| /* |
| * fs/f2fs/segment.c |
| * |
| * Copyright (c) 2012 Samsung Electronics Co., Ltd. |
| * http://www.samsung.com/ |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| */ |
| #include <linux/fs.h> |
| #include <linux/f2fs_fs.h> |
| #include <linux/bio.h> |
| #include <linux/blkdev.h> |
| #include <linux/prefetch.h> |
| #include <linux/vmalloc.h> |
| #include <linux/swap.h> |
| |
| #include "f2fs.h" |
| #include "segment.h" |
| #include "node.h" |
| #include <trace/events/f2fs.h> |
| |
| #define __reverse_ffz(x) __reverse_ffs(~(x)) |
| |
| static struct kmem_cache *discard_entry_slab; |
| |
| /* |
| * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since |
| * MSB and LSB are reversed in a byte by f2fs_set_bit. |
| */ |
| static inline unsigned long __reverse_ffs(unsigned long word) |
| { |
| int num = 0; |
| |
| #if BITS_PER_LONG == 64 |
| if ((word & 0xffffffff) == 0) { |
| num += 32; |
| word >>= 32; |
| } |
| #endif |
| if ((word & 0xffff) == 0) { |
| num += 16; |
| word >>= 16; |
| } |
| if ((word & 0xff) == 0) { |
| num += 8; |
| word >>= 8; |
| } |
| if ((word & 0xf0) == 0) |
| num += 4; |
| else |
| word >>= 4; |
| if ((word & 0xc) == 0) |
| num += 2; |
| else |
| word >>= 2; |
| if ((word & 0x2) == 0) |
| num += 1; |
| return num; |
| } |
| |
| /* |
| * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c becasue |
| * f2fs_set_bit makes MSB and LSB reversed in a byte. |
| * Example: |
| * LSB <--> MSB |
| * f2fs_set_bit(0, bitmap) => 0000 0001 |
| * f2fs_set_bit(7, bitmap) => 1000 0000 |
| */ |
| static unsigned long __find_rev_next_bit(const unsigned long *addr, |
| unsigned long size, unsigned long offset) |
| { |
| const unsigned long *p = addr + BIT_WORD(offset); |
| unsigned long result = offset & ~(BITS_PER_LONG - 1); |
| unsigned long tmp; |
| unsigned long mask, submask; |
| unsigned long quot, rest; |
| |
| if (offset >= size) |
| return size; |
| |
| size -= result; |
| offset %= BITS_PER_LONG; |
| if (!offset) |
| goto aligned; |
| |
| tmp = *(p++); |
| quot = (offset >> 3) << 3; |
| rest = offset & 0x7; |
| mask = ~0UL << quot; |
| submask = (unsigned char)(0xff << rest) >> rest; |
| submask <<= quot; |
| mask &= submask; |
| tmp &= mask; |
| if (size < BITS_PER_LONG) |
| goto found_first; |
| if (tmp) |
| goto found_middle; |
| |
| size -= BITS_PER_LONG; |
| result += BITS_PER_LONG; |
| aligned: |
| while (size & ~(BITS_PER_LONG-1)) { |
| tmp = *(p++); |
| if (tmp) |
| goto found_middle; |
| result += BITS_PER_LONG; |
| size -= BITS_PER_LONG; |
| } |
| if (!size) |
| return result; |
| tmp = *p; |
| found_first: |
| tmp &= (~0UL >> (BITS_PER_LONG - size)); |
| if (tmp == 0UL) /* Are any bits set? */ |
| return result + size; /* Nope. */ |
| found_middle: |
| return result + __reverse_ffs(tmp); |
| } |
| |
| static unsigned long __find_rev_next_zero_bit(const unsigned long *addr, |
| unsigned long size, unsigned long offset) |
| { |
| const unsigned long *p = addr + BIT_WORD(offset); |
| unsigned long result = offset & ~(BITS_PER_LONG - 1); |
| unsigned long tmp; |
| unsigned long mask, submask; |
| unsigned long quot, rest; |
| |
| if (offset >= size) |
| return size; |
| |
| size -= result; |
| offset %= BITS_PER_LONG; |
| if (!offset) |
| goto aligned; |
| |
| tmp = *(p++); |
| quot = (offset >> 3) << 3; |
| rest = offset & 0x7; |
| mask = ~(~0UL << quot); |
| submask = (unsigned char)~((unsigned char)(0xff << rest) >> rest); |
| submask <<= quot; |
| mask += submask; |
| tmp |= mask; |
| if (size < BITS_PER_LONG) |
| goto found_first; |
| if (~tmp) |
| goto found_middle; |
| |
| size -= BITS_PER_LONG; |
| result += BITS_PER_LONG; |
| aligned: |
| while (size & ~(BITS_PER_LONG - 1)) { |
| tmp = *(p++); |
| if (~tmp) |
| goto found_middle; |
| result += BITS_PER_LONG; |
| size -= BITS_PER_LONG; |
| } |
| if (!size) |
| return result; |
| tmp = *p; |
| |
| found_first: |
| tmp |= ~0UL << size; |
| if (tmp == ~0UL) /* Are any bits zero? */ |
| return result + size; /* Nope. */ |
| found_middle: |
| return result + __reverse_ffz(tmp); |
| } |
| |
| /* |
| * This function balances dirty node and dentry pages. |
| * In addition, it controls garbage collection. |
| */ |
| void f2fs_balance_fs(struct f2fs_sb_info *sbi) |
| { |
| /* |
| * We should do GC or end up with checkpoint, if there are so many dirty |
| * dir/node pages without enough free segments. |
| */ |
| if (has_not_enough_free_secs(sbi, 0)) { |
| mutex_lock(&sbi->gc_mutex); |
| f2fs_gc(sbi); |
| } |
| } |
| |
| void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi) |
| { |
| /* check the # of cached NAT entries and prefree segments */ |
| if (try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK) || |
| excess_prefree_segs(sbi)) |
| f2fs_sync_fs(sbi->sb, true); |
| } |
| |
| static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, |
| enum dirty_type dirty_type) |
| { |
| struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); |
| |
| /* need not be added */ |
| if (IS_CURSEG(sbi, segno)) |
| return; |
| |
| if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type])) |
| dirty_i->nr_dirty[dirty_type]++; |
| |
| if (dirty_type == DIRTY) { |
| struct seg_entry *sentry = get_seg_entry(sbi, segno); |
| enum dirty_type t = sentry->type; |
| |
| if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t])) |
| dirty_i->nr_dirty[t]++; |
| } |
| } |
| |
| static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, |
| enum dirty_type dirty_type) |
| { |
| struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); |
| |
| if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type])) |
| dirty_i->nr_dirty[dirty_type]--; |
| |
| if (dirty_type == DIRTY) { |
| struct seg_entry *sentry = get_seg_entry(sbi, segno); |
| enum dirty_type t = sentry->type; |
| |
| if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t])) |
| dirty_i->nr_dirty[t]--; |
| |
| if (get_valid_blocks(sbi, segno, sbi->segs_per_sec) == 0) |
| clear_bit(GET_SECNO(sbi, segno), |
| dirty_i->victim_secmap); |
| } |
| } |
| |
| /* |
| * Should not occur error such as -ENOMEM. |
| * Adding dirty entry into seglist is not critical operation. |
| * If a given segment is one of current working segments, it won't be added. |
| */ |
| static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno) |
| { |
| struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); |
| unsigned short valid_blocks; |
| |
| if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno)) |
| return; |
| |
| mutex_lock(&dirty_i->seglist_lock); |
| |
| valid_blocks = get_valid_blocks(sbi, segno, 0); |
| |
| if (valid_blocks == 0) { |
| __locate_dirty_segment(sbi, segno, PRE); |
| __remove_dirty_segment(sbi, segno, DIRTY); |
| } else if (valid_blocks < sbi->blocks_per_seg) { |
| __locate_dirty_segment(sbi, segno, DIRTY); |
| } else { |
| /* Recovery routine with SSR needs this */ |
| __remove_dirty_segment(sbi, segno, DIRTY); |
| } |
| |
| mutex_unlock(&dirty_i->seglist_lock); |
| } |
| |
| static void f2fs_issue_discard(struct f2fs_sb_info *sbi, |
| block_t blkstart, block_t blklen) |
| { |
| sector_t start = SECTOR_FROM_BLOCK(sbi, blkstart); |
