| /* |
| * pSeries NUMA support |
| * |
| * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| */ |
| #include <linux/threads.h> |
| #include <linux/bootmem.h> |
| #include <linux/init.h> |
| #include <linux/mm.h> |
| #include <linux/mmzone.h> |
| #include <linux/export.h> |
| #include <linux/nodemask.h> |
| #include <linux/cpu.h> |
| #include <linux/notifier.h> |
| #include <linux/memblock.h> |
| #include <linux/of.h> |
| #include <linux/pfn.h> |
| #include <linux/cpuset.h> |
| #include <linux/node.h> |
| #include <asm/sparsemem.h> |
| #include <asm/prom.h> |
| #include <asm/system.h> |
| #include <asm/smp.h> |
| #include <asm/firmware.h> |
| #include <asm/paca.h> |
| #include <asm/hvcall.h> |
| |
| static int numa_enabled = 1; |
| |
| static char *cmdline __initdata; |
| |
| static int numa_debug; |
| #define dbg(args...) if (numa_debug) { printk(KERN_INFO args); } |
| |
| int numa_cpu_lookup_table[NR_CPUS]; |
| cpumask_var_t node_to_cpumask_map[MAX_NUMNODES]; |
| struct pglist_data *node_data[MAX_NUMNODES]; |
| |
| EXPORT_SYMBOL(numa_cpu_lookup_table); |
| EXPORT_SYMBOL(node_to_cpumask_map); |
| EXPORT_SYMBOL(node_data); |
| |
| static int min_common_depth; |
| static int n_mem_addr_cells, n_mem_size_cells; |
| static int form1_affinity; |
| |
| #define MAX_DISTANCE_REF_POINTS 4 |
| static int distance_ref_points_depth; |
| static const unsigned int *distance_ref_points; |
| static int distance_lookup_table[MAX_NUMNODES][MAX_DISTANCE_REF_POINTS]; |
| |
| /* |
| * Allocate node_to_cpumask_map based on number of available nodes |
| * Requires node_possible_map to be valid. |
| * |
| * Note: node_to_cpumask() is not valid until after this is done. |
| */ |
| static void __init setup_node_to_cpumask_map(void) |
| { |
| unsigned int node, num = 0; |
| |
| /* setup nr_node_ids if not done yet */ |
| if (nr_node_ids == MAX_NUMNODES) { |
| for_each_node_mask(node, node_possible_map) |
| num = node; |
| nr_node_ids = num + 1; |
| } |
| |
| /* allocate the map */ |
| for (node = 0; node < nr_node_ids; node++) |
| alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]); |
| |
| /* cpumask_of_node() will now work */ |
| dbg("Node to cpumask map for %d nodes\n", nr_node_ids); |
| } |
| |
| static int __cpuinit fake_numa_create_new_node(unsigned long end_pfn, |
| unsigned int *nid) |
| { |
| unsigned long long mem; |
| char *p = cmdline; |
| static unsigned int fake_nid; |
| static unsigned long long curr_boundary; |
| |
| /* |
| * Modify node id, iff we started creating NUMA nodes |
| * We want to continue from where we left of the last time |
| */ |
| if (fake_nid) |
| *nid = fake_nid; |
| /* |
| * In case there are no more arguments to parse, the |
| * node_id should be the same as the last fake node id |
| * (we've handled this above). |
| */ |
| if (!p) |
| return 0; |
| |
| mem = memparse(p, &p); |
| if (!mem) |
| return 0; |
| |
| if (mem < curr_boundary) |
| return 0; |
| |
| curr_boundary = mem; |
| |
| if ((end_pfn << PAGE_SHIFT) > mem) { |
| /* |
| * Skip commas and spaces |
| */ |
| while (*p == ',' || *p == ' ' || *p == '\t') |
| p++; |
| |
| cmdline = p; |
| fake_nid++; |
| *nid = fake_nid; |
| dbg("created new fake_node with id %d\n", fake_nid); |
| return 1; |
| } |
| return 0; |
| } |
| |
| /* |
| * get_node_active_region - Return active region containing pfn |
| * Active range returned is empty if none found. |
| * @pfn: The page to return the region for |
| * @node_ar: Returned set to the active region containing @pfn |
| */ |
| static void __init get_node_active_region(unsigned long pfn, |
| struct node_active_region *node_ar) |
| { |
| unsigned long start_pfn, end_pfn; |
| int i, nid; |
| |
| for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { |
| if (pfn >= start_pfn && pfn < end_pfn) { |
| node_ar->nid = nid; |
| node_ar->start_pfn = start_pfn; |
| node_ar->end_pfn = end_pfn; |
| break; |
| } |
| } |
| } |
| |
| static void map_cpu_to_node(int cpu, int node) |
| { |
| numa_cpu_lookup_table[cpu] = node; |
| |
| dbg("adding cpu %d to node %d\n", cpu, node); |
| |
| if (!(cpumask_test_cpu(cpu, node_to_cpumask_map[node]))) |
| cpumask_set_cpu(cpu, node_to_cpumask_map[node]); |
| } |
| |
| #if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR) |
| static void unmap_cpu_from_node(unsigned long cpu) |
| { |
| int node = numa_cpu_lookup_table[cpu]; |
| |
| dbg("removing cpu %lu from node %d\n", cpu, node); |
| |
| if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) { |
| cpumask_clear_cpu(cpu, node_to_cpumask_map[node]); |
| } else { |
| printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n", |
| cpu, node); |
| } |
| } |
| #endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */ |
| |
| /* must hold reference to node during call */ |
| static const int *of_get_associativity(struct device_node *dev) |
| { |
| return of_get_property(dev, "ibm,associativity", NULL); |
| } |
| |
| /* |
| * Returns the property linux,drconf-usable-memory if |
| * it exists (the property exists only in kexec/kdump kernels, |
| * added by kexec-tools) |
| */ |
| static const u32 *of_get_usable_memory(struct device_node *memory) |
