| /* |
| emc2103.c - Support for SMSC EMC2103 |
| Copyright (c) 2010 SMSC |
| |
| This program is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 2 of the License, or |
| (at your option) any later version. |
| |
| This program is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with this program; if not, write to the Free Software |
| Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/init.h> |
| #include <linux/slab.h> |
| #include <linux/jiffies.h> |
| #include <linux/i2c.h> |
| #include <linux/hwmon.h> |
| #include <linux/hwmon-sysfs.h> |
| #include <linux/err.h> |
| #include <linux/mutex.h> |
| |
| /* Addresses scanned */ |
| static const unsigned short normal_i2c[] = { 0x2E, I2C_CLIENT_END }; |
| |
| static const u8 REG_TEMP[4] = { 0x00, 0x02, 0x04, 0x06 }; |
| static const u8 REG_TEMP_MIN[4] = { 0x3c, 0x38, 0x39, 0x3a }; |
| static const u8 REG_TEMP_MAX[4] = { 0x34, 0x30, 0x31, 0x32 }; |
| |
| #define REG_CONF1 0x20 |
| #define REG_TEMP_MAX_ALARM 0x24 |
| #define REG_TEMP_MIN_ALARM 0x25 |
| #define REG_FAN_CONF1 0x42 |
| #define REG_FAN_TARGET_LO 0x4c |
| #define REG_FAN_TARGET_HI 0x4d |
| #define REG_FAN_TACH_HI 0x4e |
| #define REG_FAN_TACH_LO 0x4f |
| #define REG_PRODUCT_ID 0xfd |
| #define REG_MFG_ID 0xfe |
| |
| /* equation 4 from datasheet: rpm = (3932160 * multipler) / count */ |
| #define FAN_RPM_FACTOR 3932160 |
| |
| /* 2103-2 and 2103-4's 3rd temperature sensor can be connected to two diodes |
| * in anti-parallel mode, and in this configuration both can be read |
| * independently (so we have 4 temperature inputs). The device can't |
| * detect if it's connected in this mode, so we have to manually enable |
| * it. Default is to leave the device in the state it's already in (-1). |
| * This parameter allows APD mode to be optionally forced on or off */ |
| static int apd = -1; |
| module_param(apd, bool, 0); |
| MODULE_PARM_DESC(init, "Set to zero to disable anti-parallel diode mode"); |
| |
| struct temperature { |
| s8 degrees; |
| u8 fraction; /* 0-7 multiples of 0.125 */ |
| }; |
| |
| struct emc2103_data { |
| struct device *hwmon_dev; |
| struct mutex update_lock; |
| bool valid; /* registers are valid */ |
| bool fan_rpm_control; |
| int temp_count; /* num of temp sensors */ |
| unsigned long last_updated; /* in jiffies */ |
| struct temperature temp[4]; /* internal + 3 external */ |
| s8 temp_min[4]; /* no fractional part */ |
| s8 temp_max[4]; /* no fractional part */ |
| u8 temp_min_alarm; |
| u8 temp_max_alarm; |
| u8 fan_multiplier; |
| u16 fan_tach; |
| u16 fan_target; |
| }; |
| |
| static int read_u8_from_i2c(struct i2c_client *client, u8 i2c_reg, u8 *output) |
| { |
| int status = i2c_smbus_read_byte_data(client, i2c_reg); |
| if (status < 0) { |
| dev_warn(&client->dev, "reg 0x%02x, err %d\n", |
| i2c_reg, status); |
| } else { |
| *output = status; |
| } |
| return status; |
| } |
| |
| static void read_temp_from_i2c(struct i2c_client *client, u8 i2c_reg, |
| struct temperature *temp) |
| { |
| u8 degrees, fractional; |
| |
| if (read_u8_from_i2c(client, i2c_reg, °rees) < 0) |
| return; |
| |
| if (read_u8_from_i2c(client, i2c_reg + 1, &fractional) < 0) |
| return; |
| |
| temp->degrees = degrees; |
| temp->fraction = (fractional & 0xe0) >> 5; |
| } |
| |