| sector_t len = SECTOR_FROM_BLOCK(sbi, blklen); |
| blkdev_issue_discard(sbi->sb->s_bdev, start, len, GFP_NOFS, 0); |
| trace_f2fs_issue_discard(sbi->sb, blkstart, blklen); |
| } |
| |
| static void add_discard_addrs(struct f2fs_sb_info *sbi, |
| unsigned int segno, struct seg_entry *se) |
| { |
| struct list_head *head = &SM_I(sbi)->discard_list; |
| struct discard_entry *new; |
| int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); |
| int max_blocks = sbi->blocks_per_seg; |
| unsigned long *cur_map = (unsigned long *)se->cur_valid_map; |
| unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; |
| unsigned long dmap[entries]; |
| unsigned int start = 0, end = -1; |
| int i; |
| |
| if (!test_opt(sbi, DISCARD)) |
| return; |
| |
| /* zero block will be discarded through the prefree list */ |
| if (!se->valid_blocks || se->valid_blocks == max_blocks) |
| return; |
| |
| /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */ |
| for (i = 0; i < entries; i++) |
| dmap[i] = (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i]; |
| |
| while (SM_I(sbi)->nr_discards <= SM_I(sbi)->max_discards) { |
| start = __find_rev_next_bit(dmap, max_blocks, end + 1); |
| if (start >= max_blocks) |
| break; |
| |
| end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1); |
| |
| new = f2fs_kmem_cache_alloc(discard_entry_slab, GFP_NOFS); |
| INIT_LIST_HEAD(&new->list); |
| new->blkaddr = START_BLOCK(sbi, segno) + start; |
| new->len = end - start; |
| |
| list_add_tail(&new->list, head); |
| SM_I(sbi)->nr_discards += end - start; |
| } |
| } |
| |
| /* |
| * Should call clear_prefree_segments after checkpoint is done. |
| */ |
| static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi) |
| { |
| struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); |
| unsigned int segno = -1; |
| unsigned int total_segs = TOTAL_SEGS(sbi); |
| |
| mutex_lock(&dirty_i->seglist_lock); |
| while (1) { |
| segno = find_next_bit(dirty_i->dirty_segmap[PRE], total_segs, |
| segno + 1); |
| if (segno >= total_segs) |
| break; |
| __set_test_and_free(sbi, segno); |
| } |
| mutex_unlock(&dirty_i->seglist_lock); |
| } |
| |
| void clear_prefree_segments(struct f2fs_sb_info *sbi) |
| { |
| struct list_head *head = &(SM_I(sbi)->discard_list); |
| struct list_head *this, *next; |
| struct discard_entry *entry; |
| struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); |
| unsigned long *prefree_map = dirty_i->dirty_segmap[PRE]; |
| unsigned int total_segs = TOTAL_SEGS(sbi); |
| unsigned int start = 0, end = -1; |
| |
| mutex_lock(&dirty_i->seglist_lock); |
| |
| while (1) { |
| int i; |
| start = find_next_bit(prefree_map, total_segs, end + 1); |
| if (start >= total_segs) |
| break; |
| end = find_next_zero_bit(prefree_map, total_segs, start + 1); |
| |
| for (i = start; i < end; i++) |
| clear_bit(i, prefree_map); |
| |
| dirty_i->nr_dirty[PRE] -= end - start; |
| |
| if (!test_opt(sbi, DISCARD)) |
| continue; |
| |
| f2fs_issue_discard(sbi, START_BLOCK(sbi, start), |
| (end - start) << sbi->log_blocks_per_seg); |
| } |
| mutex_unlock(&dirty_i->seglist_lock); |
| |
| /* send small discards */ |
| list_for_each_safe(this, next, head) { |
| entry = list_entry(this, struct discard_entry, list); |
| f2fs_issue_discard(sbi, entry->blkaddr, entry->len); |
| list_del(&entry->list); |
| SM_I(sbi)->nr_discards -= entry->len; |
| kmem_cache_free(discard_entry_slab, entry); |
| } |
| } |
| |
| static void __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno) |
| { |
| struct sit_info *sit_i = SIT_I(sbi); |
| if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) |
| sit_i->dirty_sentries++; |
| } |
| |
| static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type, |
| unsigned int segno, int modified) |
| { |
| struct seg_entry *se = get_seg_entry(sbi, segno); |
| se->type = type; |
| if (modified) |
| __mark_sit_entry_dirty(sbi, segno); |
| } |
| |
| static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del) |
| { |
| struct seg_entry *se; |
| unsigned int segno, offset; |
| long int new_vblocks; |
| |
| segno = GET_SEGNO(sbi, blkaddr); |
| |
| se = get_seg_entry(sbi, segno); |
| new_vblocks = se->valid_blocks + del; |
| offset = GET_SEGOFF_FROM_SEG0(sbi, blkaddr) & (sbi->blocks_per_seg - 1); |
| |
| f2fs_bug_on((new_vblocks >> (sizeof(unsigned short) << 3) || |
| (new_vblocks > sbi->blocks_per_seg))); |
| |
| se->valid_blocks = new_vblocks; |
| se->mtime = get_mtime(sbi); |
| SIT_I(sbi)->max_mtime = se->mtime; |
| |
| /* Update valid block bitmap */ |
| if (del > 0) { |
| if (f2fs_set_bit(offset, se->cur_valid_map)) |
| BUG(); |
| } else { |
| if (!f2fs_clear_bit(offset, se->cur_valid_map)) |
| BUG(); |
| } |
| if (!f2fs_test_bit(offset, se->ckpt_valid_map)) |
| se->ckpt_valid_blocks += del; |
| |
| __mark_sit_entry_dirty(sbi, segno); |
| |
| /* update total number of valid blocks to be written in ckpt area */ |
| SIT_I(sbi)->written_valid_blocks += del; |
| |
| if (sbi->segs_per_sec > 1) |
| get_sec_entry(sbi, segno)->valid_blocks += del; |
| } |
| |
| static void refresh_sit_entry(struct f2fs_sb_info *sbi, |
| block_t old_blkaddr, block_t new_blkaddr) |
| { |
| update_sit_entry(sbi, new_blkaddr, 1); |
| if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) |
| update_sit_entry(sbi, old_blkaddr, -1); |
| } |
| |
| void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr) |
| { |
| unsigned int segno = GET_SEGNO(sbi, addr); |
| struct sit_info *sit_i = SIT_I(sbi); |
| |
| f2fs_bug_on(addr == NULL_ADDR); |
| if (addr == NEW_ADDR) |
| return; |
| |
| /* add it into sit main buffer */ |
| mutex_lock(&sit_i->sentry_lock); |
| |
| update_sit_entry(sbi, addr, -1); |
| |
| /* add it into dirty seglist */ |
| locate_dirty_segment(sbi, segno); |
| |
| mutex_unlock(&sit_i->sentry_lock); |
| } |
| |
| /* |
| * This function should be resided under the curseg_mutex lock |
| */ |
| static void __add_sum_entry(struct f2fs_sb_info *sbi, int type, |
| struct f2fs_summary *sum) |
| { |
| struct curseg_info *curseg = CURSEG_I(sbi, type); |
| void *addr = curseg->sum_blk; |
| addr += curseg->next_blkoff * sizeof(struct f2fs_summary); |
| memcpy(addr, sum, sizeof(struct f2fs_summary)); |
| } |
| |
| /* |
| * Calculate the number of current summary pages for writing |
| */ |
| int npages_for_summary_flush(struct f2fs_sb_info *sbi) |
| { |
| int valid_sum_count = 0; |
| int i, sum_in_page; |
| |
| for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { |
| if (sbi->ckpt->alloc_type[i] == SSR) |
| valid_sum_count += sbi->blocks_per_seg; |
| else |
| valid_sum_count += curseg_blkoff(sbi, i); |
| } |
| |
| sum_in_page = (PAGE_CACHE_SIZE - 2 * SUM_JOURNAL_SIZE - |
| SUM_FOOTER_SIZE) / SUMMARY_SIZE; |
| if (valid_sum_count <= sum_in_page) |
| return 1; |
| else if ((valid_sum_count - sum_in_page) <= |
| (PAGE_CACHE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE) |
| return 2; |
| return 3; |
| } |
| |
| /* |
| * Caller should put this summary page |
| */ |
| struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno) |
| { |
| return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno)); |
