_count)
return 1;
}
}
return 0;
}
int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
{
struct xhci_hcd *xhci = hcd_to_xhci(hcd);
int portnum = udev->portnum - 1;
if (hcd->speed == HCD_USB3 || !xhci->sw_lpm_support ||
!udev->lpm_capable)
return 0;
/* we only support lpm for non-hub device connected to root hub yet */
if (!udev->parent || udev->parent->parent ||
udev->descriptor.bDeviceClass == USB_CLASS_HUB)
return 0;
if (xhci->hw_lpm_support == 1 &&
xhci_check_usb2_port_capability(
xhci, portnum, XHCI_HLC)) {
udev->usb2_hw_lpm_capable = 1;
udev->l1_params.timeout = XHCI_L1_TIMEOUT;
udev->l1_params.besl = XHCI_DEFAULT_BESL;
if (xhci_check_usb2_port_capability(xhci, portnum,
XHCI_BLC))
udev->usb2_hw_lpm_besl_capable = 1;
}
return 0;
}
#else
int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
struct usb_device *udev, int enable)
{
return 0;
}
int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
{
return 0;
}
#endif /* CONFIG_PM_RUNTIME */
/*---------------------- USB 3.0 Link PM functions ------------------------*/
#ifdef CONFIG_PM
/* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
static unsigned long long xhci_service_interval_to_ns(
struct usb_endpoint_descriptor *desc)
{
return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
}
static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
enum usb3_link_state state)
{
unsigned long long sel;
unsigned long long pel;
unsigned int max_sel_pel;
char *state_name;
switch (state) {
case USB3_LPM_U1:
/* Convert SEL and PEL stored in nanoseconds to microseconds */
sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
state_name = "U1";
break;
case USB3_LPM_U2:
sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
state_name = "U2";
break;
default:
dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
__func__);
return USB3_LPM_DISABLED;
}
if (sel <= max_sel_pel && pel <= max_sel_pel)
return USB3_LPM_DEVICE_INITIATED;
if (sel > max_sel_pel)
dev_dbg(&udev->dev, "Device-initiated %s disabled "
"due to long SEL %llu ms\n",
state_name, sel);
else
dev_dbg(&udev->dev, "Device-initiated %s disabled "
"due to long PEL %llu ms\n",
state_name, pel);
return USB3_LPM_DISABLED;
}
/* The U1 timeout should be the maximum of the following values:
* - For control endpoints, U1 system exit latency (SEL) * 3
* - For bulk endpoints, U1 SEL * 5
* - For interrupt endpoints:
* - Notification EPs, U1 SEL * 3
* - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
* - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
*/
static unsigned long long xhci_calculate_intel_u1_timeout(
struct usb_device *udev,
struct usb_endpoint_descriptor *desc)
{
unsigned long long timeout_ns;
int ep_type;
int intr_type;
ep_type = usb_endpoint_type(desc);
switch (ep_type) {
case USB_ENDPOINT_XFER_CONTROL:
timeout_ns = udev->u1_params.sel * 3;
break;
case USB_ENDPOINT_XFER_BULK:
timeout_ns = udev->u1_params.sel * 5;
break;
case USB_ENDPOINT_XFER_INT:
intr_type = usb_endpoint_interrupt_type(desc);
if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
timeout_ns = udev->u1_params.sel * 3;
break;
}
/* Otherwise the calculation is the same as isoc eps */
case USB_ENDPOINT_XFER_ISOC:
timeout_ns = xhci_service_interval_to_ns(desc);
timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
if (timeout_ns < udev->u1_params.sel * 2)
timeout_ns = udev->u1_params.sel * 2;
break;
default:
return 0;
}
return timeout_ns;
}
/* Returns the hub-encoded U1 timeout value. */
static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
struct usb_device *udev,
struct usb_endpoint_descriptor *desc)
{
unsigned long long timeout_ns;
if (xhci->quirks & XHCI_INTEL_HOST)
timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
else
timeout_ns = udev->u1_params.sel;
/* The U1 timeout is encoded in 1us intervals.
* Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
*/
if (timeout_ns == USB3_LPM_DISABLED)
timeout_ns = 1;
else
timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
/* If the necessary timeout value is bigger than what we can set in the
* USB 3.0 hub, we have to disable hub-initiated U1.
*/
if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
return timeout_ns;
dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
"due to long timeout %llu ms\n", timeout_ns);
return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
}
/* The U2 timeout should be the maximum of:
* - 10 ms (to avoid the bandwidth impact on the scheduler)
* - largest bInterval of any active periodic endpoint (to avoid going
* into lower power link states between intervals).
* - the U2 Exit Latency of the device
*/
static unsigned long long xhci_calculate_intel_u2_timeout(
struct usb_device *udev,
struct usb_endpoint_descriptor *desc)
{
unsigned long long timeout_ns;
unsigned long long u2_del_ns;
timeout_ns = 10 * 1000 * 1000;
if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
(xhci_service_interval_to_ns(desc) > timeout_ns))
timeout_ns = xhci_service_interval_to_ns(desc);
u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
if (u2_del_ns > timeout_ns)
timeout_ns = u2_del_ns;
return timeout_ns;
}
/* Returns the hub-encoded U2 timeout value. */
static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
struct usb_device *udev,
struct usb_endpoint_descriptor *desc)
{
unsigned long long timeout_ns;
if (xhci->quirks & XHCI_INTEL_HOST)
timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
else
timeout_ns = udev->u2_params.sel;
/* The U2 timeout is encoded in 256us intervals */
timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
/* If the necessary timeout value is bigger than what we can set in the
* USB 3.0 hub, we have to disable hub-initiated U2.
*/
if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
return timeout_ns;
dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
"due to long timeout %llu ms\n", timeout_ns);
return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
}
static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
struct usb_device *udev,
struct usb_endpoint_descriptor *desc,
enum usb3_link_state state,
u16 *timeout)
{
if (state == USB3_LPM_U1)
return xhci_calculate_u1_timeout(xhci, udev, desc);
else if (state == USB3_LPM_U2)
return xhci_calculate_u2_timeout(xhci, udev, desc);
return USB3_LPM_DISABLED;
}
static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
struct usb_device *udev,
struct usb_endpoint_descriptor *desc,
enum usb3_link_state state,
u16 *timeout)
{
u16 alt_timeout;
alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
desc, state, timeout);
/* If we found we can't enable hub-initiated LPM, or
* the U1 or U2 exit latency was too high to allow
* device-initiated LPM as well, just stop searching.
*/
if (alt_timeout == USB3_LPM_DISABLED ||
alt_timeout == USB3_LPM_DEVICE_INITIATED) {
*timeout = alt_timeout;
return -E2BIG;
}
if (alt_timeout > *timeout)
*timeout = alt_timeout;
return 0;
}
static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
struct usb_device *udev,
struct usb_host_interface *alt,
enum usb3_link_state state,
u16 *timeout)
{
int j;
for (j = 0; j < alt->desc.bNumEndpoints; j++) {
if (xhci_update_timeout_for_endpoint(xhci, udev,
&alt->endpoint[j].desc, state, timeout))
return -E2BIG;
continue;
}
return 0;
}
static int xhci_check_intel_tier_policy(struct usb_device *udev,
enum usb3_link_state state)
{
struct usb_device *parent;
unsigned int num_hubs;
if (state == USB3_LPM_U2)
return 0;
/* Don't enable U1 if the device is on a 2nd tier hub or lower. */
for (parent = udev->parent, num_hubs = 0; parent->parent;
parent = parent->parent)
num_hubs++;
if (num_hubs < 2)
return 0;
dev_dbg(&udev->dev, "Disabling U1 link state for device"
" below second-tier hub.\n");
dev_dbg(&udev->dev, "Plug device into first-tier hub "
"to decrease power consumption.\n");
return -E2BIG;
}
static int xhci_check_tier_policy(struct xhci_hcd *xhci,
struct usb_device *udev,
enum usb3_link_state state)
{
if (xhci->quirks & XHCI_INTEL_HOST)
return xhci_check_intel_tier_policy(udev, state);
else
return 0;
}
/* Returns the U1 or U2 timeout that should be enabled.
