| /* |
| * Copyright 2011 Red Hat Inc. |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR |
| * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, |
| * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR |
| * OTHER DEALINGS IN THE SOFTWARE. |
| * |
| * Authors: Ben Skeggs |
| */ |
| |
| #include "drmP.h" |
| #include "nouveau_drv.h" |
| #include "nouveau_bios.h" |
| #include "nouveau_pm.h" |
| |
| static u32 read_div(struct drm_device *, int, u32, u32); |
| static u32 read_pll(struct drm_device *, u32); |
| |
| static u32 |
| read_vco(struct drm_device *dev, u32 dsrc) |
| { |
| u32 ssrc = nv_rd32(dev, dsrc); |
| if (!(ssrc & 0x00000100)) |
| return read_pll(dev, 0x00e800); |
| return read_pll(dev, 0x00e820); |
| } |
| |
| static u32 |
| read_pll(struct drm_device *dev, u32 pll) |
| { |
| u32 ctrl = nv_rd32(dev, pll + 0); |
| u32 coef = nv_rd32(dev, pll + 4); |
| u32 P = (coef & 0x003f0000) >> 16; |
| u32 N = (coef & 0x0000ff00) >> 8; |
| u32 M = (coef & 0x000000ff) >> 0; |
| u32 sclk, doff; |
| |
| if (!(ctrl & 0x00000001)) |
| return 0; |
| |
| switch (pll & 0xfff000) { |
| case 0x00e000: |
| sclk = 27000; |
| P = 1; |
| break; |
| case 0x137000: |
| doff = (pll - 0x137000) / 0x20; |
| sclk = read_div(dev, doff, 0x137120, 0x137140); |
| break; |
| case 0x132000: |
| switch (pll) { |
| case 0x132000: |
| sclk = read_pll(dev, 0x132020); |
| break; |
| case 0x132020: |
| sclk = read_div(dev, 0, 0x137320, 0x137330); |
| break; |
| default: |
| return 0; |
| } |
| break; |
| default: |
| return 0; |
| } |
| |
| return sclk * N / M / P; |
| } |
| |
| static u32 |
| read_div(struct drm_device *dev, int doff, u32 dsrc, u32 dctl) |
| { |
| u32 ssrc = nv_rd32(dev, dsrc + (doff * 4)); |
| u32 sctl = nv_rd32(dev, dctl + (doff * 4)); |
| |
| switch (ssrc & 0x00000003) { |
| case 0: |
| if ((ssrc & 0x00030000) != 0x00030000) |
| return 27000; |
| return 108000; |
| case 2: |
| return 100000; |
| case 3: |
| if (sctl & 0x80000000) { |
| u32 sclk = read_vco(dev, dsrc + (doff * 4)); |
| u32 sdiv = (sctl & 0x0000003f) + 2; |
| return (sclk * 2) / sdiv; |
| } |
| |
| return read_vco(dev, dsrc + (doff * 4)); |
| default: |
| return 0; |
| } |
| } |
| |
| static u32 |
| read_mem(struct drm_device *dev) |
| { |
| u32 ssel = nv_rd32(dev, 0x1373f0); |
| if (ssel & 0x00000001) |
| return read_div(dev, 0, 0x137300, 0x137310); |
| return read_pll(dev, 0x132000); |
| } |
| |
| static u32 |
| read_clk(struct drm_device *dev, int clk) |
| { |
| u32 sctl = nv_rd32(dev, 0x137250 + (clk * 4)); |
| u32 ssel = nv_rd32(dev, 0x137100); |
| u32 sclk, sdiv; |
| |
| if (ssel & (1 << clk)) { |
| if (clk < 7) |
| sclk = read_pll(dev, 0x137000 + (clk * 0x20)); |
| else |
| sclk = read_pll(dev, 0x1370e0); |
| sdiv = ((sctl & 0x00003f00) >> 8) + 2; |
| } else { |
| sclk = read_div(dev, clk, 0x137160, 0x1371d0); |
| sdiv = ((sctl & 0x0000003f) >> 0) + 2; |
| } |
| |
| if (sctl & 0x80000000) |
| return (sclk * 2) / sdiv; |
| return sclk; |
| } |
| |
| int |
| nvc0_pm_clocks_get(struct drm_device *dev, struct nouveau_pm_level *perflvl) |