| } |
| |
| static void write_sum_page(struct f2fs_sb_info *sbi, |
| struct f2fs_summary_block *sum_blk, block_t blk_addr) |
| { |
| struct page *page = grab_meta_page(sbi, blk_addr); |
| void *kaddr = page_address(page); |
| memcpy(kaddr, sum_blk, PAGE_CACHE_SIZE); |
| set_page_dirty(page); |
| f2fs_put_page(page, 1); |
| } |
| |
| static int is_next_segment_free(struct f2fs_sb_info *sbi, int type) |
| { |
| struct curseg_info *curseg = CURSEG_I(sbi, type); |
| unsigned int segno = curseg->segno + 1; |
| struct free_segmap_info *free_i = FREE_I(sbi); |
| |
| if (segno < TOTAL_SEGS(sbi) && segno % sbi->segs_per_sec) |
| return !test_bit(segno, free_i->free_segmap); |
| return 0; |
| } |
| |
| /* |
| * Find a new segment from the free segments bitmap to right order |
| * This function should be returned with success, otherwise BUG |
| */ |
| static void get_new_segment(struct f2fs_sb_info *sbi, |
| unsigned int *newseg, bool new_sec, int dir) |
| { |
| struct free_segmap_info *free_i = FREE_I(sbi); |
| unsigned int segno, secno, zoneno; |
| unsigned int total_zones = TOTAL_SECS(sbi) / sbi->secs_per_zone; |
| unsigned int hint = *newseg / sbi->segs_per_sec; |
| unsigned int old_zoneno = GET_ZONENO_FROM_SEGNO(sbi, *newseg); |
| unsigned int left_start = hint; |
| bool init = true; |
| int go_left = 0; |
| int i; |
| |
| write_lock(&free_i->segmap_lock); |
| |
| if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) { |
| segno = find_next_zero_bit(free_i->free_segmap, |
| TOTAL_SEGS(sbi), *newseg + 1); |
| if (segno - *newseg < sbi->segs_per_sec - |
| (*newseg % sbi->segs_per_sec)) |
| goto got_it; |
| } |
| find_other_zone: |
| secno = find_next_zero_bit(free_i->free_secmap, TOTAL_SECS(sbi), hint); |
| if (secno >= TOTAL_SECS(sbi)) { |
| if (dir == ALLOC_RIGHT) { |
| secno = find_next_zero_bit(free_i->free_secmap, |
| TOTAL_SECS(sbi), 0); |
| f2fs_bug_on(secno >= TOTAL_SECS(sbi)); |
| } else { |
| go_left = 1; |
| left_start = hint - 1; |
| } |
| } |
| if (go_left == 0) |
| goto skip_left; |
| |
| while (test_bit(left_start, free_i->free_secmap)) { |
| if (left_start > 0) { |
| left_start--; |
| continue; |
| } |
| left_start = find_next_zero_bit(free_i->free_secmap, |
| TOTAL_SECS(sbi), 0); |
| f2fs_bug_on(left_start >= TOTAL_SECS(sbi)); |
| break; |
| } |
| secno = left_start; |
| skip_left: |
| hint = secno; |
| segno = secno * sbi->segs_per_sec; |
| zoneno = secno / sbi->secs_per_zone; |
| |
| /* give up on finding another zone */ |
| if (!init) |
| goto got_it; |
| if (sbi->secs_per_zone == 1) |
| goto got_it; |
| if (zoneno == old_zoneno) |
| goto got_it; |
| if (dir == ALLOC_LEFT) { |
| if (!go_left && zoneno + 1 >= total_zones) |
| goto got_it; |
| if (go_left && zoneno == 0) |
| goto got_it; |
| } |
| for (i = 0; i < NR_CURSEG_TYPE; i++) |
| if (CURSEG_I(sbi, i)->zone == zoneno) |
| break; |
| |
| if (i < NR_CURSEG_TYPE) { |
| /* zone is in user, try another */ |
| if (go_left) |
| hint = zoneno * sbi->secs_per_zone - 1; |
| else if (zoneno + 1 >= total_zones) |
| hint = 0; |
| else |
| hint = (zoneno + 1) * sbi->secs_per_zone; |
| init = false; |
| goto find_other_zone; |
| } |
| got_it: |
| /* set it as dirty segment in free segmap */ |
| f2fs_bug_on(test_bit(segno, free_i->free_segmap)); |
| __set_inuse(sbi, segno); |
| *newseg = segno; |
| write_unlock(&free_i->segmap_lock); |
| } |
| |
| static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified) |
| { |
| struct curseg_info *curseg = CURSEG_I(sbi, type); |
| struct summary_footer *sum_footer; |
| |
| curseg->segno = curseg->next_segno; |
| curseg->zone = GET_ZONENO_FROM_SEGNO(sbi, curseg->segno); |
| curseg->next_blkoff = 0; |
| curseg->next_segno = NULL_SEGNO; |
| |
| sum_footer = &(curseg->sum_blk->footer); |
| memset(sum_footer, 0, sizeof(struct summary_footer)); |
| if (IS_DATASEG(type)) |
| SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA); |
| if (IS_NODESEG(type)) |
| SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE); |
| __set_sit_entry_type(sbi, type, curseg->segno, modified); |
| } |
| |
| /* |
| * Allocate a current working segment. |
| * This function always allocates a free segment in LFS manner. |
| */ |
| static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec) |
| { |
| struct curseg_info *curseg = CURSEG_I(sbi, type); |
| unsigned int segno = curseg->segno; |
| int dir = ALLOC_LEFT; |
| |
| write_sum_page(sbi, curseg->sum_blk, |
| GET_SUM_BLOCK(sbi, segno)); |
| if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA) |
| dir = ALLOC_RIGHT; |
| |
| if (test_opt(sbi, NOHEAP)) |
| dir = ALLOC_RIGHT; |
| |
| get_new_segment(sbi, &segno, new_sec, dir); |
| curseg->next_segno = segno; |
| reset_curseg(sbi, type, 1); |
| curseg->alloc_type = LFS; |
| } |
| |
| static void __next_free_blkoff(struct f2fs_sb_info *sbi, |
| struct curseg_info *seg, block_t start) |
| { |
| struct seg_entry *se = get_seg_entry(sbi, seg->segno); |
| int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); |
| unsigned long target_map[entries]; |
| unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; |
| unsigned long *cur_map = (unsigned long *)se->cur_valid_map; |
| int i, pos; |
| |
| for (i = 0; i < entries; i++) |
| target_map[i] = ckpt_map[i] | cur_map[i]; |
| |
| pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start); |
| |
| seg->next_blkoff = pos; |
| } |
| |
| /* |
| * If a segment is written by LFS manner, next block offset is just obtained |
| * by increasing the current block offset. However, if a segment is written by |
| * SSR manner, next block offset obtained by calling __next_free_blkoff |
| */ |
| static void __refresh_next_blkoff(struct f2fs_sb_info *sbi, |
| struct curseg_info *seg) |
| { |
| if (seg->alloc_type == SSR) |
| __next_free_blkoff(sbi, seg, seg->next_blkoff + 1); |
| else |
| seg->next_blkoff++; |
| } |
| |
| /* |
| * This function always allocates a used segment (from dirty seglist) by SSR |
| * manner, so it should recover the existing segment information of valid blocks |
| */ |
| static void change_curseg(struct f2fs_sb_info *sbi, int type, bool reuse) |
| { |
| struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); |
| struct curseg_info *curseg = CURSEG_I(sbi, type); |
| unsigned int new_segno = curseg->next_segno; |
| struct f2fs_summary_block *sum_node; |
| struct page *sum_page; |
| |
| write_sum_page(sbi, curseg->sum_blk, |
| GET_SUM_BLOCK(sbi, curseg->segno)); |
| __set_test_and_inuse(sbi, new_segno); |
| |
| mutex_lock(&dirty_i->seglist_lock); |
| __remove_dirty_segment(sbi, new_segno, PRE); |
| __remove_dirty_segment(sbi, new_segno, DIRTY); |
| mutex_unlock(&dirty_i->seglist_lock); |
| |
| reset_curseg(sbi, type, 1); |
| curseg->alloc_type = SSR; |
| __next_free_blkoff(sbi, curseg, 0); |
| |
| if (reuse) { |
| sum_page = get_sum_page(sbi, new_segno); |
| sum_node = (struct f2fs_summary_block *)page_address(sum_page); |
| memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE); |
| f2fs_put_page(sum_page, 1); |
| } |
| } |
| |
| static int get_ssr_segment(struct f2fs_sb_info *sbi, int type) |
| { |