| { |
| const u32 *prop; |
| u32 len; |
| prop = of_get_property(memory, "linux,drconf-usable-memory", &len); |
| if (!prop || len < sizeof(unsigned int)) |
| return 0; |
| return prop; |
| } |
| |
| int __node_distance(int a, int b) |
| { |
| int i; |
| int distance = LOCAL_DISTANCE; |
| |
| if (!form1_affinity) |
| return distance; |
| |
| for (i = 0; i < distance_ref_points_depth; i++) { |
| if (distance_lookup_table[a][i] == distance_lookup_table[b][i]) |
| break; |
| |
| /* Double the distance for each NUMA level */ |
| distance *= 2; |
| } |
| |
| return distance; |
| } |
| |
| static void initialize_distance_lookup_table(int nid, |
| const unsigned int *associativity) |
| { |
| int i; |
| |
| if (!form1_affinity) |
| return; |
| |
| for (i = 0; i < distance_ref_points_depth; i++) { |
| distance_lookup_table[nid][i] = |
| associativity[distance_ref_points[i]]; |
| } |
| } |
| |
| /* Returns nid in the range [0..MAX_NUMNODES-1], or -1 if no useful numa |
| * info is found. |
| */ |
| static int associativity_to_nid(const unsigned int *associativity) |
| { |
| int nid = -1; |
| |
| if (min_common_depth == -1) |
| goto out; |
| |
| if (associativity[0] >= min_common_depth) |
| nid = associativity[min_common_depth]; |
| |
| /* POWER4 LPAR uses 0xffff as invalid node */ |
| if (nid == 0xffff || nid >= MAX_NUMNODES) |
| nid = -1; |
| |
| if (nid > 0 && associativity[0] >= distance_ref_points_depth) |
| initialize_distance_lookup_table(nid, associativity); |
| |
| out: |
| return nid; |
| } |
| |
| /* Returns the nid associated with the given device tree node, |
| * or -1 if not found. |
| */ |
| static int of_node_to_nid_single(struct device_node *device) |
| { |
| int nid = -1; |
| const unsigned int *tmp; |
| |
| tmp = of_get_associativity(device); |
| if (tmp) |
| nid = associativity_to_nid(tmp); |
| return nid; |
| } |
| |
| /* Walk the device tree upwards, looking for an associativity id */ |
| int of_node_to_nid(struct device_node *device) |
| { |
| struct device_node *tmp; |
| int nid = -1; |
| |
| of_node_get(device); |
| while (device) { |
| nid = of_node_to_nid_single(device); |
| if (nid != -1) |
| break; |
| |
| tmp = device; |
| device = of_get_parent(tmp); |
| of_node_put(tmp); |
| } |
| of_node_put(device); |
| |
| return nid; |
| } |
| EXPORT_SYMBOL_GPL(of_node_to_nid); |
| |
| static int __init find_min_common_depth(void) |
| { |
| int depth; |
| struct device_node *chosen; |
| struct device_node *root; |
| const char *vec5; |
| |
| if (firmware_has_feature(FW_FEATURE_OPAL)) |
| root = of_find_node_by_path("/ibm,opal"); |
| else |
| root = of_find_node_by_path("/rtas"); |
| if (!root) |
| root = of_find_node_by_path("/"); |
| |
| /* |
| * This property is a set of 32-bit integers, each representing |
| * an index into the ibm,associativity nodes. |
| * |
| * With form 0 affinity the first integer is for an SMP configuration |
| * (should be all 0's) and the second is for a normal NUMA |
| * configuration. We have only one level of NUMA. |
| * |
| * With form 1 affinity the first integer is the most significant |
| * NUMA boundary and the following are progressively less significant |
| * boundaries. There can be more than one level of NUMA. |
| */ |
| distance_ref_points = of_get_property(root, |
| "ibm,associativity-reference-points", |
| &distance_ref_points_depth); |
| |
| if (!distance_ref_points) { |
| dbg("NUMA: ibm,associativity-reference-points not found.\n"); |
| goto err; |
| } |
| |
| distance_ref_points_depth /= sizeof(int); |
| |
| #define VEC5_AFFINITY_BYTE 5 |
| #define VEC5_AFFINITY 0x80 |
| |
| if (firmware_has_feature(FW_FEATURE_OPAL)) |
| form1_affinity = 1; |
| else { |
| chosen = of_find_node_by_path("/chosen"); |
| if (chosen) { |
| vec5 = of_get_property(chosen, |
| "ibm,architecture-vec-5", NULL); |
| if (vec5 && (vec5[VEC5_AFFINITY_BYTE] & |
| VEC5_AFFINITY)) { |
| dbg("Using form 1 affinity\n"); |
| form1_affinity = 1; |
| } |
| } |
| } |
| |
| if (form1_affinity) { |
| depth = distance_ref_points[0]; |
| } else { |
| if (distance_ref_points_depth < 2) { |
| printk(KERN_WARNING "NUMA: " |
| "short ibm,associativity-reference-points\n"); |
| goto err; |
| } |
| |
| depth = distance_ref_points[1]; |
| } |
| |
| /* |
| * Warn and cap if the hardware supports more than |
| * MAX_DISTANCE_REF_POINTS domains. |
| */ |
| if (distance_ref_points_depth > MAX_DISTANCE_REF_POINTS) { |
| printk(KERN_WARNING "NUMA: distance array capped at " |
| "%d entries\n", MAX_DISTANCE_REF_POINTS); |
| distance_ref_points_depth = MAX_DISTANCE_REF_POINTS; |
| } |
| |
| of_node_put(root); |
| return depth; |
| |
| err: |
| of_node_put(root); |
| return -1; |
| } |
| |
| static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells) |
| { |
| struct device_node *memory = NULL; |
| |
| memory = of_find_node_by_type(memory, "memory"); |
| if (!memory) |
| panic("numa.c: No memory nodes found!"); |
| |
| *n_addr_cells = of_n_addr_cells(memory); |
| *n_size_cells = of_n_size_cells(memory); |
| of_node_put(memory); |
| } |
| |
