| /* |
| * Copyright (C) 1994 Linus Torvalds |
| * |
| * Pentium III FXSR, SSE support |
| * General FPU state handling cleanups |
| * Gareth Hughes <gareth@valinux.com>, May 2000 |
| * x86-64 work by Andi Kleen 2002 |
| */ |
| |
| #ifndef _FPU_INTERNAL_H |
| #define _FPU_INTERNAL_H |
| |
| #include <linux/regset.h> |
| #include <linux/compat.h> |
| #include <linux/slab.h> |
| |
| #include <asm/user.h> |
| #include <asm/i387.h> |
| #include <asm/xsave.h> |
| |
| #ifdef CONFIG_X86_64 |
| # include <asm/sigcontext32.h> |
| # include <asm/user32.h> |
| struct ksignal; |
| int ia32_setup_rt_frame(int sig, struct ksignal *ksig, |
| compat_sigset_t *set, struct pt_regs *regs); |
| int ia32_setup_frame(int sig, struct ksignal *ksig, |
| compat_sigset_t *set, struct pt_regs *regs); |
| #else |
| # define user_i387_ia32_struct user_i387_struct |
| # define user32_fxsr_struct user_fxsr_struct |
| # define ia32_setup_frame __setup_frame |
| # define ia32_setup_rt_frame __setup_rt_frame |
| #endif |
| |
| extern unsigned int mxcsr_feature_mask; |
| extern void fpu__cpu_init(void); |
| extern void eager_fpu_init(void); |
| |
| DECLARE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx); |
| |
| extern void convert_from_fxsr(struct user_i387_ia32_struct *env, |
| struct task_struct *tsk); |
| extern void convert_to_fxsr(struct task_struct *tsk, |
| const struct user_i387_ia32_struct *env); |
| |
| extern user_regset_active_fn fpregs_active, xfpregs_active; |
| extern user_regset_get_fn fpregs_get, xfpregs_get, fpregs_soft_get, |
| xstateregs_get; |
| extern user_regset_set_fn fpregs_set, xfpregs_set, fpregs_soft_set, |
| xstateregs_set; |
| |
| /* |
| * xstateregs_active == fpregs_active. Please refer to the comment |
| * at the definition of fpregs_active. |
| */ |
| #define xstateregs_active fpregs_active |
| |
| #ifdef CONFIG_MATH_EMULATION |
| extern void finit_soft_fpu(struct i387_soft_struct *soft); |
| #else |
| static inline void finit_soft_fpu(struct i387_soft_struct *soft) {} |
| #endif |
| |
| /* |
| * Must be run with preemption disabled: this clears the fpu_fpregs_owner_ctx, |
| * on this CPU. |
| * |
| * This will disable any lazy FPU state restore of the current FPU state, |
| * but if the current thread owns the FPU, it will still be saved by. |
| */ |
| static inline void __cpu_disable_lazy_restore(unsigned int cpu) |
| { |
| per_cpu(fpu_fpregs_owner_ctx, cpu) = NULL; |
| } |
| |
| /* |
| * Used to indicate that the FPU state in memory is newer than the FPU |
| * state in registers, and the FPU state should be reloaded next time the |
| * task is run. Only safe on the current task, or non-running tasks. |
| */ |
| static inline void task_disable_lazy_fpu_restore(struct task_struct *tsk) |
| { |
| tsk->thread.fpu.last_cpu = ~0; |
| } |
| |
| static inline int fpu_lazy_restore(struct task_struct *new, unsigned int cpu) |
| { |
| return &new->thread.fpu == this_cpu_read_stable(fpu_fpregs_owner_ctx) && |
| cpu == new->thread.fpu.last_cpu; |
| } |
| |
| static inline int is_ia32_compat_frame(void) |
| { |
| return config_enabled(CONFIG_IA32_EMULATION) && |
| test_thread_flag(TIF_IA32); |
| } |
| |
| static inline int is_ia32_frame(void) |
| { |
| return config_enabled(CONFIG_X86_32) || is_ia32_compat_frame(); |
| } |
| |
| static inline int is_x32_frame(void) |
| { |