| struct curseg_info *curseg = CURSEG_I(sbi, type); |
| const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops; |
| |
| if (IS_NODESEG(type) || !has_not_enough_free_secs(sbi, 0)) |
| return v_ops->get_victim(sbi, |
| &(curseg)->next_segno, BG_GC, type, SSR); |
| |
| /* For data segments, let's do SSR more intensively */ |
| for (; type >= CURSEG_HOT_DATA; type--) |
| if (v_ops->get_victim(sbi, &(curseg)->next_segno, |
| BG_GC, type, SSR)) |
| return 1; |
| return 0; |
| } |
| |
| /* |
| * flush out current segment and replace it with new segment |
| * This function should be returned with success, otherwise BUG |
| */ |
| static void allocate_segment_by_default(struct f2fs_sb_info *sbi, |
| int type, bool force) |
| { |
| struct curseg_info *curseg = CURSEG_I(sbi, type); |
| |
| if (force) |
| new_curseg(sbi, type, true); |
| else if (type == CURSEG_WARM_NODE) |
| new_curseg(sbi, type, false); |
| else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type)) |
| new_curseg(sbi, type, false); |
| else if (need_SSR(sbi) && get_ssr_segment(sbi, type)) |
| change_curseg(sbi, type, true); |
| else |
| new_curseg(sbi, type, false); |
| |
| stat_inc_seg_type(sbi, curseg); |
| } |
| |
| void allocate_new_segments(struct f2fs_sb_info *sbi) |
| { |
| struct curseg_info *curseg; |
| unsigned int old_curseg; |
| int i; |
| |
| for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { |
| curseg = CURSEG_I(sbi, i); |
| old_curseg = curseg->segno; |
| SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true); |
| locate_dirty_segment(sbi, old_curseg); |
| } |
| } |
| |
| static const struct segment_allocation default_salloc_ops = { |
| .allocate_segment = allocate_segment_by_default, |
| }; |
| |
| static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type) |
| { |
| struct curseg_info *curseg = CURSEG_I(sbi, type); |
| if (curseg->next_blkoff < sbi->blocks_per_seg) |
| return true; |
| return false; |
| } |
| |
| static int __get_segment_type_2(struct page *page, enum page_type p_type) |
| { |
| if (p_type == DATA) |
| return CURSEG_HOT_DATA; |
| else |
| return CURSEG_HOT_NODE; |
| } |
| |
| static int __get_segment_type_4(struct page *page, enum page_type p_type) |
| { |
| if (p_type == DATA) { |
| struct inode *inode = page->mapping->host; |
| |
| if (S_ISDIR(inode->i_mode)) |
| return CURSEG_HOT_DATA; |
| else |
| return CURSEG_COLD_DATA; |
| } else { |
| if (IS_DNODE(page) && !is_cold_node(page)) |
| return CURSEG_HOT_NODE; |
| else |
| return CURSEG_COLD_NODE; |
| } |
| } |
| |
| static int __get_segment_type_6(struct page *page, enum page_type p_type) |
| { |
| if (p_type == DATA) { |
| struct inode *inode = page->mapping->host; |
| |
| if (S_ISDIR(inode->i_mode)) |
| return CURSEG_HOT_DATA; |
| else if (is_cold_data(page) || file_is_cold(inode)) |
| return CURSEG_COLD_DATA; |
| else |
| return CURSEG_WARM_DATA; |
| } else { |
| if (IS_DNODE(page)) |
| return is_cold_node(page) ? CURSEG_WARM_NODE : |
| CURSEG_HOT_NODE; |
| else |
| return CURSEG_COLD_NODE; |
| } |
| } |
| |
| static int __get_segment_type(struct page *page, enum page_type p_type) |
| { |
| struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb); |
| switch (sbi->active_logs) { |
| case 2: |
| return __get_segment_type_2(page, p_type); |
| case 4: |
| return __get_segment_type_4(page, p_type); |
| } |
| /* NR_CURSEG_TYPE(6) logs by default */ |
| f2fs_bug_on(sbi->active_logs != NR_CURSEG_TYPE); |
| return __get_segment_type_6(page, p_type); |
| } |
| |
| static void do_write_page(struct f2fs_sb_info *sbi, struct page *page, |
| block_t old_blkaddr, block_t *new_blkaddr, |
| struct f2fs_summary *sum, struct f2fs_io_info *fio) |
| { |
| struct sit_info *sit_i = SIT_I(sbi); |
| struct curseg_info *curseg; |
| unsigned int old_cursegno; |
| int type; |
| |
| type = __get_segment_type(page, fio->type); |
| curseg = CURSEG_I(sbi, type); |
| |
| mutex_lock(&curseg->curseg_mutex); |
| |
| *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg); |
| old_cursegno = curseg->segno; |
| |
| /* |
| * __add_sum_entry should be resided under the curseg_mutex |
| * because, this function updates a summary entry in the |
| * current summary block. |
| */ |
| __add_sum_entry(sbi, type, sum); |
| |
| mutex_lock(&sit_i->sentry_lock); |
| __refresh_next_blkoff(sbi, curseg); |
| |
| stat_inc_block_count(sbi, curseg); |
| |
| /* |
| * SIT information should be updated before segment allocation, |
| * since SSR needs latest valid block information. |
| */ |
| refresh_sit_entry(sbi, old_blkaddr, *new_blkaddr); |
| |
| if (!__has_curseg_space(sbi, type)) |
| sit_i->s_ops->allocate_segment(sbi, type, false); |
| |
| locate_dirty_segment(sbi, old_cursegno); |
| locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr)); |
| mutex_unlock(&sit_i->sentry_lock); |
| |
| if (fio->type == NODE) |
| fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg)); |
| |
| /* writeout dirty page into bdev */ |
| f2fs_submit_page_mbio(sbi, page, *new_blkaddr, fio); |
| |
| mutex_unlock(&curseg->curseg_mutex); |
| } |
| |
| void write_meta_page(struct f2fs_sb_info *sbi, struct page *page) |
| { |
| struct f2fs_io_info fio = { |
| .type = META, |
| .rw = WRITE_SYNC, |
| .rw_flag = REQ_META | REQ_PRIO |
| }; |
| |
| set_page_writeback(page); |
| f2fs_submit_page_mbio(sbi, page, page->index, &fio); |
| } |
| |
| void write_node_page(struct f2fs_sb_info *sbi, struct page *page, |
| unsigned int nid, block_t old_blkaddr, block_t *new_blkaddr) |
| { |
| struct f2fs_summary sum; |
| struct f2fs_io_info fio = { |
| .type = NODE, |
| .rw = WRITE_SYNC, |
| .rw_flag = 0 |
| }; |
| |
| set_summary(&sum, nid, 0, 0); |
| do_write_page(sbi, page, old_blkaddr, new_blkaddr, &sum, &fio); |
| } |
| |
| void write_data_page(struct page *page, struct dnode_of_data *dn, |
| block_t *new_blkaddr, struct f2fs_io_info *fio) |
| { |
| struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb); |
| struct f2fs_summary sum; |
| struct node_info ni; |
| |
| f2fs_bug_on(dn->data_blkaddr == NULL_ADDR); |
| get_node_info(sbi, dn->nid, &ni); |
| set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version); |
| |
| do_write_page(sbi, page, dn->data_blkaddr, new_blkaddr, &sum, fio); |
| } |
| |
| void rewrite_data_page(struct page *page, block_t old_blkaddr, struct f2fs_io_info *fio) |
| { |
| struct inode *inode = page->mapping->host; |
| struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); |
| f2fs_submit_page_mbio(sbi, page, old_blkaddr, fio); |
| } |
| |
| void recover_data_page(struct f2fs_sb_info *sbi, |
| struct page *page, struct f2fs_summary *sum, |
| block_t old_blkaddr, block_t new_blkaddr) |
| { |
| struct sit_info *sit_i = SIT_I(sbi); |
| struct curseg_info *curseg; |
| unsigned int segno, old_cursegno; |
| struct seg_entry *se; |
| int type; |
| |
| segno = GET_SEGNO(sbi, new_blkaddr); |
| se = get_seg_entry(sbi, segno); |
| type = se->type; |
| |
| if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) { |
| if (old_blkaddr == NULL_ADDR) |
| type = CURSEG_COLD_DATA; |
| else |
| type = CURSEG_WARM_DATA; |
| } |
| curseg = CURSEG_I(sbi, type); |
