blob: 298f307c63a1cae737a701182fcae98f1226ff35 [file] [log] [blame]
/*
* linux/mm/page_alloc.c
*
* Manages the free list, the system allocates free pages here.
* Note that kmalloc() lives in slab.c
*
* Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
* Swap reorganised 29.12.95, Stephen Tweedie
* Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
* Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
* Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
* Zone balancing, Kanoj Sarcar, SGI, Jan 2000
* Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
* (lots of bits borrowed from Ingo Molnar & Andrew Morton)
*/
#include <linux/stddef.h>
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/interrupt.h>
#include <linux/pagemap.h>
#include <linux/jiffies.h>
#include <linux/bootmem.h>
#include <linux/compiler.h>
#include <linux/kernel.h>
#include <linux/kmemcheck.h>
#include <linux/module.h>
#include <linux/suspend.h>
#include <linux/pagevec.h>
#include <linux/blkdev.h>
#include <linux/slab.h>
#include <linux/oom.h>
#include <linux/notifier.h>
#include <linux/topology.h>
#include <linux/sysctl.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/memory_hotplug.h>
#include <linux/nodemask.h>
#include <linux/vmalloc.h>
#include <linux/mempolicy.h>
#include <linux/stop_machine.h>
#include <linux/sort.h>
#include <linux/pfn.h>
#include <linux/backing-dev.h>
#include <linux/fault-inject.h>
#include <linux/page-isolation.h>
#include <linux/page_cgroup.h>
#include <linux/debugobjects.h>
#include <linux/kmemleak.h>
#include <linux/memory.h>
#include <trace/events/kmem.h>
#include <asm/tlbflush.h>
#include <asm/div64.h>
#include "internal.h"
/*
* Array of node states.
*/
nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
[N_POSSIBLE] = NODE_MASK_ALL,
[N_ONLINE] = { { [0] = 1UL } },
#ifndef CONFIG_NUMA
[N_NORMAL_MEMORY] = { { [0] = 1UL } },
#ifdef CONFIG_HIGHMEM
[N_HIGH_MEMORY] = { { [0] = 1UL } },
#endif
[N_CPU] = { { [0] = 1UL } },
#endif /* NUMA */
};
EXPORT_SYMBOL(node_states);
unsigned long totalram_pages __read_mostly;
unsigned long totalreserve_pages __read_mostly;
int percpu_pagelist_fraction;
gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
#ifdef CONFIG_PM_SLEEP
/*
* The following functions are used by the suspend/hibernate code to temporarily
* change gfp_allowed_mask in order to avoid using I/O during memory allocations
* while devices are suspended. To avoid races with the suspend/hibernate code,
* they should always be called with pm_mutex held (gfp_allowed_mask also should
* only be modified with pm_mutex held, unless the suspend/hibernate code is
* guaranteed not to run in parallel with that modification).
*/
void set_gfp_allowed_mask(gfp_t mask)
{
WARN_ON(!mutex_is_locked(&pm_mutex));
gfp_allowed_mask = mask;
}
gfp_t clear_gfp_allowed_mask(gfp_t mask)
{
gfp_t ret = gfp_allowed_mask;
WARN_ON(!mutex_is_locked(&pm_mutex));
gfp_allowed_mask &= ~mask;
return ret;
}
#endif /* CONFIG_PM_SLEEP */
#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
int pageblock_order __read_mostly;
#endif
static void __free_pages_ok(struct page *page, unsigned int order);
/*
* results with 256, 32 in the lowmem_reserve sysctl:
* 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
* 1G machine -> (16M dma, 784M normal, 224M high)
* NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
* HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
* HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
*
* TBD: should special case ZONE_DMA32 machines here - in those we normally
* don't need any ZONE_NORMAL reservation
*/
int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
#ifdef CONFIG_ZONE_DMA
256,
#endif
#ifdef CONFIG_ZONE_DMA32
256,
#endif
#ifdef CONFIG_HIGHMEM
32,
#endif
32,
};
EXPORT_SYMBOL(totalram_pages);
static char * const zone_names[MAX_NR_ZONES] = {
#ifdef CONFIG_ZONE_DMA
"DMA",
#endif
#ifdef CONFIG_ZONE_DMA32
"DMA32",
#endif
"Normal",
#ifdef CONFIG_HIGHMEM
"HighMem",
#endif
"Movable",
};
int min_free_kbytes = 1024;
static unsigned long __meminitdata nr_kernel_pages;
static unsigned long __meminitdata nr_all_pages;
static unsigned long __meminitdata dma_reserve;
#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
/*
* MAX_ACTIVE_REGIONS determines the maximum number of distinct
* ranges of memory (RAM) that may be registered with add_active_range().
* Ranges passed to add_active_range() will be merged if possible
* so the number of times add_active_range() can be called is
* related to the number of nodes and the number of holes
*/
#ifdef CONFIG_MAX_ACTIVE_REGIONS
/* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
#define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
#else
#if MAX_NUMNODES >= 32
/* If there can be many nodes, allow up to 50 holes per node */
#define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
#else
/* By default, allow up to 256 distinct regions */
#define MAX_ACTIVE_REGIONS 256
#endif
#endif
static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
static int __meminitdata nr_nodemap_entries;
static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
static unsigned long __initdata required_kernelcore;
static unsigned long __initdata required_movablecore;
static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
int movable_zone;
EXPORT_SYMBOL(movable_zone);
#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
#if MAX_NUMNODES > 1
int nr_node_ids __read_mostly = MAX_NUMNODES;
int nr_online_nodes __read_mostly = 1;
EXPORT_SYMBOL(nr_node_ids);
EXPORT_SYMBOL(nr_online_nodes);
#endif
int page_group_by_mobility_disabled __read_mostly;
static void set_pageblock_migratetype(struct page *page, int migratetype)
{
if (unlikely(page_group_by_mobility_disabled))
migratetype = MIGRATE_UNMOVABLE;
set_pageblock_flags_group(page, (unsigned long)migratetype,
PB_migrate, PB_migrate_end);
}
bool oom_killer_disabled __read_mostly;
#ifdef CONFIG_DEBUG_VM
static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
{
int ret = 0;
unsigned seq;
unsigned long pfn = page_to_pfn(page);
do {
seq = zone_span_seqbegin(zone);
if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
ret = 1;
else if (pfn < zone->zone_start_pfn)
ret = 1;
} while (zone_span_seqretry(zone, seq));
return ret;
}
static int page_is_consistent(struct zone *zone, struct page *page)
{
if (!pfn_valid_within(page_to_pfn(page)))
return 0;
if (zone != page_zone(page))
return 0;
return 1;
}
/*
* Temporary debugging check for pages not lying within a given zone.
*/
static int bad_range(struct zone *zone, struct page *page)
{
if (page_outside_zone_boundaries(zone, page))
return 1;
if (!page_is_consistent(zone, page))
return 1;
return 0;
}
#else
static inline int bad_range(struct zone *zone, struct page *page)
{
return 0;
}
#endif
static void bad_page(struct page *page)
{
static unsigned long resume;
static unsigned long nr_shown;
static unsigned long nr_unshown;
/* Don't complain about poisoned pages */
if (PageHWPoison(page)) {
__ClearPageBuddy(page);
return;
}
/*
* Allow a burst of 60 reports, then keep quiet for that minute;
* or allow a steady drip of one report per second.
*/
if (nr_shown == 60) {
if (time_before(jiffies, resume)) {
nr_unshown++;
goto out;
}
if (nr_unshown) {
printk(KERN_ALERT
"BUG: Bad page state: %lu messages suppressed\n",
nr_unshown);
nr_unshown = 0;
}
nr_shown = 0;
}
if (nr_shown++ == 0)
resume = jiffies + 60 * HZ;
printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
current->comm, page_to_pfn(page));
printk(KERN_ALERT
"page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
page, (void *)page->flags, page_count(page),
page_mapcount(page), page->mapping, page->index);
dump_stack();
out:
/* Leave bad fields for debug, except PageBuddy could make trouble */
__ClearPageBuddy(page);
add_taint(TAINT_BAD_PAGE);
}
/*
* Higher-order pages are called "compound pages". They are structured thusly:
*
* The first PAGE_SIZE page is called the "head page".
*
* The remaining PAGE_SIZE pages are called "tail pages".
*
* All pages have PG_compound set. All pages have their ->private pointing at
* the head page (even the head page has this).
*
* The first tail page's ->lru.next holds the address of the compound page's
* put_page() function. Its ->lru.prev holds the order of allocation.
* This usage means that zero-order pages may not be compound.
*/
static void free_compound_page(struct page *page)
{
__free_pages_ok(page, compound_order(page));
}
void prep_compound_page(struct page *page, unsigned long order)
{
int i;
int nr_pages = 1 << order;
set_compound_page_dtor(page, free_compound_page);
set_compound_order(page, order);
__SetPageHead(page);
for (i = 1; i < nr_pages; i++) {
struct page *p = page + i;
__SetPageTail(p);
p->first_page = page;
}
}
static int destroy_compound_page(struct page *page, unsigned long order)
{
int i;
int nr_pages = 1 << order;
int bad = 0;
if (unlikely(compound_order(page) != order) ||
unlikely(!PageHead(page))) {
bad_page(page);
bad++;
}
__ClearPageHead(page);
for (i = 1; i < nr_pages; i++) {
struct page *p = page + i;
if (unlikely(!PageTail(p) || (p->first_page != page))) {
bad_page(page);
bad++;
}
__ClearPageTail(p);
}
return bad;
}
static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
{
int i;
/*
* clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
* and __GFP_HIGHMEM from hard or soft interrupt context.
*/
VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
for (i = 0; i < (1 << order); i++)
clear_highpage(page + i);
}
static inline void set_page_order(struct page *page, int order)
{
set_page_private(page, order);
__SetPageBuddy(page);
}
static inline void rmv_page_order(struct page *page)
{
__ClearPageBuddy(page);
set_page_private(page, 0);
}
/*
* Locate the struct page for both the matching buddy in our
* pair (buddy1) and the combined O(n+1) page they form (page).
*
* 1) Any buddy B1 will have an order O twin B2 which satisfies
* the following equation:
* B2 = B1 ^ (1 << O)
* For example, if the starting buddy (buddy2) is #8 its order
* 1 buddy is #10:
* B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
*
* 2) Any buddy B will have an order O+1 parent P which
* satisfies the following equation:
* P = B & ~(1 << O)
*
* Assumption: *_mem_map is contiguous at least up to MAX_ORDER
*/
static inline struct page *
__page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
{
unsigned long buddy_idx = page_idx ^ (1 << order);
return page + (buddy_idx - page_idx);
}
static inline unsigned long
__find_combined_index(unsigned long page_idx, unsigned int order)
{
return (page_idx & ~(1 << order));
}
/*
* This function checks whether a page is free && is the buddy
* we can do coalesce a page and its buddy if
* (a) the buddy is not in a hole &&
* (b) the buddy is in the buddy system &&
* (c) a page and its buddy have the same order &&
* (d) a page and its buddy are in the same zone.
*
* For recording whether a page is in the buddy system, we use PG_buddy.
* Setting, clearing, and testing PG_buddy is serialized by zone->lock.
*
* For recording page's order, we use page_private(page).
*/
static inline int page_is_buddy(struct page *page, struct page *buddy,
int order)
{
if (!pfn_valid_within(page_to_pfn(buddy)))
return 0;
if (page_zone_id(page) != page_zone_id(buddy))
return 0;
if (PageBuddy(buddy) && page_order(buddy) == order) {
VM_BUG_ON(page_count(buddy) != 0);
return 1;
}
return 0;
}
/*
* Freeing function for a buddy system allocator.
*
* The concept of a buddy system is to maintain direct-mapped table
* (containing bit values) for memory blocks of various "orders".
* The bottom level table contains the map for the smallest allocatable
* units of memory (here, pages), and each level above it describes
* pairs of units from the levels below, hence, "buddies".
* At a high level, all that happens here is marking the table entry
* at the bottom level available, and propagating the changes upward
* as necessary, plus some accounting needed to play nicely with other
* parts of the VM system.
* At each level, we keep a list of pages, which are heads of continuous
* free pages of length of (1 << order) and marked with PG_buddy. Page's
* order is recorded in page_private(page) field.
* So when we are allocating or freeing one, we can derive the state of the
* other. That is, if we allocate a small block, and both were
* free, the remainder of the region must be split into blocks.
* If a block is freed, and its buddy is also free, then this
* triggers coalescing into a block of larger size.
*
* -- wli
*/
static inline void __free_one_page(struct page *page,
struct zone *zone, unsigned int order,
int migratetype)
{
unsigned long page_idx;
if (unlikely(PageCompound(page)))
if (unlikely(destroy_compound_page(page, order)))
return;
VM_BUG_ON(migratetype == -1);
page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
VM_BUG_ON(page_idx & ((1 << order) - 1));
VM_BUG_ON(bad_range(zone, page));
while (order < MAX_ORDER-1) {
unsigned long combined_idx;
struct page *buddy;
buddy = __page_find_buddy(page, page_idx, order);
if (!page_is_buddy(page, buddy, order))
break;
/* Our buddy is free, merge with it and move up one order. */
list_del(&buddy->lru);
zone->free_area[order].nr_free--;
rmv_page_order(buddy);
combined_idx = __find_combined_index(page_idx, order);
page = page + (combined_idx - page_idx);
page_idx = combined_idx;
order++;
}
set_page_order(page, order);
list_add(&page->lru,
&zone->free_area[order].free_list[migratetype]);
zone->free_area[order].nr_free++;
}
/*
* free_page_mlock() -- clean up attempts to free and mlocked() page.
* Page should not be on lru, so no need to fix that up.
* free_pages_check() will verify...
*/
static inline void free_page_mlock(struct page *page)
{
__dec_zone_page_state(page, NR_MLOCK);
__count_vm_event(UNEVICTABLE_MLOCKFREED);
}
static inline int free_pages_check(struct page *page)
{
if (unlikely(page_mapcount(page) |
(page->mapping != NULL) |
(atomic_read(&page->_count) != 0) |
(page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
bad_page(page);
return 1;
}
if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
return 0;
}
/*
* Frees a number of pages from the PCP lists
* Assumes all pages on list are in same zone, and of same order.
* count is the number of pages to free.
*
* If the zone was previously in an "all pages pinned" state then look to
* see if this freeing clears that state.
*
* And clear the zone's pages_scanned counter, to hold off the "all pages are
* pinned" detection logic.
*/
static void free_pcppages_bulk(struct zone *zone, int count,
struct per_cpu_pages *pcp)
{
int migratetype = 0;
int batch_free = 0;
spin_lock(&zone->lock);
zone->all_unreclaimable = 0;
zone->pages_scanned = 0;
__mod_zone_page_state(zone, NR_FREE_PAGES, count);
while (count) {
struct page *page;
struct list_head *list;
/*
* Remove pages from lists in a round-robin fashion. A
* batch_free count is maintained that is incremented when an
* empty list is encountered. This is so more pages are freed
* off fuller lists instead of spinning excessively around empty
* lists
*/
do {
batch_free++;
if (++migratetype == MIGRATE_PCPTYPES)
migratetype = 0;
list = &pcp->lists[migratetype];
} while (list_empty(list));
do {
page = list_entry(list->prev, struct page, lru);
/* must delete as __free_one_page list manipulates */
list_del(&page->lru);
/* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
__free_one_page(page, zone, 0, page_private(page));
trace_mm_page_pcpu_drain(page, 0, page_private(page));
} while (--count && --batch_free && !list_empty(list));
}
spin_unlock(&zone->lock);
}
static void free_one_page(struct zone *zone, struct page *page, int order,
int migratetype)
{
spin_lock(&zone->lock);
zone->all_unreclaimable = 0;
zone->pages_scanned = 0;
__mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
__free_one_page(page, zone, order, migratetype);
spin_unlock(&zone->lock);
}
static void __free_pages_ok(struct page *page, unsigned int order)
{
unsigned long flags;
int i;
int bad = 0;
int wasMlocked = __TestClearPageMlocked(page);
trace_mm_page_free_direct(page, order);
kmemcheck_free_shadow(page, order);
for (i = 0 ; i < (1 << order) ; ++i)
bad += free_pages_check(page + i);
if (bad)
return;
if (!PageHighMem(page)) {
debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
debug_check_no_obj_freed(page_address(page),
PAGE_SIZE << order);
}
arch_free_page(page, order);
kernel_map_pages(page, 1 << order, 0);
local_irq_save(flags);
if (unlikely(wasMlocked))
free_page_mlock(page);
__count_vm_events(PGFREE, 1 << order);
free_one_page(page_zone(page), page, order,
get_pageblock_migratetype(page));
local_irq_restore(flags);
}
/*
* permit the bootmem allocator to evade page validation on high-order frees
*/
void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
{
if (order == 0) {
__ClearPageReserved(page);
set_page_count(page, 0);
set_page_refcounted(page);
__free_page(page);
} else {
int loop;
prefetchw(page);
for (loop = 0; loop < BITS_PER_LONG; loop++) {
struct page *p = &page[loop];
if (loop + 1 < BITS_PER_LONG)
prefetchw(p + 1);
__ClearPageReserved(p);
set_page_count(p, 0);
}
set_page_refcounted(page);
__free_pages(page, order);
}
}
/*
* The order of subdivision here is critical for the IO subsystem.