| return config_enabled(CONFIG_X86_X32_ABI) && test_thread_flag(TIF_X32); |
| } |
| |
| #define X87_FSW_ES (1 << 7) /* Exception Summary */ |
| |
| static __always_inline __pure bool use_eager_fpu(void) |
| { |
| return static_cpu_has_safe(X86_FEATURE_EAGER_FPU); |
| } |
| |
| static __always_inline __pure bool use_xsaveopt(void) |
| { |
| return static_cpu_has_safe(X86_FEATURE_XSAVEOPT); |
| } |
| |
| static __always_inline __pure bool use_xsave(void) |
| { |
| return static_cpu_has_safe(X86_FEATURE_XSAVE); |
| } |
| |
| static __always_inline __pure bool use_fxsr(void) |
| { |
| return static_cpu_has_safe(X86_FEATURE_FXSR); |
| } |
| |
| static inline void fx_finit(struct i387_fxsave_struct *fx) |
| { |
| fx->cwd = 0x37f; |
| fx->mxcsr = MXCSR_DEFAULT; |
| } |
| |
| extern void __sanitize_i387_state(struct task_struct *); |
| |
| static inline void sanitize_i387_state(struct task_struct *tsk) |
| { |
| if (!use_xsaveopt()) |
| return; |
| __sanitize_i387_state(tsk); |
| } |
| |
| #define user_insn(insn, output, input...) \ |
| ({ \ |
| int err; \ |
| asm volatile(ASM_STAC "\n" \ |
| "1:" #insn "\n\t" \ |
| "2: " ASM_CLAC "\n" \ |
| ".section .fixup,\"ax\"\n" \ |
| "3: movl $-1,%[err]\n" \ |
| " jmp 2b\n" \ |
| ".previous\n" \ |
| _ASM_EXTABLE(1b, 3b) \ |
| : [err] "=r" (err), output \ |
| : "0"(0), input); \ |
| err; \ |
| }) |
| |
| #define check_insn(insn, output, input...) \ |
| ({ \ |
| int err; \ |
| asm volatile("1:" #insn "\n\t" \ |
| "2:\n" \ |
| ".section .fixup,\"ax\"\n" \ |
| "3: movl $-1,%[err]\n" \ |
| " jmp 2b\n" \ |
| ".previous\n" \ |
| _ASM_EXTABLE(1b, 3b) \ |
| : [err] "=r" (err), output \ |
| : "0"(0), input); \ |
| err; \ |
| }) |
| |
| static inline int fsave_user(struct i387_fsave_struct __user *fx) |
| { |
| return user_insn(fnsave %[fx]; fwait, [fx] "=m" (*fx), "m" (*fx)); |
| } |
| |
| static inline int fxsave_user(struct i387_fxsave_struct __user *fx) |
| { |
| if (config_enabled(CONFIG_X86_32)) |
| return user_insn(fxsave %[fx], [fx] "=m" (*fx), "m" (*fx)); |
| else if (config_enabled(CONFIG_AS_FXSAVEQ)) |
| return user_insn(fxsaveq %[fx], [fx] "=m" (*fx), "m" (*fx)); |
| |
| /* See comment in fpu_fxsave() below. */ |
| return user_insn(rex64/fxsave (%[fx]), "=m" (*fx), [fx] "R" (fx)); |
| } |
| |
| static inline int fxrstor_checking(struct i387_fxsave_struct *fx) |
| { |
| if (config_enabled(CONFIG_X86_32)) |
| return check_insn(fxrstor %[fx], "=m" (*fx), [fx] "m" (*fx)); |
| else if (config_enabled(CONFIG_AS_FXSAVEQ)) |
| return check_insn(fxrstorq %[fx], "=m" (*fx), [fx] "m" (*fx)); |
| |
| /* See comment in fpu_fxsave() below. */ |
| return check_insn(rex64/fxrstor (%[fx]), "=m" (*fx), [fx] "R" (fx), |
| "m" (*fx)); |
| } |
| |
| static inline int fxrstor_user(struct i387_fxsave_struct __user *fx) |
| { |
| if (config_enabled(CONFIG_X86_32)) |
| return user_insn(fxrstor %[fx], "=m" (*fx), [fx] "m" (*fx)); |
| else if (config_enabled(CONFIG_AS_FXSAVEQ)) |
| return user_insn(fxrstorq %[fx], "=m" (*fx), [fx] "m" (*fx)); |
| |
| /* See comment in fpu_fxsave() below. */ |
| return user_insn(rex64/fxrstor (%[fx]), "=m" (*fx), [fx] "R" (fx), |
| "m" (*fx)); |
| } |
| |
| static inline int frstor_checking(struct i387_fsave_struct *fx) |
| { |
| return check_insn(frstor %[fx], "=m" (*fx), [fx] "m" (*fx)); |
| } |
| |
| static inline int frstor_user(struct i387_fsave_struct __user *fx) |
| { |
