| /* |
| * Software WEP encryption implementation |
| * Copyright 2002, Jouni Malinen <jkmaline@cc.hut.fi> |
| * Copyright 2003, Instant802 Networks, Inc. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| */ |
| |
| #include <linux/netdevice.h> |
| #include <linux/types.h> |
| #include <linux/random.h> |
| #include <linux/compiler.h> |
| #include <linux/crc32.h> |
| #include <linux/crypto.h> |
| #include <linux/err.h> |
| #include <linux/mm.h> |
| #include <linux/scatterlist.h> |
| #include <linux/slab.h> |
| #include <asm/unaligned.h> |
| |
| #include <net/mac80211.h> |
| #include "ieee80211_i.h" |
| #include "wep.h" |
| |
| |
| int ieee80211_wep_init(struct ieee80211_local *local) |
| { |
| /* start WEP IV from a random value */ |
| get_random_bytes(&local->wep_iv, IEEE80211_WEP_IV_LEN); |
| |
| local->wep_tx_tfm = crypto_alloc_cipher("arc4", 0, CRYPTO_ALG_ASYNC); |
| if (IS_ERR(local->wep_tx_tfm)) { |
| local->wep_rx_tfm = ERR_PTR(-EINVAL); |
| return PTR_ERR(local->wep_tx_tfm); |
| } |
| |
| local->wep_rx_tfm = crypto_alloc_cipher("arc4", 0, CRYPTO_ALG_ASYNC); |
| if (IS_ERR(local->wep_rx_tfm)) { |
| crypto_free_cipher(local->wep_tx_tfm); |
| local->wep_tx_tfm = ERR_PTR(-EINVAL); |
| return PTR_ERR(local->wep_rx_tfm); |
| } |
| |
| return 0; |
| } |
| |
| void ieee80211_wep_free(struct ieee80211_local *local) |
| { |
| if (!IS_ERR(local->wep_tx_tfm)) |
| crypto_free_cipher(local->wep_tx_tfm); |
| if (!IS_ERR(local->wep_rx_tfm)) |
| crypto_free_cipher(local->wep_rx_tfm); |
| } |
| |
| static inline bool ieee80211_wep_weak_iv(u32 iv, int keylen) |
| { |
| /* |
| * Fluhrer, Mantin, and Shamir have reported weaknesses in the |
| * key scheduling algorithm of RC4. At least IVs (KeyByte + 3, |
| * 0xff, N) can be used to speedup attacks, so avoid using them. |
| */ |
| if ((iv & 0xff00) == 0xff00) { |
| u8 B = (iv >> 16) & 0xff; |
| if (B >= 3 && B < 3 + keylen) |
| return true; |
| } |
| return false; |
| } |
| |
| |
| static void ieee80211_wep_get_iv(struct ieee80211_local *local, |
| int keylen, int keyidx, u8 *iv) |
| { |
| local->wep_iv++; |
| if (ieee80211_wep_weak_iv(local->wep_iv, keylen)) |
| local->wep_iv += 0x0100; |
| |
| if (!iv) |
| return; |
| |
| *iv++ = (local->wep_iv >> 16) & 0xff; |
| *iv++ = (local->wep_iv >> 8) & 0xff; |
| *iv++ = local->wep_iv & 0xff; |
| *iv++ = keyidx << 6; |
| } |
| |
| |
| static u8 *ieee80211_wep_add_iv(struct ieee80211_local *local, |
| struct sk_buff *skb, |
| int keylen, int keyidx) |
| { |
| struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; |
| struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); |
| unsigned int hdrlen; |
| u8 *newhdr; |
| |
| hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED); |
| |
| if (WARN_ON(skb_tailroom(skb) < IEEE80211_WEP_ICV_LEN || |
| skb_headroom(skb) < IEEE80211_WEP_IV_LEN)) |
| return NULL; |
| |
| hdrlen = ieee80211_hdrlen(hdr->frame_control); |
| newhdr = skb_push(skb, IEEE80211_WEP_IV_LEN); |
| memmove(newhdr, newhdr + IEEE80211_WEP_IV_LEN, hdrlen); |
| |
| /* the HW only needs room for the IV, but not the actual IV */ |
| if (info->control.hw_key && |
| (info->control.hw_key->flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE)) |
| return newhdr + hdrlen; |
| |
| ieee80211_wep_get_iv(local, keylen, keyidx, newhdr + hdrlen); |
| return newhdr + hdrlen; |
| } |
| |
| |