| { |
| perflvl->shader = read_clk(dev, 0x00); |
| perflvl->core = perflvl->shader / 2; |
| perflvl->memory = read_mem(dev); |
| perflvl->rop = read_clk(dev, 0x01); |
| perflvl->hub07 = read_clk(dev, 0x02); |
| perflvl->hub06 = read_clk(dev, 0x07); |
| perflvl->hub01 = read_clk(dev, 0x08); |
| perflvl->copy = read_clk(dev, 0x09); |
| perflvl->daemon = read_clk(dev, 0x0c); |
| perflvl->vdec = read_clk(dev, 0x0e); |
| return 0; |
| } |
| |
| struct nvc0_pm_clock { |
| u32 freq; |
| u32 ssel; |
| u32 mdiv; |
| u32 dsrc; |
| u32 ddiv; |
| u32 coef; |
| }; |
| |
| struct nvc0_pm_state { |
| struct nouveau_pm_level *perflvl; |
| struct nvc0_pm_clock eng[16]; |
| struct nvc0_pm_clock mem; |
| }; |
| |
| static u32 |
| calc_div(struct drm_device *dev, int clk, u32 ref, u32 freq, u32 *ddiv) |
| { |
| u32 div = min((ref * 2) / freq, (u32)65); |
| if (div < 2) |
| div = 2; |
| |
| *ddiv = div - 2; |
| return (ref * 2) / div; |
| } |
| |
| static u32 |
| calc_src(struct drm_device *dev, int clk, u32 freq, u32 *dsrc, u32 *ddiv) |
| { |
| u32 sclk; |
| |
| /* use one of the fixed frequencies if possible */ |
| *ddiv = 0x00000000; |
| switch (freq) { |
| case 27000: |
| case 108000: |
| *dsrc = 0x00000000; |
| if (freq == 108000) |
| *dsrc |= 0x00030000; |
| return freq; |
| case 100000: |
| *dsrc = 0x00000002; |
| return freq; |
| default: |
| *dsrc = 0x00000003; |
| break; |
| } |
| |
| /* otherwise, calculate the closest divider */ |
| sclk = read_vco(dev, clk); |
| if (clk < 7) |
| sclk = calc_div(dev, clk, sclk, freq, ddiv); |
| return sclk; |
| } |
| |
| static u32 |
| calc_pll(struct drm_device *dev, int clk, u32 freq, u32 *coef) |
| { |
| struct pll_lims limits; |
| int N, M, P, ret; |
| |
| ret = get_pll_limits(dev, 0x137000 + (clk * 0x20), &limits); |
| if (ret) |
| return 0; |
| |
| limits.refclk = read_div(dev, clk, 0x137120, 0x137140); |
| if (!limits.refclk) |
| return 0; |
| |
| ret = nva3_calc_pll(dev, &limits, freq, &N, NULL, &M, &P); |
| if (ret <= 0) |
| return 0; |
| |
| *coef = (P << 16) | (N << 8) | M; |
| return ret; |
| } |
| |
| /* A (likely rather simplified and incomplete) view of the clock tree |
| * |
| * Key: |
| * |
| * S: source select |
| * D: divider |
| * P: pll |
| * F: switch |
| * |
| * Engine clocks: |
| * |
| * 137250(D) ---- 137100(F0) ---- 137160(S)/1371d0(D) ------------------- ref |
| * (F1) ---- 1370X0(P) ---- 137120(S)/137140(D) ---- ref |
| * |
| * Not all registers exist for all clocks. For example: clocks >= 8 don't |
| * have their own PLL (all tied to clock 7's PLL when in PLL mode), nor do |
| * they have the divider at 1371d0, though the source selection at 137160 |
| * still exists. You must use the divider at 137250 for these instead. |
| * |
| * Memory clock: |
| * |
| * TBD, read_mem() above is likely very wrong... |
| * |
| */ |
| |
| static int |
| calc_clk(struct drm_device *dev, int clk, struct nvc0_pm_clock *info, u32 freq) |
| { |
| u32 src0, div0, div1D, div1P = 0; |
| u32 clk0, clk1 = 0; |
| |
| /* invalid clock domain */ |
| if (!freq) |
| return 0; |