* Please do not alter this order without good reasons and regression
* testing. Specifically, as large blocks of memory are subdivided,
* the order in which smaller blocks are delivered depends on the order
* they're subdivided in this function. This is the primary factor
* influencing the order in which pages are delivered to the IO
* subsystem according to empirical testing, and this is also justified
* by considering the behavior of a buddy system containing a single
* large block of memory acted on by a series of small allocations.
* This behavior is a critical factor in sglist merging's success.
*
* -- wli
*/
static inline void expand(struct zone *zone, struct page *page,
int low, int high, struct free_area *area,
int migratetype)
{
unsigned long size = 1 << high;
while (high > low) {
area--;
high--;
size >>= 1;
VM_BUG_ON(bad_range(zone, &page[size]));
list_add(&page[size].lru, &area->free_list[migratetype]);
area->nr_free++;
set_page_order(&page[size], high);
}
}
/*
* This page is about to be returned from the page allocator
*/
static inline int check_new_page(struct page *page)
{
if (unlikely(page_mapcount(page) |
(page->mapping != NULL) |
(atomic_read(&page->_count) != 0) |
(page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
bad_page(page);
return 1;
}
return 0;
}
static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
{
int i;
for (i = 0; i < (1 << order); i++) {
struct page *p = page + i;
if (unlikely(check_new_page(p)))
return 1;
}
set_page_private(page, 0);
set_page_refcounted(page);
arch_alloc_page(page, order);
kernel_map_pages(page, 1 << order, 1);
if (gfp_flags & __GFP_ZERO)
prep_zero_page(page, order, gfp_flags);
if (order && (gfp_flags & __GFP_COMP))
prep_compound_page(page, order);
return 0;
}
/*
* Go through the free lists for the given migratetype and remove
* the smallest available page from the freelists
*/
static inline
struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
int migratetype)
{
unsigned int current_order;
struct free_area * area;
struct page *page;
/* Find a page of the appropriate size in the preferred list */
for (current_order = order; current_order < MAX_ORDER; ++current_order) {
area = &(zone->free_area[current_order]);
if (list_empty(&area->free_list[migratetype]))
continue;
page = list_entry(area->free_list[migratetype].next,
struct page, lru);
list_del(&page->lru);
rmv_page_order(page);
area->nr_free--;
expand(zone, page, order, current_order, area, migratetype);
return page;
}
return NULL;
}
/*
* This array describes the order lists are fallen back to when
* the free lists for the desirable migrate type are depleted
*/
static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
[MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
[MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
[MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
};
/*
* Move the free pages in a range to the free lists of the requested type.
* Note that start_page and end_pages are not aligned on a pageblock
* boundary. If alignment is required, use move_freepages_block()
*/
static int move_freepages(struct zone *zone,
struct page *start_page, struct page *end_page,
int migratetype)
{
struct page *page;
unsigned long order;
int pages_moved = 0;
#ifndef CONFIG_HOLES_IN_ZONE
/*
* page_zone is not safe to call in this context when
* CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
* anyway as we check zone boundaries in move_freepages_block().
* Remove at a later date when no bug reports exist related to
* grouping pages by mobility
*/
BUG_ON(page_zone(start_page) != page_zone(end_page));
#endif
for (page = start_page; page <= end_page;) {
/* Make sure we are not inadvertently changing nodes */
VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
if (!pfn_valid_within(page_to_pfn(page))) {
page++;
continue;
}
if (!PageBuddy(page)) {
page++;
continue;
}
order = page_order(page);
list_del(&page->lru);
list_add(&page->lru,
&zone->free_area[order].free_list[migratetype]);
page += 1 << order;
pages_moved += 1 << order;
}
return pages_moved;
}
static int move_freepages_block(struct zone *zone, struct page *page,
int migratetype)
{
unsigned long start_pfn, end_pfn;
struct page *start_page, *end_page;
start_pfn = page_to_pfn(page);
start_pfn = start_pfn & ~(pageblock_nr_pages-1);
start_page = pfn_to_page(start_pfn);
end_page = start_page + pageblock_nr_pages - 1;
end_pfn = start_pfn + pageblock_nr_pages - 1;
/* Do not cross zone boundaries */
if (start_pfn < zone->zone_start_pfn)
start_page = page;
if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
return 0;
return move_freepages(zone, start_page, end_page, migratetype);
}
static void change_pageblock_range(struct page *pageblock_page,
int start_order, int migratetype)
{
int nr_pageblocks = 1 << (start_order - pageblock_order);
while (nr_pageblocks--) {
set_pageblock_migratetype(pageblock_page, migratetype);
pageblock_page += pageblock_nr_pages;
}
}
/* Remove an element from the buddy allocator from the fallback list */
static inline struct page *
__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
{
struct free_area * area;
int current_order;
struct page *page;
int migratetype, i;
/* Find the largest possible block of pages in the other list */
for (current_order = MAX_ORDER-1; current_order >= order;
--current_order) {
for (i = 0; i < MIGRATE_TYPES - 1; i++) {
migratetype = fallbacks[start_migratetype][i];
/* MIGRATE_RESERVE handled later if necessary */
if (migratetype == MIGRATE_RESERVE)
continue;
area = &(zone->free_area[current_order]);
if (list_empty(&area->free_list[migratetype]))
continue;
page = list_entry(area->free_list[migratetype].next,
struct page, lru);
area->nr_free--;
/*
* If breaking a large block of pages, move all free
* pages to the preferred allocation list. If falling
* back for a reclaimable kernel allocation, be more
* agressive about taking ownership of free pages
*/
if (unlikely(current_order >= (pageblock_order >> 1)) ||
start_migratetype == MIGRATE_RECLAIMABLE ||
page_group_by_mobility_disabled) {
unsigned long pages;
pages = move_freepages_block(zone, page,
start_migratetype);
/* Claim the whole block if over half of it is free */
if (pages >= (1 << (pageblock_order-1)) ||
page_group_by_mobility_disabled)
set_pageblock_migratetype(page,
start_migratetype);
migratetype = start_migratetype;
}
/* Remove the page from the freelists */
list_del(&page->lru);
rmv_page_order(page);
/* Take ownership for orders >= pageblock_order */
if (current_order >= pageblock_order)
change_pageblock_range(page, current_order,
start_migratetype);
expand(zone, page, order, current_order, area, migratetype);
trace_mm_page_alloc_extfrag(page, order, current_order,
start_migratetype, migratetype);
return page;
}
}
return NULL;
}
/*
* Do the hard work of removing an element from the buddy allocator.
* Call me with the zone->lock already held.
*/
static struct page *__rmqueue(struct zone *zone, unsigned int order,
int migratetype)
{
struct page *page;
retry_reserve:
page = __rmqueue_smallest(zone, order, migratetype);
if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
page = __rmqueue_fallback(zone, order, migratetype);
/*
* Use MIGRATE_RESERVE rather than fail an allocation. goto
* is used because __rmqueue_smallest is an inline function
* and we want just one call site
*/
if (!page) {
migratetype = MIGRATE_RESERVE;
goto retry_reserve;
}
}
trace_mm_page_alloc_zone_locked(page, order, migratetype);
return page;
}
/*
* Obtain a specified number of elements from the buddy allocator, all under
* a single hold of the lock, for efficiency. Add them to the supplied list.
* Returns the number of new pages which were placed at *list.
*/
static int rmqueue_bulk(struct zone *zone, unsigned int order,
unsigned long count, struct list_head *list,
int migratetype, int cold)
{
int i;
spin_lock(&zone->lock);
for (i = 0; i < count; ++i) {
struct page *page = __rmqueue(zone, order, migratetype);
if (unlikely(page == NULL))
break;
/*
* Split buddy pages returned by expand() are received here
* in physical page order. The page is added to the callers and
* list and the list head then moves forward. From the callers
* perspective, the linked list is ordered by page number in
* some conditions. This is useful for IO devices that can
* merge IO requests if the physical pages are ordered
* properly.
*/
if (likely(cold == 0))
list_add(&page->lru, list);
else
list_add_tail(&page->lru, list);
set_page_private(page, migratetype);
list = &page->lru;
}
__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
spin_unlock(&zone->lock);
return i;
}
#ifdef CONFIG_NUMA
/*
* Called from the vmstat counter updater to drain pagesets of this
* currently executing processor on remote nodes after they have
* expired.
*
* Note that this function must be called with the thread pinned to
* a single processor.
*/
void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
{
unsigned long flags;
int to_drain;
local_irq_save(flags);
if (pcp->count >= pcp->batch)
to_drain = pcp->batch;
else
to_drain = pcp->count;
free_pcppages_bulk(zone, to_drain, pcp);
pcp->count -= to_drain;
local_irq_restore(flags);
}
#endif
/*
* Drain pages of the indicated processor.
*
* The processor must either be the current processor and the
* thread pinned to the current processor or a processor that
* is not online.
*/
static void drain_pages(unsigned int cpu)
{
unsigned long flags;
struct zone *zone;
for_each_populated_zone(zone) {
struct per_cpu_pageset *pset;
struct per_cpu_pages *pcp;
local_irq_save(flags);
pset = per_cpu_ptr(zone->pageset, cpu);
pcp = &pset->pcp;
free_pcppages_bulk(zone, pcp->count, pcp);
pcp->count = 0;
local_irq_restore(flags);
}
}
/*
* Spill all of this CPU's per-cpu pages back into the buddy allocator.
*/
void drain_local_pages(void *arg)
{
drain_pages(smp_processor_id());
}
/*
* Spill all the per-cpu pages from all CPUs back into the buddy allocator
*/
void drain_all_pages(void)
{
on_each_cpu(drain_local_pages, NULL, 1);
}
#ifdef CONFIG_HIBERNATION
void mark_free_pages(struct zone *zone)
{
unsigned long pfn, max_zone_pfn;
unsigned long flags;
int order, t;
struct list_head *curr;
if (!zone->spanned_pages)
return;
spin_lock_irqsave(&zone->lock, flags);
max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
if (pfn_valid(pfn)) {
struct page *page = pfn_to_page(pfn);
if (!swsusp_page_is_forbidden(page))
swsusp_unset_page_free(page);
}
for_each_migratetype_order(order, t) {
list_for_each(curr, &zone->free_area[order].free_list[t]) {
unsigned long i;
pfn = page_to_pfn(list_entry(curr, struct page, lru));
for (i = 0; i < (1UL << order); i++)
swsusp_set_page_free(pfn_to_page(pfn + i));
}
}
spin_unlock_irqrestore(&zone->lock, flags);
}
#endif /* CONFIG_PM */
/*
* Free a 0-order page
* cold == 1 ? free a cold page : free a hot page
*/
void free_hot_cold_page(struct page *page, int cold)
{
struct zone *zone = page_zone(page);
struct per_cpu_pages *pcp;
unsigned long flags;
int migratetype;
int wasMlocked = __TestClearPageMlocked(page);
trace_mm_page_free_direct(page, 0);
kmemcheck_free_shadow(page, 0);
if (PageAnon(page))
page->mapping = NULL;
if (free_pages_check(page))
return;
if (!PageHighMem(page)) {
debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
}
arch_free_page(page, 0);
kernel_map_pages(page, 1, 0);
migratetype = get_pageblock_migratetype(page);
set_page_private(page, migratetype);
local_irq_save(flags);
if (unlikely(wasMlocked))
free_page_mlock(page);
__count_vm_event(PGFREE);
/*
* We only track unmovable, reclaimable and movable on pcp lists.
* Free ISOLATE pages back to the allocator because they are being
* offlined but treat RESERVE as movable pages so we can get those
* areas back if necessary. Otherwise, we may have to free
* excessively into the page allocator
*/
if (migratetype >= MIGRATE_PCPTYPES) {
if (unlikely(migratetype == MIGRATE_ISOLATE)) {
free_one_page(zone, page, 0, migratetype);
goto out;
}
migratetype = MIGRATE_MOVABLE;
}
pcp = &this_cpu_ptr(zone->pageset)->pcp;
if (cold)
list_add_tail(&page->lru, &pcp->lists[migratetype]);
else
list_add(&page->lru, &pcp->lists[migratetype]);
pcp->count++;
if (pcp->count >= pcp->high) {
free_pcppages_bulk(zone, pcp->batch, pcp);
pcp->count -= pcp->batch;
}
out:
local_irq_restore(flags);
}
/*
* split_page takes a non-compound higher-order page, and splits it into
* n (1<<order) sub-pages: page[0..n]
* Each sub-page must be freed individually.
*
* Note: this is probably too low level an operation for use in drivers.
* Please consult with lkml before using this in your driver.
*/
void split_page(struct page *page, unsigned int order)
{
int i;
VM_BUG_ON(PageCompound(page));
VM_BUG_ON(!page_count(page));
#ifdef CONFIG_KMEMCHECK
/*
* Split shadow pages too, because free(page[0]) would
* otherwise free the whole shadow.
*/
if (kmemcheck_page_is_tracked(page))
split_page(virt_to_page(page[0].shadow), order);
#endif
for (i = 1; i < (1 << order); i++)
set_page_refcounted(page + i);
}
/*
* Really, prep_compound_page() should be called from __rmqueue_bulk(). But
* we cheat by calling it from here, in the order > 0 path. Saves a branch
* or two.
*/
static inline
struct page *buffered_rmqueue(struct zone *preferred_zone,
struct zone *zone, int order, gfp_t gfp_flags,
int migratetype)
{
unsigned long flags;
struct page *page;
int cold = !!(gfp_flags & __GFP_COLD);
again:
if (likely(order == 0)) {
struct per_cpu_pages *pcp;
struct list_head *list;
local_irq_save(flags);
pcp = &this_cpu_ptr(zone->pageset)->pcp;
list = &pcp->lists[migratetype];
if (list_empty(list)) {
pcp->count += rmqueue_bulk(zone, 0,
pcp->batch, list,
migratetype, cold);
if (unlikely(list_empty(list)))
goto failed;
}
if (cold)
page = list_entry(list->prev, struct page, lru);
else
page = list_entry(list->next, struct page, lru);
list_del(&page->lru);
pcp->count--;
} else {
if (unlikely(gfp_flags & __GFP_NOFAIL)) {
/*
* __GFP_NOFAIL is not to be used in new code.
*
* All __GFP_NOFAIL callers should be fixed so that they
* properly detect and handle allocation failures.
*
* We most definitely don't want callers attempting to
* allocate greater than order-1 page units with
* __GFP_NOFAIL.
*/
WARN_ON_ONCE(order > 1);
}
spin_lock_irqsave(&zone->lock, flags);
page = __rmqueue(zone, order, migratetype);
spin_unlock(&zone->lock);
if (!page)
goto failed;
__mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
}
__count_zone_vm_events(PGALLOC, zone, 1 << order);
zone_statistics(preferred_zone, zone);
local_irq_restore(flags);
VM_BUG_ON(bad_range(zone, page));
if (prep_new_page(page, order, gfp_flags))
goto again;
return page;
failed:
local_irq_restore(flags);
return NULL;
}
/* The ALLOC_WMARK bits are used as an index to zone->watermark */
#define ALLOC_WMARK_MIN WMARK_MIN
#define ALLOC_WMARK_LOW WMARK_LOW
#define ALLOC_WMARK_HIGH WMARK_HIGH
#define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
/* Mask to get the watermark bits */
#define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
#define ALLOC_HARDER 0x10 /* try to alloc harder */
#define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
#define ALLOC_CPUSET 0x40 /* check for correct cpuset */
#ifdef CONFIG_FAIL_PAGE_ALLOC
static struct fail_page_alloc_attr {
struct fault_attr attr;
u32 ignore_gfp_highmem;
u32 ignore_gfp_wait;
u32 min_order;
#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
struct dentry *ignore_gfp_highmem_file;
struct dentry *ignore_gfp_wait_file;
struct dentry *min_order_file;
#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
} fail_page_alloc = {
.attr = FAULT_ATTR_INITIALIZER,
.ignore_gfp_wait = 1,
.ignore_gfp_highmem = 1,
.min_order = 1,
};
static int __init setup_fail_page_alloc(char *str)
{
return setup_fault_attr(&fail_page_alloc.attr, str);
}
__setup("fail_page_alloc=", setup_fail_page_alloc);
static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
{
if (order < fail_page_alloc.min_order)
return 0;
if (gfp_mask & __GFP_NOFAIL)
return 0;
if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
return 0;
if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
return 0;
return should_fail(&fail_page_alloc.attr, 1 << order);
}
#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
static int __init fail_page_alloc_debugfs(void)
{
mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
struct dentry *dir;
int err;
err = init_fault_attr_dentries(&fail_page_alloc.attr,
"fail_page_alloc");
if (err)
return err;
dir = fail_page_alloc.attr.dentries.dir;
fail_page_alloc.ignore_gfp_wait_file =
debugfs_create_bool("ignore-gfp-wait", mode, dir,
&fail_page_alloc.ignore_gfp_wait);
fail_page_alloc.ignore_gfp_highmem_file =
debugfs_create_bool("ignore-gfp-highmem", mode, dir,
&fail_page_alloc.ignore_gfp_highmem);
fail_page_alloc.min_order_file =
debugfs_create_u32("min-order", mode, dir,
&fail_page_alloc.min_order);
if (!fail_page_alloc.ignore_gfp_wait_file ||
!fail_page_alloc.ignore_gfp_highmem_file ||
!fail_page_alloc.min_order_file) {
err = -ENOMEM;
debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
debugfs_remove(fail_page_alloc.min_order_file);
cleanup_fault_attr_dentries(&fail_page_alloc.attr);
}
return err;
}
late_initcall(fail_page_alloc_debugfs);
#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
#else /* CONFIG_FAIL_PAGE_ALLOC */
static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
{
return 0;
}
#endif /* CONFIG_FAIL_PAGE_ALLOC */
/*
* Return 1 if free pages are above 'mark'. This takes into account the order
* of the allocation.