| static void ieee80211_wep_remove_iv(struct ieee80211_local *local, |
| struct sk_buff *skb, |
| struct ieee80211_key *key) |
| { |
| struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; |
| unsigned int hdrlen; |
| |
| hdrlen = ieee80211_hdrlen(hdr->frame_control); |
| memmove(skb->data + IEEE80211_WEP_IV_LEN, skb->data, hdrlen); |
| skb_pull(skb, IEEE80211_WEP_IV_LEN); |
| } |
| |
| |
| /* Perform WEP encryption using given key. data buffer must have tailroom |
| * for 4-byte ICV. data_len must not include this ICV. Note: this function |
| * does _not_ add IV. data = RC4(data | CRC32(data)) */ |
| int ieee80211_wep_encrypt_data(struct crypto_cipher *tfm, u8 *rc4key, |
| size_t klen, u8 *data, size_t data_len) |
| { |
| __le32 icv; |
| int i; |
| |
| if (IS_ERR(tfm)) |
| return -1; |
| |
| icv = cpu_to_le32(~crc32_le(~0, data, data_len)); |
| put_unaligned(icv, (__le32 *)(data + data_len)); |
| |
| crypto_cipher_setkey(tfm, rc4key, klen); |
| for (i = 0; i < data_len + IEEE80211_WEP_ICV_LEN; i++) |
| crypto_cipher_encrypt_one(tfm, data + i, data + i); |
| |
| return 0; |
| } |
| |
| |
| /* Perform WEP encryption on given skb. 4 bytes of extra space (IV) in the |
| * beginning of the buffer 4 bytes of extra space (ICV) in the end of the |
| * buffer will be added. Both IV and ICV will be transmitted, so the |
| * payload length increases with 8 bytes. |
| * |
| * WEP frame payload: IV + TX key idx, RC4(data), ICV = RC4(CRC32(data)) |
| */ |
| int ieee80211_wep_encrypt(struct ieee80211_local *local, |
| struct sk_buff *skb, |
| const u8 *key, int keylen, int keyidx) |
| { |
| u8 *iv; |
| size_t len; |
| u8 rc4key[3 + WLAN_KEY_LEN_WEP104]; |
| |
| iv = ieee80211_wep_add_iv(local, skb, keylen, keyidx); |
| if (!iv) |
| return -1; |
| |
| len = skb->len - (iv + IEEE80211_WEP_IV_LEN - skb->data); |
| |
| /* Prepend 24-bit IV to RC4 key */ |
| memcpy(rc4key, iv, 3); |
| |
| /* Copy rest of the WEP key (the secret part) */ |
| memcpy(rc4key + 3, key, keylen); |
| |
| /* Add room for ICV */ |
| skb_put(skb, IEEE80211_WEP_ICV_LEN); |
| |
| return ieee80211_wep_encrypt_data(local->wep_tx_tfm, rc4key, keylen + 3, |
| iv + IEEE80211_WEP_IV_LEN, len); |
| } |
| |
| |
| /* Perform WEP decryption using given key. data buffer includes encrypted |
| * payload, including 4-byte ICV, but _not_ IV. data_len must not include ICV. |
| * Return 0 on success and -1 on ICV mismatch. */ |
| int ieee80211_wep_decrypt_data(struct crypto_cipher *tfm, u8 *rc4key, |
| size_t klen, u8 *data, size_t data_len) |
| { |
| __le32 crc; |
| int i; |
| |
| if (IS_ERR(tfm)) |
| return -1; |
| |
| crypto_cipher_setkey(tfm, rc4key, klen); |
| for (i = 0; i < data_len + IEEE80211_WEP_ICV_LEN; i++) |
| crypto_cipher_decrypt_one(tfm, data + i, data + i); |
| |
| crc = cpu_to_le32(~crc32_le(~0, data, data_len)); |
| if (memcmp(&crc, data + data_len, IEEE80211_WEP_ICV_LEN) != 0) |
| /* ICV mismatch */ |
| return -1; |
| |
| return 0; |
| } |
| |
| |
| /* Perform WEP decryption on given skb. Buffer includes whole WEP part of |
| * the frame: IV (4 bytes), encrypted payload (including SNAP header), |
| * ICV (4 bytes). skb->len includes both IV and ICV. |
| * |
| * Returns 0 if frame was decrypted successfully and ICV was correct and -1 on |
| * failure. If frame is OK, IV and ICV will be removed, i.e., decrypted payload |
| * is moved to the beginning of the skb and skb length will be reduced. |