| |
| /* first possible path, using only dividers */ |
| clk0 = calc_src(dev, clk, freq, &src0, &div0); |
| clk0 = calc_div(dev, clk, clk0, freq, &div1D); |
| |
| /* see if we can get any closer using PLLs */ |
| if (clk0 != freq && (0x00004387 & (1 << clk))) { |
| if (clk < 7) |
| clk1 = calc_pll(dev, clk, freq, &info->coef); |
| else |
| clk1 = read_pll(dev, 0x1370e0); |
| clk1 = calc_div(dev, clk, clk1, freq, &div1P); |
| } |
| |
| /* select the method which gets closest to target freq */ |
| if (abs((int)freq - clk0) <= abs((int)freq - clk1)) { |
| info->dsrc = src0; |
| if (div0) { |
| info->ddiv |= 0x80000000; |
| info->ddiv |= div0 << 8; |
| info->ddiv |= div0; |
| } |
| if (div1D) { |
| info->mdiv |= 0x80000000; |
| info->mdiv |= div1D; |
| } |
| info->ssel = 0; |
| info->freq = clk0; |
| } else { |
| if (div1P) { |
| info->mdiv |= 0x80000000; |
| info->mdiv |= div1P << 8; |
| } |
| info->ssel = (1 << clk); |
| info->freq = clk1; |
| } |
| |
| return 0; |
| } |
| |
| static int |
| calc_mem(struct drm_device *dev, struct nvc0_pm_clock *info, u32 freq) |
| { |
| struct pll_lims pll; |
| int N, M, P, ret; |
| u32 ctrl; |
| |
| /* mclk pll input freq comes from another pll, make sure it's on */ |
| ctrl = nv_rd32(dev, 0x132020); |
| if (!(ctrl & 0x00000001)) { |
| /* if not, program it to 567MHz. nfi where this value comes |
| * from - it looks like it's in the pll limits table for |
| * 132000 but the binary driver ignores all my attempts to |
| * change this value. |
| */ |
| nv_wr32(dev, 0x137320, 0x00000103); |
| nv_wr32(dev, 0x137330, 0x81200606); |
| nv_wait(dev, 0x132020, 0x00010000, 0x00010000); |
| nv_wr32(dev, 0x132024, 0x0001150f); |
| nv_mask(dev, 0x132020, 0x00000001, 0x00000001); |
| nv_wait(dev, 0x137390, 0x00020000, 0x00020000); |
| nv_mask(dev, 0x132020, 0x00000004, 0x00000004); |
| } |
| |
| /* for the moment, until the clock tree is better understood, use |
| * pll mode for all clock frequencies |
| */ |
| ret = get_pll_limits(dev, 0x132000, &pll); |
| if (ret == 0) { |
| pll.refclk = read_pll(dev, 0x132020); |
| if (pll.refclk) { |
| ret = nva3_calc_pll(dev, &pll, freq, &N, NULL, &M, &P); |
| if (ret > 0) { |
| info->coef = (P << 16) | (N << 8) | M; |
| return 0; |
| } |
| } |
| } |
| |
| return -EINVAL; |
| } |
| |
| void * |
| nvc0_pm_clocks_pre(struct drm_device *dev, struct nouveau_pm_level *perflvl) |
| { |
| struct drm_nouveau_private *dev_priv = dev->dev_private; |
| struct nvc0_pm_state *info; |
| int ret; |
| |
| info = kzalloc(sizeof(*info), GFP_KERNEL); |
| if (!info) |
| return ERR_PTR(-ENOMEM); |
| |
| /* NFI why this is still in the performance table, the ROPCs appear |
| * to get their clock from clock 2 ("hub07", actually hub05 on this |
| * chip, but, anyway...) as well. nvatiming confirms hub05 and ROP |
| * are always the same freq with the binary driver even when the |
| * performance table says they should differ. |
| */ |
| if (dev_priv->chipset == 0xd9) |
| perflvl->rop = 0; |
| |
| if ((ret = calc_clk(dev, 0x00, &info->eng[0x00], perflvl->shader)) || |