| return user_insn(frstor %[fx], "=m" (*fx), [fx] "m" (*fx)); |
| } |
| |
| static inline void fpu_fxsave(struct fpu *fpu) |
| { |
| if (config_enabled(CONFIG_X86_32)) |
| asm volatile( "fxsave %[fx]" : [fx] "=m" (fpu->state->fxsave)); |
| else if (config_enabled(CONFIG_AS_FXSAVEQ)) |
| asm volatile("fxsaveq %[fx]" : [fx] "=m" (fpu->state->fxsave)); |
| else { |
| /* Using "rex64; fxsave %0" is broken because, if the memory |
| * operand uses any extended registers for addressing, a second |
| * REX prefix will be generated (to the assembler, rex64 |
| * followed by semicolon is a separate instruction), and hence |
| * the 64-bitness is lost. |
| * |
| * Using "fxsaveq %0" would be the ideal choice, but is only |
| * supported starting with gas 2.16. |
| * |
| * Using, as a workaround, the properly prefixed form below |
| * isn't accepted by any binutils version so far released, |
| * complaining that the same type of prefix is used twice if |
| * an extended register is needed for addressing (fix submitted |
| * to mainline 2005-11-21). |
| * |
| * asm volatile("rex64/fxsave %0" : "=m" (fpu->state->fxsave)); |
| * |
| * This, however, we can work around by forcing the compiler to |
| * select an addressing mode that doesn't require extended |
| * registers. |
| */ |
| asm volatile( "rex64/fxsave (%[fx])" |
| : "=m" (fpu->state->fxsave) |
| : [fx] "R" (&fpu->state->fxsave)); |
| } |
| } |
| |
| /* |
| * These must be called with preempt disabled. Returns |
| * 'true' if the FPU state is still intact. |
| */ |
| static inline int fpu_save_init(struct fpu *fpu) |
| { |
| if (use_xsave()) { |
| xsave_state(&fpu->state->xsave); |
| |
| /* |
| * xsave header may indicate the init state of the FP. |
| */ |
| if (!(fpu->state->xsave.xsave_hdr.xstate_bv & XSTATE_FP)) |
| return 1; |
| } else if (use_fxsr()) { |
| fpu_fxsave(fpu); |
| } else { |
| asm volatile("fnsave %[fx]; fwait" |
| : [fx] "=m" (fpu->state->fsave)); |
| return 0; |
| } |
| |
| /* |
| * If exceptions are pending, we need to clear them so |
| * that we don't randomly get exceptions later. |
| * |
| * FIXME! Is this perhaps only true for the old-style |
| * irq13 case? Maybe we could leave the x87 state |
| * intact otherwise? |
| */ |
| if (unlikely(fpu->state->fxsave.swd & X87_FSW_ES)) { |
| asm volatile("fnclex"); |
| return 0; |
| } |
| return 1; |
| } |
| |
| static inline int fpu_restore_checking(struct fpu *fpu) |
| { |
| if (use_xsave()) |
| return fpu_xrstor_checking(&fpu->state->xsave); |
| else if (use_fxsr()) |
| return fxrstor_checking(&fpu->state->fxsave); |
| else |
| return frstor_checking(&fpu->state->fsave); |
| } |
| |
| static inline int restore_fpu_checking(struct task_struct *tsk) |
| { |
| /* |
| * AMD K7/K8 CPUs don't save/restore FDP/FIP/FOP unless an exception is |
| * pending. Clear the x87 state here by setting it to fixed values. |
| * "m" is a random variable that should be in L1. |
| */ |
| if (unlikely(static_cpu_has_bug_safe(X86_BUG_FXSAVE_LEAK))) { |
| asm volatile( |
| "fnclex\n\t" |
| "emms\n\t" |
| "fildl %P[addr]" /* set F?P to defined value */ |
| : : [addr] "m" (tsk->thread.fpu.has_fpu)); |
| } |
| |
| return fpu_restore_checking(&tsk->thread.fpu); |
| } |
| |
| /* Must be paired with an 'stts' after! */ |
| static inline void __thread_clear_has_fpu(struct fpu *fpu) |
| { |
| fpu->has_fpu = 0; |