| static void read_fan_from_i2c(struct i2c_client *client, u16 *output, |
| u8 hi_addr, u8 lo_addr) |
| { |
| u8 high_byte, lo_byte; |
| |
| if (read_u8_from_i2c(client, hi_addr, &high_byte) < 0) |
| return; |
| |
| if (read_u8_from_i2c(client, lo_addr, &lo_byte) < 0) |
| return; |
| |
| *output = ((u16)high_byte << 5) | (lo_byte >> 3); |
| } |
| |
| static void write_fan_target_to_i2c(struct i2c_client *client, u16 new_target) |
| { |
| u8 high_byte = (new_target & 0x1fe0) >> 5; |
| u8 low_byte = (new_target & 0x001f) << 3; |
| i2c_smbus_write_byte_data(client, REG_FAN_TARGET_LO, low_byte); |
| i2c_smbus_write_byte_data(client, REG_FAN_TARGET_HI, high_byte); |
| } |
| |
| static void read_fan_config_from_i2c(struct i2c_client *client) |
| |
| { |
| struct emc2103_data *data = i2c_get_clientdata(client); |
| u8 conf1; |
| |
| if (read_u8_from_i2c(client, REG_FAN_CONF1, &conf1) < 0) |
| return; |
| |
| data->fan_multiplier = 1 << ((conf1 & 0x60) >> 5); |
| data->fan_rpm_control = (conf1 & 0x80) != 0; |
| } |
| |
| static struct emc2103_data *emc2103_update_device(struct device *dev) |
| { |
| struct i2c_client *client = to_i2c_client(dev); |
| struct emc2103_data *data = i2c_get_clientdata(client); |
| |
| mutex_lock(&data->update_lock); |
| |
| if (time_after(jiffies, data->last_updated + HZ + HZ / 2) |
| || !data->valid) { |
| int i; |
| |
| for (i = 0; i < data->temp_count; i++) { |
| read_temp_from_i2c(client, REG_TEMP[i], &data->temp[i]); |
| read_u8_from_i2c(client, REG_TEMP_MIN[i], |
| &data->temp_min[i]); |
| read_u8_from_i2c(client, REG_TEMP_MAX[i], |
| &data->temp_max[i]); |
| } |
| |
| read_u8_from_i2c(client, REG_TEMP_MIN_ALARM, |
| &data->temp_min_alarm); |
| read_u8_from_i2c(client, REG_TEMP_MAX_ALARM, |
| &data->temp_max_alarm); |
| |
| read_fan_from_i2c(client, &data->fan_tach, |
| REG_FAN_TACH_HI, REG_FAN_TACH_LO); |
| read_fan_from_i2c(client, &data->fan_target, |
| REG_FAN_TARGET_HI, REG_FAN_TARGET_LO); |
| read_fan_config_from_i2c(client); |
| |
| data->last_updated = jiffies; |
| data->valid = true; |
| } |
| |
| mutex_unlock(&data->update_lock); |
| |
| return data; |
| } |
| |
| static ssize_t |
| show_temp(struct device *dev, struct device_attribute *da, char *buf) |
| { |
| int nr = to_sensor_dev_attr(da)->index; |
| struct emc2103_data *data = emc2103_update_device(dev); |
| int millidegrees = data->temp[nr].degrees * 1000 |
| + data->temp[nr].fraction * 125; |
| return sprintf(buf, "%d\n", millidegrees); |
| } |
| |
| static ssize_t |
| show_temp_min(struct device *dev, struct device_attribute *da, char *buf) |
| { |
| int nr = to_sensor_dev_attr(da)->index; |
| struct emc2103_data *data = emc2103_update_device(dev); |
| int millidegrees = data->temp_min[nr] * 1000; |
| return sprintf(buf, "%d\n", millidegrees); |
| } |
| |
| static ssize_t |
| show_temp_max(struct device *dev, struct device_attribute *da, char *buf) |
| { |
| int nr = to_sensor_dev_attr(da)->index; |
| struct emc2103_data *data = emc2103_update_device(dev); |
| int millidegrees = data->temp_max[nr] * 1000; |
| return sprintf(buf, "%d\n", millidegrees); |
| } |
| |
| static ssize_t |
| show_temp_fault(struct device *dev, struct device_attribute *da, char *buf) |
| { |
| int nr = to_sensor_dev_attr(da)->index; |
| struct emc2103_data *data = emc2103_update_device(dev); |