*/
int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
int classzone_idx, int alloc_flags)
{
/* free_pages my go negative - that's OK */
long min = mark;
long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
int o;
if (alloc_flags & ALLOC_HIGH)
min -= min / 2;
if (alloc_flags & ALLOC_HARDER)
min -= min / 4;
if (free_pages <= min + z->lowmem_reserve[classzone_idx])
return 0;
for (o = 0; o < order; o++) {
/* At the next order, this order's pages become unavailable */
free_pages -= z->free_area[o].nr_free << o;
/* Require fewer higher order pages to be free */
min >>= 1;
if (free_pages <= min)
return 0;
}
return 1;
}
#ifdef CONFIG_NUMA
/*
* zlc_setup - Setup for "zonelist cache". Uses cached zone data to
* skip over zones that are not allowed by the cpuset, or that have
* been recently (in last second) found to be nearly full. See further
* comments in mmzone.h. Reduces cache footprint of zonelist scans
* that have to skip over a lot of full or unallowed zones.
*
* If the zonelist cache is present in the passed in zonelist, then
* returns a pointer to the allowed node mask (either the current
* tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
*
* If the zonelist cache is not available for this zonelist, does
* nothing and returns NULL.
*
* If the fullzones BITMAP in the zonelist cache is stale (more than
* a second since last zap'd) then we zap it out (clear its bits.)
*
* We hold off even calling zlc_setup, until after we've checked the
* first zone in the zonelist, on the theory that most allocations will
* be satisfied from that first zone, so best to examine that zone as
* quickly as we can.
*/
static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
{
struct zonelist_cache *zlc; /* cached zonelist speedup info */
nodemask_t *allowednodes; /* zonelist_cache approximation */
zlc = zonelist->zlcache_ptr;
if (!zlc)
return NULL;
if (time_after(jiffies, zlc->last_full_zap + HZ)) {
bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
zlc->last_full_zap = jiffies;
}
allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
&cpuset_current_mems_allowed :
&node_states[N_HIGH_MEMORY];
return allowednodes;
}
/*
* Given 'z' scanning a zonelist, run a couple of quick checks to see
* if it is worth looking at further for free memory:
* 1) Check that the zone isn't thought to be full (doesn't have its
* bit set in the zonelist_cache fullzones BITMAP).
* 2) Check that the zones node (obtained from the zonelist_cache
* z_to_n[] mapping) is allowed in the passed in allowednodes mask.
* Return true (non-zero) if zone is worth looking at further, or
* else return false (zero) if it is not.
*
* This check -ignores- the distinction between various watermarks,
* such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
* found to be full for any variation of these watermarks, it will
* be considered full for up to one second by all requests, unless
* we are so low on memory on all allowed nodes that we are forced
* into the second scan of the zonelist.
*
* In the second scan we ignore this zonelist cache and exactly
* apply the watermarks to all zones, even it is slower to do so.
* We are low on memory in the second scan, and should leave no stone
* unturned looking for a free page.
*/
static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
nodemask_t *allowednodes)
{
struct zonelist_cache *zlc; /* cached zonelist speedup info */
int i; /* index of *z in zonelist zones */
int n; /* node that zone *z is on */
zlc = zonelist->zlcache_ptr;
if (!zlc)
return 1;
i = z - zonelist->_zonerefs;
n = zlc->z_to_n[i];
/* This zone is worth trying if it is allowed but not full */
return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
}
/*
* Given 'z' scanning a zonelist, set the corresponding bit in
* zlc->fullzones, so that subsequent attempts to allocate a page
* from that zone don't waste time re-examining it.
*/
static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
{
struct zonelist_cache *zlc; /* cached zonelist speedup info */
int i; /* index of *z in zonelist zones */
zlc = zonelist->zlcache_ptr;
if (!zlc)
return;
i = z - zonelist->_zonerefs;
set_bit(i, zlc->fullzones);
}
#else /* CONFIG_NUMA */
static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
{
return NULL;
}
static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
nodemask_t *allowednodes)
{
return 1;
}
static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
{
}
#endif /* CONFIG_NUMA */
/*
* get_page_from_freelist goes through the zonelist trying to allocate
* a page.
*/
static struct page *
get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
struct zone *preferred_zone, int migratetype)
{
struct zoneref *z;
struct page *page = NULL;
int classzone_idx;
struct zone *zone;
nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
int zlc_active = 0; /* set if using zonelist_cache */
int did_zlc_setup = 0; /* just call zlc_setup() one time */
classzone_idx = zone_idx(preferred_zone);
zonelist_scan:
/*
* Scan zonelist, looking for a zone with enough free.
* See also cpuset_zone_allowed() comment in kernel/cpuset.c.
*/
for_each_zone_zonelist_nodemask(zone, z, zonelist,
high_zoneidx, nodemask) {
if (NUMA_BUILD && zlc_active &&
!zlc_zone_worth_trying(zonelist, z, allowednodes))
continue;
if ((alloc_flags & ALLOC_CPUSET) &&
!cpuset_zone_allowed_softwall(zone, gfp_mask))
goto try_next_zone;
BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
unsigned long mark;
int ret;
mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
if (zone_watermark_ok(zone, order, mark,
classzone_idx, alloc_flags))
goto try_this_zone;
if (zone_reclaim_mode == 0)
goto this_zone_full;
ret = zone_reclaim(zone, gfp_mask, order);
switch (ret) {
case ZONE_RECLAIM_NOSCAN:
/* did not scan */
goto try_next_zone;
case ZONE_RECLAIM_FULL:
/* scanned but unreclaimable */
goto this_zone_full;
default:
/* did we reclaim enough */
if (!zone_watermark_ok(zone, order, mark,
classzone_idx, alloc_flags))
goto this_zone_full;
}
}
try_this_zone:
page = buffered_rmqueue(preferred_zone, zone, order,
gfp_mask, migratetype);
if (page)
break;
this_zone_full:
if (NUMA_BUILD)
zlc_mark_zone_full(zonelist, z);
try_next_zone:
if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
/*
* we do zlc_setup after the first zone is tried but only
* if there are multiple nodes make it worthwhile
*/
allowednodes = zlc_setup(zonelist, alloc_flags);
zlc_active = 1;
did_zlc_setup = 1;
}
}
if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
/* Disable zlc cache for second zonelist scan */
zlc_active = 0;
goto zonelist_scan;
}
return page;
}
static inline int
should_alloc_retry(gfp_t gfp_mask, unsigned int order,
unsigned long pages_reclaimed)
{
/* Do not loop if specifically requested */
if (gfp_mask & __GFP_NORETRY)
return 0;
/*
* In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
* means __GFP_NOFAIL, but that may not be true in other
* implementations.
*/
if (order <= PAGE_ALLOC_COSTLY_ORDER)
return 1;
/*
* For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
* specified, then we retry until we no longer reclaim any pages
* (above), or we've reclaimed an order of pages at least as
* large as the allocation's order. In both cases, if the
* allocation still fails, we stop retrying.
*/
if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
return 1;
/*
* Don't let big-order allocations loop unless the caller
* explicitly requests that.
*/
if (gfp_mask & __GFP_NOFAIL)
return 1;
return 0;
}
static inline struct page *
__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
struct zonelist *zonelist, enum zone_type high_zoneidx,
nodemask_t *nodemask, struct zone *preferred_zone,
int migratetype)
{
struct page *page;
/* Acquire the OOM killer lock for the zones in zonelist */
if (!try_set_zone_oom(zonelist, gfp_mask)) {
schedule_timeout_uninterruptible(1);
return NULL;
}
/*
* Go through the zonelist yet one more time, keep very high watermark
* here, this is only to catch a parallel oom killing, we must fail if
* we're still under heavy pressure.
*/
page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
order, zonelist, high_zoneidx,
ALLOC_WMARK_HIGH|ALLOC_CPUSET,
preferred_zone, migratetype);
if (page)
goto out;
if (!(gfp_mask & __GFP_NOFAIL)) {
/* The OOM killer will not help higher order allocs */
if (order > PAGE_ALLOC_COSTLY_ORDER)
goto out;
/*
* GFP_THISNODE contains __GFP_NORETRY and we never hit this.
* Sanity check for bare calls of __GFP_THISNODE, not real OOM.
* The caller should handle page allocation failure by itself if
* it specifies __GFP_THISNODE.
* Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
*/
if (gfp_mask & __GFP_THISNODE)
goto out;
}
/* Exhausted what can be done so it's blamo time */
out_of_memory(zonelist, gfp_mask, order, nodemask);
out:
clear_zonelist_oom(zonelist, gfp_mask);
return page;
}
/* The really slow allocator path where we enter direct reclaim */
static inline struct page *
__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
struct zonelist *zonelist, enum zone_type high_zoneidx,
nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
int migratetype, unsigned long *did_some_progress)
{
struct page *page = NULL;
struct reclaim_state reclaim_state;
struct task_struct *p = current;
cond_resched();
/* We now go into synchronous reclaim */
cpuset_memory_pressure_bump();
p->flags |= PF_MEMALLOC;
lockdep_set_current_reclaim_state(gfp_mask);
reclaim_state.reclaimed_slab = 0;
p->reclaim_state = &reclaim_state;
*did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
p->reclaim_state = NULL;
lockdep_clear_current_reclaim_state();
p->flags &= ~PF_MEMALLOC;
cond_resched();
if (order != 0)
drain_all_pages();
if (likely(*did_some_progress))
page = get_page_from_freelist(gfp_mask, nodemask, order,
zonelist, high_zoneidx,
alloc_flags, preferred_zone,
migratetype);
return page;
}
/*
* This is called in the allocator slow-path if the allocation request is of
* sufficient urgency to ignore watermarks and take other desperate measures
*/
static inline struct page *
__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
struct zonelist *zonelist, enum zone_type high_zoneidx,
nodemask_t *nodemask, struct zone *preferred_zone,
int migratetype)
{
struct page *page;
do {
page = get_page_from_freelist(gfp_mask, nodemask, order,
zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
preferred_zone, migratetype);
if (!page && gfp_mask & __GFP_NOFAIL)
congestion_wait(BLK_RW_ASYNC, HZ/50);
} while (!page && (gfp_mask & __GFP_NOFAIL));
return page;
}
static inline
void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
enum zone_type high_zoneidx)
{
struct zoneref *z;
struct zone *zone;
for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
wakeup_kswapd(zone, order);
}
static inline int
gfp_to_alloc_flags(gfp_t gfp_mask)
{
struct task_struct *p = current;
int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
const gfp_t wait = gfp_mask & __GFP_WAIT;
/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
BUILD_BUG_ON(__GFP_HIGH != ALLOC_HIGH);
/*
* The caller may dip into page reserves a bit more if the caller
* cannot run direct reclaim, or if the caller has realtime scheduling
* policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
* set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
*/
alloc_flags |= (gfp_mask & __GFP_HIGH);
if (!wait) {
alloc_flags |= ALLOC_HARDER;
/*
* Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
* See also cpuset_zone_allowed() comment in kernel/cpuset.c.
*/
alloc_flags &= ~ALLOC_CPUSET;
} else if (unlikely(rt_task(p)) && !in_interrupt())
alloc_flags |= ALLOC_HARDER;
if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
if (!in_interrupt() &&
((p->flags & PF_MEMALLOC) ||
unlikely(test_thread_flag(TIF_MEMDIE))))
alloc_flags |= ALLOC_NO_WATERMARKS;
}
return alloc_flags;
}
static inline struct page *
__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
struct zonelist *zonelist, enum zone_type high_zoneidx,
nodemask_t *nodemask, struct zone *preferred_zone,
int migratetype)
{
const gfp_t wait = gfp_mask & __GFP_WAIT;
struct page *page = NULL;
int alloc_flags;
unsigned long pages_reclaimed = 0;
unsigned long did_some_progress;
struct task_struct *p = current;
/*
* In the slowpath, we sanity check order to avoid ever trying to
* reclaim >= MAX_ORDER areas which will never succeed. Callers may
* be using allocators in order of preference for an area that is
* too large.
*/
if (order >= MAX_ORDER) {
WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
return NULL;
}
/*
* GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
* __GFP_NOWARN set) should not cause reclaim since the subsystem
* (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
* using a larger set of nodes after it has established that the
* allowed per node queues are empty and that nodes are
* over allocated.
*/
if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
goto nopage;
restart:
wake_all_kswapd(order, zonelist, high_zoneidx);
/*
* OK, we're below the kswapd watermark and have kicked background
* reclaim. Now things get more complex, so set up alloc_flags according
* to how we want to proceed.
*/
alloc_flags = gfp_to_alloc_flags(gfp_mask);
/* This is the last chance, in general, before the goto nopage. */
page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
preferred_zone, migratetype);
if (page)
goto got_pg;
rebalance:
/* Allocate without watermarks if the context allows */
if (alloc_flags & ALLOC_NO_WATERMARKS) {
page = __alloc_pages_high_priority(gfp_mask, order,
zonelist, high_zoneidx, nodemask,
preferred_zone, migratetype);
if (page)
goto got_pg;
}
/* Atomic allocations - we can't balance anything */
if (!wait)
goto nopage;
/* Avoid recursion of direct reclaim */
if (p->flags & PF_MEMALLOC)
goto nopage;
/* Avoid allocations with no watermarks from looping endlessly */
if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
goto nopage;
/* Try direct reclaim and then allocating */
page = __alloc_pages_direct_reclaim(gfp_mask, order,
zonelist, high_zoneidx,
nodemask,
alloc_flags, preferred_zone,
migratetype, &did_some_progress);
if (page)
goto got_pg;
/*
* If we failed to make any progress reclaiming, then we are
* running out of options and have to consider going OOM
*/
if (!did_some_progress) {
if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
if (oom_killer_disabled)
goto nopage;
page = __alloc_pages_may_oom(gfp_mask, order,
zonelist, high_zoneidx,
nodemask, preferred_zone,
migratetype);
if (page)
goto got_pg;
/*
* The OOM killer does not trigger for high-order
* ~__GFP_NOFAIL allocations so if no progress is being
* made, there are no other options and retrying is
* unlikely to help.
*/
if (order > PAGE_ALLOC_COSTLY_ORDER &&
!(gfp_mask & __GFP_NOFAIL))
goto nopage;
goto restart;
}
}
/* Check if we should retry the allocation */
pages_reclaimed += did_some_progress;
if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
/* Wait for some write requests to complete then retry */
congestion_wait(BLK_RW_ASYNC, HZ/50);
goto rebalance;
}
nopage:
if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
printk(KERN_WARNING "%s: page allocation failure."
" order:%d, mode:0x%x\n",
p->comm, order, gfp_mask);
dump_stack();
show_mem();
}
return page;
got_pg:
if (kmemcheck_enabled)
kmemcheck_pagealloc_alloc(page, order, gfp_mask);
return page;
}
/*
* This is the 'heart' of the zoned buddy allocator.
*/
struct page *
__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
struct zonelist *zonelist, nodemask_t *nodemask)
{
enum zone_type high_zoneidx = gfp_zone(gfp_mask);
struct zone *preferred_zone;
struct page *page;
int migratetype = allocflags_to_migratetype(gfp_mask);
gfp_mask &= gfp_allowed_mask;
lockdep_trace_alloc(gfp_mask);
might_sleep_if(gfp_mask & __GFP_WAIT);
if (should_fail_alloc_page(gfp_mask, order))
return NULL;
/*
* Check the zones suitable for the gfp_mask contain at least one
* valid zone. It's possible to have an empty zonelist as a result
* of GFP_THISNODE and a memoryless node
*/
if (unlikely(!zonelist->_zonerefs->zone))
return NULL;
/* The preferred zone is used for statistics later */
first_zones_zonelist(zonelist, high_zoneidx, nodemask, &preferred_zone);
if (!preferred_zone)
return NULL;
/* First allocation attempt */
page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
preferred_zone, migratetype);
if (unlikely(!page))
page = __alloc_pages_slowpath(gfp_mask, order,
zonelist, high_zoneidx, nodemask,
preferred_zone, migratetype);
trace_mm_page_alloc(page, order, gfp_mask, migratetype);
return page;
}
EXPORT_SYMBOL(__alloc_pages_nodemask);
/*
* Common helper functions.