* If the tier check or timeout setting functions return with a non-zero exit
* code, that means the timeout value has been finalized and we shouldn't look
* at any more endpoints.
*/
static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
struct usb_device *udev, enum usb3_link_state state)
{
struct xhci_hcd *xhci = hcd_to_xhci(hcd);
struct usb_host_config *config;
char *state_name;
int i;
u16 timeout = USB3_LPM_DISABLED;
if (state == USB3_LPM_U1)
state_name = "U1";
else if (state == USB3_LPM_U2)
state_name = "U2";
else {
dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
state);
return timeout;
}
if (xhci_check_tier_policy(xhci, udev, state) < 0)
return timeout;
/* Gather some information about the currently installed configuration
* and alternate interface settings.
*/
if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
state, &timeout))
return timeout;
config = udev->actconfig;
if (!config)
return timeout;
for (i = 0; i < config->desc.bNumInterfaces; i++) {
struct usb_driver *driver;
struct usb_interface *intf = config->interface[i];
if (!intf)
continue;
/* Check if any currently bound drivers want hub-initiated LPM
* disabled.
*/
if (intf->dev.driver) {
driver = to_usb_driver(intf->dev.driver);
if (driver && driver->disable_hub_initiated_lpm) {
dev_dbg(&udev->dev, "Hub-initiated %s disabled "
"at request of driver %s\n",
state_name, driver->name);
return xhci_get_timeout_no_hub_lpm(udev, state);
}
}
/* Not sure how this could happen... */
if (!intf->cur_altsetting)
continue;
if (xhci_update_timeout_for_interface(xhci, udev,
intf->cur_altsetting,
state, &timeout))
return timeout;
}
return timeout;
}
static int calculate_max_exit_latency(struct usb_device *udev,
enum usb3_link_state state_changed,
u16 hub_encoded_timeout)
{
unsigned long long u1_mel_us = 0;
unsigned long long u2_mel_us = 0;
unsigned long long mel_us = 0;
bool disabling_u1;
bool disabling_u2;
bool enabling_u1;
bool enabling_u2;
disabling_u1 = (state_changed == USB3_LPM_U1 &&
hub_encoded_timeout == USB3_LPM_DISABLED);
disabling_u2 = (state_changed == USB3_LPM_U2 &&
hub_encoded_timeout == USB3_LPM_DISABLED);
enabling_u1 = (state_changed == USB3_LPM_U1 &&
hub_encoded_timeout != USB3_LPM_DISABLED);
enabling_u2 = (state_changed == USB3_LPM_U2 &&
hub_encoded_timeout != USB3_LPM_DISABLED);
/* If U1 was already enabled and we're not disabling it,
* or we're going to enable U1, account for the U1 max exit latency.
*/
if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
enabling_u1)
u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
enabling_u2)
u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
if (u1_mel_us > u2_mel_us)
mel_us = u1_mel_us;
else
mel_us = u2_mel_us;
/* xHCI host controller max exit latency field is only 16 bits wide. */
if (mel_us > MAX_EXIT) {
dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
"is too big.\n", mel_us);
return -E2BIG;
}
return mel_us;
}
/* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
struct usb_device *udev, enum usb3_link_state state)
{
struct xhci_hcd *xhci;
u16 hub_encoded_timeout;
int mel;
int ret;
xhci = hcd_to_xhci(hcd);
/* The LPM timeout values are pretty host-controller specific, so don't
* enable hub-initiated timeouts unless the vendor has provided
* information about their timeout algorithm.