| bool fault = (data->temp[nr].degrees == -128); |
| return sprintf(buf, "%d\n", fault ? 1 : 0); |
| } |
| |
| static ssize_t |
| show_temp_min_alarm(struct device *dev, struct device_attribute *da, char *buf) |
| { |
| int nr = to_sensor_dev_attr(da)->index; |
| struct emc2103_data *data = emc2103_update_device(dev); |
| bool alarm = data->temp_min_alarm & (1 << nr); |
| return sprintf(buf, "%d\n", alarm ? 1 : 0); |
| } |
| |
| static ssize_t |
| show_temp_max_alarm(struct device *dev, struct device_attribute *da, char *buf) |
| { |
| int nr = to_sensor_dev_attr(da)->index; |
| struct emc2103_data *data = emc2103_update_device(dev); |
| bool alarm = data->temp_max_alarm & (1 << nr); |
| return sprintf(buf, "%d\n", alarm ? 1 : 0); |
| } |
| |
| static ssize_t set_temp_min(struct device *dev, struct device_attribute *da, |
| const char *buf, size_t count) |
| { |
| int nr = to_sensor_dev_attr(da)->index; |
| struct i2c_client *client = to_i2c_client(dev); |
| struct emc2103_data *data = i2c_get_clientdata(client); |
| long val; |
| |
| int result = strict_strtol(buf, 10, &val); |
| if (result < 0) |
| return -EINVAL; |
| |
| val = DIV_ROUND_CLOSEST(val, 1000); |
| if ((val < -63) || (val > 127)) |
| return -EINVAL; |
| |
| mutex_lock(&data->update_lock); |
| data->temp_min[nr] = val; |
| i2c_smbus_write_byte_data(client, REG_TEMP_MIN[nr], val); |
| mutex_unlock(&data->update_lock); |
| |
| return count; |
| } |
| |
| static ssize_t set_temp_max(struct device *dev, struct device_attribute *da, |
| const char *buf, size_t count) |
| { |
| int nr = to_sensor_dev_attr(da)->index; |
| struct i2c_client *client = to_i2c_client(dev); |
| struct emc2103_data *data = i2c_get_clientdata(client); |
| long val; |
| |
| int result = strict_strtol(buf, 10, &val); |
| if (result < 0) |
| return -EINVAL; |
| |
| val = DIV_ROUND_CLOSEST(val, 1000); |
| if ((val < -63) || (val > 127)) |
| return -EINVAL; |
| |
| mutex_lock(&data->update_lock); |
| data->temp_max[nr] = val; |
| i2c_smbus_write_byte_data(client, REG_TEMP_MAX[nr], val); |
| mutex_unlock(&data->update_lock); |
| |
| return count; |
| } |
| |
| static ssize_t |
| show_fan(struct device *dev, struct device_attribute *da, char *buf) |
| { |
| struct emc2103_data *data = emc2103_update_device(dev); |
| int rpm = 0; |
| if (data->fan_tach != 0) |
| rpm = (FAN_RPM_FACTOR * data->fan_multiplier) / data->fan_tach; |
| return sprintf(buf, "%d\n", rpm); |
| } |
| |
| static ssize_t |
| show_fan_div(struct device *dev, struct device_attribute *da, char *buf) |
| { |
| struct emc2103_data *data = emc2103_update_device(dev); |
| int fan_div = 8 / data->fan_multiplier; |
| return sprintf(buf, "%d\n", fan_div); |
| } |
| |
| /* Note: we also update the fan target here, because its value is |
| determined in part by the fan clock divider. This follows the principle |
| of least surprise; the user doesn't expect the fan target to change just |
| because the divider changed. */ |
| static ssize_t set_fan_div(struct device *dev, struct device_attribute *da, |
| const char *buf, size_t count) |
| { |
| struct emc2103_data *data = emc2103_update_device(dev); |
| struct i2c_client *client = to_i2c_client(dev); |
| int new_range_bits, old_div = 8 / data->fan_multiplier; |
| long new_div; |
| |