| static unsigned long __devinit read_n_cells(int n, const unsigned int **buf) |
| { |
| unsigned long result = 0; |
| |
| while (n--) { |
| result = (result << 32) | **buf; |
| (*buf)++; |
| } |
| return result; |
| } |
| |
| struct of_drconf_cell { |
| u64 base_addr; |
| u32 drc_index; |
| u32 reserved; |
| u32 aa_index; |
| u32 flags; |
| }; |
| |
| #define DRCONF_MEM_ASSIGNED 0x00000008 |
| #define DRCONF_MEM_AI_INVALID 0x00000040 |
| #define DRCONF_MEM_RESERVED 0x00000080 |
| |
| /* |
| * Read the next memblock list entry from the ibm,dynamic-memory property |
| * and return the information in the provided of_drconf_cell structure. |
| */ |
| static void read_drconf_cell(struct of_drconf_cell *drmem, const u32 **cellp) |
| { |
| const u32 *cp; |
| |
| drmem->base_addr = read_n_cells(n_mem_addr_cells, cellp); |
| |
| cp = *cellp; |
| drmem->drc_index = cp[0]; |
| drmem->reserved = cp[1]; |
| drmem->aa_index = cp[2]; |
| drmem->flags = cp[3]; |
| |
| *cellp = cp + 4; |
| } |
| |
| /* |
| * Retrieve and validate the ibm,dynamic-memory property of the device tree. |
| * |
| * The layout of the ibm,dynamic-memory property is a number N of memblock |
| * list entries followed by N memblock list entries. Each memblock list entry |
| * contains information as laid out in the of_drconf_cell struct above. |
| */ |
| static int of_get_drconf_memory(struct device_node *memory, const u32 **dm) |
| { |
| const u32 *prop; |
| u32 len, entries; |
| |
| prop = of_get_property(memory, "ibm,dynamic-memory", &len); |
| if (!prop || len < sizeof(unsigned int)) |
| return 0; |
| |
| entries = *prop++; |
| |
| /* Now that we know the number of entries, revalidate the size |
| * of the property read in to ensure we have everything |
| */ |
| if (len < (entries * (n_mem_addr_cells + 4) + 1) * sizeof(unsigned int)) |
| return 0; |
| |
| *dm = prop; |
| return entries; |
| } |
| |
| /* |
| * Retrieve and validate the ibm,lmb-size property for drconf memory |
| * from the device tree. |
| */ |
| static u64 of_get_lmb_size(struct device_node *memory) |
| { |
| const u32 *prop; |
| u32 len; |
| |
| prop = of_get_property(memory, "ibm,lmb-size", &len); |
| if (!prop || len < sizeof(unsigned int)) |
| return 0; |
| |
| return read_n_cells(n_mem_size_cells, &prop); |
| } |
| |
| struct assoc_arrays { |
| u32 n_arrays; |
| u32 array_sz; |
| const u32 *arrays; |
| }; |
| |
| /* |
| * Retrieve and validate the list of associativity arrays for drconf |
| * memory from the ibm,associativity-lookup-arrays property of the |
| * device tree.. |
| * |
| * The layout of the ibm,associativity-lookup-arrays property is a number N |
| * indicating the number of associativity arrays, followed by a number M |
| * indicating the size of each associativity array, followed by a list |
| * of N associativity arrays. |
| */ |
| static int of_get_assoc_arrays(struct device_node *memory, |
| struct assoc_arrays *aa) |
| { |
| const u32 *prop; |
| u32 len; |
| |
| prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len); |
| if (!prop || len < 2 * sizeof(unsigned int)) |
| return -1; |
| |
| aa->n_arrays = *prop++; |
| aa->array_sz = *prop++; |
| |
| /* Now that we know the number of arrrays and size of each array, |
| * revalidate the size of the property read in. |
| */ |
| if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int)) |
| return -1; |
| |
| aa->arrays = prop; |
| return 0; |
| } |
| |
| /* |
| * This is like of_node_to_nid_single() for memory represented in the |
| * ibm,dynamic-reconfiguration-memory node. |
| */ |
| static int of_drconf_to_nid_single(struct of_drconf_cell *drmem, |
| struct assoc_arrays *aa) |
| { |
| int default_nid = 0; |
| int nid = default_nid; |
| int index; |
| |
| if (min_common_depth > 0 && min_common_depth <= aa->array_sz && |
| !(drmem->flags & DRCONF_MEM_AI_INVALID) && |
| drmem->aa_index < aa->n_arrays) { |
| index = drmem->aa_index * aa->array_sz + min_common_depth - 1; |
| nid = aa->arrays[index]; |
| |
| if (nid == 0xffff || nid >= MAX_NUMNODES) |
| nid = default_nid; |
| } |
| |
| return nid; |
| } |
| |
| /* |
| * Figure out to which domain a cpu belongs and stick it there. |
| * Return the id of the domain used. |
| */ |
| static int __cpuinit numa_setup_cpu(unsigned long lcpu) |
| { |
| int nid = 0; |
| struct device_node *cpu = of_get_cpu_node(lcpu, NULL); |
| |
| if (!cpu) { |
| WARN_ON(1); |
| goto out; |
| } |
| |
| nid = of_node_to_nid_single(cpu); |
| |
| if (nid < 0 || !node_online(nid)) |
| nid = first_online_node; |
| out: |
| map_cpu_to_node(lcpu, nid); |
| |
| of_node_put(cpu); |
| |
| return nid; |
| } |
| |
| static int __cpuinit cpu_numa_callback(struct notifier_block *nfb, |
| unsigned long action, |
| void *hcpu) |
| { |
| unsigned long lcpu = (unsigned long)hcpu; |
| int ret = NOTIFY_DONE; |
| |
| switch (action) { |
| case CPU_UP_PREPARE: |
| case CPU_UP_PREPARE_FROZEN: |
| numa_setup_cpu(lcpu); |
| ret = NOTIFY_OK; |
| break; |
| #ifdef CONFIG_HOTPLUG_CPU |
| case CPU_DEAD: |
| case CPU_DEAD_FROZEN: |
| case CPU_UP_CANCELED: |
| case CPU_UP_CANCELED_FROZEN: |
| unmap_cpu_from_node(lcpu); |
| break; |