| |
| mutex_lock(&curseg->curseg_mutex); |
| mutex_lock(&sit_i->sentry_lock); |
| |
| old_cursegno = curseg->segno; |
| |
| /* change the current segment */ |
| if (segno != curseg->segno) { |
| curseg->next_segno = segno; |
| change_curseg(sbi, type, true); |
| } |
| |
| curseg->next_blkoff = GET_SEGOFF_FROM_SEG0(sbi, new_blkaddr) & |
| (sbi->blocks_per_seg - 1); |
| __add_sum_entry(sbi, type, sum); |
| |
| refresh_sit_entry(sbi, old_blkaddr, new_blkaddr); |
| |
| locate_dirty_segment(sbi, old_cursegno); |
| locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr)); |
| |
| mutex_unlock(&sit_i->sentry_lock); |
| mutex_unlock(&curseg->curseg_mutex); |
| } |
| |
| void rewrite_node_page(struct f2fs_sb_info *sbi, |
| struct page *page, struct f2fs_summary *sum, |
| block_t old_blkaddr, block_t new_blkaddr) |
| { |
| struct sit_info *sit_i = SIT_I(sbi); |
| int type = CURSEG_WARM_NODE; |
| struct curseg_info *curseg; |
| unsigned int segno, old_cursegno; |
| block_t next_blkaddr = next_blkaddr_of_node(page); |
| unsigned int next_segno = GET_SEGNO(sbi, next_blkaddr); |
| struct f2fs_io_info fio = { |
| .type = NODE, |
| .rw = WRITE_SYNC, |
| .rw_flag = 0 |
| }; |
| |
| curseg = CURSEG_I(sbi, type); |
| |
| mutex_lock(&curseg->curseg_mutex); |
| mutex_lock(&sit_i->sentry_lock); |
| |
| segno = GET_SEGNO(sbi, new_blkaddr); |
| old_cursegno = curseg->segno; |
| |
| /* change the current segment */ |
| if (segno != curseg->segno) { |
| curseg->next_segno = segno; |
| change_curseg(sbi, type, true); |
| } |
| curseg->next_blkoff = GET_SEGOFF_FROM_SEG0(sbi, new_blkaddr) & |
| (sbi->blocks_per_seg - 1); |
| __add_sum_entry(sbi, type, sum); |
| |
| /* change the current log to the next block addr in advance */ |
| if (next_segno != segno) { |
| curseg->next_segno = next_segno; |
| change_curseg(sbi, type, true); |
| } |
| curseg->next_blkoff = GET_SEGOFF_FROM_SEG0(sbi, next_blkaddr) & |
| (sbi->blocks_per_seg - 1); |
| |
| /* rewrite node page */ |
| set_page_writeback(page); |
| f2fs_submit_page_mbio(sbi, page, new_blkaddr, &fio); |
| f2fs_submit_merged_bio(sbi, NODE, WRITE); |
| refresh_sit_entry(sbi, old_blkaddr, new_blkaddr); |
| |
| locate_dirty_segment(sbi, old_cursegno); |
| locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr)); |
| |
| mutex_unlock(&sit_i->sentry_lock); |
| mutex_unlock(&curseg->curseg_mutex); |
| } |
| |
| void f2fs_wait_on_page_writeback(struct page *page, |
| enum page_type type, bool sync) |
| { |
| struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb); |
| if (PageWriteback(page)) { |
| f2fs_submit_merged_bio(sbi, type, WRITE); |
| wait_on_page_writeback(page); |
| } |
| } |
| |
| static int read_compacted_summaries(struct f2fs_sb_info *sbi) |
| { |
| struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); |
| struct curseg_info *seg_i; |
| unsigned char *kaddr; |
| struct page *page; |
| block_t start; |
| int i, j, offset; |
| |
| start = start_sum_block(sbi); |
| |
| page = get_meta_page(sbi, start++); |
| kaddr = (unsigned char *)page_address(page); |
| |
| /* Step 1: restore nat cache */ |
| seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); |
| memcpy(&seg_i->sum_blk->n_nats, kaddr, SUM_JOURNAL_SIZE); |
| |
| /* Step 2: restore sit cache */ |
| seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); |
| memcpy(&seg_i->sum_blk->n_sits, kaddr + SUM_JOURNAL_SIZE, |
| SUM_JOURNAL_SIZE); |
| offset = 2 * SUM_JOURNAL_SIZE; |
| |
| /* Step 3: restore summary entries */ |
| for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { |
| unsigned short blk_off; |
| unsigned int segno; |
| |
| seg_i = CURSEG_I(sbi, i); |
| segno = le32_to_cpu(ckpt->cur_data_segno[i]); |
| blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]); |
| seg_i->next_segno = segno; |
| reset_curseg(sbi, i, 0); |
| seg_i->alloc_type = ckpt->alloc_type[i]; |
| seg_i->next_blkoff = blk_off; |
| |
| if (seg_i->alloc_type == SSR) |
| blk_off = sbi->blocks_per_seg; |
| |
| for (j = 0; j < blk_off; j++) { |
| struct f2fs_summary *s; |
| s = (struct f2fs_summary *)(kaddr + offset); |
| seg_i->sum_blk->entries[j] = *s; |
| offset += SUMMARY_SIZE; |
| if (offset + SUMMARY_SIZE <= PAGE_CACHE_SIZE - |
| SUM_FOOTER_SIZE) |
| continue; |
| |
| f2fs_put_page(page, 1); |
| page = NULL; |
| |
| page = get_meta_page(sbi, start++); |
| kaddr = (unsigned char *)page_address(page); |
| offset = 0; |
| } |
| } |
| f2fs_put_page(page, 1); |
| return 0; |
| } |
| |
| static int read_normal_summaries(struct f2fs_sb_info *sbi, int type) |
| { |
| struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); |
| struct f2fs_summary_block *sum; |
| struct curseg_info *curseg; |
| struct page *new; |
| unsigned short blk_off; |
| unsigned int segno = 0; |
| block_t blk_addr = 0; |
| |
| /* get segment number and block addr */ |
| if (IS_DATASEG(type)) { |
| segno = le32_to_cpu(ckpt->cur_data_segno[type]); |
| blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type - |
| CURSEG_HOT_DATA]); |
| if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG)) |
| blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type); |
| else |
| blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type); |
| } else { |
| segno = le32_to_cpu(ckpt->cur_node_segno[type - |
| CURSEG_HOT_NODE]); |
| blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type - |
| CURSEG_HOT_NODE]); |
| if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG)) |
| blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE, |
| type - CURSEG_HOT_NODE); |
| else |
| blk_addr = GET_SUM_BLOCK(sbi, segno); |
| } |
| |
| new = get_meta_page(sbi, blk_addr); |
| sum = (struct f2fs_summary_block *)page_address(new); |
| |
| if (IS_NODESEG(type)) { |
| if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG)) { |
| struct f2fs_summary *ns = &sum->entries[0]; |
| int i; |
| for (i = 0; i < sbi->blocks_per_seg; i++, ns++) { |
| ns->version = 0; |
| ns->ofs_in_node = 0; |
| } |
| } else { |
| if (restore_node_summary(sbi, segno, sum)) { |
| f2fs_put_page(new, 1); |
| return -EINVAL; |
| } |
| } |
| } |
| |
| /* set uncompleted segment to curseg */ |
| curseg = CURSEG_I(sbi, type); |
| mutex_lock(&curseg->curseg_mutex); |
| memcpy(curseg->sum_blk, sum, PAGE_CACHE_SIZE); |
| curseg->next_segno = segno; |
| reset_curseg(sbi, type, 0); |
| curseg->alloc_type = ckpt->alloc_type[type]; |
| curseg->next_blkoff = blk_off; |
| mutex_unlock(&curseg->curseg_mutex); |
| f2fs_put_page(new, 1); |
| return 0; |
| } |
| |
| static int restore_curseg_summaries(struct f2fs_sb_info *sbi) |
| { |
| int type = CURSEG_HOT_DATA; |
| |
| if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG)) { |
| /* restore for compacted data summary */ |
| if (read_compacted_summaries(sbi)) |
| return -EINVAL; |
| type = CURSEG_HOT_NODE; |
| } |
| |
| for (; type <= CURSEG_COLD_NODE; type++) |
| if (read_normal_summaries(sbi, type)) |
| return -EINVAL; |
| return 0; |
| } |
| |
| static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr) |
| { |
| struct page *page; |
| unsigned char *kaddr; |
| struct f2fs_summary *summary; |
| struct curseg_info *seg_i; |