| this_cpu_write(fpu_fpregs_owner_ctx, NULL); |
| } |
| |
| /* Must be paired with a 'clts' before! */ |
| static inline void __thread_set_has_fpu(struct fpu *fpu) |
| { |
| fpu->has_fpu = 1; |
| this_cpu_write(fpu_fpregs_owner_ctx, fpu); |
| } |
| |
| /* |
| * Encapsulate the CR0.TS handling together with the |
| * software flag. |
| * |
| * These generally need preemption protection to work, |
| * do try to avoid using these on their own. |
| */ |
| static inline void __thread_fpu_end(struct fpu *fpu) |
| { |
| __thread_clear_has_fpu(fpu); |
| if (!use_eager_fpu()) |
| stts(); |
| } |
| |
| static inline void __thread_fpu_begin(struct fpu *fpu) |
| { |
| if (!use_eager_fpu()) |
| clts(); |
| __thread_set_has_fpu(fpu); |
| } |
| |
| static inline void drop_fpu(struct task_struct *tsk) |
| { |
| struct fpu *fpu = &tsk->thread.fpu; |
| /* |
| * Forget coprocessor state.. |
| */ |
| preempt_disable(); |
| tsk->thread.fpu.counter = 0; |
| |
| if (fpu->has_fpu) { |
| /* Ignore delayed exceptions from user space */ |
| asm volatile("1: fwait\n" |
| "2:\n" |
| _ASM_EXTABLE(1b, 2b)); |
| __thread_fpu_end(fpu); |
| } |
| |
| tsk->flags &= ~PF_USED_MATH; |
| |
| preempt_enable(); |
| } |
| |
| static inline void restore_init_xstate(void) |
| { |
| if (use_xsave()) |
| xrstor_state(init_xstate_buf, -1); |
| else |
| fxrstor_checking(&init_xstate_buf->i387); |
| } |
| |
| /* |
| * Reset the FPU state in the eager case and drop it in the lazy case (later use |
| * will reinit it). |
| */ |
| static inline void fpu_reset_state(struct task_struct *tsk) |
| { |
| if (!use_eager_fpu()) |
| drop_fpu(tsk); |
| else |
| restore_init_xstate(); |
| } |
| |
| /* |
| * FPU state switching for scheduling. |
| * |
| * This is a two-stage process: |
| * |
| * - switch_fpu_prepare() saves the old state and |
| * sets the new state of the CR0.TS bit. This is |
| * done within the context of the old process. |
| * |
| * - switch_fpu_finish() restores the new state as |
| * necessary. |
| */ |
| typedef struct { int preload; } fpu_switch_t; |
| |
| static inline fpu_switch_t switch_fpu_prepare(struct task_struct *old, struct task_struct *new, int cpu) |
| { |
| struct fpu *old_fpu = &old->thread.fpu; |
| struct fpu *new_fpu = &new->thread.fpu; |
| fpu_switch_t fpu; |
| |
| /* |
| * If the task has used the math, pre-load the FPU on xsave processors |
| * or if the past 5 consecutive context-switches used math. |
| */ |
| fpu.preload = (new->flags & PF_USED_MATH) && |
| (use_eager_fpu() || new->thread.fpu.counter > 5); |
| |
| if (old_fpu->has_fpu) { |
| if (!fpu_save_init(&old->thread.fpu)) |
| task_disable_lazy_fpu_restore(old); |
| else |
| old->thread.fpu.last_cpu = cpu; |
| |
| /* But leave fpu_fpregs_owner_ctx! */ |
| old->thread.fpu.has_fpu = 0; |
| |
| /* Don't change CR0.TS if we just switch! */ |
| if (fpu.preload) { |
| new->thread.fpu.counter++; |
| __thread_set_has_fpu(new_fpu); |
| prefetch(new->thread.fpu.state); |
| } else if (!use_eager_fpu()) |
| stts(); |
| } else { |
| old->thread.fpu.counter = 0; |
| task_disable_lazy_fpu_restore(old); |
| if (fpu.preload) { |
| new->thread.fpu.counter++; |
| if (fpu_lazy_restore(new, cpu)) |
| fpu.preload = 0; |
| else |
| prefetch(new->thread.fpu.state); |
| __thread_fpu_begin(new_fpu); |
| } |
| } |
| return fpu; |
| } |
| |
| /* |