| (ret = calc_clk(dev, 0x01, &info->eng[0x01], perflvl->rop)) || |
| (ret = calc_clk(dev, 0x02, &info->eng[0x02], perflvl->hub07)) || |
| (ret = calc_clk(dev, 0x07, &info->eng[0x07], perflvl->hub06)) || |
| (ret = calc_clk(dev, 0x08, &info->eng[0x08], perflvl->hub01)) || |
| (ret = calc_clk(dev, 0x09, &info->eng[0x09], perflvl->copy)) || |
| (ret = calc_clk(dev, 0x0c, &info->eng[0x0c], perflvl->daemon)) || |
| (ret = calc_clk(dev, 0x0e, &info->eng[0x0e], perflvl->vdec))) { |
| kfree(info); |
| return ERR_PTR(ret); |
| } |
| |
| if (perflvl->memory) { |
| ret = calc_mem(dev, &info->mem, perflvl->memory); |
| if (ret) { |
| kfree(info); |
| return ERR_PTR(ret); |
| } |
| } |
| |
| info->perflvl = perflvl; |
| return info; |
| } |
| |
| static void |
| prog_clk(struct drm_device *dev, int clk, struct nvc0_pm_clock *info) |
| { |
| /* program dividers at 137160/1371d0 first */ |
| if (clk < 7 && !info->ssel) { |
| nv_mask(dev, 0x1371d0 + (clk * 0x04), 0x80003f3f, info->ddiv); |
| nv_wr32(dev, 0x137160 + (clk * 0x04), info->dsrc); |
| } |
| |
| /* switch clock to non-pll mode */ |
| nv_mask(dev, 0x137100, (1 << clk), 0x00000000); |
| nv_wait(dev, 0x137100, (1 << clk), 0x00000000); |
| |
| /* reprogram pll */ |
| if (clk < 7) { |
| /* make sure it's disabled first... */ |
| u32 base = 0x137000 + (clk * 0x20); |
| u32 ctrl = nv_rd32(dev, base + 0x00); |
| if (ctrl & 0x00000001) { |
| nv_mask(dev, base + 0x00, 0x00000004, 0x00000000); |
| nv_mask(dev, base + 0x00, 0x00000001, 0x00000000); |
| } |
| /* program it to new values, if necessary */ |
| if (info->ssel) { |
| nv_wr32(dev, base + 0x04, info->coef); |
| nv_mask(dev, base + 0x00, 0x00000001, 0x00000001); |
| nv_wait(dev, base + 0x00, 0x00020000, 0x00020000); |
| nv_mask(dev, base + 0x00, 0x00020004, 0x00000004); |
| } |
| } |
| |
| /* select pll/non-pll mode, and program final clock divider */ |
| nv_mask(dev, 0x137100, (1 << clk), info->ssel); |
| nv_wait(dev, 0x137100, (1 << clk), info->ssel); |
| nv_mask(dev, 0x137250 + (clk * 0x04), 0x00003f3f, info->mdiv); |
| } |
| |
| static void |
| mclk_precharge(struct nouveau_mem_exec_func *exec) |
| { |
| } |
| |
| static void |
| mclk_refresh(struct nouveau_mem_exec_func *exec) |
| { |
| } |
| |
| static void |
| mclk_refresh_auto(struct nouveau_mem_exec_func *exec, bool enable) |
| { |
| nv_wr32(exec->dev, 0x10f210, enable ? 0x80000000 : 0x00000000); |
| } |
| |
| static void |
| mclk_refresh_self(struct nouveau_mem_exec_func *exec, bool enable) |
| { |
| } |
| |
| static void |
| mclk_wait(struct nouveau_mem_exec_func *exec, u32 nsec) |
| { |
| udelay((nsec + 500) / 1000); |
| } |
| |
| static u32 |
| mclk_mrg(struct nouveau_mem_exec_func *exec, int mr) |
| { |
| struct drm_device *dev = exec->dev; |
| struct drm_nouveau_private *dev_priv = dev->dev_private; |
| if (dev_priv->vram_type != NV_MEM_TYPE_GDDR5) { |
| if (mr <= 1) |
| return nv_rd32(dev, 0x10f300 + ((mr - 0) * 4)); |
| return nv_rd32(dev, 0x10f320 + ((mr - 2) * 4)); |
| } else { |
| if (mr == 0) |
| return nv_rd32(dev, 0x10f300 + (mr * 4)); |