| int written_size = 0; |
| int i, j; |
| |
| page = grab_meta_page(sbi, blkaddr++); |
| kaddr = (unsigned char *)page_address(page); |
| |
| /* Step 1: write nat cache */ |
| seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); |
| memcpy(kaddr, &seg_i->sum_blk->n_nats, SUM_JOURNAL_SIZE); |
| written_size += SUM_JOURNAL_SIZE; |
| |
| /* Step 2: write sit cache */ |
| seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); |
| memcpy(kaddr + written_size, &seg_i->sum_blk->n_sits, |
| SUM_JOURNAL_SIZE); |
| written_size += SUM_JOURNAL_SIZE; |
| |
| /* Step 3: write summary entries */ |
| for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { |
| unsigned short blkoff; |
| seg_i = CURSEG_I(sbi, i); |
| if (sbi->ckpt->alloc_type[i] == SSR) |
| blkoff = sbi->blocks_per_seg; |
| else |
| blkoff = curseg_blkoff(sbi, i); |
| |
| for (j = 0; j < blkoff; j++) { |
| if (!page) { |
| page = grab_meta_page(sbi, blkaddr++); |
| kaddr = (unsigned char *)page_address(page); |
| written_size = 0; |
| } |
| summary = (struct f2fs_summary *)(kaddr + written_size); |
| *summary = seg_i->sum_blk->entries[j]; |
| written_size += SUMMARY_SIZE; |
| |
| if (written_size + SUMMARY_SIZE <= PAGE_CACHE_SIZE - |
| SUM_FOOTER_SIZE) |
| continue; |
| |
| set_page_dirty(page); |
| f2fs_put_page(page, 1); |
| page = NULL; |
| } |
| } |
| if (page) { |
| set_page_dirty(page); |
| f2fs_put_page(page, 1); |
| } |
| } |
| |
| static void write_normal_summaries(struct f2fs_sb_info *sbi, |
| block_t blkaddr, int type) |
| { |
| int i, end; |
| if (IS_DATASEG(type)) |
| end = type + NR_CURSEG_DATA_TYPE; |
| else |
| end = type + NR_CURSEG_NODE_TYPE; |
| |
| for (i = type; i < end; i++) { |
| struct curseg_info *sum = CURSEG_I(sbi, i); |
| mutex_lock(&sum->curseg_mutex); |
| write_sum_page(sbi, sum->sum_blk, blkaddr + (i - type)); |
| mutex_unlock(&sum->curseg_mutex); |
| } |
| } |
| |
| void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk) |
| { |
| if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG)) |
| write_compacted_summaries(sbi, start_blk); |
| else |
| write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA); |
| } |
| |
| void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk) |
| { |
| if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG)) |
| write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE); |
| } |
| |
| int lookup_journal_in_cursum(struct f2fs_summary_block *sum, int type, |
| unsigned int val, int alloc) |
| { |
| int i; |
| |
| if (type == NAT_JOURNAL) { |
| for (i = 0; i < nats_in_cursum(sum); i++) { |
| if (le32_to_cpu(nid_in_journal(sum, i)) == val) |
| return i; |
| } |
| if (alloc && nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES) |
| return update_nats_in_cursum(sum, 1); |
| } else if (type == SIT_JOURNAL) { |
| for (i = 0; i < sits_in_cursum(sum); i++) |
| if (le32_to_cpu(segno_in_journal(sum, i)) == val) |
| return i; |
| if (alloc && sits_in_cursum(sum) < SIT_JOURNAL_ENTRIES) |
| return update_sits_in_cursum(sum, 1); |
| } |
| return -1; |
| } |
| |
| static struct page *get_current_sit_page(struct f2fs_sb_info *sbi, |
| unsigned int segno) |
| { |
| struct sit_info *sit_i = SIT_I(sbi); |
| unsigned int offset = SIT_BLOCK_OFFSET(sit_i, segno); |
| block_t blk_addr = sit_i->sit_base_addr + offset; |
| |
| check_seg_range(sbi, segno); |
| |
| /* calculate sit block address */ |
| if (f2fs_test_bit(offset, sit_i->sit_bitmap)) |
| blk_addr += sit_i->sit_blocks; |
| |
| return get_meta_page(sbi, blk_addr); |
| } |
| |
| static struct page *get_next_sit_page(struct f2fs_sb_info *sbi, |
| unsigned int start) |
| { |
| struct sit_info *sit_i = SIT_I(sbi); |
| struct page *src_page, *dst_page; |
| pgoff_t src_off, dst_off; |
| void *src_addr, *dst_addr; |
| |
| src_off = current_sit_addr(sbi, start); |
| dst_off = next_sit_addr(sbi, src_off); |
| |
| /* get current sit block page without lock */ |
| src_page = get_meta_page(sbi, src_off); |
| dst_page = grab_meta_page(sbi, dst_off); |
| f2fs_bug_on(PageDirty(src_page)); |
| |
| src_addr = page_address(src_page); |
| dst_addr = page_address(dst_page); |
| memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE); |
| |
| set_page_dirty(dst_page); |
| f2fs_put_page(src_page, 1); |
| |
| set_to_next_sit(sit_i, start); |
| |
| return dst_page; |
| } |
| |
| static bool flush_sits_in_journal(struct f2fs_sb_info *sbi) |
| { |
| struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); |
| struct f2fs_summary_block *sum = curseg->sum_blk; |
| int i; |
| |
| /* |
| * If the journal area in the current summary is full of sit entries, |
| * all the sit entries will be flushed. Otherwise the sit entries |
| * are not able to replace with newly hot sit entries. |
| */ |
| if (sits_in_cursum(sum) >= SIT_JOURNAL_ENTRIES) { |
| for (i = sits_in_cursum(sum) - 1; i >= 0; i--) { |
| unsigned int segno; |
| segno = le32_to_cpu(segno_in_journal(sum, i)); |
| __mark_sit_entry_dirty(sbi, segno); |
| } |
| update_sits_in_cursum(sum, -sits_in_cursum(sum)); |
| return true; |
| } |
| return false; |
| } |
| |
| /* |
| * CP calls this function, which flushes SIT entries including sit_journal, |
| * and moves prefree segs to free segs. |
| */ |
| void flush_sit_entries(struct f2fs_sb_info *sbi) |
| { |
| struct sit_info *sit_i = SIT_I(sbi); |
| unsigned long *bitmap = sit_i->dirty_sentries_bitmap; |
| struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); |
| struct f2fs_summary_block *sum = curseg->sum_blk; |
| unsigned long nsegs = TOTAL_SEGS(sbi); |
| struct page *page = NULL; |
| struct f2fs_sit_block *raw_sit = NULL; |
| unsigned int start = 0, end = 0; |
| unsigned int segno = -1; |
| bool flushed; |
| |
| mutex_lock(&curseg->curseg_mutex); |
| mutex_lock(&sit_i->sentry_lock); |
| |
| /* |
| * "flushed" indicates whether sit entries in journal are flushed |
| * to the SIT area or not. |
| */ |
| flushed = flush_sits_in_journal(sbi); |
| |
| while ((segno = find_next_bit(bitmap, nsegs, segno + 1)) < nsegs) { |
| struct seg_entry *se = get_seg_entry(sbi, segno); |
| int sit_offset, offset; |
| |
| sit_offset = SIT_ENTRY_OFFSET(sit_i, segno); |
| |
| /* add discard candidates */ |
| if (SM_I(sbi)->nr_discards < SM_I(sbi)->max_discards) |
| add_discard_addrs(sbi, segno, se); |
| |
| if (flushed) |
| goto to_sit_page; |
| |
| offset = lookup_journal_in_cursum(sum, SIT_JOURNAL, segno, 1); |
| if (offset >= 0) { |
| segno_in_journal(sum, offset) = cpu_to_le32(segno); |
| seg_info_to_raw_sit(se, &sit_in_journal(sum, offset)); |
| goto flush_done; |
| } |
| to_sit_page: |
| if (!page || (start > segno) || (segno > end)) { |
| if (page) { |
| f2fs_put_page(page, 1); |
| page = NULL; |
| } |
| |
| start = START_SEGNO(sit_i, segno); |
| end = start + SIT_ENTRY_PER_BLOCK - 1; |
| |
| /* read sit block that will be updated */ |
| page = get_next_sit_page(sbi, start); |
| raw_sit = page_address(page); |
| } |
| |
| /* udpate entry in SIT block */ |
| seg_info_to_raw_sit(se, &raw_sit->entries[sit_offset]); |
| flush_done: |
| __clear_bit(segno, bitmap); |
| sit_i->dirty_sentries--; |
| } |
| mutex_unlock(&sit_i->sentry_lock); |