| ret = NOTIFY_OK; |
| #endif |
| } |
| return ret; |
| } |
| |
| /* |
| * Check and possibly modify a memory region to enforce the memory limit. |
| * |
| * Returns the size the region should have to enforce the memory limit. |
| * This will either be the original value of size, a truncated value, |
| * or zero. If the returned value of size is 0 the region should be |
| * discarded as it lies wholly above the memory limit. |
| */ |
| static unsigned long __init numa_enforce_memory_limit(unsigned long start, |
| unsigned long size) |
| { |
| /* |
| * We use memblock_end_of_DRAM() in here instead of memory_limit because |
| * we've already adjusted it for the limit and it takes care of |
| * having memory holes below the limit. Also, in the case of |
| * iommu_is_off, memory_limit is not set but is implicitly enforced. |
| */ |
| |
| if (start + size <= memblock_end_of_DRAM()) |
| return size; |
| |
| if (start >= memblock_end_of_DRAM()) |
| return 0; |
| |
| return memblock_end_of_DRAM() - start; |
| } |
| |
| /* |
| * Reads the counter for a given entry in |
| * linux,drconf-usable-memory property |
| */ |
| static inline int __init read_usm_ranges(const u32 **usm) |
| { |
| /* |
| * For each lmb in ibm,dynamic-memory a corresponding |
| * entry in linux,drconf-usable-memory property contains |
| * a counter followed by that many (base, size) duple. |
| * read the counter from linux,drconf-usable-memory |
| */ |
| return read_n_cells(n_mem_size_cells, usm); |
| } |
| |
| /* |
| * Extract NUMA information from the ibm,dynamic-reconfiguration-memory |
| * node. This assumes n_mem_{addr,size}_cells have been set. |
| */ |
| static void __init parse_drconf_memory(struct device_node *memory) |
| { |
| const u32 *dm, *usm; |
| unsigned int n, rc, ranges, is_kexec_kdump = 0; |
| unsigned long lmb_size, base, size, sz; |
| int nid; |
| struct assoc_arrays aa; |
| |
| n = of_get_drconf_memory(memory, &dm); |
| if (!n) |
| return; |
| |
| lmb_size = of_get_lmb_size(memory); |
| if (!lmb_size) |
| return; |
| |
| rc = of_get_assoc_arrays(memory, &aa); |
| if (rc) |
| return; |
| |
| /* check if this is a kexec/kdump kernel */ |
| usm = of_get_usable_memory(memory); |
| if (usm != NULL) |
| is_kexec_kdump = 1; |
| |
| for (; n != 0; --n) { |
| struct of_drconf_cell drmem; |
| |
| read_drconf_cell(&drmem, &dm); |
| |
| /* skip this block if the reserved bit is set in flags (0x80) |
| or if the block is not assigned to this partition (0x8) */ |
| if ((drmem.flags & DRCONF_MEM_RESERVED) |
| || !(drmem.flags & DRCONF_MEM_ASSIGNED)) |
| continue; |
| |
| base = drmem.base_addr; |
| size = lmb_size; |
| ranges = 1; |
| |
| if (is_kexec_kdump) { |
| ranges = read_usm_ranges(&usm); |
| if (!ranges) /* there are no (base, size) duple */ |
| continue; |
| } |
| do { |
| if (is_kexec_kdump) { |
| base = read_n_cells(n_mem_addr_cells, &usm); |
| size = read_n_cells(n_mem_size_cells, &usm); |
| } |
| nid = of_drconf_to_nid_single(&drmem, &aa); |
| fake_numa_create_new_node( |
| ((base + size) >> PAGE_SHIFT), |
| &nid); |
| node_set_online(nid); |
| sz = numa_enforce_memory_limit(base, size); |
| if (sz) |
| memblock_set_node(base, sz, nid); |
| } while (--ranges); |
| } |
| } |
| |
| static int __init parse_numa_properties(void) |
| { |
| struct device_node *memory; |
| int default_nid = 0; |
| unsigned long i; |
| |
| if (numa_enabled == 0) { |
| printk(KERN_WARNING "NUMA disabled by user\n"); |
| return -1; |
| } |
| |
| min_common_depth = find_min_common_depth(); |
| |
| if (min_common_depth < 0) |
| return min_common_depth; |
| |
| dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth); |
| |
| /* |
| * Even though we connect cpus to numa domains later in SMP |
| * init, we need to know the node ids now. This is because |
| * each node to be onlined must have NODE_DATA etc backing it. |
| */ |
| for_each_present_cpu(i) { |
| struct device_node *cpu; |
| int nid; |
| |
| cpu = of_get_cpu_node(i, NULL); |
| BUG_ON(!cpu); |
| nid = of_node_to_nid_single(cpu); |
| of_node_put(cpu); |
| |
| /* |
| * Don't fall back to default_nid yet -- we will plug |
| * cpus into nodes once the memory scan has discovered |
| * the topology. |
| */ |
| if (nid < 0) |
| continue; |
| node_set_online(nid); |
| } |
| |
| get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells); |
| |
| for_each_node_by_type(memory, "memory") { |
| unsigned long start; |
| unsigned long size; |
| int nid; |
| int ranges; |
| const unsigned int *memcell_buf; |
| unsigned int len; |
| |
| memcell_buf = of_get_property(memory, |
| "linux,usable-memory", &len); |
| if (!memcell_buf || len <= 0) |
| memcell_buf = of_get_property(memory, "reg", &len); |
| if (!memcell_buf || len <= 0) |
| continue; |
| |
| /* ranges in cell */ |
| ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells); |
| new_range: |
| /* these are order-sensitive, and modify the buffer pointer */ |
| start = read_n_cells(n_mem_addr_cells, &memcell_buf); |
| size = read_n_cells(n_mem_size_cells, &memcell_buf); |
| |
| /* |
| * Assumption: either all memory nodes or none will |