| else |
| if (mr <= 7) |
| return nv_rd32(dev, 0x10f32c + (mr * 4)); |
| return nv_rd32(dev, 0x10f34c); |
| } |
| } |
| |
| static void |
| mclk_mrs(struct nouveau_mem_exec_func *exec, int mr, u32 data) |
| { |
| struct drm_device *dev = exec->dev; |
| struct drm_nouveau_private *dev_priv = dev->dev_private; |
| if (dev_priv->vram_type != NV_MEM_TYPE_GDDR5) { |
| if (mr <= 1) { |
| nv_wr32(dev, 0x10f300 + ((mr - 0) * 4), data); |
| if (dev_priv->vram_rank_B) |
| nv_wr32(dev, 0x10f308 + ((mr - 0) * 4), data); |
| } else |
| if (mr <= 3) { |
| nv_wr32(dev, 0x10f320 + ((mr - 2) * 4), data); |
| if (dev_priv->vram_rank_B) |
| nv_wr32(dev, 0x10f328 + ((mr - 2) * 4), data); |
| } |
| } else { |
| if (mr == 0) nv_wr32(dev, 0x10f300 + (mr * 4), data); |
| else if (mr <= 7) nv_wr32(dev, 0x10f32c + (mr * 4), data); |
| else if (mr == 15) nv_wr32(dev, 0x10f34c, data); |
| } |
| } |
| |
| static void |
| mclk_clock_set(struct nouveau_mem_exec_func *exec) |
| { |
| struct nvc0_pm_state *info = exec->priv; |
| struct drm_device *dev = exec->dev; |
| u32 ctrl = nv_rd32(dev, 0x132000); |
| |
| nv_wr32(dev, 0x137360, 0x00000001); |
| nv_wr32(dev, 0x137370, 0x00000000); |
| nv_wr32(dev, 0x137380, 0x00000000); |
| if (ctrl & 0x00000001) |
| nv_wr32(dev, 0x132000, (ctrl &= ~0x00000001)); |
| |
| nv_wr32(dev, 0x132004, info->mem.coef); |
| nv_wr32(dev, 0x132000, (ctrl |= 0x00000001)); |
| nv_wait(dev, 0x137390, 0x00000002, 0x00000002); |
| nv_wr32(dev, 0x132018, 0x00005000); |
| |
| nv_wr32(dev, 0x137370, 0x00000001); |
| nv_wr32(dev, 0x137380, 0x00000001); |
| nv_wr32(dev, 0x137360, 0x00000000); |
| } |
| |
| static void |
| mclk_timing_set(struct nouveau_mem_exec_func *exec) |
| { |
| struct nvc0_pm_state *info = exec->priv; |
| struct nouveau_pm_level *perflvl = info->perflvl; |
| int i; |
| |
| for (i = 0; i < 5; i++) |
| nv_wr32(exec->dev, 0x10f290 + (i * 4), perflvl->timing.reg[i]); |
| } |
| |
| static void |
| prog_mem(struct drm_device *dev, struct nvc0_pm_state *info) |
| { |
| struct drm_nouveau_private *dev_priv = dev->dev_private; |
| struct nouveau_mem_exec_func exec = { |
| .dev = dev, |
| .precharge = mclk_precharge, |
| .refresh = mclk_refresh, |
| .refresh_auto = mclk_refresh_auto, |
| .refresh_self = mclk_refresh_self, |
| .wait = mclk_wait, |
| .mrg = mclk_mrg, |
| .mrs = mclk_mrs, |
| .clock_set = mclk_clock_set, |
| .timing_set = mclk_timing_set, |
| .priv = info |
| }; |
| |
| if (dev_priv->chipset < 0xd0) |
| nv_wr32(dev, 0x611200, 0x00003300); |
| else |
| nv_wr32(dev, 0x62c000, 0x03030000); |
| |
| nouveau_mem_exec(&exec, info->perflvl); |
| |
| if (dev_priv->chipset < 0xd0) |
| nv_wr32(dev, 0x611200, 0x00003330); |
| else |
| nv_wr32(dev, 0x62c000, 0x03030300); |
| } |
| int |
| nvc0_pm_clocks_set(struct drm_device *dev, void *data) |
| { |
| struct nvc0_pm_state *info = data; |
| int i; |
| |
| if (info->mem.coef) |
| prog_mem(dev, info); |
| |
| for (i = 0; i < 16; i++) { |
| if (!info->eng[i].freq) |
| continue; |
| prog_clk(dev, i, &info->eng[i]); |
| } |
| |
| kfree(info); |
| return 0; |
| } |