| mutex_unlock(&curseg->curseg_mutex); |
| |
| /* writeout last modified SIT block */ |
| f2fs_put_page(page, 1); |
| |
| set_prefree_as_free_segments(sbi); |
| } |
| |
| static int build_sit_info(struct f2fs_sb_info *sbi) |
| { |
| struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); |
| struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); |
| struct sit_info *sit_i; |
| unsigned int sit_segs, start; |
| char *src_bitmap, *dst_bitmap; |
| unsigned int bitmap_size; |
| |
| /* allocate memory for SIT information */ |
| sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL); |
| if (!sit_i) |
| return -ENOMEM; |
| |
| SM_I(sbi)->sit_info = sit_i; |
| |
| sit_i->sentries = vzalloc(TOTAL_SEGS(sbi) * sizeof(struct seg_entry)); |
| if (!sit_i->sentries) |
| return -ENOMEM; |
| |
| bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi)); |
| sit_i->dirty_sentries_bitmap = kzalloc(bitmap_size, GFP_KERNEL); |
| if (!sit_i->dirty_sentries_bitmap) |
| return -ENOMEM; |
| |
| for (start = 0; start < TOTAL_SEGS(sbi); start++) { |
| sit_i->sentries[start].cur_valid_map |
| = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); |
| sit_i->sentries[start].ckpt_valid_map |
| = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); |
| if (!sit_i->sentries[start].cur_valid_map |
| || !sit_i->sentries[start].ckpt_valid_map) |
| return -ENOMEM; |
| } |
| |
| if (sbi->segs_per_sec > 1) { |
| sit_i->sec_entries = vzalloc(TOTAL_SECS(sbi) * |
| sizeof(struct sec_entry)); |
| if (!sit_i->sec_entries) |
| return -ENOMEM; |
| } |
| |
| /* get information related with SIT */ |
| sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1; |
| |
| /* setup SIT bitmap from ckeckpoint pack */ |
| bitmap_size = __bitmap_size(sbi, SIT_BITMAP); |
| src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP); |
| |
| dst_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL); |
| if (!dst_bitmap) |
| return -ENOMEM; |
| |
| /* init SIT information */ |
| sit_i->s_ops = &default_salloc_ops; |
| |
| sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr); |
| sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg; |
| sit_i->written_valid_blocks = le64_to_cpu(ckpt->valid_block_count); |
| sit_i->sit_bitmap = dst_bitmap; |
| sit_i->bitmap_size = bitmap_size; |
| sit_i->dirty_sentries = 0; |
| sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK; |
| sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time); |
| sit_i->mounted_time = CURRENT_TIME_SEC.tv_sec; |
| mutex_init(&sit_i->sentry_lock); |
| return 0; |
| } |
| |
| static int build_free_segmap(struct f2fs_sb_info *sbi) |
| { |
| struct f2fs_sm_info *sm_info = SM_I(sbi); |
| struct free_segmap_info *free_i; |
| unsigned int bitmap_size, sec_bitmap_size; |
| |
| /* allocate memory for free segmap information */ |
| free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL); |
| if (!free_i) |
| return -ENOMEM; |
| |
| SM_I(sbi)->free_info = free_i; |
| |
| bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi)); |
| free_i->free_segmap = kmalloc(bitmap_size, GFP_KERNEL); |
| if (!free_i->free_segmap) |
| return -ENOMEM; |
| |
| sec_bitmap_size = f2fs_bitmap_size(TOTAL_SECS(sbi)); |
| free_i->free_secmap = kmalloc(sec_bitmap_size, GFP_KERNEL); |
| if (!free_i->free_secmap) |
| return -ENOMEM; |
| |
| /* set all segments as dirty temporarily */ |
| memset(free_i->free_segmap, 0xff, bitmap_size); |
| memset(free_i->free_secmap, 0xff, sec_bitmap_size); |
| |
| /* init free segmap information */ |
| free_i->start_segno = |
| (unsigned int) GET_SEGNO_FROM_SEG0(sbi, sm_info->main_blkaddr); |
| free_i->free_segments = 0; |
| free_i->free_sections = 0; |
| rwlock_init(&free_i->segmap_lock); |
| return 0; |
| } |
| |
| static int build_curseg(struct f2fs_sb_info *sbi) |
| { |
| struct curseg_info *array; |
| int i; |
| |
| array = kzalloc(sizeof(*array) * NR_CURSEG_TYPE, GFP_KERNEL); |
| if (!array) |
| return -ENOMEM; |
| |
| SM_I(sbi)->curseg_array = array; |
| |
| for (i = 0; i < NR_CURSEG_TYPE; i++) { |
| mutex_init(&array[i].curseg_mutex); |
| array[i].sum_blk = kzalloc(PAGE_CACHE_SIZE, GFP_KERNEL); |
| if (!array[i].sum_blk) |
| return -ENOMEM; |
| array[i].segno = NULL_SEGNO; |
| array[i].next_blkoff = 0; |
| } |
| return restore_curseg_summaries(sbi); |
| } |
| |
| static int ra_sit_pages(struct f2fs_sb_info *sbi, int start, int nrpages) |
| { |
| struct address_space *mapping = sbi->meta_inode->i_mapping; |
| struct page *page; |
| block_t blk_addr, prev_blk_addr = 0; |
| int sit_blk_cnt = SIT_BLK_CNT(sbi); |
| int blkno = start; |
| struct f2fs_io_info fio = { |
| .type = META, |
| .rw = READ_SYNC, |
| .rw_flag = REQ_META | REQ_PRIO |
| }; |
| |
| for (; blkno < start + nrpages && blkno < sit_blk_cnt; blkno++) { |
| |
| blk_addr = current_sit_addr(sbi, blkno * SIT_ENTRY_PER_BLOCK); |
| |
| if (blkno != start && prev_blk_addr + 1 != blk_addr) |
| break; |
| prev_blk_addr = blk_addr; |
| repeat: |
| page = grab_cache_page(mapping, blk_addr); |
| if (!page) { |
| cond_resched(); |
| goto repeat; |
| } |
| if (PageUptodate(page)) { |
| mark_page_accessed(page); |
| f2fs_put_page(page, 1); |
| continue; |
| } |
| |
| f2fs_submit_page_mbio(sbi, page, blk_addr, &fio); |
| |
| mark_page_accessed(page); |
| f2fs_put_page(page, 0); |
| } |
| |
| f2fs_submit_merged_bio(sbi, META, READ); |
| return blkno - start; |
| } |
| |
| static void build_sit_entries(struct f2fs_sb_info *sbi) |
| { |
| struct sit_info *sit_i = SIT_I(sbi); |
| struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); |
| struct f2fs_summary_block *sum = curseg->sum_blk; |
| int sit_blk_cnt = SIT_BLK_CNT(sbi); |
| unsigned int i, start, end; |
| unsigned int readed, start_blk = 0; |
| int nrpages = MAX_BIO_BLOCKS(max_hw_blocks(sbi)); |
| |
| do { |
| readed = ra_sit_pages(sbi, start_blk, nrpages); |
| |
| start = start_blk * sit_i->sents_per_block; |
| end = (start_blk + readed) * sit_i->sents_per_block; |
| |
| for (; start < end && start < TOTAL_SEGS(sbi); start++) { |
| struct seg_entry *se = &sit_i->sentries[start]; |
| struct f2fs_sit_block *sit_blk; |
| struct f2fs_sit_entry sit; |
| struct page *page; |
| |
| mutex_lock(&curseg->curseg_mutex); |
| for (i = 0; i < sits_in_cursum(sum); i++) { |
| if (le32_to_cpu(segno_in_journal(sum, i)) == start) { |
| sit = sit_in_journal(sum, i); |
| mutex_unlock(&curseg->curseg_mutex); |
| goto got_it; |
| } |
| } |
| mutex_unlock(&curseg->curseg_mutex); |
| |
| page = get_current_sit_page(sbi, start); |
| sit_blk = (struct f2fs_sit_block *)page_address(page); |
| sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)]; |
| f2fs_put_page(page, 1); |
| got_it: |
| check_block_count(sbi, start, &sit); |
| seg_info_from_raw_sit(se, &sit); |
| if (sbi->segs_per_sec > 1) { |
| struct sec_entry *e = get_sec_entry(sbi, start); |
| e->valid_blocks += se->valid_blocks; |
| } |
| } |
| start_blk += readed; |
| } while (start_blk < sit_blk_cnt); |
| } |
| |
| static void init_free_segmap(struct f2fs_sb_info *sbi) |
| { |
| unsigned int start; |
| int type; |
| |
| for (start = 0; start < TOTAL_SEGS(sbi); start++) { |