*/
if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
!xhci->devs[udev->slot_id])
return USB3_LPM_DISABLED;
hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
if (mel < 0) {
/* Max Exit Latency is too big, disable LPM. */
hub_encoded_timeout = USB3_LPM_DISABLED;
mel = 0;
}
ret = xhci_change_max_exit_latency(xhci, udev, mel);
if (ret)
return ret;
return hub_encoded_timeout;
}
int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
struct usb_device *udev, enum usb3_link_state state)
{
struct xhci_hcd *xhci;
u16 mel;
int ret;
xhci = hcd_to_xhci(hcd);
if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
!xhci->devs[udev->slot_id])
return 0;
mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
ret = xhci_change_max_exit_latency(xhci, udev, mel);
if (ret)
return ret;
return 0;
}
#else /* CONFIG_PM */
int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
struct usb_device *udev, enum usb3_link_state state)
{
return USB3_LPM_DISABLED;
}
int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
struct usb_device *udev, enum usb3_link_state state)
{
return 0;
}
#endif /* CONFIG_PM */
/*-------------------------------------------------------------------------*/
/* Once a hub descriptor is fetched for a device, we need to update the xHC's
* internal data structures for the device.
*/
int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
struct usb_tt *tt, gfp_t mem_flags)
{
struct xhci_hcd *xhci = hcd_to_xhci(hcd);
struct xhci_virt_device *vdev;
struct xhci_command *config_cmd;
struct xhci_input_control_ctx *ctrl_ctx;
struct xhci_slot_ctx *slot_ctx;
unsigned long flags;
unsigned think_time;
int ret;
/* Ignore root hubs */
if (!hdev->parent)
return 0;
vdev = xhci->devs[hdev->slot_id];
if (!vdev) {
xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
return -EINVAL;
}
config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
if (!config_cmd) {
xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
return -ENOMEM;
}
ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
if (!ctrl_ctx) {
xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
__func__);
xhci_free_command(xhci, config_cmd);
return -ENOMEM;
}
spin_lock_irqsave(&xhci->lock, flags);
if (hdev->speed == USB_SPEED_HIGH &&
xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
xhci_free_command(xhci, config_cmd);
spin_unlock_irqrestore(&xhci->lock, flags);
return -ENOMEM;
}
xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
if (tt->multi)
slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
if (xhci->hci_version > 0x95) {
xhci_dbg(xhci, "xHCI version %x needs hub "
"TT think time and number of ports\n",
(unsigned int) xhci->hci_version);
slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
/* Set TT think time - convert from ns to FS bit times.
* 0 = 8 FS bit times, 1 = 16 FS bit times,
* 2 = 24 FS bit times, 3 = 32 FS bit times.
*
* xHCI 1.0: this field shall be 0 if the device is not a
* High-spped hub.
*/
think_time = tt->think_time;
if (think_time != 0)
think_time = (think_time / 666) - 1;
if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
slot_ctx->tt_info |=
cpu_to_le32(TT_THINK_TIME(think_time));
} else {
xhci_dbg(xhci, "xHCI version %x doesn't need hub "
"TT think time or number of ports\n",
(unsigned int) xhci->hci_version);
}
slot_ctx->dev_state = 0;
spin_unlock_irqrestore(&xhci->lock, flags);
xhci_dbg(xhci, "Set up %s for hub device.\n",
(xhci->hci_version > 0x95) ?
"configure endpoint" : "evaluate context");
xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
/* Issue and wait for the configure endpoint or
* evaluate context command.