| */ |
| static int ieee80211_wep_decrypt(struct ieee80211_local *local, |
| struct sk_buff *skb, |
| struct ieee80211_key *key) |
| { |
| u32 klen; |
| u8 rc4key[3 + WLAN_KEY_LEN_WEP104]; |
| u8 keyidx; |
| struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; |
| unsigned int hdrlen; |
| size_t len; |
| int ret = 0; |
| |
| if (!ieee80211_has_protected(hdr->frame_control)) |
| return -1; |
| |
| hdrlen = ieee80211_hdrlen(hdr->frame_control); |
| if (skb->len < hdrlen + IEEE80211_WEP_IV_LEN + IEEE80211_WEP_ICV_LEN) |
| return -1; |
| |
| len = skb->len - hdrlen - IEEE80211_WEP_IV_LEN - IEEE80211_WEP_ICV_LEN; |
| |
| keyidx = skb->data[hdrlen + 3] >> 6; |
| |
| if (!key || keyidx != key->conf.keyidx) |
| return -1; |
| |
| klen = 3 + key->conf.keylen; |
| |
| /* Prepend 24-bit IV to RC4 key */ |
| memcpy(rc4key, skb->data + hdrlen, 3); |
| |
| /* Copy rest of the WEP key (the secret part) */ |
| memcpy(rc4key + 3, key->conf.key, key->conf.keylen); |
| |
| if (ieee80211_wep_decrypt_data(local->wep_rx_tfm, rc4key, klen, |
| skb->data + hdrlen + |
| IEEE80211_WEP_IV_LEN, len)) |
| ret = -1; |
| |
| /* Trim ICV */ |
| skb_trim(skb, skb->len - IEEE80211_WEP_ICV_LEN); |
| |
| /* Remove IV */ |
| memmove(skb->data + IEEE80211_WEP_IV_LEN, skb->data, hdrlen); |
| skb_pull(skb, IEEE80211_WEP_IV_LEN); |
| |
| return ret; |
| } |
| |
| ieee80211_rx_result |
| ieee80211_crypto_wep_decrypt(struct ieee80211_rx_data *rx) |
| { |
| struct sk_buff *skb = rx->skb; |
| struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); |
| struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; |
| __le16 fc = hdr->frame_control; |
| |
| if (!ieee80211_is_data(fc) && !ieee80211_is_auth(fc)) |
| return RX_CONTINUE; |
| |
| if (!(status->flag & RX_FLAG_DECRYPTED)) { |
| if (skb_linearize(rx->skb)) |
| return RX_DROP_UNUSABLE; |
| if (ieee80211_wep_decrypt(rx->local, rx->skb, rx->key)) |
| return RX_DROP_UNUSABLE; |
| } else if (!(status->flag & RX_FLAG_IV_STRIPPED)) { |
| if (!pskb_may_pull(rx->skb, ieee80211_hdrlen(fc) + |
| IEEE80211_WEP_IV_LEN)) |
| return RX_DROP_UNUSABLE; |
| ieee80211_wep_remove_iv(rx->local, rx->skb, rx->key); |
| /* remove ICV */ |
| if (pskb_trim(rx->skb, rx->skb->len - IEEE80211_WEP_ICV_LEN)) |
| return RX_DROP_UNUSABLE; |
| } |
| |
| return RX_CONTINUE; |
| } |
| |
| static int wep_encrypt_skb(struct ieee80211_tx_data *tx, struct sk_buff *skb) |
| { |
| struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); |
| struct ieee80211_key_conf *hw_key = info->control.hw_key; |
| |
| if (!hw_key) { |
| if (ieee80211_wep_encrypt(tx->local, skb, tx->key->conf.key, |
| tx->key->conf.keylen, |
| tx->key->conf.keyidx)) |
| return -1; |
| } else if ((hw_key->flags & IEEE80211_KEY_FLAG_GENERATE_IV) || |
| (hw_key->flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE)) { |
| if (!ieee80211_wep_add_iv(tx->local, skb, |
| tx->key->conf.keylen, |
| tx->key->conf.keyidx)) |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| ieee80211_tx_result |
| ieee80211_crypto_wep_encrypt(struct ieee80211_tx_data *tx) |
| { |
| struct sk_buff *skb; |
| |
| ieee80211_tx_set_protected(tx); |
| |
| skb_queue_walk(&tx->skbs, skb) { |
| if (wep_encrypt_skb(tx, skb) < 0) { |
| I802_DEBUG_INC(tx->local->tx_handlers_drop_wep); |
| return TX_DROP; |
| } |
| } |
| |
| return TX_CONTINUE; |
| } |