| struct seg_entry *sentry = get_seg_entry(sbi, start); |
| if (!sentry->valid_blocks) |
| __set_free(sbi, start); |
| } |
| |
| /* set use the current segments */ |
| for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) { |
| struct curseg_info *curseg_t = CURSEG_I(sbi, type); |
| __set_test_and_inuse(sbi, curseg_t->segno); |
| } |
| } |
| |
| static void init_dirty_segmap(struct f2fs_sb_info *sbi) |
| { |
| struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); |
| struct free_segmap_info *free_i = FREE_I(sbi); |
| unsigned int segno = 0, offset = 0, total_segs = TOTAL_SEGS(sbi); |
| unsigned short valid_blocks; |
| |
| while (1) { |
| /* find dirty segment based on free segmap */ |
| segno = find_next_inuse(free_i, total_segs, offset); |
| if (segno >= total_segs) |
| break; |
| offset = segno + 1; |
| valid_blocks = get_valid_blocks(sbi, segno, 0); |
| if (valid_blocks >= sbi->blocks_per_seg || !valid_blocks) |
| continue; |
| mutex_lock(&dirty_i->seglist_lock); |
| __locate_dirty_segment(sbi, segno, DIRTY); |
| mutex_unlock(&dirty_i->seglist_lock); |
| } |
| } |
| |
| static int init_victim_secmap(struct f2fs_sb_info *sbi) |
| { |
| struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); |
| unsigned int bitmap_size = f2fs_bitmap_size(TOTAL_SECS(sbi)); |
| |
| dirty_i->victim_secmap = kzalloc(bitmap_size, GFP_KERNEL); |
| if (!dirty_i->victim_secmap) |
| return -ENOMEM; |
| return 0; |
| } |
| |
| static int build_dirty_segmap(struct f2fs_sb_info *sbi) |
| { |
| struct dirty_seglist_info *dirty_i; |
| unsigned int bitmap_size, i; |
| |
| /* allocate memory for dirty segments list information */ |
| dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL); |
| if (!dirty_i) |
| return -ENOMEM; |
| |
| SM_I(sbi)->dirty_info = dirty_i; |
| mutex_init(&dirty_i->seglist_lock); |
| |
| bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi)); |
| |
| for (i = 0; i < NR_DIRTY_TYPE; i++) { |
| dirty_i->dirty_segmap[i] = kzalloc(bitmap_size, GFP_KERNEL); |
| if (!dirty_i->dirty_segmap[i]) |
| return -ENOMEM; |
| } |
| |
| init_dirty_segmap(sbi); |
| return init_victim_secmap(sbi); |
| } |
| |
| /* |
| * Update min, max modified time for cost-benefit GC algorithm |
| */ |
| static void init_min_max_mtime(struct f2fs_sb_info *sbi) |
| { |
| struct sit_info *sit_i = SIT_I(sbi); |
| unsigned int segno; |
| |
| mutex_lock(&sit_i->sentry_lock); |
| |
| sit_i->min_mtime = LLONG_MAX; |
| |
| for (segno = 0; segno < TOTAL_SEGS(sbi); segno += sbi->segs_per_sec) { |
| unsigned int i; |
| unsigned long long mtime = 0; |
| |
| for (i = 0; i < sbi->segs_per_sec; i++) |
| mtime += get_seg_entry(sbi, segno + i)->mtime; |
| |
| mtime = div_u64(mtime, sbi->segs_per_sec); |
| |
| if (sit_i->min_mtime > mtime) |
| sit_i->min_mtime = mtime; |
| } |
| sit_i->max_mtime = get_mtime(sbi); |
| mutex_unlock(&sit_i->sentry_lock); |
| } |
| |
| int build_segment_manager(struct f2fs_sb_info *sbi) |
| { |
| struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); |
| struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); |
| struct f2fs_sm_info *sm_info; |
| int err; |
| |
| sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL); |
| if (!sm_info) |
| return -ENOMEM; |
| |
| /* init sm info */ |
| sbi->sm_info = sm_info; |
| INIT_LIST_HEAD(&sm_info->wblist_head); |
| spin_lock_init(&sm_info->wblist_lock); |
| sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr); |
| sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr); |
| sm_info->segment_count = le32_to_cpu(raw_super->segment_count); |
| sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count); |
| sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count); |
| sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main); |
| sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr); |
| sm_info->rec_prefree_segments = DEF_RECLAIM_PREFREE_SEGMENTS; |
| |
| INIT_LIST_HEAD(&sm_info->discard_list); |
| sm_info->nr_discards = 0; |
| sm_info->max_discards = 0; |
| |
| err = build_sit_info(sbi); |
| if (err) |
| return err; |
| err = build_free_segmap(sbi); |
| if (err) |
| return err; |
| err = build_curseg(sbi); |
| if (err) |
| return err; |
| |
| /* reinit free segmap based on SIT */ |
| build_sit_entries(sbi); |
| |
| init_free_segmap(sbi); |
| err = build_dirty_segmap(sbi); |
| if (err) |
| return err; |
| |
| init_min_max_mtime(sbi); |
| return 0; |
| } |
| |
| static void discard_dirty_segmap(struct f2fs_sb_info *sbi, |
| enum dirty_type dirty_type) |
| { |
| struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); |
| |
| mutex_lock(&dirty_i->seglist_lock); |
| kfree(dirty_i->dirty_segmap[dirty_type]); |
| dirty_i->nr_dirty[dirty_type] = 0; |
| mutex_unlock(&dirty_i->seglist_lock); |
| } |
| |
| static void destroy_victim_secmap(struct f2fs_sb_info *sbi) |
| { |
| struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); |
| kfree(dirty_i->victim_secmap); |
| } |
| |
| static void destroy_dirty_segmap(struct f2fs_sb_info *sbi) |
| { |
| struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); |
| int i; |
| |
| if (!dirty_i) |
| return; |
| |
| /* discard pre-free/dirty segments list */ |
| for (i = 0; i < NR_DIRTY_TYPE; i++) |
| discard_dirty_segmap(sbi, i); |
| |
| destroy_victim_secmap(sbi); |
| SM_I(sbi)->dirty_info = NULL; |
| kfree(dirty_i); |
| } |
| |
| static void destroy_curseg(struct f2fs_sb_info *sbi) |
| { |
| struct curseg_info *array = SM_I(sbi)->curseg_array; |
| int i; |
| |
| if (!array) |
| return; |
| SM_I(sbi)->curseg_array = NULL; |
| for (i = 0; i < NR_CURSEG_TYPE; i++) |
| kfree(array[i].sum_blk); |
| kfree(array); |
| } |
| |
| static void destroy_free_segmap(struct f2fs_sb_info *sbi) |
| { |
| struct free_segmap_info *free_i = SM_I(sbi)->free_info; |
| if (!free_i) |
| return; |
| SM_I(sbi)->free_info = NULL; |
| kfree(free_i->free_segmap); |
| kfree(free_i->free_secmap); |
| kfree(free_i); |
| } |
| |
| static void destroy_sit_info(struct f2fs_sb_info *sbi) |
| { |
| struct sit_info *sit_i = SIT_I(sbi); |
| unsigned int start; |
| |
| if (!sit_i) |
| return; |
| |
| if (sit_i->sentries) { |
| for (start = 0; start < TOTAL_SEGS(sbi); start++) { |
| kfree(sit_i->sentries[start].cur_valid_map); |
| kfree(sit_i->sentries[start].ckpt_valid_map); |
| } |
| } |
| vfree(sit_i->sentries); |
| vfree(sit_i->sec_entries); |
| kfree(sit_i->dirty_sentries_bitmap); |
| |
| SM_I(sbi)->sit_info = NULL; |
| kfree(sit_i->sit_bitmap); |
| kfree(sit_i); |
| } |
| |
| void destroy_segment_manager(struct f2fs_sb_info *sbi) |
| { |
| struct f2fs_sm_info *sm_info = SM_I(sbi); |
| if (!sm_info) |
| return; |
| destroy_dirty_segmap(sbi); |
| destroy_curseg(sbi); |
| destroy_free_segmap(sbi); |
| destroy_sit_info(sbi); |
| sbi->sm_info = NULL; |
| kfree(sm_info); |
| } |
| |
| int __init create_segment_manager_caches(void) |
| { |
| discard_entry_slab = f2fs_kmem_cache_create("discard_entry", |
| sizeof(struct discard_entry), NULL); |
| if (!discard_entry_slab) |
| return -ENOMEM; |
| return 0; |
| } |
| |
| void destroy_segment_manager_caches(void) |
| { |
| kmem_cache_destroy(discard_entry_slab); |
| } |