| int status = strict_strtol(buf, 10, &new_div); |
| if (status < 0) |
| return -EINVAL; |
| |
| if (new_div == old_div) /* No change */ |
| return count; |
| |
| switch (new_div) { |
| case 1: |
| new_range_bits = 3; |
| break; |
| case 2: |
| new_range_bits = 2; |
| break; |
| case 4: |
| new_range_bits = 1; |
| break; |
| case 8: |
| new_range_bits = 0; |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| mutex_lock(&data->update_lock); |
| |
| status = i2c_smbus_read_byte_data(client, REG_FAN_CONF1); |
| if (status < 0) { |
| dev_dbg(&client->dev, "reg 0x%02x, err %d\n", |
| REG_FAN_CONF1, status); |
| mutex_unlock(&data->update_lock); |
| return -EIO; |
| } |
| status &= 0x9F; |
| status |= (new_range_bits << 5); |
| i2c_smbus_write_byte_data(client, REG_FAN_CONF1, status); |
| |
| data->fan_multiplier = 8 / new_div; |
| |
| /* update fan target if high byte is not disabled */ |
| if ((data->fan_target & 0x1fe0) != 0x1fe0) { |
| u16 new_target = (data->fan_target * old_div) / new_div; |
| data->fan_target = min(new_target, (u16)0x1fff); |
| write_fan_target_to_i2c(client, data->fan_target); |
| } |
| |
| /* invalidate data to force re-read from hardware */ |
| data->valid = false; |
| |
| mutex_unlock(&data->update_lock); |
| return count; |
| } |
| |
| static ssize_t |
| show_fan_target(struct device *dev, struct device_attribute *da, char *buf) |
| { |
| struct emc2103_data *data = emc2103_update_device(dev); |
| int rpm = 0; |
| |
| /* high byte of 0xff indicates disabled so return 0 */ |
| if ((data->fan_target != 0) && ((data->fan_target & 0x1fe0) != 0x1fe0)) |
| rpm = (FAN_RPM_FACTOR * data->fan_multiplier) |
| / data->fan_target; |
| |
| return sprintf(buf, "%d\n", rpm); |
| } |
| |
| static ssize_t set_fan_target(struct device *dev, struct device_attribute *da, |
| const char *buf, size_t count) |
| { |
| struct emc2103_data *data = emc2103_update_device(dev); |
| struct i2c_client *client = to_i2c_client(dev); |
| long rpm_target; |
| |
| int result = strict_strtol(buf, 10, &rpm_target); |
| if (result < 0) |
| return -EINVAL; |
| |
| /* Datasheet states 16384 as maximum RPM target (table 3.2) */ |
| if ((rpm_target < 0) || (rpm_target > 16384)) |
| return -EINVAL; |
| |
| mutex_lock(&data->update_lock); |
| |
| if (rpm_target == 0) |
| data->fan_target = 0x1fff; |
| else |
| data->fan_target = SENSORS_LIMIT( |
| (FAN_RPM_FACTOR * data->fan_multiplier) / rpm_target, |
| 0, 0x1fff); |
| |
| write_fan_target_to_i2c(client, data->fan_target); |
| |
| mutex_unlock(&data->update_lock); |
| return count; |
| } |
| |
| static ssize_t |
| show_fan_fault(struct device *dev, struct device_attribute *da, char *buf) |
| { |
| struct emc2103_data *data = emc2103_update_device(dev); |
| bool fault = ((data->fan_tach & 0x1fe0) == 0x1fe0); |
| return sprintf(buf, "%d\n", fault ? 1 : 0); |
| } |
| |
| static ssize_t |
| show_pwm_enable(struct device *dev, struct device_attribute *da, char *buf) |
| { |
| struct emc2103_data *data = emc2103_update_device(dev); |
| return sprintf(buf, "%d\n", data->fan_rpm_control ? 3 : 0); |
| } |
| |
| static ssize_t set_pwm_enable(struct device *dev, struct device_attribute *da, |
| const char *buf, size_t count) |
| { |
| struct i2c_client *client = to_i2c_client(dev); |