| * have associativity properties. If none, then |
| * everything goes to default_nid. |
| */ |
| nid = of_node_to_nid_single(memory); |
| if (nid < 0) |
| nid = default_nid; |
| |
| fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid); |
| node_set_online(nid); |
| |
| if (!(size = numa_enforce_memory_limit(start, size))) { |
| if (--ranges) |
| goto new_range; |
| else |
| continue; |
| } |
| |
| memblock_set_node(start, size, nid); |
| |
| if (--ranges) |
| goto new_range; |
| } |
| |
| /* |
| * Now do the same thing for each MEMBLOCK listed in the |
| * ibm,dynamic-memory property in the |
| * ibm,dynamic-reconfiguration-memory node. |
| */ |
| memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory"); |
| if (memory) |
| parse_drconf_memory(memory); |
| |
| return 0; |
| } |
| |
| static void __init setup_nonnuma(void) |
| { |
| unsigned long top_of_ram = memblock_end_of_DRAM(); |
| unsigned long total_ram = memblock_phys_mem_size(); |
| unsigned long start_pfn, end_pfn; |
| unsigned int nid = 0; |
| struct memblock_region *reg; |
| |
| printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n", |
| top_of_ram, total_ram); |
| printk(KERN_DEBUG "Memory hole size: %ldMB\n", |
| (top_of_ram - total_ram) >> 20); |
| |
| for_each_memblock(memory, reg) { |
| start_pfn = memblock_region_memory_base_pfn(reg); |
| end_pfn = memblock_region_memory_end_pfn(reg); |
| |
| fake_numa_create_new_node(end_pfn, &nid); |
| memblock_set_node(PFN_PHYS(start_pfn), |
| PFN_PHYS(end_pfn - start_pfn), nid); |
| node_set_online(nid); |
| } |
| } |
| |
| void __init dump_numa_cpu_topology(void) |
| { |
| unsigned int node; |
| unsigned int cpu, count; |
| |
| if (min_common_depth == -1 || !numa_enabled) |
| return; |
| |
| for_each_online_node(node) { |
| printk(KERN_DEBUG "Node %d CPUs:", node); |
| |
| count = 0; |
| /* |
| * If we used a CPU iterator here we would miss printing |
| * the holes in the cpumap. |
| */ |
| for (cpu = 0; cpu < nr_cpu_ids; cpu++) { |
| if (cpumask_test_cpu(cpu, |
| node_to_cpumask_map[node])) { |
| if (count == 0) |
| printk(" %u", cpu); |
| ++count; |
| } else { |
| if (count > 1) |
| printk("-%u", cpu - 1); |
| count = 0; |
| } |
| } |
| |
| if (count > 1) |
| printk("-%u", nr_cpu_ids - 1); |
| printk("\n"); |
| } |
| } |
| |
| static void __init dump_numa_memory_topology(void) |
| { |
| unsigned int node; |
| unsigned int count; |
| |
| if (min_common_depth == -1 || !numa_enabled) |
| return; |
| |
| for_each_online_node(node) { |
| unsigned long i; |
| |
| printk(KERN_DEBUG "Node %d Memory:", node); |
| |
| count = 0; |
| |
| for (i = 0; i < memblock_end_of_DRAM(); |
| i += (1 << SECTION_SIZE_BITS)) { |
| if (early_pfn_to_nid(i >> PAGE_SHIFT) == node) { |
| if (count == 0) |
| printk(" 0x%lx", i); |
| ++count; |
| } else { |
| if (count > 0) |
| printk("-0x%lx", i); |
| count = 0; |
| } |
| } |
| |
| if (count > 0) |
| printk("-0x%lx", i); |
| printk("\n"); |
| } |
| } |
| |
| /* |
| * Allocate some memory, satisfying the memblock or bootmem allocator where |
| * required. nid is the preferred node and end is the physical address of |
| * the highest address in the node. |
| * |
| * Returns the virtual address of the memory. |
| */ |
| static void __init *careful_zallocation(int nid, unsigned long size, |
| unsigned long align, |
| unsigned long end_pfn) |
| { |
| void *ret; |
| int new_nid; |
| unsigned long ret_paddr; |
| |
| ret_paddr = __memblock_alloc_base(size, align, end_pfn << PAGE_SHIFT); |
| |
| /* retry over all memory */ |
| if (!ret_paddr) |
| ret_paddr = __memblock_alloc_base(size, align, memblock_end_of_DRAM()); |
| |
| if (!ret_paddr) |
| panic("numa.c: cannot allocate %lu bytes for node %d", |
| size, nid); |
| |
| ret = __va(ret_paddr); |
| |
| /* |
| * We initialize the nodes in numeric order: 0, 1, 2... |
| * and hand over control from the MEMBLOCK allocator to the |
| * bootmem allocator. If this function is called for |
| * node 5, then we know that all nodes <5 are using the |
| * bootmem allocator instead of the MEMBLOCK allocator. |
| * |
| * So, check the nid from which this allocation came |
| * and double check to see if we need to use bootmem |
| * instead of the MEMBLOCK. We don't free the MEMBLOCK memory |
| * since it would be useless. |
| */ |
| new_nid = early_pfn_to_nid(ret_paddr >> PAGE_SHIFT); |
| if (new_nid < nid) { |
| ret = __alloc_bootmem_node(NODE_DATA(new_nid), |
| size, align, 0); |
| |
| dbg("alloc_bootmem %p %lx\n", ret, size); |
| } |
| |
| memset(ret, 0, size); |
| return ret; |
| } |
| |
| static struct notifier_block __cpuinitdata ppc64_numa_nb = { |
| .notifier_call = cpu_numa_callback, |
| .priority = 1 /* Must run before sched domains notifier. */ |
| }; |
| |
| static void mark_reserved_regions_for_nid(int nid) |
| { |
| struct pglist_data *node = NODE_DATA(nid); |
| struct memblock_region *reg; |
| |
| for_each_memblock(reserved, reg) { |
| unsigned long physbase = reg->base; |
| unsigned long size = reg->size; |
| unsigned long start_pfn = physbase >> PAGE_SHIFT; |
| unsigned long end_pfn = PFN_UP(physbase + size); |
| struct node_active_region node_ar; |