*/
unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
{
struct page *page;
/*
* __get_free_pages() returns a 32-bit address, which cannot represent
* a highmem page
*/
VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
page = alloc_pages(gfp_mask, order);
if (!page)
return 0;
return (unsigned long) page_address(page);
}
EXPORT_SYMBOL(__get_free_pages);
unsigned long get_zeroed_page(gfp_t gfp_mask)
{
return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
}
EXPORT_SYMBOL(get_zeroed_page);
void __pagevec_free(struct pagevec *pvec)
{
int i = pagevec_count(pvec);
while (--i >= 0) {
trace_mm_pagevec_free(pvec->pages[i], pvec->cold);
free_hot_cold_page(pvec->pages[i], pvec->cold);
}
}
void __free_pages(struct page *page, unsigned int order)
{
if (put_page_testzero(page)) {
if (order == 0)
free_hot_cold_page(page, 0);
else
__free_pages_ok(page, order);
}
}
EXPORT_SYMBOL(__free_pages);
void free_pages(unsigned long addr, unsigned int order)
{
if (addr != 0) {
VM_BUG_ON(!virt_addr_valid((void *)addr));
__free_pages(virt_to_page((void *)addr), order);
}
}
EXPORT_SYMBOL(free_pages);
/**
* alloc_pages_exact - allocate an exact number physically-contiguous pages.
* @size: the number of bytes to allocate
* @gfp_mask: GFP flags for the allocation
*
* This function is similar to alloc_pages(), except that it allocates the
* minimum number of pages to satisfy the request. alloc_pages() can only
* allocate memory in power-of-two pages.
*
* This function is also limited by MAX_ORDER.
*
* Memory allocated by this function must be released by free_pages_exact().
*/
void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
{
unsigned int order = get_order(size);
unsigned long addr;
addr = __get_free_pages(gfp_mask, order);
if (addr) {
unsigned long alloc_end = addr + (PAGE_SIZE << order);
unsigned long used = addr + PAGE_ALIGN(size);
split_page(virt_to_page((void *)addr), order);
while (used < alloc_end) {
free_page(used);
used += PAGE_SIZE;
}
}
return (void *)addr;
}
EXPORT_SYMBOL(alloc_pages_exact);
/**
* free_pages_exact - release memory allocated via alloc_pages_exact()
* @virt: the value returned by alloc_pages_exact.
* @size: size of allocation, same value as passed to alloc_pages_exact().
*
* Release the memory allocated by a previous call to alloc_pages_exact.
*/
void free_pages_exact(void *virt, size_t size)
{
unsigned long addr = (unsigned long)virt;
unsigned long end = addr + PAGE_ALIGN(size);
while (addr < end) {
free_page(addr);
addr += PAGE_SIZE;
}
}
EXPORT_SYMBOL(free_pages_exact);
static unsigned int nr_free_zone_pages(int offset)
{
struct zoneref *z;
struct zone *zone;
/* Just pick one node, since fallback list is circular */
unsigned int sum = 0;
struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
for_each_zone_zonelist(zone, z, zonelist, offset) {
unsigned long size = zone->present_pages;
unsigned long high = high_wmark_pages(zone);
if (size > high)
sum += size - high;
}
return sum;
}
/*
* Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
*/
unsigned int nr_free_buffer_pages(void)
{
return nr_free_zone_pages(gfp_zone(GFP_USER));
}
EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
/*
* Amount of free RAM allocatable within all zones
*/
unsigned int nr_free_pagecache_pages(void)
{
return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
}
static inline void show_node(struct zone *zone)
{
if (NUMA_BUILD)
printk("Node %d ", zone_to_nid(zone));
}
void si_meminfo(struct sysinfo *val)
{
val->totalram = totalram_pages;
val->sharedram = 0;
val->freeram = global_page_state(NR_FREE_PAGES);
val->bufferram = nr_blockdev_pages();
val->totalhigh = totalhigh_pages;
val->freehigh = nr_free_highpages();
val->mem_unit = PAGE_SIZE;
}
EXPORT_SYMBOL(si_meminfo);
#ifdef CONFIG_NUMA
void si_meminfo_node(struct sysinfo *val, int nid)
{
pg_data_t *pgdat = NODE_DATA(nid);
val->totalram = pgdat->node_present_pages;
val->freeram = node_page_state(nid, NR_FREE_PAGES);
#ifdef CONFIG_HIGHMEM
val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
NR_FREE_PAGES);
#else
val->totalhigh = 0;
val->freehigh = 0;
#endif
val->mem_unit = PAGE_SIZE;
}
#endif
#define K(x) ((x) << (PAGE_SHIFT-10))
/*
* Show free area list (used inside shift_scroll-lock stuff)
* We also calculate the percentage fragmentation. We do this by counting the
* memory on each free list with the exception of the first item on the list.
*/
void show_free_areas(void)
{
int cpu;
struct zone *zone;
for_each_populated_zone(zone) {
show_node(zone);
printk("%s per-cpu:\n", zone->name);
for_each_online_cpu(cpu) {
struct per_cpu_pageset *pageset;
pageset = per_cpu_ptr(zone->pageset, cpu);
printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
cpu, pageset->pcp.high,
pageset->pcp.batch, pageset->pcp.count);
}
}
printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
" unevictable:%lu"
" dirty:%lu writeback:%lu unstable:%lu\n"
" free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
global_page_state(NR_ACTIVE_ANON),
global_page_state(NR_INACTIVE_ANON),
global_page_state(NR_ISOLATED_ANON),
global_page_state(NR_ACTIVE_FILE),
global_page_state(NR_INACTIVE_FILE),
global_page_state(NR_ISOLATED_FILE),
global_page_state(NR_UNEVICTABLE),
global_page_state(NR_FILE_DIRTY),
global_page_state(NR_WRITEBACK),
global_page_state(NR_UNSTABLE_NFS),
global_page_state(NR_FREE_PAGES),
global_page_state(NR_SLAB_RECLAIMABLE),
global_page_state(NR_SLAB_UNRECLAIMABLE),
global_page_state(NR_FILE_MAPPED),
global_page_state(NR_SHMEM),
global_page_state(NR_PAGETABLE),
global_page_state(NR_BOUNCE));
for_each_populated_zone(zone) {
int i;
show_node(zone);
printk("%s"
" free:%lukB"
" min:%lukB"
" low:%lukB"
" high:%lukB"
" active_anon:%lukB"
" inactive_anon:%lukB"
" active_file:%lukB"
" inactive_file:%lukB"
" unevictable:%lukB"
" isolated(anon):%lukB"
" isolated(file):%lukB"
" present:%lukB"
" mlocked:%lukB"
" dirty:%lukB"
" writeback:%lukB"
" mapped:%lukB"
" shmem:%lukB"
" slab_reclaimable:%lukB"
" slab_unreclaimable:%lukB"
" kernel_stack:%lukB"
" pagetables:%lukB"
" unstable:%lukB"
" bounce:%lukB"
" writeback_tmp:%lukB"
" pages_scanned:%lu"
" all_unreclaimable? %s"
"\n",
zone->name,
K(zone_page_state(zone, NR_FREE_PAGES)),
K(min_wmark_pages(zone)),
K(low_wmark_pages(zone)),
K(high_wmark_pages(zone)),
K(zone_page_state(zone, NR_ACTIVE_ANON)),
K(zone_page_state(zone, NR_INACTIVE_ANON)),
K(zone_page_state(zone, NR_ACTIVE_FILE)),
K(zone_page_state(zone, NR_INACTIVE_FILE)),
K(zone_page_state(zone, NR_UNEVICTABLE)),
K(zone_page_state(zone, NR_ISOLATED_ANON)),
K(zone_page_state(zone, NR_ISOLATED_FILE)),
K(zone->present_pages),
K(zone_page_state(zone, NR_MLOCK)),
K(zone_page_state(zone, NR_FILE_DIRTY)),
K(zone_page_state(zone, NR_WRITEBACK)),
K(zone_page_state(zone, NR_FILE_MAPPED)),
K(zone_page_state(zone, NR_SHMEM)),
K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
zone_page_state(zone, NR_KERNEL_STACK) *
THREAD_SIZE / 1024,
K(zone_page_state(zone, NR_PAGETABLE)),
K(zone_page_state(zone, NR_UNSTABLE_NFS)),
K(zone_page_state(zone, NR_BOUNCE)),
K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
zone->pages_scanned,
(zone->all_unreclaimable ? "yes" : "no")
);
printk("lowmem_reserve[]:");
for (i = 0; i < MAX_NR_ZONES; i++)
printk(" %lu", zone->lowmem_reserve[i]);
printk("\n");
}
for_each_populated_zone(zone) {
unsigned long nr[MAX_ORDER], flags, order, total = 0;
show_node(zone);
printk("%s: ", zone->name);
spin_lock_irqsave(&zone->lock, flags);
for (order = 0; order < MAX_ORDER; order++) {
nr[order] = zone->free_area[order].nr_free;
total += nr[order] << order;
}
spin_unlock_irqrestore(&zone->lock, flags);
for (order = 0; order < MAX_ORDER; order++)
printk("%lu*%lukB ", nr[order], K(1UL) << order);
printk("= %lukB\n", K(total));
}
printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
show_swap_cache_info();
}
static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
{
zoneref->zone = zone;
zoneref->zone_idx = zone_idx(zone);
}
/*
* Builds allocation fallback zone lists.
*
* Add all populated zones of a node to the zonelist.
*/
static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
int nr_zones, enum zone_type zone_type)
{
struct zone *zone;
BUG_ON(zone_type >= MAX_NR_ZONES);
zone_type++;
do {
zone_type--;
zone = pgdat->node_zones + zone_type;
if (populated_zone(zone)) {
zoneref_set_zone(zone,
&zonelist->_zonerefs[nr_zones++]);
check_highest_zone(zone_type);
}
} while (zone_type);
return nr_zones;
}
/*
* zonelist_order:
* 0 = automatic detection of better ordering.
* 1 = order by ([node] distance, -zonetype)
* 2 = order by (-zonetype, [node] distance)
*
* If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
* the same zonelist. So only NUMA can configure this param.
*/
#define ZONELIST_ORDER_DEFAULT 0
#define ZONELIST_ORDER_NODE 1
#define ZONELIST_ORDER_ZONE 2
/* zonelist order in the kernel.
* set_zonelist_order() will set this to NODE or ZONE.
*/
static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
#ifdef CONFIG_NUMA
/* The value user specified ....changed by config */
static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
/* string for sysctl */
#define NUMA_ZONELIST_ORDER_LEN 16
char numa_zonelist_order[16] = "default";
/*
* interface for configure zonelist ordering.
* command line option "numa_zonelist_order"
* = "[dD]efault - default, automatic configuration.
* = "[nN]ode - order by node locality, then by zone within node
* = "[zZ]one - order by zone, then by locality within zone
*/
static int __parse_numa_zonelist_order(char *s)
{
if (*s == 'd' || *s == 'D') {
user_zonelist_order = ZONELIST_ORDER_DEFAULT;
} else if (*s == 'n' || *s == 'N') {
user_zonelist_order = ZONELIST_ORDER_NODE;
} else if (*s == 'z' || *s == 'Z') {
user_zonelist_order = ZONELIST_ORDER_ZONE;
} else {
printk(KERN_WARNING
"Ignoring invalid numa_zonelist_order value: "
"%s\n", s);
return -EINVAL;
}
return 0;
}
static __init int setup_numa_zonelist_order(char *s)
{
if (s)
return __parse_numa_zonelist_order(s);
return 0;
}
early_param("numa_zonelist_order", setup_numa_zonelist_order);
/*
* sysctl handler for numa_zonelist_order
*/
int numa_zonelist_order_handler(ctl_table *table, int write,
void __user *buffer, size_t *length,
loff_t *ppos)
{
char saved_string[NUMA_ZONELIST_ORDER_LEN];
int ret;
static DEFINE_MUTEX(zl_order_mutex);
mutex_lock(&zl_order_mutex);
if (write)
strcpy(saved_string, (char*)table->data);
ret = proc_dostring(table, write, buffer, length, ppos);
if (ret)
goto out;
if (write) {
int oldval = user_zonelist_order;
if (__parse_numa_zonelist_order((char*)table->data)) {
/*
* bogus value. restore saved string
*/
strncpy((char*)table->data, saved_string,
NUMA_ZONELIST_ORDER_LEN);
user_zonelist_order = oldval;
} else if (oldval != user_zonelist_order)
build_all_zonelists();
}
out:
mutex_unlock(&zl_order_mutex);
return ret;
}
#define MAX_NODE_LOAD (nr_online_nodes)
static int node_load[MAX_NUMNODES];
/**
* find_next_best_node - find the next node that should appear in a given node's fallback list
* @node: node whose fallback list we're appending
* @used_node_mask: nodemask_t of already used nodes
*
* We use a number of factors to determine which is the next node that should
* appear on a given node's fallback list. The node should not have appeared
* already in @node's fallback list, and it should be the next closest node
* according to the distance array (which contains arbitrary distance values
* from each node to each node in the system), and should also prefer nodes
* with no CPUs, since presumably they'll have very little allocation pressure
* on them otherwise.
* It returns -1 if no node is found.
*/
static int find_next_best_node(int node, nodemask_t *used_node_mask)
{
int n, val;
int min_val = INT_MAX;
int best_node = -1;
const struct cpumask *tmp = cpumask_of_node(0);
/* Use the local node if we haven't already */
if (!node_isset(node, *used_node_mask)) {
node_set(node, *used_node_mask);
return node;
}
for_each_node_state(n, N_HIGH_MEMORY) {
/* Don't want a node to appear more than once */
if (node_isset(n, *used_node_mask))
continue;
/* Use the distance array to find the distance */
val = node_distance(node, n);
/* Penalize nodes under us ("prefer the next node") */
val += (n < node);
/* Give preference to headless and unused nodes */
tmp = cpumask_of_node(n);
if (!cpumask_empty(tmp))
val += PENALTY_FOR_NODE_WITH_CPUS;
/* Slight preference for less loaded node */
val *= (MAX_NODE_LOAD*MAX_NUMNODES);
val += node_load[n];
if (val < min_val) {
min_val = val;
best_node = n;
}
}
if (best_node >= 0)
node_set(best_node, *used_node_mask);
return best_node;
}
/*
* Build zonelists ordered by node and zones within node.
* This results in maximum locality--normal zone overflows into local
* DMA zone, if any--but risks exhausting DMA zone.
*/
static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
{
int j;
struct zonelist *zonelist;
zonelist = &pgdat->node_zonelists[0];
for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
;
j = build_zonelists_node(NODE_DATA(node), zonelist, j,
MAX_NR_ZONES - 1);
zonelist->_zonerefs[j].zone = NULL;
zonelist->_zonerefs[j].zone_idx = 0;
}
/*
* Build gfp_thisnode zonelists
*/
static void build_thisnode_zonelists(pg_data_t *pgdat)
{
int j;
struct zonelist *zonelist;
zonelist = &pgdat->node_zonelists[1];
j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
zonelist->_zonerefs[j].zone = NULL;
zonelist->_zonerefs[j].zone_idx = 0;
}
/*
* Build zonelists ordered by zone and nodes within zones.
* This results in conserving DMA zone[s] until all Normal memory is
* exhausted, but results in overflowing to remote node while memory
* may still exist in local DMA zone.
*/
static int node_order[MAX_NUMNODES];
static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
{
int pos, j, node;
int zone_type; /* needs to be signed */
struct zone *z;
struct zonelist *zonelist;
zonelist = &pgdat->node_zonelists[0];
pos = 0;
for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
for (j = 0; j < nr_nodes; j++) {
node = node_order[j];
z = &NODE_DATA(node)->node_zones[zone_type];
if (populated_zone(z)) {
zoneref_set_zone(z,
&zonelist->_zonerefs[pos++]);
check_highest_zone(zone_type);
}
}
}
zonelist->_zonerefs[pos].zone = NULL;
zonelist->_zonerefs[pos].zone_idx = 0;
}
static int default_zonelist_order(void)
{
int nid, zone_type;
unsigned long low_kmem_size,total_size;
struct zone *z;
int average_size;
/*
* ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
* If they are really small and used heavily, the system can fall
* into OOM very easily.
* This function detect ZONE_DMA/DMA32 size and confgigures zone order.
*/
/* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
low_kmem_size = 0;
total_size = 0;
for_each_online_node(nid) {
for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
z = &NODE_DATA(nid)->node_zones[zone_type];
if (populated_zone(z)) {
if (zone_type < ZONE_NORMAL)
low_kmem_size += z->present_pages;
total_size += z->present_pages;
}
}
}
if (!low_kmem_size || /* there are no DMA area. */
low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
return ZONELIST_ORDER_NODE;
/*
* look into each node's config.
* If there is a node whose DMA/DMA32 memory is very big area on
* local memory, NODE_ORDER may be suitable.
*/
average_size = total_size /
(nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
for_each_online_node(nid) {
low_kmem_size = 0;
total_size = 0;
for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
z = &NODE_DATA(nid)->node_zones[zone_type];
if (populated_zone(z)) {
if (zone_type < ZONE_NORMAL)
low_kmem_size += z->present_pages;
total_size += z->present_pages;
}
}
if (low_kmem_size &&
total_size > average_size && /* ignore small node */
low_kmem_size > total_size * 70/100)
return ZONELIST_ORDER_NODE;
}
return ZONELIST_ORDER_ZONE;
}
static void set_zonelist_order(void)
{
if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
current_zonelist_order = default_zonelist_order();
else
current_zonelist_order = user_zonelist_order;
}
static void build_zonelists(pg_data_t *pgdat)
{
int j, node, load;
enum zone_type i;
nodemask_t used_mask;
int local_node, prev_node;
struct zonelist *zonelist;
int order = current_zonelist_order;
/* initialize zonelists */
for (i = 0; i < MAX_ZONELISTS; i++) {
zonelist = pgdat->node_zonelists + i;
zonelist->_zonerefs[0].zone = NULL;
zonelist->_zonerefs[0].zone_idx = 0;
}
/* NUMA-aware ordering of nodes */
local_node = pgdat->node_id;
load = nr_online_nodes;
prev_node = local_node;
nodes_clear(used_mask);
memset(node_order, 0, sizeof(node_order));
j = 0;
while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
int distance = node_distance(local_node, node);
/*
* If another node is sufficiently far away then it is better
* to reclaim pages in a zone before going off node.