| struct emc2103_data *data = i2c_get_clientdata(client); |
| long new_value; |
| u8 conf_reg; |
| |
| int result = strict_strtol(buf, 10, &new_value); |
| if (result < 0) |
| return -EINVAL; |
| |
| mutex_lock(&data->update_lock); |
| switch (new_value) { |
| case 0: |
| data->fan_rpm_control = false; |
| break; |
| case 3: |
| data->fan_rpm_control = true; |
| break; |
| default: |
| mutex_unlock(&data->update_lock); |
| return -EINVAL; |
| } |
| |
| read_u8_from_i2c(client, REG_FAN_CONF1, &conf_reg); |
| |
| if (data->fan_rpm_control) |
| conf_reg |= 0x80; |
| else |
| conf_reg &= ~0x80; |
| |
| i2c_smbus_write_byte_data(client, REG_FAN_CONF1, conf_reg); |
| |
| mutex_unlock(&data->update_lock); |
| return count; |
| } |
| |
| static SENSOR_DEVICE_ATTR(temp1_input, S_IRUGO, show_temp, NULL, 0); |
| static SENSOR_DEVICE_ATTR(temp1_min, S_IRUGO | S_IWUSR, show_temp_min, |
| set_temp_min, 0); |
| static SENSOR_DEVICE_ATTR(temp1_max, S_IRUGO | S_IWUSR, show_temp_max, |
| set_temp_max, 0); |
| static SENSOR_DEVICE_ATTR(temp1_fault, S_IRUGO, show_temp_fault, NULL, 0); |
| static SENSOR_DEVICE_ATTR(temp1_min_alarm, S_IRUGO, show_temp_min_alarm, |
| NULL, 0); |
| static SENSOR_DEVICE_ATTR(temp1_max_alarm, S_IRUGO, show_temp_max_alarm, |
| NULL, 0); |
| |
| static SENSOR_DEVICE_ATTR(temp2_input, S_IRUGO, show_temp, NULL, 1); |
| static SENSOR_DEVICE_ATTR(temp2_min, S_IRUGO | S_IWUSR, show_temp_min, |
| set_temp_min, 1); |
| static SENSOR_DEVICE_ATTR(temp2_max, S_IRUGO | S_IWUSR, show_temp_max, |
| set_temp_max, 1); |
| static SENSOR_DEVICE_ATTR(temp2_fault, S_IRUGO, show_temp_fault, NULL, 1); |
| static SENSOR_DEVICE_ATTR(temp2_min_alarm, S_IRUGO, show_temp_min_alarm, |
| NULL, 1); |
| static SENSOR_DEVICE_ATTR(temp2_max_alarm, S_IRUGO, show_temp_max_alarm, |
| NULL, 1); |
| |
| static SENSOR_DEVICE_ATTR(temp3_input, S_IRUGO, show_temp, NULL, 2); |
| static SENSOR_DEVICE_ATTR(temp3_min, S_IRUGO | S_IWUSR, show_temp_min, |
| set_temp_min, 2); |
| static SENSOR_DEVICE_ATTR(temp3_max, S_IRUGO | S_IWUSR, show_temp_max, |
| set_temp_max, 2); |
| static SENSOR_DEVICE_ATTR(temp3_fault, S_IRUGO, show_temp_fault, NULL, 2); |
| static SENSOR_DEVICE_ATTR(temp3_min_alarm, S_IRUGO, show_temp_min_alarm, |
| NULL, 2); |
| static SENSOR_DEVICE_ATTR(temp3_max_alarm, S_IRUGO, show_temp_max_alarm, |
| NULL, 2); |
| |
| static SENSOR_DEVICE_ATTR(temp4_input, S_IRUGO, show_temp, NULL, 3); |
| static SENSOR_DEVICE_ATTR(temp4_min, S_IRUGO | S_IWUSR, show_temp_min, |
| set_temp_min, 3); |
| static SENSOR_DEVICE_ATTR(temp4_max, S_IRUGO | S_IWUSR, show_temp_max, |
| set_temp_max, 3); |
| static SENSOR_DEVICE_ATTR(temp4_fault, S_IRUGO, show_temp_fault, NULL, 3); |
| static SENSOR_DEVICE_ATTR(temp4_min_alarm, S_IRUGO, show_temp_min_alarm, |
| NULL, 3); |
| static SENSOR_DEVICE_ATTR(temp4_max_alarm, S_IRUGO, show_temp_max_alarm, |
| NULL, 3); |
| |
| static DEVICE_ATTR(fan1_input, S_IRUGO, show_fan, NULL); |
| static DEVICE_ATTR(fan1_div, S_IRUGO | S_IWUSR, show_fan_div, set_fan_div); |
| static DEVICE_ATTR(fan1_target, S_IRUGO | S_IWUSR, show_fan_target, |
| set_fan_target); |
| static DEVICE_ATTR(fan1_fault, S_IRUGO, show_fan_fault, NULL); |
| |
| static DEVICE_ATTR(pwm1_enable, S_IRUGO | S_IWUSR, show_pwm_enable, |
| set_pwm_enable); |
| |
| /* sensors present on all models */ |