| unsigned long node_end_pfn = node->node_start_pfn + |
| node->node_spanned_pages; |
| |
| /* |
| * Check to make sure that this memblock.reserved area is |
| * within the bounds of the node that we care about. |
| * Checking the nid of the start and end points is not |
| * sufficient because the reserved area could span the |
| * entire node. |
| */ |
| if (end_pfn <= node->node_start_pfn || |
| start_pfn >= node_end_pfn) |
| continue; |
| |
| get_node_active_region(start_pfn, &node_ar); |
| while (start_pfn < end_pfn && |
| node_ar.start_pfn < node_ar.end_pfn) { |
| unsigned long reserve_size = size; |
| /* |
| * if reserved region extends past active region |
| * then trim size to active region |
| */ |
| if (end_pfn > node_ar.end_pfn) |
| reserve_size = (node_ar.end_pfn << PAGE_SHIFT) |
| - physbase; |
| /* |
| * Only worry about *this* node, others may not |
| * yet have valid NODE_DATA(). |
| */ |
| if (node_ar.nid == nid) { |
| dbg("reserve_bootmem %lx %lx nid=%d\n", |
| physbase, reserve_size, node_ar.nid); |
| reserve_bootmem_node(NODE_DATA(node_ar.nid), |
| physbase, reserve_size, |
| BOOTMEM_DEFAULT); |
| } |
| /* |
| * if reserved region is contained in the active region |
| * then done. |
| */ |
| if (end_pfn <= node_ar.end_pfn) |
| break; |
| |
| /* |
| * reserved region extends past the active region |
| * get next active region that contains this |
| * reserved region |
| */ |
| start_pfn = node_ar.end_pfn; |
| physbase = start_pfn << PAGE_SHIFT; |
| size = size - reserve_size; |
| get_node_active_region(start_pfn, &node_ar); |
| } |
| } |
| } |
| |
| |
| void __init do_init_bootmem(void) |
| { |
| int nid; |
| |
| min_low_pfn = 0; |
| max_low_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT; |
| max_pfn = max_low_pfn; |
| |
| if (parse_numa_properties()) |
| setup_nonnuma(); |
| else |
| dump_numa_memory_topology(); |
| |
| for_each_online_node(nid) { |
| unsigned long start_pfn, end_pfn; |
| void *bootmem_vaddr; |
| unsigned long bootmap_pages; |
| |
| get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); |
| |
| /* |
| * Allocate the node structure node local if possible |
| * |
| * Be careful moving this around, as it relies on all |
| * previous nodes' bootmem to be initialized and have |
| * all reserved areas marked. |
| */ |
| NODE_DATA(nid) = careful_zallocation(nid, |
| sizeof(struct pglist_data), |
| SMP_CACHE_BYTES, end_pfn); |
| |
| dbg("node %d\n", nid); |
| dbg("NODE_DATA() = %p\n", NODE_DATA(nid)); |
| |
| NODE_DATA(nid)->bdata = &bootmem_node_data[nid]; |
| NODE_DATA(nid)->node_start_pfn = start_pfn; |
| NODE_DATA(nid)->node_spanned_pages = end_pfn - start_pfn; |
| |
| if (NODE_DATA(nid)->node_spanned_pages == 0) |
| continue; |
| |
| dbg("start_paddr = %lx\n", start_pfn << PAGE_SHIFT); |
| dbg("end_paddr = %lx\n", end_pfn << PAGE_SHIFT); |
| |
| bootmap_pages = bootmem_bootmap_pages(end_pfn - start_pfn); |
| bootmem_vaddr = careful_zallocation(nid, |
| bootmap_pages << PAGE_SHIFT, |
| PAGE_SIZE, end_pfn); |
| |
| dbg("bootmap_vaddr = %p\n", bootmem_vaddr); |
| |
| init_bootmem_node(NODE_DATA(nid), |
| __pa(bootmem_vaddr) >> PAGE_SHIFT, |
| start_pfn, end_pfn); |
| |
| free_bootmem_with_active_regions(nid, end_pfn); |
| /* |
| * Be very careful about moving this around. Future |
| * calls to careful_zallocation() depend on this getting |
| * done correctly. |
| */ |
| mark_reserved_regions_for_nid(nid); |
| sparse_memory_present_with_active_regions(nid); |
| } |
| |
| init_bootmem_done = 1; |
| |
| /* |
| * Now bootmem is initialised we can create the node to cpumask |
| * lookup tables and setup the cpu callback to populate them. |
| */ |
| setup_node_to_cpumask_map(); |
| |
| register_cpu_notifier(&ppc64_numa_nb); |
| cpu_numa_callback(&ppc64_numa_nb, CPU_UP_PREPARE, |
| (void *)(unsigned long)boot_cpuid); |
| } |
| |
| void __init paging_init(void) |
| { |
| unsigned long max_zone_pfns[MAX_NR_ZONES]; |
| memset(max_zone_pfns, 0, sizeof(max_zone_pfns)); |
| max_zone_pfns[ZONE_DMA] = memblock_end_of_DRAM() >> PAGE_SHIFT; |
| free_area_init_nodes(max_zone_pfns); |
| } |
| |
| static int __init early_numa(char *p) |
| { |
| if (!p) |
| return 0; |
| |
| if (strstr(p, "off")) |
| numa_enabled = 0; |
| |
| if (strstr(p, "debug")) |
| numa_debug = 1; |
| |
| p = strstr(p, "fake="); |
| if (p) |
| cmdline = p + strlen("fake="); |
| |
| return 0; |
| } |
| early_param("numa", early_numa); |
| |
| #ifdef CONFIG_MEMORY_HOTPLUG |
| /* |
| * Find the node associated with a hot added memory section for |
| * memory represented in the device tree by the property |
| * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory. |
| */ |
| static int hot_add_drconf_scn_to_nid(struct device_node *memory, |
| unsigned long scn_addr) |
| { |
| const u32 *dm; |
| unsigned int drconf_cell_cnt, rc; |
| unsigned long lmb_size; |
| struct assoc_arrays aa; |
| int nid = -1; |
| |
| drconf_cell_cnt = of_get_drconf_memory(memory, &dm); |
| if (!drconf_cell_cnt) |
| return -1; |
| |
| lmb_size = of_get_lmb_size(memory); |
| if (!lmb_size) |
| return -1; |
| |
| rc = of_get_assoc_arrays(memory, &aa); |