*/
if (distance > RECLAIM_DISTANCE)
zone_reclaim_mode = 1;
/*
* We don't want to pressure a particular node.
* So adding penalty to the first node in same
* distance group to make it round-robin.
*/
if (distance != node_distance(local_node, prev_node))
node_load[node] = load;
prev_node = node;
load--;
if (order == ZONELIST_ORDER_NODE)
build_zonelists_in_node_order(pgdat, node);
else
node_order[j++] = node; /* remember order */
}
if (order == ZONELIST_ORDER_ZONE) {
/* calculate node order -- i.e., DMA last! */
build_zonelists_in_zone_order(pgdat, j);
}
build_thisnode_zonelists(pgdat);
}
/* Construct the zonelist performance cache - see further mmzone.h */
static void build_zonelist_cache(pg_data_t *pgdat)
{
struct zonelist *zonelist;
struct zonelist_cache *zlc;
struct zoneref *z;
zonelist = &pgdat->node_zonelists[0];
zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
for (z = zonelist->_zonerefs; z->zone; z++)
zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
}
#else /* CONFIG_NUMA */
static void set_zonelist_order(void)
{
current_zonelist_order = ZONELIST_ORDER_ZONE;
}
static void build_zonelists(pg_data_t *pgdat)
{
int node, local_node;
enum zone_type j;
struct zonelist *zonelist;
local_node = pgdat->node_id;
zonelist = &pgdat->node_zonelists[0];
j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
/*
* Now we build the zonelist so that it contains the zones
* of all the other nodes.
* We don't want to pressure a particular node, so when
* building the zones for node N, we make sure that the
* zones coming right after the local ones are those from
* node N+1 (modulo N)
*/
for (node = local_node + 1; node < MAX_NUMNODES; node++) {
if (!node_online(node))
continue;
j = build_zonelists_node(NODE_DATA(node), zonelist, j,
MAX_NR_ZONES - 1);
}
for (node = 0; node < local_node; node++) {
if (!node_online(node))
continue;
j = build_zonelists_node(NODE_DATA(node), zonelist, j,
MAX_NR_ZONES - 1);
}
zonelist->_zonerefs[j].zone = NULL;
zonelist->_zonerefs[j].zone_idx = 0;
}
/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
static void build_zonelist_cache(pg_data_t *pgdat)
{
pgdat->node_zonelists[0].zlcache_ptr = NULL;
}
#endif /* CONFIG_NUMA */
/*
* Boot pageset table. One per cpu which is going to be used for all
* zones and all nodes. The parameters will be set in such a way
* that an item put on a list will immediately be handed over to
* the buddy list. This is safe since pageset manipulation is done
* with interrupts disabled.
*
* The boot_pagesets must be kept even after bootup is complete for
* unused processors and/or zones. They do play a role for bootstrapping
* hotplugged processors.
*
* zoneinfo_show() and maybe other functions do
* not check if the processor is online before following the pageset pointer.
* Other parts of the kernel may not check if the zone is available.
*/
static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
/* return values int ....just for stop_machine() */
static int __build_all_zonelists(void *dummy)
{
int nid;
int cpu;
#ifdef CONFIG_NUMA
memset(node_load, 0, sizeof(node_load));
#endif
for_each_online_node(nid) {
pg_data_t *pgdat = NODE_DATA(nid);
build_zonelists(pgdat);
build_zonelist_cache(pgdat);
}
/*
* Initialize the boot_pagesets that are going to be used
* for bootstrapping processors. The real pagesets for
* each zone will be allocated later when the per cpu
* allocator is available.
*
* boot_pagesets are used also for bootstrapping offline
* cpus if the system is already booted because the pagesets
* are needed to initialize allocators on a specific cpu too.
* F.e. the percpu allocator needs the page allocator which
* needs the percpu allocator in order to allocate its pagesets
* (a chicken-egg dilemma).
*/
for_each_possible_cpu(cpu)
setup_pageset(&per_cpu(boot_pageset, cpu), 0);
return 0;
}
void build_all_zonelists(void)
{
set_zonelist_order();
if (system_state == SYSTEM_BOOTING) {
__build_all_zonelists(NULL);
mminit_verify_zonelist();
cpuset_init_current_mems_allowed();
} else {
/* we have to stop all cpus to guarantee there is no user
of zonelist */
stop_machine(__build_all_zonelists, NULL, NULL);
/* cpuset refresh routine should be here */
}
vm_total_pages = nr_free_pagecache_pages();
/*
* Disable grouping by mobility if the number of pages in the
* system is too low to allow the mechanism to work. It would be
* more accurate, but expensive to check per-zone. This check is
* made on memory-hotadd so a system can start with mobility
* disabled and enable it later
*/
if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
page_group_by_mobility_disabled = 1;
else
page_group_by_mobility_disabled = 0;
printk("Built %i zonelists in %s order, mobility grouping %s. "
"Total pages: %ld\n",
nr_online_nodes,
zonelist_order_name[current_zonelist_order],
page_group_by_mobility_disabled ? "off" : "on",
vm_total_pages);
#ifdef CONFIG_NUMA
printk("Policy zone: %s\n", zone_names[policy_zone]);
#endif
}
/*
* Helper functions to size the waitqueue hash table.
* Essentially these want to choose hash table sizes sufficiently
* large so that collisions trying to wait on pages are rare.
* But in fact, the number of active page waitqueues on typical
* systems is ridiculously low, less than 200. So this is even
* conservative, even though it seems large.
*
* The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
* waitqueues, i.e. the size of the waitq table given the number of pages.
*/
#define PAGES_PER_WAITQUEUE 256
#ifndef CONFIG_MEMORY_HOTPLUG
static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
{
unsigned long size = 1;
pages /= PAGES_PER_WAITQUEUE;
while (size < pages)
size <<= 1;
/*
* Once we have dozens or even hundreds of threads sleeping
* on IO we've got bigger problems than wait queue collision.
* Limit the size of the wait table to a reasonable size.
*/
size = min(size, 4096UL);
return max(size, 4UL);
}
#else
/*
* A zone's size might be changed by hot-add, so it is not possible to determine
* a suitable size for its wait_table. So we use the maximum size now.
*
* The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
*
* i386 (preemption config) : 4096 x 16 = 64Kbyte.
* ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
* ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
*
* The maximum entries are prepared when a zone's memory is (512K + 256) pages
* or more by the traditional way. (See above). It equals:
*
* i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
* ia64(16K page size) : = ( 8G + 4M)byte.
* powerpc (64K page size) : = (32G +16M)byte.
*/
static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
{
return 4096UL;
}
#endif
/*
* This is an integer logarithm so that shifts can be used later
* to extract the more random high bits from the multiplicative
* hash function before the remainder is taken.
*/
static inline unsigned long wait_table_bits(unsigned long size)
{
return ffz(~size);
}
#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
/*
* Mark a number of pageblocks as MIGRATE_RESERVE. The number
* of blocks reserved is based on min_wmark_pages(zone). The memory within
* the reserve will tend to store contiguous free pages. Setting min_free_kbytes
* higher will lead to a bigger reserve which will get freed as contiguous
* blocks as reclaim kicks in
*/
static void setup_zone_migrate_reserve(struct zone *zone)
{
unsigned long start_pfn, pfn, end_pfn;
struct page *page;
unsigned long block_migratetype;
int reserve;
/* Get the start pfn, end pfn and the number of blocks to reserve */
start_pfn = zone->zone_start_pfn;
end_pfn = start_pfn + zone->spanned_pages;
reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
pageblock_order;
/*
* Reserve blocks are generally in place to help high-order atomic
* allocations that are short-lived. A min_free_kbytes value that
* would result in more than 2 reserve blocks for atomic allocations
* is assumed to be in place to help anti-fragmentation for the
* future allocation of hugepages at runtime.
*/
reserve = min(2, reserve);
for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
if (!pfn_valid(pfn))
continue;
page = pfn_to_page(pfn);
/* Watch out for overlapping nodes */
if (page_to_nid(page) != zone_to_nid(zone))
continue;
/* Blocks with reserved pages will never free, skip them. */
if (PageReserved(page))
continue;
block_migratetype = get_pageblock_migratetype(page);
/* If this block is reserved, account for it */
if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
reserve--;
continue;
}
/* Suitable for reserving if this block is movable */
if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
set_pageblock_migratetype(page, MIGRATE_RESERVE);
move_freepages_block(zone, page, MIGRATE_RESERVE);
reserve--;
continue;
}
/*
* If the reserve is met and this is a previous reserved block,
* take it back
*/
if (block_migratetype == MIGRATE_RESERVE) {
set_pageblock_migratetype(page, MIGRATE_MOVABLE);
move_freepages_block(zone, page, MIGRATE_MOVABLE);
}
}
}
/*
* Initially all pages are reserved - free ones are freed
* up by free_all_bootmem() once the early boot process is
* done. Non-atomic initialization, single-pass.
*/
void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
unsigned long start_pfn, enum memmap_context context)
{
struct page *page;
unsigned long end_pfn = start_pfn + size;
unsigned long pfn;
struct zone *z;
if (highest_memmap_pfn < end_pfn - 1)
highest_memmap_pfn = end_pfn - 1;
z = &NODE_DATA(nid)->node_zones[zone];
for (pfn = start_pfn; pfn < end_pfn; pfn++) {
/*
* There can be holes in boot-time mem_map[]s
* handed to this function. They do not
* exist on hotplugged memory.
*/
if (context == MEMMAP_EARLY) {
if (!early_pfn_valid(pfn))
continue;
if (!early_pfn_in_nid(pfn, nid))
continue;
}
page = pfn_to_page(pfn);
set_page_links(page, zone, nid, pfn);
mminit_verify_page_links(page, zone, nid, pfn);
init_page_count(page);
reset_page_mapcount(page);
SetPageReserved(page);
/*
* Mark the block movable so that blocks are reserved for
* movable at startup. This will force kernel allocations
* to reserve their blocks rather than leaking throughout
* the address space during boot when many long-lived
* kernel allocations are made. Later some blocks near
* the start are marked MIGRATE_RESERVE by
* setup_zone_migrate_reserve()
*
* bitmap is created for zone's valid pfn range. but memmap
* can be created for invalid pages (for alignment)
* check here not to call set_pageblock_migratetype() against
* pfn out of zone.
*/
if ((z->zone_start_pfn <= pfn)
&& (pfn < z->zone_start_pfn + z->spanned_pages)
&& !(pfn & (pageblock_nr_pages - 1)))
set_pageblock_migratetype(page, MIGRATE_MOVABLE);
INIT_LIST_HEAD(&page->lru);
#ifdef WANT_PAGE_VIRTUAL
/* The shift won't overflow because ZONE_NORMAL is below 4G. */
if (!is_highmem_idx(zone))
set_page_address(page, __va(pfn << PAGE_SHIFT));
#endif
}
}
static void __meminit zone_init_free_lists(struct zone *zone)
{
int order, t;
for_each_migratetype_order(order, t) {
INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
zone->free_area[order].nr_free = 0;
}
}
#ifndef __HAVE_ARCH_MEMMAP_INIT
#define memmap_init(size, nid, zone, start_pfn) \
memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
#endif
static int zone_batchsize(struct zone *zone)
{
#ifdef CONFIG_MMU
int batch;
/*
* The per-cpu-pages pools are set to around 1000th of the
* size of the zone. But no more than 1/2 of a meg.
*
* OK, so we don't know how big the cache is. So guess.
*/
batch = zone->present_pages / 1024;
if (batch * PAGE_SIZE > 512 * 1024)
batch = (512 * 1024) / PAGE_SIZE;
batch /= 4; /* We effectively *= 4 below */
if (batch < 1)
batch = 1;
/*
* Clamp the batch to a 2^n - 1 value. Having a power
* of 2 value was found to be more likely to have
* suboptimal cache aliasing properties in some cases.
*
* For example if 2 tasks are alternately allocating
* batches of pages, one task can end up with a lot
* of pages of one half of the possible page colors
* and the other with pages of the other colors.
*/
batch = rounddown_pow_of_two(batch + batch/2) - 1;
return batch;
#else
/* The deferral and batching of frees should be suppressed under NOMMU
* conditions.
*
* The problem is that NOMMU needs to be able to allocate large chunks
* of contiguous memory as there's no hardware page translation to
* assemble apparent contiguous memory from discontiguous pages.
*
* Queueing large contiguous runs of pages for batching, however,
* causes the pages to actually be freed in smaller chunks. As there
* can be a significant delay between the individual batches being
* recycled, this leads to the once large chunks of space being
* fragmented and becoming unavailable for high-order allocations.
*/
return 0;
#endif
}
static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
{
struct per_cpu_pages *pcp;
int migratetype;
memset(p, 0, sizeof(*p));
pcp = &p->pcp;
pcp->count = 0;
pcp->high = 6 * batch;
pcp->batch = max(1UL, 1 * batch);
for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
INIT_LIST_HEAD(&pcp->lists[migratetype]);
}
/*
* setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
* to the value high for the pageset p.
*/
static void setup_pagelist_highmark(struct per_cpu_pageset *p,
unsigned long high)
{
struct per_cpu_pages *pcp;
pcp = &p->pcp;
pcp->high = high;
pcp->batch = max(1UL, high/4);
if ((high/4) > (PAGE_SHIFT * 8))
pcp->batch = PAGE_SHIFT * 8;
}
/*
* Allocate per cpu pagesets and initialize them.
* Before this call only boot pagesets were available.
* Boot pagesets will no longer be used by this processorr
* after setup_per_cpu_pageset().
*/
void __init setup_per_cpu_pageset(void)
{
struct zone *zone;
int cpu;
for_each_populated_zone(zone) {
zone->pageset = alloc_percpu(struct per_cpu_pageset);
for_each_possible_cpu(cpu) {
struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
setup_pageset(pcp, zone_batchsize(zone));
if (percpu_pagelist_fraction)
setup_pagelist_highmark(pcp,
(zone->present_pages /
percpu_pagelist_fraction));
}
}
}
static noinline __init_refok
int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
{
int i;
struct pglist_data *pgdat = zone->zone_pgdat;
size_t alloc_size;
/*
* The per-page waitqueue mechanism uses hashed waitqueues
* per zone.
*/
zone->wait_table_hash_nr_entries =
wait_table_hash_nr_entries(zone_size_pages);
zone->wait_table_bits =
wait_table_bits(zone->wait_table_hash_nr_entries);
alloc_size = zone->wait_table_hash_nr_entries
* sizeof(wait_queue_head_t);
if (!slab_is_available()) {
zone->wait_table = (wait_queue_head_t *)
alloc_bootmem_node(pgdat, alloc_size);
} else {
/*
* This case means that a zone whose size was 0 gets new memory
* via memory hot-add.
* But it may be the case that a new node was hot-added. In
* this case vmalloc() will not be able to use this new node's
* memory - this wait_table must be initialized to use this new
* node itself as well.
* To use this new node's memory, further consideration will be
* necessary.
*/
zone->wait_table = vmalloc(alloc_size);
}
if (!zone->wait_table)
return -ENOMEM;
for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
init_waitqueue_head(zone->wait_table + i);
return 0;
}
static int __zone_pcp_update(void *data)
{
struct zone *zone = data;
int cpu;
unsigned long batch = zone_batchsize(zone), flags;
for (cpu = 0; cpu < NR_CPUS; cpu++) {
struct per_cpu_pageset *pset;
struct per_cpu_pages *pcp;
pset = per_cpu_ptr(zone->pageset, cpu);
pcp = &pset->pcp;
local_irq_save(flags);
free_pcppages_bulk(zone, pcp->count, pcp);
setup_pageset(pset, batch);
local_irq_restore(flags);
}
return 0;
}
void zone_pcp_update(struct zone *zone)
{
stop_machine(__zone_pcp_update, zone, NULL);
}
static __meminit void zone_pcp_init(struct zone *zone)
{
/*
* per cpu subsystem is not up at this point. The following code
* relies on the ability of the linker to provide the
* offset of a (static) per cpu variable into the per cpu area.