| * By the time this gets called, we've already cleared CR0.TS and |
| * given the process the FPU if we are going to preload the FPU |
| * state - all we need to do is to conditionally restore the register |
| * state itself. |
| */ |
| static inline void switch_fpu_finish(struct task_struct *new, fpu_switch_t fpu) |
| { |
| if (fpu.preload) { |
| if (unlikely(restore_fpu_checking(new))) |
| fpu_reset_state(new); |
| } |
| } |
| |
| /* |
| * Signal frame handlers... |
| */ |
| extern int save_xstate_sig(void __user *buf, void __user *fx, int size); |
| extern int __restore_xstate_sig(void __user *buf, void __user *fx, int size); |
| |
| static inline int xstate_sigframe_size(void) |
| { |
| return use_xsave() ? xstate_size + FP_XSTATE_MAGIC2_SIZE : xstate_size; |
| } |
| |
| static inline int restore_xstate_sig(void __user *buf, int ia32_frame) |
| { |
| void __user *buf_fx = buf; |
| int size = xstate_sigframe_size(); |
| |
| if (ia32_frame && use_fxsr()) { |
| buf_fx = buf + sizeof(struct i387_fsave_struct); |
| size += sizeof(struct i387_fsave_struct); |
| } |
| |
| return __restore_xstate_sig(buf, buf_fx, size); |
| } |
| |
| /* |
| * Needs to be preemption-safe. |
| * |
| * NOTE! user_fpu_begin() must be used only immediately before restoring |
| * the save state. It does not do any saving/restoring on its own. In |
| * lazy FPU mode, it is just an optimization to avoid a #NM exception, |
| * the task can lose the FPU right after preempt_enable(). |
| */ |
| static inline void user_fpu_begin(void) |
| { |
| struct fpu *fpu = ¤t->thread.fpu; |
| |
| preempt_disable(); |
| if (!user_has_fpu()) |
| __thread_fpu_begin(fpu); |
| preempt_enable(); |
| } |
| |
| static inline void __save_fpu(struct task_struct *tsk) |
| { |
| if (use_xsave()) { |
| if (unlikely(system_state == SYSTEM_BOOTING)) |
| xsave_state_booting(&tsk->thread.fpu.state->xsave); |
| else |
| xsave_state(&tsk->thread.fpu.state->xsave); |
| } else |
| fpu_fxsave(&tsk->thread.fpu); |
| } |
| |
| /* |
| * i387 state interaction |
| */ |
| static inline unsigned short get_fpu_cwd(struct task_struct *tsk) |
| { |
| if (cpu_has_fxsr) { |
| return tsk->thread.fpu.state->fxsave.cwd; |
| } else { |
| return (unsigned short)tsk->thread.fpu.state->fsave.cwd; |
| } |
| } |
| |
| static inline unsigned short get_fpu_swd(struct task_struct *tsk) |
| { |
| if (cpu_has_fxsr) { |
| return tsk->thread.fpu.state->fxsave.swd; |
| } else { |
| return (unsigned short)tsk->thread.fpu.state->fsave.swd; |
| } |
| } |
| |
| static inline unsigned short get_fpu_mxcsr(struct task_struct *tsk) |
| { |
| if (cpu_has_xmm) { |
| return tsk->thread.fpu.state->fxsave.mxcsr; |
| } else { |
| return MXCSR_DEFAULT; |
| } |
| } |
| |
| extern void fpstate_cache_init(void); |
| |
| extern int fpstate_alloc(struct fpu *fpu); |
| extern void fpstate_free(struct fpu *fpu); |
| extern int fpu__copy(struct task_struct *dst, struct task_struct *src); |
| |
| static inline unsigned long |
| alloc_mathframe(unsigned long sp, int ia32_frame, unsigned long *buf_fx, |
| unsigned long *size) |
| { |
| unsigned long frame_size = xstate_sigframe_size(); |
| |
| *buf_fx = sp = round_down(sp - frame_size, 64); |
| if (ia32_frame && use_fxsr()) { |
| frame_size += sizeof(struct i387_fsave_struct); |
| sp -= sizeof(struct i387_fsave_struct); |
| } |
| |
| *size = frame_size; |
| return sp; |
| } |
| |
| #endif |