| if (rc) |
| return -1; |
| |
| for (; drconf_cell_cnt != 0; --drconf_cell_cnt) { |
| struct of_drconf_cell drmem; |
| |
| read_drconf_cell(&drmem, &dm); |
| |
| /* skip this block if it is reserved or not assigned to |
| * this partition */ |
| if ((drmem.flags & DRCONF_MEM_RESERVED) |
| || !(drmem.flags & DRCONF_MEM_ASSIGNED)) |
| continue; |
| |
| if ((scn_addr < drmem.base_addr) |
| || (scn_addr >= (drmem.base_addr + lmb_size))) |
| continue; |
| |
| nid = of_drconf_to_nid_single(&drmem, &aa); |
| break; |
| } |
| |
| return nid; |
| } |
| |
| /* |
| * Find the node associated with a hot added memory section for memory |
| * represented in the device tree as a node (i.e. memory@XXXX) for |
| * each memblock. |
| */ |
| int hot_add_node_scn_to_nid(unsigned long scn_addr) |
| { |
| struct device_node *memory; |
| int nid = -1; |
| |
| for_each_node_by_type(memory, "memory") { |
| unsigned long start, size; |
| int ranges; |
| const unsigned int *memcell_buf; |
| unsigned int len; |
| |
| memcell_buf = of_get_property(memory, "reg", &len); |
| if (!memcell_buf || len <= 0) |
| continue; |
| |
| /* ranges in cell */ |
| ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells); |
| |
| while (ranges--) { |
| start = read_n_cells(n_mem_addr_cells, &memcell_buf); |
| size = read_n_cells(n_mem_size_cells, &memcell_buf); |
| |
| if ((scn_addr < start) || (scn_addr >= (start + size))) |
| continue; |
| |
| nid = of_node_to_nid_single(memory); |
| break; |
| } |
| |
| if (nid >= 0) |
| break; |
| } |
| |
| of_node_put(memory); |
| |
| return nid; |
| } |
| |
| /* |
| * Find the node associated with a hot added memory section. Section |
| * corresponds to a SPARSEMEM section, not an MEMBLOCK. It is assumed that |
| * sections are fully contained within a single MEMBLOCK. |
| */ |
| int hot_add_scn_to_nid(unsigned long scn_addr) |
| { |
| struct device_node *memory = NULL; |
| int nid, found = 0; |
| |
| if (!numa_enabled || (min_common_depth < 0)) |
| return first_online_node; |
| |
| memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory"); |
| if (memory) { |
| nid = hot_add_drconf_scn_to_nid(memory, scn_addr); |
| of_node_put(memory); |
| } else { |
| nid = hot_add_node_scn_to_nid(scn_addr); |
| } |
| |
| if (nid < 0 || !node_online(nid)) |
| nid = first_online_node; |
| |
| if (NODE_DATA(nid)->node_spanned_pages) |
| return nid; |
| |
| for_each_online_node(nid) { |
| if (NODE_DATA(nid)->node_spanned_pages) { |
| found = 1; |
| break; |
| } |
| } |
| |
| BUG_ON(!found); |
| return nid; |
| } |
| |
| static u64 hot_add_drconf_memory_max(void) |
| { |
| struct device_node *memory = NULL; |
| unsigned int drconf_cell_cnt = 0; |
| u64 lmb_size = 0; |
| const u32 *dm = 0; |
| |
| memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory"); |
| if (memory) { |
| drconf_cell_cnt = of_get_drconf_memory(memory, &dm); |
| lmb_size = of_get_lmb_size(memory); |
| of_node_put(memory); |
| } |
| return lmb_size * drconf_cell_cnt; |
| } |
| |
| /* |
| * memory_hotplug_max - return max address of memory that may be added |
| * |
| * This is currently only used on systems that support drconfig memory |
| * hotplug. |
| */ |
| u64 memory_hotplug_max(void) |
| { |
| return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM()); |
| } |
| #endif /* CONFIG_MEMORY_HOTPLUG */ |
| |
| /* Virtual Processor Home Node (VPHN) support */ |
| #ifdef CONFIG_PPC_SPLPAR |
| static u8 vphn_cpu_change_counts[NR_CPUS][MAX_DISTANCE_REF_POINTS]; |
| static cpumask_t cpu_associativity_changes_mask; |
| static int vphn_enabled; |
| static void set_topology_timer(void); |
| |
| /* |
| * Store the current values of the associativity change counters in the |
| * hypervisor. |
| */ |
| static void setup_cpu_associativity_change_counters(void) |
| { |
| int cpu; |
| |
| /* The VPHN feature supports a maximum of 8 reference points */ |
| BUILD_BUG_ON(MAX_DISTANCE_REF_POINTS > 8); |
| |
| for_each_possible_cpu(cpu) { |
| int i; |
| u8 *counts = vphn_cpu_change_counts[cpu]; |
| volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts; |
| |
| for (i = 0; i < distance_ref_points_depth; i++) |
| counts[i] = hypervisor_counts[i]; |
| } |
| } |
| |
| /* |
| * The hypervisor maintains a set of 8 associativity change counters in |
| * the VPA of each cpu that correspond to the associativity levels in the |
| * ibm,associativity-reference-points property. When an associativity |
| * level changes, the corresponding counter is incremented. |
| * |
| * Set a bit in cpu_associativity_changes_mask for each cpu whose home |
| * node associativity levels have changed. |
| * |
| * Returns the number of cpus with unhandled associativity changes. |
| */ |
| static int update_cpu_associativity_changes_mask(void) |
| { |
| int cpu, nr_cpus = 0; |
| cpumask_t *changes = &cpu_associativity_changes_mask; |
| |
| cpumask_clear(changes); |
| |
| for_each_possible_cpu(cpu) { |
| int i, changed = 0; |
| u8 *counts = vphn_cpu_change_counts[cpu]; |
| volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts; |
| |
| for (i = 0; i < distance_ref_points_depth; i++) { |