*/
zone->pageset = &boot_pageset;
if (zone->present_pages)
printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
zone->name, zone->present_pages,
zone_batchsize(zone));
}
__meminit int init_currently_empty_zone(struct zone *zone,
unsigned long zone_start_pfn,
unsigned long size,
enum memmap_context context)
{
struct pglist_data *pgdat = zone->zone_pgdat;
int ret;
ret = zone_wait_table_init(zone, size);
if (ret)
return ret;
pgdat->nr_zones = zone_idx(zone) + 1;
zone->zone_start_pfn = zone_start_pfn;
mminit_dprintk(MMINIT_TRACE, "memmap_init",
"Initialising map node %d zone %lu pfns %lu -> %lu\n",
pgdat->node_id,
(unsigned long)zone_idx(zone),
zone_start_pfn, (zone_start_pfn + size));
zone_init_free_lists(zone);
return 0;
}
#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
/*
* Basic iterator support. Return the first range of PFNs for a node
* Note: nid == MAX_NUMNODES returns first region regardless of node
*/
static int __meminit first_active_region_index_in_nid(int nid)
{
int i;
for (i = 0; i < nr_nodemap_entries; i++)
if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
return i;
return -1;
}
/*
* Basic iterator support. Return the next active range of PFNs for a node
* Note: nid == MAX_NUMNODES returns next region regardless of node
*/
static int __meminit next_active_region_index_in_nid(int index, int nid)
{
for (index = index + 1; index < nr_nodemap_entries; index++)
if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
return index;
return -1;
}
#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
/*
* Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
* Architectures may implement their own version but if add_active_range()
* was used and there are no special requirements, this is a convenient
* alternative
*/
int __meminit __early_pfn_to_nid(unsigned long pfn)
{
int i;
for (i = 0; i < nr_nodemap_entries; i++) {
unsigned long start_pfn = early_node_map[i].start_pfn;
unsigned long end_pfn = early_node_map[i].end_pfn;
if (start_pfn <= pfn && pfn < end_pfn)
return early_node_map[i].nid;
}
/* This is a memory hole */
return -1;
}
#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
int __meminit early_pfn_to_nid(unsigned long pfn)
{
int nid;
nid = __early_pfn_to_nid(pfn);
if (nid >= 0)
return nid;
/* just returns 0 */
return 0;
}
#ifdef CONFIG_NODES_SPAN_OTHER_NODES
bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
{
int nid;
nid = __early_pfn_to_nid(pfn);
if (nid >= 0 && nid != node)
return false;
return true;
}
#endif
/* Basic iterator support to walk early_node_map[] */
#define for_each_active_range_index_in_nid(i, nid) \
for (i = first_active_region_index_in_nid(nid); i != -1; \
i = next_active_region_index_in_nid(i, nid))
/**
* free_bootmem_with_active_regions - Call free_bootmem_node for each active range
* @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
* @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
*
* If an architecture guarantees that all ranges registered with
* add_active_ranges() contain no holes and may be freed, this
* this function may be used instead of calling free_bootmem() manually.
*/
void __init free_bootmem_with_active_regions(int nid,
unsigned long max_low_pfn)
{
int i;
for_each_active_range_index_in_nid(i, nid) {
unsigned long size_pages = 0;
unsigned long end_pfn = early_node_map[i].end_pfn;
if (early_node_map[i].start_pfn >= max_low_pfn)
continue;
if (end_pfn > max_low_pfn)
end_pfn = max_low_pfn;
size_pages = end_pfn - early_node_map[i].start_pfn;
free_bootmem_node(NODE_DATA(early_node_map[i].nid),
PFN_PHYS(early_node_map[i].start_pfn),
size_pages << PAGE_SHIFT);
}
}
int __init add_from_early_node_map(struct range *range, int az,
int nr_range, int nid)
{
int i;
u64 start, end;
/* need to go over early_node_map to find out good range for node */
for_each_active_range_index_in_nid(i, nid) {
start = early_node_map[i].start_pfn;
end = early_node_map[i].end_pfn;
nr_range = add_range(range, az, nr_range, start, end);
}
return nr_range;
}
#ifdef CONFIG_NO_BOOTMEM
void * __init __alloc_memory_core_early(int nid, u64 size, u64 align,
u64 goal, u64 limit)
{
int i;
void *ptr;
/* need to go over early_node_map to find out good range for node */
for_each_active_range_index_in_nid(i, nid) {
u64 addr;
u64 ei_start, ei_last;
ei_last = early_node_map[i].end_pfn;
ei_last <<= PAGE_SHIFT;
ei_start = early_node_map[i].start_pfn;
ei_start <<= PAGE_SHIFT;
addr = find_early_area(ei_start, ei_last,
goal, limit, size, align);
if (addr == -1ULL)
continue;
#if 0
printk(KERN_DEBUG "alloc (nid=%d %llx - %llx) (%llx - %llx) %llx %llx => %llx\n",
nid,
ei_start, ei_last, goal, limit, size,
align, addr);
#endif
ptr = phys_to_virt(addr);
memset(ptr, 0, size);
reserve_early_without_check(addr, addr + size, "BOOTMEM");
return ptr;
}
return NULL;
}
#endif
void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
{
int i;
int ret;
for_each_active_range_index_in_nid(i, nid) {
ret = work_fn(early_node_map[i].start_pfn,
early_node_map[i].end_pfn, data);
if (ret)
break;
}
}
/**
* sparse_memory_present_with_active_regions - Call memory_present for each active range
* @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
*
* If an architecture guarantees that all ranges registered with
* add_active_ranges() contain no holes and may be freed, this
* function may be used instead of calling memory_present() manually.
*/
void __init sparse_memory_present_with_active_regions(int nid)
{
int i;
for_each_active_range_index_in_nid(i, nid)
memory_present(early_node_map[i].nid,
early_node_map[i].start_pfn,
early_node_map[i].end_pfn);
}
/**
* get_pfn_range_for_nid - Return the start and end page frames for a node
* @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
* @start_pfn: Passed by reference. On return, it will have the node start_pfn.
* @end_pfn: Passed by reference. On return, it will have the node end_pfn.
*
* It returns the start and end page frame of a node based on information
* provided by an arch calling add_active_range(). If called for a node
* with no available memory, a warning is printed and the start and end
* PFNs will be 0.
*/
void __meminit get_pfn_range_for_nid(unsigned int nid,
unsigned long *start_pfn, unsigned long *end_pfn)
{
int i;
*start_pfn = -1UL;
*end_pfn = 0;
for_each_active_range_index_in_nid(i, nid) {
*start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
*end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
}
if (*start_pfn == -1UL)
*start_pfn = 0;
}
/*
* This finds a zone that can be used for ZONE_MOVABLE pages. The
* assumption is made that zones within a node are ordered in monotonic
* increasing memory addresses so that the "highest" populated zone is used
*/
static void __init find_usable_zone_for_movable(void)
{
int zone_index;
for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
if (zone_index == ZONE_MOVABLE)
continue;
if (arch_zone_highest_possible_pfn[zone_index] >
arch_zone_lowest_possible_pfn[zone_index])
break;
}
VM_BUG_ON(zone_index == -1);
movable_zone = zone_index;
}
/*
* The zone ranges provided by the architecture do not include ZONE_MOVABLE
* because it is sized independant of architecture. Unlike the other zones,
* the starting point for ZONE_MOVABLE is not fixed. It may be different
* in each node depending on the size of each node and how evenly kernelcore
* is distributed. This helper function adjusts the zone ranges
* provided by the architecture for a given node by using the end of the
* highest usable zone for ZONE_MOVABLE. This preserves the assumption that
* zones within a node are in order of monotonic increases memory addresses
*/
static void __meminit adjust_zone_range_for_zone_movable(int nid,
unsigned long zone_type,
unsigned long node_start_pfn,
unsigned long node_end_pfn,
unsigned long *zone_start_pfn,
unsigned long *zone_end_pfn)
{
/* Only adjust if ZONE_MOVABLE is on this node */
if (zone_movable_pfn[nid]) {
/* Size ZONE_MOVABLE */
if (zone_type == ZONE_MOVABLE) {
*zone_start_pfn = zone_movable_pfn[nid];
*zone_end_pfn = min(node_end_pfn,
arch_zone_highest_possible_pfn[movable_zone]);
/* Adjust for ZONE_MOVABLE starting within this range */
} else if (*zone_start_pfn < zone_movable_pfn[nid] &&
*zone_end_pfn > zone_movable_pfn[nid]) {
*zone_end_pfn = zone_movable_pfn[nid];
/* Check if this whole range is within ZONE_MOVABLE */
} else if (*zone_start_pfn >= zone_movable_pfn[nid])
*zone_start_pfn = *zone_end_pfn;
}
}
/*
* Return the number of pages a zone spans in a node, including holes
* present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
*/
static unsigned long __meminit zone_spanned_pages_in_node(int nid,
unsigned long zone_type,
unsigned long *ignored)
{
unsigned long node_start_pfn, node_end_pfn;
unsigned long zone_start_pfn, zone_end_pfn;
/* Get the start and end of the node and zone */
get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
adjust_zone_range_for_zone_movable(nid, zone_type,
node_start_pfn, node_end_pfn,
&zone_start_pfn, &zone_end_pfn);
/* Check that this node has pages within the zone's required range */
if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
return 0;
/* Move the zone boundaries inside the node if necessary */
zone_end_pfn = min(zone_end_pfn, node_end_pfn);
zone_start_pfn = max(zone_start_pfn, node_start_pfn);
/* Return the spanned pages */
return zone_end_pfn - zone_start_pfn;
}
/*
* Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
* then all holes in the requested range will be accounted for.
*/
unsigned long __meminit __absent_pages_in_range(int nid,
unsigned long range_start_pfn,
unsigned long range_end_pfn)
{
int i = 0;
unsigned long prev_end_pfn = 0, hole_pages = 0;
unsigned long start_pfn;
/* Find the end_pfn of the first active range of pfns in the node */
i = first_active_region_index_in_nid(nid);
if (i == -1)
return 0;
prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
/* Account for ranges before physical memory on this node */
if (early_node_map[i].start_pfn > range_start_pfn)
hole_pages = prev_end_pfn - range_start_pfn;
/* Find all holes for the zone within the node */
for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
/* No need to continue if prev_end_pfn is outside the zone */
if (prev_end_pfn >= range_end_pfn)
break;
/* Make sure the end of the zone is not within the hole */
start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
prev_end_pfn = max(prev_end_pfn, range_start_pfn);
/* Update the hole size cound and move on */
if (start_pfn > range_start_pfn) {
BUG_ON(prev_end_pfn > start_pfn);
hole_pages += start_pfn - prev_end_pfn;
}
prev_end_pfn = early_node_map[i].end_pfn;
}
/* Account for ranges past physical memory on this node */
if (range_end_pfn > prev_end_pfn)
hole_pages += range_end_pfn -
max(range_start_pfn, prev_end_pfn);
return hole_pages;
}
/**
* absent_pages_in_range - Return number of page frames in holes within a range
* @start_pfn: The start PFN to start searching for holes
* @end_pfn: The end PFN to stop searching for holes
*
* It returns the number of pages frames in memory holes within a range.
*/
unsigned long __init absent_pages_in_range(unsigned long start_pfn,
unsigned long end_pfn)
{
return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
}
/* Return the number of page frames in holes in a zone on a node */
static unsigned long __meminit zone_absent_pages_in_node(int nid,
unsigned long zone_type,
unsigned long *ignored)
{
unsigned long node_start_pfn, node_end_pfn;
unsigned long zone_start_pfn, zone_end_pfn;
get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
node_start_pfn);
zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
node_end_pfn);
adjust_zone_range_for_zone_movable(nid, zone_type,
node_start_pfn, node_end_pfn,
&zone_start_pfn, &zone_end_pfn);
return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
}
#else
static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
unsigned long zone_type,
unsigned long *zones_size)
{
return zones_size[zone_type];
}
static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
unsigned long zone_type,
unsigned long *zholes_size)
{
if (!zholes_size)
return 0;
return zholes_size[zone_type];
}
#endif
static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
unsigned long *zones_size, unsigned long *zholes_size)
{
unsigned long realtotalpages, totalpages = 0;
enum zone_type i;
for (i = 0; i < MAX_NR_ZONES; i++)
totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
zones_size);
pgdat->node_spanned_pages = totalpages;
realtotalpages = totalpages;
for (i = 0; i < MAX_NR_ZONES; i++)
realtotalpages -=
zone_absent_pages_in_node(pgdat->node_id, i,
zholes_size);
pgdat->node_present_pages = realtotalpages;
printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
realtotalpages);
}
#ifndef CONFIG_SPARSEMEM
/*
* Calculate the size of the zone->blockflags rounded to an unsigned long
* Start by making sure zonesize is a multiple of pageblock_order by rounding
* up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
* round what is now in bits to nearest long in bits, then return it in
* bytes.
*/
static unsigned long __init usemap_size(unsigned long zonesize)
{
unsigned long usemapsize;
usemapsize = roundup(zonesize, pageblock_nr_pages);
usemapsize = usemapsize >> pageblock_order;
usemapsize *= NR_PAGEBLOCK_BITS;
usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
return usemapsize / 8;
}
static void __init setup_usemap(struct pglist_data *pgdat,
struct zone *zone, unsigned long zonesize)
{
unsigned long usemapsize = usemap_size(zonesize);
zone->pageblock_flags = NULL;
if (usemapsize)
zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
}
#else
static void inline setup_usemap(struct pglist_data *pgdat,
struct zone *zone, unsigned long zonesize) {}
#endif /* CONFIG_SPARSEMEM */
#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
/* Return a sensible default order for the pageblock size. */
static inline int pageblock_default_order(void)
{
if (HPAGE_SHIFT > PAGE_SHIFT)
return HUGETLB_PAGE_ORDER;
return MAX_ORDER-1;
}
/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
static inline void __init set_pageblock_order(unsigned int order)
{
/* Check that pageblock_nr_pages has not already been setup */
if (pageblock_order)
return;
/*
* Assume the largest contiguous order of interest is a huge page.
* This value may be variable depending on boot parameters on IA64
*/
pageblock_order = order;
}
#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
/*
* When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
* and pageblock_default_order() are unused as pageblock_order is set
* at compile-time. See include/linux/pageblock-flags.h for the values of
* pageblock_order based on the kernel config
*/
static inline int pageblock_default_order(unsigned int order)
{
return MAX_ORDER-1;
}
#define set_pageblock_order(x) do {} while (0)
#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
/*
* Set up the zone data structures:
* - mark all pages reserved
* - mark all memory queues empty
* - clear the memory bitmaps
*/
static void __paginginit free_area_init_core(struct pglist_data *pgdat,
unsigned long *zones_size, unsigned long *zholes_size)
{
enum zone_type j;
int nid = pgdat->node_id;
unsigned long zone_start_pfn = pgdat->node_start_pfn;
int ret;
pgdat_resize_init(pgdat);
pgdat->nr_zones = 0;
init_waitqueue_head(&pgdat->kswapd_wait);
pgdat->kswapd_max_order = 0;
pgdat_page_cgroup_init(pgdat);
for (j = 0; j < MAX_NR_ZONES; j++) {
struct zone *zone = pgdat->node_zones + j;
unsigned long size, realsize, memmap_pages;
enum lru_list l;
size = zone_spanned_pages_in_node(nid, j, zones_size);
realsize = size - zone_absent_pages_in_node(nid, j,
zholes_size);
/*
* Adjust realsize so that it accounts for how much memory
* is used by this zone for memmap. This affects the watermark
* and per-cpu initialisations
*/
memmap_pages =
PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
if (realsize >= memmap_pages) {
realsize -= memmap_pages;
if (memmap_pages)
printk(KERN_DEBUG
" %s zone: %lu pages used for memmap\n",
zone_names[j], memmap_pages);
} else
printk(KERN_WARNING
" %s zone: %lu pages exceeds realsize %lu\n",
zone_names[j], memmap_pages, realsize);
/* Account for reserved pages */
if (j == 0 && realsize > dma_reserve) {
realsize -= dma_reserve;
printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
zone_names[0], dma_reserve);
}
if (!is_highmem_idx(j))
nr_kernel_pages += realsize;
nr_all_pages += realsize;
zone->spanned_pages = size;
zone->present_pages = realsize;
#ifdef CONFIG_NUMA
zone->node = nid;
zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
/ 100;
zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
#endif
zone->name = zone_names[j];
spin_lock_init(&zone->lock);
spin_lock_init(&zone->lru_lock);
zone_seqlock_init(zone);
zone->zone_pgdat = pgdat;
zone->prev_priority = DEF_PRIORITY;
zone_pcp_init(zone);
for_each_lru(l) {
INIT_LIST_HEAD(&zone->lru[l].list);
zone->reclaim_stat.nr_saved_scan[l] = 0;
}
zone->reclaim_stat.recent_rotated[0] = 0;
zone->reclaim_stat.recent_rotated[1] = 0;
zone->reclaim_stat.recent_scanned[0] = 0;
zone->reclaim_stat.recent_scanned[1] = 0;
zap_zone_vm_stats(zone);
zone->flags = 0;
if (!size)
continue;
set_pageblock_order(pageblock_default_order());
setup_usemap(pgdat, zone, size);
ret = init_currently_empty_zone(zone, zone_start_pfn,
size, MEMMAP_EARLY);
BUG_ON(ret);
memmap_init(size, nid, j, zone_start_pfn);
zone_start_pfn += size;
}
}
static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
{
/* Skip empty nodes */
if (!pgdat->node_spanned_pages)
return;
#ifdef CONFIG_FLAT_NODE_MEM_MAP
/* ia64 gets its own node_mem_map, before this, without bootmem */
if (!pgdat->node_mem_map) {
unsigned long size, start, end;
struct page *map;
/*
* The zone's endpoints aren't required to be MAX_ORDER
* aligned but the node_mem_map endpoints must be in order
* for the buddy allocator to function correctly.