| static struct attribute *emc2103_attributes[] = { |
| &sensor_dev_attr_temp1_input.dev_attr.attr, |
| &sensor_dev_attr_temp1_min.dev_attr.attr, |
| &sensor_dev_attr_temp1_max.dev_attr.attr, |
| &sensor_dev_attr_temp1_fault.dev_attr.attr, |
| &sensor_dev_attr_temp1_min_alarm.dev_attr.attr, |
| &sensor_dev_attr_temp1_max_alarm.dev_attr.attr, |
| &sensor_dev_attr_temp2_input.dev_attr.attr, |
| &sensor_dev_attr_temp2_min.dev_attr.attr, |
| &sensor_dev_attr_temp2_max.dev_attr.attr, |
| &sensor_dev_attr_temp2_fault.dev_attr.attr, |
| &sensor_dev_attr_temp2_min_alarm.dev_attr.attr, |
| &sensor_dev_attr_temp2_max_alarm.dev_attr.attr, |
| &dev_attr_fan1_input.attr, |
| &dev_attr_fan1_div.attr, |
| &dev_attr_fan1_target.attr, |
| &dev_attr_fan1_fault.attr, |
| &dev_attr_pwm1_enable.attr, |
| NULL |
| }; |
| |
| /* extra temperature sensors only present on 2103-2 and 2103-4 */ |
| static struct attribute *emc2103_attributes_temp3[] = { |
| &sensor_dev_attr_temp3_input.dev_attr.attr, |
| &sensor_dev_attr_temp3_min.dev_attr.attr, |
| &sensor_dev_attr_temp3_max.dev_attr.attr, |
| &sensor_dev_attr_temp3_fault.dev_attr.attr, |
| &sensor_dev_attr_temp3_min_alarm.dev_attr.attr, |
| &sensor_dev_attr_temp3_max_alarm.dev_attr.attr, |
| NULL |
| }; |
| |
| /* extra temperature sensors only present on 2103-2 and 2103-4 in APD mode */ |
| static struct attribute *emc2103_attributes_temp4[] = { |
| &sensor_dev_attr_temp4_input.dev_attr.attr, |
| &sensor_dev_attr_temp4_min.dev_attr.attr, |
| &sensor_dev_attr_temp4_max.dev_attr.attr, |
| &sensor_dev_attr_temp4_fault.dev_attr.attr, |
| &sensor_dev_attr_temp4_min_alarm.dev_attr.attr, |
| &sensor_dev_attr_temp4_max_alarm.dev_attr.attr, |
| NULL |
| }; |
| |
| static const struct attribute_group emc2103_group = { |
| .attrs = emc2103_attributes, |
| }; |
| |
| static const struct attribute_group emc2103_temp3_group = { |
| .attrs = emc2103_attributes_temp3, |
| }; |
| |
| static const struct attribute_group emc2103_temp4_group = { |
| .attrs = emc2103_attributes_temp4, |
| }; |
| |
| static int |
| emc2103_probe(struct i2c_client *client, const struct i2c_device_id *id) |
| { |
| struct emc2103_data *data; |
| int status; |
| |
| if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_BYTE_DATA)) |
| return -EIO; |
| |
| data = kzalloc(sizeof(struct emc2103_data), GFP_KERNEL); |
| if (!data) |
| return -ENOMEM; |
| |
| i2c_set_clientdata(client, data); |
| mutex_init(&data->update_lock); |
| |
| /* 2103-2 and 2103-4 have 3 external diodes, 2103-1 has 1 */ |
| status = i2c_smbus_read_byte_data(client, REG_PRODUCT_ID); |
| if (status == 0x24) { |
| /* 2103-1 only has 1 external diode */ |
| data->temp_count = 2; |
| } else { |
| /* 2103-2 and 2103-4 have 3 or 4 external diodes */ |
| status = i2c_smbus_read_byte_data(client, REG_CONF1); |
| if (status < 0) { |
| dev_dbg(&client->dev, "reg 0x%02x, err %d\n", REG_CONF1, |
| status); |
| goto exit_free; |
| } |
| |
| /* detect current state of hardware */ |
| data->temp_count = (status & 0x01) ? 4 : 3; |
| |
| /* force APD state if module parameter is set */ |
| if (apd == 0) { |
| /* force APD mode off */ |
| data->temp_count = 3; |
| status &= ~(0x01); |
| i2c_smbus_write_byte_data(client, REG_CONF1, status); |
| } else if (apd == 1) { |
| /* force APD mode on */ |