*/
if (xhci->hci_version > 0x95)
ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
false, false);
else
ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
true, false);
xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
xhci_free_command(xhci, config_cmd);
return ret;
}
int xhci_get_frame(struct usb_hcd *hcd)
{
struct xhci_hcd *xhci = hcd_to_xhci(hcd);
/* EHCI mods by the periodic size. Why? */
return readl(&xhci->run_regs->microframe_index) >> 3;
}
int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
{
struct xhci_hcd *xhci;
struct device *dev = hcd->self.controller;
int retval;
/* Accept arbitrarily long scatter-gather lists */
hcd->self.sg_tablesize = ~0;
/* support to build packet from discontinuous buffers */
hcd->self.no_sg_constraint = 1;
/* XHCI controllers don't stop the ep queue on short packets :| */
hcd->self.no_stop_on_short = 1;
if (usb_hcd_is_primary_hcd(hcd)) {
xhci = kzalloc(sizeof(struct xhci_hcd), GFP_KERNEL);
if (!xhci)
return -ENOMEM;
*((struct xhci_hcd **) hcd->hcd_priv) = xhci;
xhci->main_hcd = hcd;
/* Mark the first roothub as being USB 2.0.
* The xHCI driver will register the USB 3.0 roothub.
*/
hcd->speed = HCD_USB2;
hcd->self.root_hub->speed = USB_SPEED_HIGH;
/*
* USB 2.0 roothub under xHCI has an integrated TT,
* (rate matching hub) as opposed to having an OHCI/UHCI
* companion controller.
*/
hcd->has_tt = 1;
} else {
/* xHCI private pointer was set in xhci_pci_probe for the second
* registered roothub.
*/
return 0;
}
xhci->cap_regs = hcd->regs;
xhci->op_regs = hcd->regs +
HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
xhci->run_regs = hcd->regs +
(readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
/* Cache read-only capability registers */
xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
xhci->hci_version = HC_VERSION(xhci->hcc_params);
xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
xhci_print_registers(xhci);
xhci->quirks = quirks;
get_quirks(dev, xhci);
/* In xhci controllers which follow xhci 1.0 spec gives a spurious
* success event after a short transfer. This quirk will ignore such
* spurious event.
*/
if (xhci->hci_version > 0x96)
xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
/* Make sure the HC is halted. */
retval = xhci_halt(xhci);
if (retval)
goto error;
xhci_dbg(xhci, "Resetting HCD\n");
/* Reset the internal HC memory state and registers. */
retval = xhci_reset(xhci);
if (retval)
goto error;
xhci_dbg(xhci, "Reset complete\n");
/* Set dma_mask and coherent_dma_mask to 64-bits,
* if xHC supports 64-bit addressing */
if (HCC_64BIT_ADDR(xhci->hcc_params) &&
!dma_set_mask(dev, DMA_BIT_MASK(64))) {
xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
}
xhci_dbg(xhci, "Calling HCD init\n");
/* Initialize HCD and host controller data structures. */
retval = xhci_init(hcd);
if (retval)
goto error;
xhci_dbg(xhci, "Called HCD init\n");
return 0;
error:
kfree(xhci);
return retval;
}
MODULE_DESCRIPTION(DRIVER_DESC);
MODULE_AUTHOR(DRIVER_AUTHOR);
MODULE_LICENSE("GPL");
static int __init xhci_hcd_init(void)
{
int retval;
retval = xhci_register_pci();
if (retval < 0) {
pr_debug("Problem registering PCI driver.\n");
return retval;
}
retval = xhci_register_plat();
if (retval < 0) {
pr_debug("Problem registering platform driver.\n");
goto unreg_pci;
}
/*
* Check the compiler generated sizes of structures that must be laid
* out in specific ways for hardware access.
*/
BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
/* xhci_device_control has eight fields, and also
* embeds one xhci_slot_ctx and 31 xhci_ep_ctx
*/
BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8);
BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
return 0;
unreg_pci:
xhci_unregister_pci();
return retval;
}
module_init(xhci_hcd_init);
static void __exit xhci_hcd_cleanup(void)
{
xhci_unregister_pci();
xhci_unregister_plat();
}
module_exit(xhci_hcd_cleanup);