*/
start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
end = ALIGN(end, MAX_ORDER_NR_PAGES);
size = (end - start) * sizeof(struct page);
map = alloc_remap(pgdat->node_id, size);
if (!map)
map = alloc_bootmem_node(pgdat, size);
pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
}
#ifndef CONFIG_NEED_MULTIPLE_NODES
/*
* With no DISCONTIG, the global mem_map is just set as node 0's
*/
if (pgdat == NODE_DATA(0)) {
mem_map = NODE_DATA(0)->node_mem_map;
#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
}
#endif
#endif /* CONFIG_FLAT_NODE_MEM_MAP */
}
void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
unsigned long node_start_pfn, unsigned long *zholes_size)
{
pg_data_t *pgdat = NODE_DATA(nid);
pgdat->node_id = nid;
pgdat->node_start_pfn = node_start_pfn;
calculate_node_totalpages(pgdat, zones_size, zholes_size);
alloc_node_mem_map(pgdat);
#ifdef CONFIG_FLAT_NODE_MEM_MAP
printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
nid, (unsigned long)pgdat,
(unsigned long)pgdat->node_mem_map);
#endif
free_area_init_core(pgdat, zones_size, zholes_size);
}
#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
#if MAX_NUMNODES > 1
/*
* Figure out the number of possible node ids.
*/
static void __init setup_nr_node_ids(void)
{
unsigned int node;
unsigned int highest = 0;
for_each_node_mask(node, node_possible_map)
highest = node;
nr_node_ids = highest + 1;
}
#else
static inline void setup_nr_node_ids(void)
{
}
#endif
/**
* add_active_range - Register a range of PFNs backed by physical memory
* @nid: The node ID the range resides on
* @start_pfn: The start PFN of the available physical memory
* @end_pfn: The end PFN of the available physical memory
*
* These ranges are stored in an early_node_map[] and later used by
* free_area_init_nodes() to calculate zone sizes and holes. If the
* range spans a memory hole, it is up to the architecture to ensure
* the memory is not freed by the bootmem allocator. If possible
* the range being registered will be merged with existing ranges.
*/
void __init add_active_range(unsigned int nid, unsigned long start_pfn,
unsigned long end_pfn)
{
int i;
mminit_dprintk(MMINIT_TRACE, "memory_register",
"Entering add_active_range(%d, %#lx, %#lx) "
"%d entries of %d used\n",
nid, start_pfn, end_pfn,
nr_nodemap_entries, MAX_ACTIVE_REGIONS);
mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
/* Merge with existing active regions if possible */
for (i = 0; i < nr_nodemap_entries; i++) {
if (early_node_map[i].nid != nid)
continue;
/* Skip if an existing region covers this new one */
if (start_pfn >= early_node_map[i].start_pfn &&
end_pfn <= early_node_map[i].end_pfn)
return;
/* Merge forward if suitable */
if (start_pfn <= early_node_map[i].end_pfn &&
end_pfn > early_node_map[i].end_pfn) {
early_node_map[i].end_pfn = end_pfn;
return;
}
/* Merge backward if suitable */
if (start_pfn < early_node_map[i].start_pfn &&
end_pfn >= early_node_map[i].start_pfn) {
early_node_map[i].start_pfn = start_pfn;
return;
}
}
/* Check that early_node_map is large enough */
if (i >= MAX_ACTIVE_REGIONS) {
printk(KERN_CRIT "More than %d memory regions, truncating\n",
MAX_ACTIVE_REGIONS);
return;
}
early_node_map[i].nid = nid;
early_node_map[i].start_pfn = start_pfn;
early_node_map[i].end_pfn = end_pfn;
nr_nodemap_entries = i + 1;
}
/**
* remove_active_range - Shrink an existing registered range of PFNs
* @nid: The node id the range is on that should be shrunk
* @start_pfn: The new PFN of the range
* @end_pfn: The new PFN of the range
*
* i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
* The map is kept near the end physical page range that has already been
* registered. This function allows an arch to shrink an existing registered
* range.
*/
void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
unsigned long end_pfn)
{
int i, j;
int removed = 0;
printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
nid, start_pfn, end_pfn);
/* Find the old active region end and shrink */
for_each_active_range_index_in_nid(i, nid) {
if (early_node_map[i].start_pfn >= start_pfn &&
early_node_map[i].end_pfn <= end_pfn) {
/* clear it */
early_node_map[i].start_pfn = 0;
early_node_map[i].end_pfn = 0;
removed = 1;
continue;
}
if (early_node_map[i].start_pfn < start_pfn &&
early_node_map[i].end_pfn > start_pfn) {
unsigned long temp_end_pfn = early_node_map[i].end_pfn;
early_node_map[i].end_pfn = start_pfn;
if (temp_end_pfn > end_pfn)
add_active_range(nid, end_pfn, temp_end_pfn);
continue;
}
if (early_node_map[i].start_pfn >= start_pfn &&
early_node_map[i].end_pfn > end_pfn &&
early_node_map[i].start_pfn < end_pfn) {
early_node_map[i].start_pfn = end_pfn;
continue;
}
}
if (!removed)
return;
/* remove the blank ones */
for (i = nr_nodemap_entries - 1; i > 0; i--) {
if (early_node_map[i].nid != nid)
continue;
if (early_node_map[i].end_pfn)
continue;
/* we found it, get rid of it */
for (j = i; j < nr_nodemap_entries - 1; j++)
memcpy(&early_node_map[j], &early_node_map[j+1],
sizeof(early_node_map[j]));
j = nr_nodemap_entries - 1;
memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
nr_nodemap_entries--;
}
}
/**
* remove_all_active_ranges - Remove all currently registered regions
*
* During discovery, it may be found that a table like SRAT is invalid
* and an alternative discovery method must be used. This function removes
* all currently registered regions.
*/
void __init remove_all_active_ranges(void)
{
memset(early_node_map, 0, sizeof(early_node_map));
nr_nodemap_entries = 0;
}
/* Compare two active node_active_regions */
static int __init cmp_node_active_region(const void *a, const void *b)
{
struct node_active_region *arange = (struct node_active_region *)a;
struct node_active_region *brange = (struct node_active_region *)b;
/* Done this way to avoid overflows */
if (arange->start_pfn > brange->start_pfn)
return 1;
if (arange->start_pfn < brange->start_pfn)
return -1;
return 0;
}
/* sort the node_map by start_pfn */
void __init sort_node_map(void)
{
sort(early_node_map, (size_t)nr_nodemap_entries,
sizeof(struct node_active_region),
cmp_node_active_region, NULL);
}
/* Find the lowest pfn for a node */
static unsigned long __init find_min_pfn_for_node(int nid)
{
int i;
unsigned long min_pfn = ULONG_MAX;
/* Assuming a sorted map, the first range found has the starting pfn */
for_each_active_range_index_in_nid(i, nid)
min_pfn = min(min_pfn, early_node_map[i].start_pfn);
if (min_pfn == ULONG_MAX) {
printk(KERN_WARNING
"Could not find start_pfn for node %d\n", nid);
return 0;
}
return min_pfn;
}
/**
* find_min_pfn_with_active_regions - Find the minimum PFN registered
*
* It returns the minimum PFN based on information provided via
* add_active_range().
*/
unsigned long __init find_min_pfn_with_active_regions(void)
{
return find_min_pfn_for_node(MAX_NUMNODES);
}
/*
* early_calculate_totalpages()
* Sum pages in active regions for movable zone.
* Populate N_HIGH_MEMORY for calculating usable_nodes.
*/
static unsigned long __init early_calculate_totalpages(void)
{
int i;
unsigned long totalpages = 0;
for (i = 0; i < nr_nodemap_entries; i++) {
unsigned long pages = early_node_map[i].end_pfn -
early_node_map[i].start_pfn;
totalpages += pages;
if (pages)
node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
}
return totalpages;
}
/*
* Find the PFN the Movable zone begins in each node. Kernel memory
* is spread evenly between nodes as long as the nodes have enough
* memory. When they don't, some nodes will have more kernelcore than
* others
*/
static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
{
int i, nid;
unsigned long usable_startpfn;
unsigned long kernelcore_node, kernelcore_remaining;
/* save the state before borrow the nodemask */
nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
unsigned long totalpages = early_calculate_totalpages();
int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
/*
* If movablecore was specified, calculate what size of
* kernelcore that corresponds so that memory usable for
* any allocation type is evenly spread. If both kernelcore
* and movablecore are specified, then the value of kernelcore
* will be used for required_kernelcore if it's greater than
* what movablecore would have allowed.
*/
if (required_movablecore) {
unsigned long corepages;
/*
* Round-up so that ZONE_MOVABLE is at least as large as what
* was requested by the user
*/
required_movablecore =
roundup(required_movablecore, MAX_ORDER_NR_PAGES);
corepages = totalpages - required_movablecore;
required_kernelcore = max(required_kernelcore, corepages);
}
/* If kernelcore was not specified, there is no ZONE_MOVABLE */
if (!required_kernelcore)
goto out;
/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
find_usable_zone_for_movable();
usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
restart:
/* Spread kernelcore memory as evenly as possible throughout nodes */
kernelcore_node = required_kernelcore / usable_nodes;
for_each_node_state(nid, N_HIGH_MEMORY) {
/*
* Recalculate kernelcore_node if the division per node
* now exceeds what is necessary to satisfy the requested
* amount of memory for the kernel
*/
if (required_kernelcore < kernelcore_node)
kernelcore_node = required_kernelcore / usable_nodes;
/*
* As the map is walked, we track how much memory is usable
* by the kernel using kernelcore_remaining. When it is
* 0, the rest of the node is usable by ZONE_MOVABLE
*/
kernelcore_remaining = kernelcore_node;
/* Go through each range of PFNs within this node */
for_each_active_range_index_in_nid(i, nid) {
unsigned long start_pfn, end_pfn;
unsigned long size_pages;
start_pfn = max(early_node_map[i].start_pfn,
zone_movable_pfn[nid]);
end_pfn = early_node_map[i].end_pfn;
if (start_pfn >= end_pfn)
continue;
/* Account for what is only usable for kernelcore */
if (start_pfn < usable_startpfn) {
unsigned long kernel_pages;
kernel_pages = min(end_pfn, usable_startpfn)
- start_pfn;
kernelcore_remaining -= min(kernel_pages,
kernelcore_remaining);
required_kernelcore -= min(kernel_pages,
required_kernelcore);
/* Continue if range is now fully accounted */
if (end_pfn <= usable_startpfn) {
/*
* Push zone_movable_pfn to the end so
* that if we have to rebalance
* kernelcore across nodes, we will
* not double account here
*/
zone_movable_pfn[nid] = end_pfn;
continue;
}
start_pfn = usable_startpfn;
}
/*
* The usable PFN range for ZONE_MOVABLE is from
* start_pfn->end_pfn. Calculate size_pages as the
* number of pages used as kernelcore
*/
size_pages = end_pfn - start_pfn;
if (size_pages > kernelcore_remaining)
size_pages = kernelcore_remaining;
zone_movable_pfn[nid] = start_pfn + size_pages;
/*
* Some kernelcore has been met, update counts and
* break if the kernelcore for this node has been
* satisified
*/
required_kernelcore -= min(required_kernelcore,
size_pages);
kernelcore_remaining -= size_pages;
if (!kernelcore_remaining)
break;
}
}
/*
* If there is still required_kernelcore, we do another pass with one
* less node in the count. This will push zone_movable_pfn[nid] further
* along on the nodes that still have memory until kernelcore is
* satisified
*/
usable_nodes--;
if (usable_nodes && required_kernelcore > usable_nodes)
goto restart;
/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
for (nid = 0; nid < MAX_NUMNODES; nid++)
zone_movable_pfn[nid] =
roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
out:
/* restore the node_state */
node_states[N_HIGH_MEMORY] = saved_node_state;
}
/* Any regular memory on that node ? */
static void check_for_regular_memory(pg_data_t *pgdat)
{
#ifdef CONFIG_HIGHMEM
enum zone_type zone_type;
for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
struct zone *zone = &pgdat->node_zones[zone_type];
if (zone->present_pages)
node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
}
#endif
}
/**
* free_area_init_nodes - Initialise all pg_data_t and zone data
* @max_zone_pfn: an array of max PFNs for each zone
*
* This will call free_area_init_node() for each active node in the system.
* Using the page ranges provided by add_active_range(), the size of each
* zone in each node and their holes is calculated. If the maximum PFN
* between two adjacent zones match, it is assumed that the zone is empty.
* For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
* that arch_max_dma32_pfn has no pages. It is also assumed that a zone
* starts where the previous one ended. For example, ZONE_DMA32 starts
* at arch_max_dma_pfn.
*/
void __init free_area_init_nodes(unsigned long *max_zone_pfn)
{
unsigned long nid;
int i;
/* Sort early_node_map as initialisation assumes it is sorted */
sort_node_map();
/* Record where the zone boundaries are */
memset(arch_zone_lowest_possible_pfn, 0,
sizeof(arch_zone_lowest_possible_pfn));
memset(arch_zone_highest_possible_pfn, 0,
sizeof(arch_zone_highest_possible_pfn));
arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
for (i = 1; i < MAX_NR_ZONES; i++) {
if (i == ZONE_MOVABLE)
continue;
arch_zone_lowest_possible_pfn[i] =
arch_zone_highest_possible_pfn[i-1];
arch_zone_highest_possible_pfn[i] =
max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
}
arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
/* Find the PFNs that ZONE_MOVABLE begins at in each node */
memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
find_zone_movable_pfns_for_nodes(zone_movable_pfn);
/* Print out the zone ranges */
printk("Zone PFN ranges:\n");
for (i = 0; i < MAX_NR_ZONES; i++) {
if (i == ZONE_MOVABLE)
continue;
printk(" %-8s %0#10lx -> %0#10lx\n",
zone_names[i],
arch_zone_lowest_possible_pfn[i],
arch_zone_highest_possible_pfn[i]);
}
/* Print out the PFNs ZONE_MOVABLE begins at in each node */
printk("Movable zone start PFN for each node\n");
for (i = 0; i < MAX_NUMNODES; i++) {
if (zone_movable_pfn[i])
printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
}
/* Print out the early_node_map[] */
printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
for (i = 0; i < nr_nodemap_entries; i++)
printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
early_node_map[i].start_pfn,
early_node_map[i].end_pfn);
/* Initialise every node */
mminit_verify_pageflags_layout();
setup_nr_node_ids();
for_each_online_node(nid) {
pg_data_t *pgdat = NODE_DATA(nid);
free_area_init_node(nid, NULL,
find_min_pfn_for_node(nid), NULL);
/* Any memory on that node */
if (pgdat->node_present_pages)
node_set_state(nid, N_HIGH_MEMORY);
check_for_regular_memory(pgdat);
}
}
static int __init cmdline_parse_core(char *p, unsigned long *core)
{
unsigned long long coremem;
if (!p)
return -EINVAL;
coremem = memparse(p, &p);
*core = coremem >> PAGE_SHIFT;
/* Paranoid check that UL is enough for the coremem value */
WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
return 0;
}
/*
* kernelcore=size sets the amount of memory for use for allocations that
* cannot be reclaimed or migrated.
*/
static int __init cmdline_parse_kernelcore(char *p)
{
return cmdline_parse_core(p, &required_kernelcore);
}
/*
* movablecore=size sets the amount of memory for use for allocations that
* can be reclaimed or migrated.
*/
static int __init cmdline_parse_movablecore(char *p)
{
return cmdline_parse_core(p, &required_movablecore);
}
early_param("kernelcore", cmdline_parse_kernelcore);
early_param("movablecore", cmdline_parse_movablecore);
#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
/**
* set_dma_reserve - set the specified number of pages reserved in the first zone
* @new_dma_reserve: The number of pages to mark reserved
*
* The per-cpu batchsize and zone watermarks are determined by present_pages.
* In the DMA zone, a significant percentage may be consumed by kernel image
* and other unfreeable allocations which can skew the watermarks badly. This
* function may optionally be used to account for unfreeable pages in the
* first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
* smaller per-cpu batchsize.
*/
void __init set_dma_reserve(unsigned long new_dma_reserve)
{
dma_reserve = new_dma_reserve;
}
#ifndef CONFIG_NEED_MULTIPLE_NODES
struct pglist_data __refdata contig_page_data = {
#ifndef CONFIG_NO_BOOTMEM
.bdata = &bootmem_node_data[0]
#endif
};
EXPORT_SYMBOL(contig_page_data);
#endif
void __init free_area_init(unsigned long *zones_size)
{
free_area_init_node(0, zones_size,
__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
}
static int page_alloc_cpu_notify(struct notifier_block *self,
unsigned long action, void *hcpu)
{
int cpu = (unsigned long)hcpu;
if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
drain_pages(cpu);
/*
* Spill the event counters of the dead processor
* into the current processors event counters.
* This artificially elevates the count of the current
* processor.
*/
vm_events_fold_cpu(cpu);
/*
* Zero the differential counters of the dead processor
* so that the vm statistics are consistent.
*
* This is only okay since the processor is dead and cannot
* race with what we are doing.