| if (hypervisor_counts[i] != counts[i]) { |
| counts[i] = hypervisor_counts[i]; |
| changed = 1; |
| } |
| } |
| if (changed) { |
| cpumask_set_cpu(cpu, changes); |
| nr_cpus++; |
| } |
| } |
| |
| return nr_cpus; |
| } |
| |
| /* |
| * 6 64-bit registers unpacked into 12 32-bit associativity values. To form |
| * the complete property we have to add the length in the first cell. |
| */ |
| #define VPHN_ASSOC_BUFSIZE (6*sizeof(u64)/sizeof(u32) + 1) |
| |
| /* |
| * Convert the associativity domain numbers returned from the hypervisor |
| * to the sequence they would appear in the ibm,associativity property. |
| */ |
| static int vphn_unpack_associativity(const long *packed, unsigned int *unpacked) |
| { |
| int i, nr_assoc_doms = 0; |
| const u16 *field = (const u16*) packed; |
| |
| #define VPHN_FIELD_UNUSED (0xffff) |
| #define VPHN_FIELD_MSB (0x8000) |
| #define VPHN_FIELD_MASK (~VPHN_FIELD_MSB) |
| |
| for (i = 1; i < VPHN_ASSOC_BUFSIZE; i++) { |
| if (*field == VPHN_FIELD_UNUSED) { |
| /* All significant fields processed, and remaining |
| * fields contain the reserved value of all 1's. |
| * Just store them. |
| */ |
| unpacked[i] = *((u32*)field); |
| field += 2; |
| } else if (*field & VPHN_FIELD_MSB) { |
| /* Data is in the lower 15 bits of this field */ |
| unpacked[i] = *field & VPHN_FIELD_MASK; |
| field++; |
| nr_assoc_doms++; |
| } else { |
| /* Data is in the lower 15 bits of this field |
| * concatenated with the next 16 bit field |
| */ |
| unpacked[i] = *((u32*)field); |
| field += 2; |
| nr_assoc_doms++; |
| } |
| } |
| |
| /* The first cell contains the length of the property */ |
| unpacked[0] = nr_assoc_doms; |
| |
| return nr_assoc_doms; |
| } |
| |
| /* |
| * Retrieve the new associativity information for a virtual processor's |
| * home node. |
| */ |
| static long hcall_vphn(unsigned long cpu, unsigned int *associativity) |
| { |
| long rc; |
| long retbuf[PLPAR_HCALL9_BUFSIZE] = {0}; |
| u64 flags = 1; |
| int hwcpu = get_hard_smp_processor_id(cpu); |
| |
| rc = plpar_hcall9(H_HOME_NODE_ASSOCIATIVITY, retbuf, flags, hwcpu); |
| vphn_unpack_associativity(retbuf, associativity); |
| |
| return rc; |
| } |
| |
| static long vphn_get_associativity(unsigned long cpu, |
| unsigned int *associativity) |
| { |
| long rc; |
| |
| rc = hcall_vphn(cpu, associativity); |
| |
| switch (rc) { |
| case H_FUNCTION: |
| printk(KERN_INFO |
| "VPHN is not supported. Disabling polling...\n"); |
| stop_topology_update(); |
| break; |
| case H_HARDWARE: |
| printk(KERN_ERR |
| "hcall_vphn() experienced a hardware fault " |
| "preventing VPHN. Disabling polling...\n"); |
| stop_topology_update(); |
| } |
| |
| return rc; |
| } |
| |
| /* |
| * Update the node maps and sysfs entries for each cpu whose home node |
| * has changed. |
| */ |
| int arch_update_cpu_topology(void) |
| { |
| int cpu, nid, old_nid; |
| unsigned int associativity[VPHN_ASSOC_BUFSIZE] = {0}; |
| struct sys_device *sysdev; |
| |
| for_each_cpu(cpu,&cpu_associativity_changes_mask) { |
| vphn_get_associativity(cpu, associativity); |
| nid = associativity_to_nid(associativity); |
| |
| if (nid < 0 || !node_online(nid)) |
| nid = first_online_node; |
| |
| old_nid = numa_cpu_lookup_table[cpu]; |
| |
| /* Disable hotplug while we update the cpu |
| * masks and sysfs. |
| */ |
| get_online_cpus(); |
| unregister_cpu_under_node(cpu, old_nid); |
| unmap_cpu_from_node(cpu); |
| map_cpu_to_node(cpu, nid); |
| register_cpu_under_node(cpu, nid); |
| put_online_cpus(); |
| |
| sysdev = get_cpu_sysdev(cpu); |
| if (sysdev) |
| kobject_uevent(&sysdev->kobj, KOBJ_CHANGE); |
| } |
| |
| return 1; |
| } |
| |
| static void topology_work_fn(struct work_struct *work) |
| { |
| rebuild_sched_domains(); |
| } |
| static DECLARE_WORK(topology_work, topology_work_fn); |
| |
| void topology_schedule_update(void) |
| { |
| schedule_work(&topology_work); |
| } |
| |
| static void topology_timer_fn(unsigned long ignored) |
| { |
| if (!vphn_enabled) |
| return; |
| if (update_cpu_associativity_changes_mask() > 0) |
| topology_schedule_update(); |
| set_topology_timer(); |
| } |
| static struct timer_list topology_timer = |
| TIMER_INITIALIZER(topology_timer_fn, 0, 0); |
| |
| static void set_topology_timer(void) |
| { |
| topology_timer.data = 0; |
| topology_timer.expires = jiffies + 60 * HZ; |
| add_timer(&topology_timer); |
| } |
| |
| /* |
| * Start polling for VPHN associativity changes. |
| */ |
| int start_topology_update(void) |
| { |
| int rc = 0; |
| |
| /* Disabled until races with load balancing are fixed */ |
| if (0 && firmware_has_feature(FW_FEATURE_VPHN) && |
| get_lppaca()->shared_proc) { |
| vphn_enabled = 1; |
| setup_cpu_associativity_change_counters(); |
| init_timer_deferrable(&topology_timer); |
| set_topology_timer(); |
| rc = 1; |
| } |
| |
| return rc; |
| } |
| __initcall(start_topology_update); |
| |
| /* |
| * Disable polling for VPHN associativity changes. |
| */ |
| int stop_topology_update(void) |
| { |
| vphn_enabled = 0; |
| return del_timer_sync(&topology_timer); |
| } |
| #endif /* CONFIG_PPC_SPLPAR */ |