| data->temp_count = 4; |
| status |= 0x01; |
| i2c_smbus_write_byte_data(client, REG_CONF1, status); |
| } |
| } |
| |
| /* Register sysfs hooks */ |
| status = sysfs_create_group(&client->dev.kobj, &emc2103_group); |
| if (status) |
| goto exit_free; |
| |
| if (data->temp_count >= 3) { |
| status = sysfs_create_group(&client->dev.kobj, |
| &emc2103_temp3_group); |
| if (status) |
| goto exit_remove; |
| } |
| |
| if (data->temp_count == 4) { |
| status = sysfs_create_group(&client->dev.kobj, |
| &emc2103_temp4_group); |
| if (status) |
| goto exit_remove_temp3; |
| } |
| |
| data->hwmon_dev = hwmon_device_register(&client->dev); |
| if (IS_ERR(data->hwmon_dev)) { |
| status = PTR_ERR(data->hwmon_dev); |
| goto exit_remove_temp4; |
| } |
| |
| dev_info(&client->dev, "%s: sensor '%s'\n", |
| dev_name(data->hwmon_dev), client->name); |
| |
| return 0; |
| |
| exit_remove_temp4: |
| if (data->temp_count == 4) |
| sysfs_remove_group(&client->dev.kobj, &emc2103_temp4_group); |
| exit_remove_temp3: |
| if (data->temp_count >= 3) |
| sysfs_remove_group(&client->dev.kobj, &emc2103_temp3_group); |
| exit_remove: |
| sysfs_remove_group(&client->dev.kobj, &emc2103_group); |
| exit_free: |
| kfree(data); |
| return status; |
| } |
| |
| static int emc2103_remove(struct i2c_client *client) |
| { |
| struct emc2103_data *data = i2c_get_clientdata(client); |
| |
| hwmon_device_unregister(data->hwmon_dev); |
| |
| if (data->temp_count == 4) |
| sysfs_remove_group(&client->dev.kobj, &emc2103_temp4_group); |
| |
| if (data->temp_count >= 3) |
| sysfs_remove_group(&client->dev.kobj, &emc2103_temp3_group); |
| |
| sysfs_remove_group(&client->dev.kobj, &emc2103_group); |
| |
| kfree(data); |
| return 0; |
| } |
| |
| static const struct i2c_device_id emc2103_ids[] = { |
| { "emc2103", 0, }, |
| { /* LIST END */ } |
| }; |
| MODULE_DEVICE_TABLE(i2c, emc2103_ids); |
| |
| /* Return 0 if detection is successful, -ENODEV otherwise */ |
| static int |
| emc2103_detect(struct i2c_client *new_client, struct i2c_board_info *info) |
| { |
| struct i2c_adapter *adapter = new_client->adapter; |
| int manufacturer, product; |
| |
| if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) |
| return -ENODEV; |
| |
| manufacturer = i2c_smbus_read_byte_data(new_client, REG_MFG_ID); |
| if (manufacturer != 0x5D) |
| return -ENODEV; |
| |
| product = i2c_smbus_read_byte_data(new_client, REG_PRODUCT_ID); |
| if ((product != 0x24) && (product != 0x26)) |
| return -ENODEV; |
| |
| strlcpy(info->type, "emc2103", I2C_NAME_SIZE); |
| |
| return 0; |
| } |
| |
| static struct i2c_driver emc2103_driver = { |
| .class = I2C_CLASS_HWMON, |
| .driver = { |
| .name = "emc2103", |
| }, |
| .probe = emc2103_probe, |
| .remove = emc2103_remove, |
| .id_table = emc2103_ids, |
| .detect = emc2103_detect, |
| .address_list = normal_i2c, |
| }; |
| |
| static int __init sensors_emc2103_init(void) |
| { |
| return i2c_add_driver(&emc2103_driver); |
| } |
| |
| static void __exit sensors_emc2103_exit(void) |
| { |
| i2c_del_driver(&emc2103_driver); |
| } |
| |
| MODULE_AUTHOR("Steve Glendinning <steve.glendinning@smsc.com>"); |
| MODULE_DESCRIPTION("SMSC EMC2103 hwmon driver"); |
| MODULE_LICENSE("GPL"); |
| |
| module_init(sensors_emc2103_init); |
| module_exit(sensors_emc2103_exit); |