*/
refresh_cpu_vm_stats(cpu);
}
return NOTIFY_OK;
}
void __init page_alloc_init(void)
{
hotcpu_notifier(page_alloc_cpu_notify, 0);
}
/*
* calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
* or min_free_kbytes changes.
*/
static void calculate_totalreserve_pages(void)
{
struct pglist_data *pgdat;
unsigned long reserve_pages = 0;
enum zone_type i, j;
for_each_online_pgdat(pgdat) {
for (i = 0; i < MAX_NR_ZONES; i++) {
struct zone *zone = pgdat->node_zones + i;
unsigned long max = 0;
/* Find valid and maximum lowmem_reserve in the zone */
for (j = i; j < MAX_NR_ZONES; j++) {
if (zone->lowmem_reserve[j] > max)
max = zone->lowmem_reserve[j];
}
/* we treat the high watermark as reserved pages. */
max += high_wmark_pages(zone);
if (max > zone->present_pages)
max = zone->present_pages;
reserve_pages += max;
}
}
totalreserve_pages = reserve_pages;
}
/*
* setup_per_zone_lowmem_reserve - called whenever
* sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
* has a correct pages reserved value, so an adequate number of
* pages are left in the zone after a successful __alloc_pages().
*/
static void setup_per_zone_lowmem_reserve(void)
{
struct pglist_data *pgdat;
enum zone_type j, idx;
for_each_online_pgdat(pgdat) {
for (j = 0; j < MAX_NR_ZONES; j++) {
struct zone *zone = pgdat->node_zones + j;
unsigned long present_pages = zone->present_pages;
zone->lowmem_reserve[j] = 0;
idx = j;
while (idx) {
struct zone *lower_zone;
idx--;
if (sysctl_lowmem_reserve_ratio[idx] < 1)
sysctl_lowmem_reserve_ratio[idx] = 1;
lower_zone = pgdat->node_zones + idx;
lower_zone->lowmem_reserve[j] = present_pages /
sysctl_lowmem_reserve_ratio[idx];
present_pages += lower_zone->present_pages;
}
}
}
/* update totalreserve_pages */
calculate_totalreserve_pages();
}
/**
* setup_per_zone_wmarks - called when min_free_kbytes changes
* or when memory is hot-{added|removed}
*
* Ensures that the watermark[min,low,high] values for each zone are set
* correctly with respect to min_free_kbytes.
*/
void setup_per_zone_wmarks(void)
{
unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
unsigned long lowmem_pages = 0;
struct zone *zone;
unsigned long flags;
/* Calculate total number of !ZONE_HIGHMEM pages */
for_each_zone(zone) {
if (!is_highmem(zone))
lowmem_pages += zone->present_pages;
}
for_each_zone(zone) {
u64 tmp;
spin_lock_irqsave(&zone->lock, flags);
tmp = (u64)pages_min * zone->present_pages;
do_div(tmp, lowmem_pages);
if (is_highmem(zone)) {
/*
* __GFP_HIGH and PF_MEMALLOC allocations usually don't
* need highmem pages, so cap pages_min to a small
* value here.
*
* The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
* deltas controls asynch page reclaim, and so should
* not be capped for highmem.
*/
int min_pages;
min_pages = zone->present_pages / 1024;
if (min_pages < SWAP_CLUSTER_MAX)
min_pages = SWAP_CLUSTER_MAX;
if (min_pages > 128)
min_pages = 128;
zone->watermark[WMARK_MIN] = min_pages;
} else {
/*
* If it's a lowmem zone, reserve a number of pages
* proportionate to the zone's size.
*/
zone->watermark[WMARK_MIN] = tmp;
}
zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
setup_zone_migrate_reserve(zone);
spin_unlock_irqrestore(&zone->lock, flags);
}
/* update totalreserve_pages */
calculate_totalreserve_pages();
}
/*
* The inactive anon list should be small enough that the VM never has to
* do too much work, but large enough that each inactive page has a chance
* to be referenced again before it is swapped out.
*
* The inactive_anon ratio is the target ratio of ACTIVE_ANON to
* INACTIVE_ANON pages on this zone's LRU, maintained by the
* pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
* the anonymous pages are kept on the inactive list.
*
* total target max
* memory ratio inactive anon
* -------------------------------------
* 10MB 1 5MB
* 100MB 1 50MB
* 1GB 3 250MB
* 10GB 10 0.9GB
* 100GB 31 3GB
* 1TB 101 10GB
* 10TB 320 32GB
*/
void calculate_zone_inactive_ratio(struct zone *zone)
{
unsigned int gb, ratio;
/* Zone size in gigabytes */
gb = zone->present_pages >> (30 - PAGE_SHIFT);
if (gb)
ratio = int_sqrt(10 * gb);
else
ratio = 1;
zone->inactive_ratio = ratio;
}
static void __init setup_per_zone_inactive_ratio(void)
{
struct zone *zone;
for_each_zone(zone)
calculate_zone_inactive_ratio(zone);
}
/*
* Initialise min_free_kbytes.
*
* For small machines we want it small (128k min). For large machines
* we want it large (64MB max). But it is not linear, because network
* bandwidth does not increase linearly with machine size. We use
*
* min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
* min_free_kbytes = sqrt(lowmem_kbytes * 16)
*
* which yields
*
* 16MB: 512k
* 32MB: 724k
* 64MB: 1024k
* 128MB: 1448k
* 256MB: 2048k
* 512MB: 2896k
* 1024MB: 4096k
* 2048MB: 5792k
* 4096MB: 8192k
* 8192MB: 11584k
* 16384MB: 16384k
*/
static int __init init_per_zone_wmark_min(void)
{
unsigned long lowmem_kbytes;
lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
if (min_free_kbytes < 128)
min_free_kbytes = 128;
if (min_free_kbytes > 65536)
min_free_kbytes = 65536;
setup_per_zone_wmarks();
setup_per_zone_lowmem_reserve();
setup_per_zone_inactive_ratio();
return 0;
}
module_init(init_per_zone_wmark_min)
/*
* min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
* that we can call two helper functions whenever min_free_kbytes
* changes.
*/
int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
void __user *buffer, size_t *length, loff_t *ppos)
{
proc_dointvec(table, write, buffer, length, ppos);
if (write)
setup_per_zone_wmarks();
return 0;
}
#ifdef CONFIG_NUMA
int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
void __user *buffer, size_t *length, loff_t *ppos)
{
struct zone *zone;
int rc;
rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
if (rc)
return rc;
for_each_zone(zone)
zone->min_unmapped_pages = (zone->present_pages *
sysctl_min_unmapped_ratio) / 100;
return 0;
}
int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
void __user *buffer, size_t *length, loff_t *ppos)
{
struct zone *zone;
int rc;
rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
if (rc)
return rc;
for_each_zone(zone)
zone->min_slab_pages = (zone->present_pages *
sysctl_min_slab_ratio) / 100;
return 0;
}
#endif
/*
* lowmem_reserve_ratio_sysctl_handler - just a wrapper around
* proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
* whenever sysctl_lowmem_reserve_ratio changes.
*
* The reserve ratio obviously has absolutely no relation with the
* minimum watermarks. The lowmem reserve ratio can only make sense
* if in function of the boot time zone sizes.
*/
int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
void __user *buffer, size_t *length, loff_t *ppos)
{
proc_dointvec_minmax(table, write, buffer, length, ppos);
setup_per_zone_lowmem_reserve();
return 0;
}
/*
* percpu_pagelist_fraction - changes the pcp->high for each zone on each
* cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
* can have before it gets flushed back to buddy allocator.
*/
int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
void __user *buffer, size_t *length, loff_t *ppos)
{
struct zone *zone;
unsigned int cpu;
int ret;
ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
if (!write || (ret == -EINVAL))
return ret;
for_each_populated_zone(zone) {
for_each_possible_cpu(cpu) {
unsigned long high;
high = zone->present_pages / percpu_pagelist_fraction;
setup_pagelist_highmark(
per_cpu_ptr(zone->pageset, cpu), high);
}
}
return 0;
}
int hashdist = HASHDIST_DEFAULT;
#ifdef CONFIG_NUMA
static int __init set_hashdist(char *str)
{
if (!str)
return 0;
hashdist = simple_strtoul(str, &str, 0);
return 1;
}
__setup("hashdist=", set_hashdist);
#endif
/*
* allocate a large system hash table from bootmem
* - it is assumed that the hash table must contain an exact power-of-2
* quantity of entries
* - limit is the number of hash buckets, not the total allocation size
*/
void *__init alloc_large_system_hash(const char *tablename,
unsigned long bucketsize,
unsigned long numentries,
int scale,
int flags,
unsigned int *_hash_shift,
unsigned int *_hash_mask,
unsigned long limit)
{
unsigned long long max = limit;
unsigned long log2qty, size;
void *table = NULL;
/* allow the kernel cmdline to have a say */
if (!numentries) {
/* round applicable memory size up to nearest megabyte */
numentries = nr_kernel_pages;
numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
numentries >>= 20 - PAGE_SHIFT;
numentries <<= 20 - PAGE_SHIFT;
/* limit to 1 bucket per 2^scale bytes of low memory */
if (scale > PAGE_SHIFT)
numentries >>= (scale - PAGE_SHIFT);
else
numentries <<= (PAGE_SHIFT - scale);
/* Make sure we've got at least a 0-order allocation.. */
if (unlikely(flags & HASH_SMALL)) {
/* Makes no sense without HASH_EARLY */
WARN_ON(!(flags & HASH_EARLY));
if (!(numentries >> *_hash_shift)) {
numentries = 1UL << *_hash_shift;
BUG_ON(!numentries);
}
} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
numentries = PAGE_SIZE / bucketsize;
}
numentries = roundup_pow_of_two(numentries);
/* limit allocation size to 1/16 total memory by default */
if (max == 0) {
max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
do_div(max, bucketsize);
}
if (numentries > max)
numentries = max;
log2qty = ilog2(numentries);
do {
size = bucketsize << log2qty;
if (flags & HASH_EARLY)
table = alloc_bootmem_nopanic(size);
else if (hashdist)
table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
else {
/*
* If bucketsize is not a power-of-two, we may free
* some pages at the end of hash table which
* alloc_pages_exact() automatically does
*/
if (get_order(size) < MAX_ORDER) {
table = alloc_pages_exact(size, GFP_ATOMIC);
kmemleak_alloc(table, size, 1, GFP_ATOMIC);
}
}
} while (!table && size > PAGE_SIZE && --log2qty);
if (!table)
panic("Failed to allocate %s hash table\n", tablename);
printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
tablename,
(1U << log2qty),
ilog2(size) - PAGE_SHIFT,
size);
if (_hash_shift)
*_hash_shift = log2qty;
if (_hash_mask)
*_hash_mask = (1 << log2qty) - 1;
return table;
}
/* Return a pointer to the bitmap storing bits affecting a block of pages */
static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
unsigned long pfn)
{
#ifdef CONFIG_SPARSEMEM
return __pfn_to_section(pfn)->pageblock_flags;
#else
return zone->pageblock_flags;
#endif /* CONFIG_SPARSEMEM */
}
static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
{
#ifdef CONFIG_SPARSEMEM
pfn &= (PAGES_PER_SECTION-1);
return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
#else
pfn = pfn - zone->zone_start_pfn;
return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
#endif /* CONFIG_SPARSEMEM */
}
/**
* get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
* @page: The page within the block of interest
* @start_bitidx: The first bit of interest to retrieve
* @end_bitidx: The last bit of interest
* returns pageblock_bits flags
*/
unsigned long get_pageblock_flags_group(struct page *page,
int start_bitidx, int end_bitidx)
{
struct zone *zone;
unsigned long *bitmap;
unsigned long pfn, bitidx;
unsigned long flags = 0;
unsigned long value = 1;
zone = page_zone(page);
pfn = page_to_pfn(page);
bitmap = get_pageblock_bitmap(zone, pfn);
bitidx = pfn_to_bitidx(zone, pfn);
for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
if (test_bit(bitidx + start_bitidx, bitmap))
flags |= value;
return flags;
}
/**
* set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
* @page: The page within the block of interest
* @start_bitidx: The first bit of interest
* @end_bitidx: The last bit of interest
* @flags: The flags to set
*/
void set_pageblock_flags_group(struct page *page, unsigned long flags,
int start_bitidx, int end_bitidx)
{
struct zone *zone;
unsigned long *bitmap;
unsigned long pfn, bitidx;
unsigned long value = 1;
zone = page_zone(page);
pfn = page_to_pfn(page);
bitmap = get_pageblock_bitmap(zone, pfn);
bitidx = pfn_to_bitidx(zone, pfn);
VM_BUG_ON(pfn < zone->zone_start_pfn);
VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
if (flags & value)
__set_bit(bitidx + start_bitidx, bitmap);
else
__clear_bit(bitidx + start_bitidx, bitmap);
}
/*
* This is designed as sub function...plz see page_isolation.c also.
* set/clear page block's type to be ISOLATE.
* page allocater never alloc memory from ISOLATE block.
*/
int set_migratetype_isolate(struct page *page)
{
struct zone *zone;
struct page *curr_page;
unsigned long flags, pfn, iter;
unsigned long immobile = 0;
struct memory_isolate_notify arg;
int notifier_ret;
int ret = -EBUSY;
int zone_idx;
zone = page_zone(page);
zone_idx = zone_idx(zone);
spin_lock_irqsave(&zone->lock, flags);
if (get_pageblock_migratetype(page) == MIGRATE_MOVABLE ||
zone_idx == ZONE_MOVABLE) {
ret = 0;
goto out;
}
pfn = page_to_pfn(page);
arg.start_pfn = pfn;
arg.nr_pages = pageblock_nr_pages;
arg.pages_found = 0;
/*
* It may be possible to isolate a pageblock even if the
* migratetype is not MIGRATE_MOVABLE. The memory isolation
* notifier chain is used by balloon drivers to return the
* number of pages in a range that are held by the balloon
* driver to shrink memory. If all the pages are accounted for
* by balloons, are free, or on the LRU, isolation can continue.
* Later, for example, when memory hotplug notifier runs, these
* pages reported as "can be isolated" should be isolated(freed)
* by the balloon driver through the memory notifier chain.
*/
notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg);
notifier_ret = notifier_to_errno(notifier_ret);
if (notifier_ret || !arg.pages_found)
goto out;
for (iter = pfn; iter < (pfn + pageblock_nr_pages); iter++) {
if (!pfn_valid_within(pfn))
continue;
curr_page = pfn_to_page(iter);
if (!page_count(curr_page) || PageLRU(curr_page))
continue;
immobile++;
}
if (arg.pages_found == immobile)
ret = 0;
out:
if (!ret) {
set_pageblock_migratetype(page, MIGRATE_ISOLATE);
move_freepages_block(zone, page, MIGRATE_ISOLATE);
}
spin_unlock_irqrestore(&zone->lock, flags);
if (!ret)
drain_all_pages();
return ret;
}
void unset_migratetype_isolate(struct page *page)
{
struct zone *zone;
unsigned long flags;
zone = page_zone(page);
spin_lock_irqsave(&zone->lock, flags);
if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
goto out;
set_pageblock_migratetype(page, MIGRATE_MOVABLE);
move_freepages_block(zone, page, MIGRATE_MOVABLE);
out:
spin_unlock_irqrestore(&zone->lock, flags);
}
#ifdef CONFIG_MEMORY_HOTREMOVE
/*
* All pages in the range must be isolated before calling this.
*/
void
__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
{
struct page *page;
struct zone *zone;
int order, i;
unsigned long pfn;
unsigned long flags;
/* find the first valid pfn */
for (pfn = start_pfn; pfn < end_pfn; pfn++)
if (pfn_valid(pfn))
break;
if (pfn == end_pfn)
return;
zone = page_zone(pfn_to_page(pfn));
spin_lock_irqsave(&zone->lock, flags);
pfn = start_pfn;
while (pfn < end_pfn) {
if (!pfn_valid(pfn)) {
pfn++;
continue;
}
page = pfn_to_page(pfn);
BUG_ON(page_count(page));
BUG_ON(!PageBuddy(page));
order = page_order(page);
#ifdef CONFIG_DEBUG_VM
printk(KERN_INFO "remove from free list %lx %d %lx\n",
pfn, 1 << order, end_pfn);
#endif
list_del(&page->lru);
rmv_page_order(page);
zone->free_area[order].nr_free--;
__mod_zone_page_state(zone, NR_FREE_PAGES,
- (1UL << order));
for (i = 0; i < (1 << order); i++)
SetPageReserved((page+i));
pfn += (1 << order);
}
spin_unlock_irqrestore(&zone->lock, flags);
}
#endif
#ifdef CONFIG_MEMORY_FAILURE
bool is_free_buddy_page(struct page *page)
{
struct zone *zone = page_zone(page);
unsigned long pfn = page_to_pfn(page);
unsigned long flags;
int order;
spin_lock_irqsave(&zone->lock, flags);
for (order = 0; order < MAX_ORDER; order++) {
struct page *page_head = page - (pfn & ((1 << order) - 1));
if (PageBuddy(page_head) && page_order(page_head) >= order)
break;
}
spin_unlock_irqrestore(&zone->lock, flags);
return order < MAX_ORDER;
}
#endif